
LA-UR-
Approved for public release, 
distribution is unlimited. 

~ 
Los Alamos 
N ATI ON AL LAB O RATORY 
--- EST.1943 ---

Title: The Application of Formal Software Engineering Methods to 
the Unattended and Remote Monitoring Software Suite at 
Los Alamos National Laboratory 

Authar(s): John C. Determan 
Joseph F. Longo 
Kelly D. Michel 

Intended for: Proceedings of 50th INMM Annual Meeting 
Tucson, AZ 
July 12-16, 2009 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the US. Department of Energy under contract DE-AC52-06NA25396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



The Application of Formal Software Engineering Methods to the Unattended and 
Remote Monitoring Software Suite at Los Alamos National Laboratory 

ABSTRACT 

John C. Determan , Joseph F. Longo , Kelly D. Michel 
Los Alamos National Laboratory 

P.O. Box 1663, MS-E540, Los Alamos, NM, 87545 

The Un attend d and Remote Monitoring (UNARM) system is a collection of specialized hardware 
and software used by the International Atomic Energy Agency (lAEA) to insti tute nuclear 
safeguards at many nuclear facilities around the world. The hardware consists o f detectors, 
instruments, and n etworked computers for acquiring various forms of data, including but not limited 
to rad iation data, global position coordinates, camera images, isotopic data, and operator 
declarations. The software provides two primary functions: the secure and reliable coll ection of this 
data from the instruments and the abili ty to perfon n an integrated review and anal ysis of the 
disparate data sources. S veral years ago the team responsible for maintaining the software portion 
of the UNARM system began the process of fOI1n alizing its operations. These [onnal operations 
include a configuration management system, a change control board, an issue tracking system, and 
extensive formal testing, for both functionality and reliability. Funct ionality is tested with formal 
test cases chosen to fu lly represent the data types and methods of analysis that will be commonly 
encountered. Reliabili ty is tested w ith iterative, concurrent testing where up to five analyses are 
executed simu ltaneously fo r thousands of cycles. Iterative concurrent testing helps ensure that there 
are no resource conflicts or leaks when multiple system components are in use simultaneously. The 
goal of th is work is to provide a high quality, reli able product, commensurate with the criticality of 
the application. Testing results wi ll be presented that demonstrate that this goal has been achieved 
and the impact of the introduction of a fonn al software engineering framework to the UNARM 
product wi ll be presented. 

INTRODUCTION 
The Unattended and Remote Moni toring (UNARM) system is widely used by the International 
Atomic Energy Agency (IAEA) to provide nuclear safeguards at many types of nuclear faciliti es all 
around the world , as depicted in Figure 1. UNARM is in use at reactors, storage fac ilities and 
reprocessing plants, for a total of75 sites in 14 countries across 4 of the 6 inhab ited continents. 
WhiJ radiation data, such as neutron and gamma ray data, are at the core of the UNARM syst m 
and of utmost importance at nuclear facilities, UNARM also provides support for other associated 
data types, such as image data, balanced magnetic switch data, operator declarations and GPS data. 
Anal ytiCal capabilities are also provided for detennining such things isotopic ratios and Pu and U 
masses. 

UNARM is usually described as consisting of three logical components: data acquisition, co llection 
and review. UNARM is implemented as a combination of hardware, finnware and software 

Jements, as depicted in Figure 2. The hardware and finnware are largely associated with the data 
acqui sition; for example, radiation detectors such as He3 tubes connected to m iniGRAND (Gamma 
Ray And Neutro n Detec tor) instruments running fi rmware to acquire the data. Instmments such a 
the mini GRAND are in tum connected to a computer known as the Collect computer via some 
specialized networking hardware known as intelligent local nodes (ILONs). The Collect computer 



and associated ILONs host a constellation of software and firmware components that collectively 
function to collect the data from the instruments and safely and securely maintain it. Finally, 
elements of the collect system software may be used to transfer the data from the Collect computer 
to another computer, the Review computer, where several data review appl ications may be used hy 
IAEA inspectors in either "stand-alone" or " integrated" mode to review the data. Integrated mode 
is best described by an example. When an l AEA inspector sees an event of interest in the radiation 
data using the Radiation Review application (RAD), that inspector may view images taken at about 
the same time as the radiation event in the Digital Video Review application (DVR) by simply 
clicking the mouse. In stand-alone mode, links to other review applications are not enab led. 

Asia 
Europe 
North America 
j\ frica 
Total 

GERMANY 
5 systems 
:,-/ORWAY 
I system 

N O RTH 
f' ? r fI AM E R le A' 

'1 \ ' ~J' 
1 I 1 ... \ 

SO UTH 
AM E R ICA 

I f I 
39 
25 

9 
.111" I ! I 

(' \, /" I ' 
tJ t f-': -\ "; 

.\ / I , 

) < H 
2 

75 

AN 

SOUTH 
AFRICA 
I system 

Figure 1. Distribution ofIAEA installed UNARM systems. 

",S I A 

I /J/ \. 
I I I OCE A N IA 

UKRAINE 
10 systems 

LITHUANI A 
6 systems 

JAPAN 
38 systems 

SOUTH 
KOREA 
I ;;ystem 

UNARM deve10pment began in the early 1990's, and after one decade had grown to a large 
collection of hardware, finnware and software components. Around 2002 the awareness was 
growing that increased formality of operations was necessary to properly manage the development 
and maintenance of the UNARM system, particularly its many firmware and software elemen ts . 
Greater formality was also called for because the UNARM system had been adopted by the lAEA 
and put into use around the world. Since 2002, several key formal software engineering practices 
have been adopted by the UNARM software development team, and several formal software tests 
have been conducted on the UNARM software, This paper will describe those software practices 
and the present the results of several rounds of software tes ting. 

FORMAL PRACTICES 
Several key form al software engineering practices have been adopted by the lJN.A.RM software 
development team. The UNARM development team is and always has be n lean, so there is not a 
highly diversified structure of designers, implementers and testers; our typical budgets cannot 
support that level of specialized effort. Softw are engineers handle the design, implementation and 



maintenance in fl uid teams as needed for each new effort, and technicians perfonn testing to 
provide a measure of independence. The adopted practices are adapted to thi s lean enviromnent 
These practices include: software confi guration management, issue tracking, a software control 
board, formal testing and managed releases . Together, these formalities allow the UNARM 
software team to manage its resources, software issues, and delivered products . 

Paral.lel 

Serial 

min iGRAND 

Parall el 

Seria l 

M iniADC 

Assay 
Area 

Figure 2. Schematic of demonstration UNARM system maintained at LANL. 

Software configuration management was the earliest practice to be adopted. OUf configuration 
management efforts are centered around the Microsoft Visual Source Safe (VSS) application, but 
also incl ude recommended procedures for various acti vities, such as source code check-in, software 
versioning, and others. Proper use of VSS provides many advantages, including backup of all 
source code, version control, historical queries on code modifications, and ease of project 
deployment to back-up developers when needed. The associated procedure for source code check­
in is particularly usefu l in making sure that all necessary modified or newly created components 
have been captured by the check-in. An activity log is part of the check-in process, and this has 

een especially useful for situations where resource demands have dictated that different developers 
are involved serially in the support of a single application. 

A software control board was the next practice to be adopted, and in tum, through the cunt ro l 
board' s deliberations, the remaining practices were initiated. UNARM comprises dozens of 
software and finnware elements, and the ripple effect of changes in one part of the overall system 



often have to be m anaged. For example, one utility, FacilityM anager, manages the data about 
fac ili ties - what instruments and detectors are installed at a facility, where fac ility-related 
di rectories are located on the computer's hard-drives and more. All of the revi ew applications 
depend on this utility for info rmation about the facility currently being reviewed. A signi fic ant 
change to Facili tyManager could well require all dependent software to be recompiled, at the very 
least, so a high level of coordination amongst the developers is required, and this is one thing that 
the control board provides. The control board is also a forum for product planning and process 
improvement discussions. O Uf current systems for issue tracking and release management evolved 
under the guidance of the control board. 

Issue tracking has always been of importance. Prior to the control board, issue tracking was 
performed in an ad hoc manner, by individual developers maintaining isolated lists, often in 
spreadsheet fi les. The control board recognized very early that a more comprehensive system for 
issue tracking was vital to product planning and delivery. A first stab at the problem was made by 
adapting a Microsoft Project Server system already in use for other purposes to maintain a database 
of issues fo r the entire UNARM suite of software components. This database was a huge step 
fo rward, but limitations of the system were also obvious. The control board did some research and 
determined that a work-flow engine was needed and settled on the TeamTrack product. A work­
flow engine, while at its heart a database, is much more than a just a database. A work-flow engine 
allows for the custom specification of work-flow processes, graphic visualization of the process, 
and automated email notifications of team members involved in work-flow processes, when their 
actions are required. Custom reports can be defined to provide reports on issue reso lution per 
product or suite of related products. The issues we track are categorized into Software Change 
Requests (SCRs) and Discrepancy Reports (DRs). SCRs are for requesting new or modifi ed 
software behavior, while DRs are for reporting what are suspected to be bugs. 

A charter problem for the control board was the issue of software releases. Like issue tracking, 
software releases prior to the control board formation were ad hoc. This issue has been formalized 
by de eloping two levels of software release: Baseline Deliveries and Emergency Service Packs. 
The intent of the two del ivery mechanisms is very different. A Baseline Delivery is a coordinated 
collection of changes and fixes across the full suite of products, and requires some level of 
verification prior to delivery. While an ESP also typically delvers a suite of software components, 
they are typ lcally based on less sweeping changes, require less veri fi cation, and are targeted at the 
special needs of a specific installation, which cannot wait fo r the next baseline delivery. Baseline 
Deliveries require f01111al verification, and what this veri fication consists of has evolved with each 
delivery. Testing has evolved from documented unit testing to integrated testing in the presence of 
a third party observed selected by the IAEA, and is the subj ect of the next section of this paper. 

PRODUCT TESTING 
Installation and testing of the UNARM product has always been somewhat of a cooperative effort 
between the IAEA and the UNARM developers. In the early years of UNARM development a 
fac ility ins tallat ion and checkout would be the joint responsibility of both the IABA and the 
UNARM developers. In recent years, however, specialization of responsibilities has been 
developing. Product development starting around 2002 focused on making software installation 
easier, and as a result developers were no longer essential during sys tem installation, putting that 
responsibility more squarely on the shoulders of IABA personnel. As a response to shi fting IAEA 



responsibilities, product testing has shifted much more to the development team. There is sti ll and 
may well always be some degree of overlap in the installation and testing activities between the two 
organizations, but these roles are much more specialized and clear-cut than in the early days. 

Several types of testing have been performed on di fferent version of the UNARM product in recent 
years. In the miti al Baseline Deliveries, Los Alamos National Laboratory (LANL) personnel 
prov ided documented unit testing and IAEA personnel provided integrated testing. For older, well 
established products, unit testing of modi fications and fixes was performed and document d, while 
for new products, test plans were written, performed and documented. Two recent products, the 
Nondestmctive Assay Review - Nuclear Components (NDAR -NC) package, modules and Baseli ne 
2 Revision 1 (B2R 1) have been and continue to be tested very thoroughly, and testing of these 
products wi ll be discussed in detail. 

NDAR-NC DCOM MODULE TESTING 
The NDAR-NC DCOM modules represent an intermediate step in the evolution of the UNARM 
product. The data import and analysis capabilit ies of the UNARM sofu~lare are currentl y being 
repackaged as Component Obj ect Model (COM) and Distributed Component Obj ect Model 
(DCOM) modules, so that the capabilities of the UNARM software suite can be leveraged in more 
versatile software architectures than simple applications. The Rokkasho Reprocessing Plant (RRP) 
in northern Japan is the prime example of where a more versatile software architecture was 
required. The IAEA is currently developing a review system, NDAR, with the nuclear 
computations being supplied by a subset of the UNARM capabilit ies referred to as NDAR-NC. 
NDAR-NC is a co llection of COM and DCOM modules. COM and DCOM modules are 
dynamically-l inked libraries with a generalized interface that can be easily linked to from a vari ety 
of programming languages. DCOM is a variant for distributed applications, and is required at RRP 
because the processing of the voluminous data may occur across multip le nodes. 

Initiall y, the NDAR-NC testing consisted of functional and performance testing of the entire set of 
COM and DCOM modules. All data import options and analyses used at RRP were covered in this 
testing, and where the same analysis could be appl ied to different types of data, that variation was 
also tested. Where capabilities overlapped between the products, the "gold standard" against which 
comparisons were made was the most recently accepted Baseline Delivery of the software at that 
ti me, Baseline 1, Revision 2 (B1R2). In some cases, however, new capabil ities existed in NDAR­
NC that did not exist in BIR2 , and in those cases, spreadsheets capable of xecuting the needed 
calculati rIS wer created and verified, and used to double check the NDAR-NC calculations. 
Interactive test platforms were created to produce external calls on the COM arid DCOM libraries; 
high-level parameters could be interactively specified for quick, flexible testing, but where large 
amounts of detailed inforn1ation was needed by the interface, pre-confi gured XML files containing 
detailed p rameter specifications were employed. 

The functional testing of the NDAR-NC product has been regressed several times, with the results 
shown in Table 1. The issues discovered in the initial testing included one improperly speci fi ed test 
that could not be successfully completed, and the inability to meet an arbitrary performance 
criterion. In the second round of testing, the improperly specifi ed test was corrected and 
successfully completed, but the arbitrary performance cri terion was still not met. In the thi rd round 
of testing, the performance test was eliminated because a better, less arbitrary performance test had 



been developed as part of the iterative testing described below. Throughout this testing all parties 
were in agreement that despite the failure of the performance test, the results indicated an 
acceptable perforrnance level and that more meaningful criteria needed to be developed. 

Testing Date # Tests Performed # Successful Tests Success Rate 
December 2006 26 24 92% 
August 2007 26 25 97% 
January 2008 25 25 100% 
November 2008 14 14 100% 
Table 1. Results of functlOnal testmg, over hme. 

Despite this thorough testing, the developers of NDAR still reported anomalous behavior under 
certain circumstances. There were two notable differences in the circumstances of how they used 
NDAR-NC, versus how we used it; one difference turned out to be largely irrelevant, and the other 
significant, but still somewhat mis- leading. NDAR-NC is produced in C++ and our testing done 
from a C++ platform. The NDAR developers were using C# to link to NDAR-NC. The platform 
difference seemed suspect at fust, but more significantly, the NDAR developers were perform ing 
hi ghly iterative tests where a series of COM calls were performed in a loop for hundreds or 
thousands of iterations. To further complicate the picture, the NDAR developers typically ran two 
or more such iterative tests simultaneously. Under these circumstances, unexpected fa ilures of 
COM operations would occasionally occur. Although the code had been verified correct, under 
stressfu l conditions seemin gly random failures could occur. 

To attack this problem, we first verifi ed that we cou ld reproduce the results llsing a C# test platform 
provided to llS by the NDAR developers. Next, we demonstrated that the same issue auld be 
produced rurming multipl e C++ performance tests simultaneously, proving to ourselves that C# I 
C++ interac tions were not part of the problem. Finally, a specialized test ri g was built for studying 
this problem in detail. To simulate actual usage of the NDAR-NC modules, we needed to be able to 
simulate specific sequences of NDAR-NC library calls known as process sequences. A generalized 
process sequence can be described as follows: find a radiation event, find a period of background 
radiation close in time to the event, perform a quantitative analysis on the event and its background 
to arrive at a Pu or U mass value for the event. The test rig had to be able to represent any of the 
maj or process sequences, had to be fully automated for iterative testing, and needed to be able to 
collect and analyze large amounts of data on the unexpected failures of COM operation . To 
simul ate NDAR running multiple parallel processes of process sequence computation, multiple test 
platforms would be run simultaneously. In addition, it was necessary to introduce random 
variability in the timing of the calls to avoid iterative parallel testing from falling into cyc lic 
operation. 

A system fo r easily configuring and fu lly automating process sequence calculations was developed. 
One type of XM L fi le allowed specification of the components involved in a process sequence 
calculation, while another type of XML file allowed for the complete specifi cation of all paramet rs 
needed to control any of the NDAR-, C components. To collect data, the test rig recorded to a fi le 
the success or fa ilure of every call made along with the complete text of error messages in the case 
of failure. Typical tests could involve several hundreds of thousands of such entries. To minimize 
the impact of data collection on the testing, large buffers of output were collected and infrequently 



wri tten to the disk. Because of the large amounts of data collected, an automated analysis capabi lity 
was devel ped. C++ exceptions were the fault of interest. The random variabil ity on call timing 
and data size interval had also introduced the possibility of " valid failures". Valid fai lures were 
error conditions induced by random variations and an acceptable system response, but C++ 
exceptions were always a problem and never valid . The error analysis could distinguish C++ 
exceptions from valid failures, and count them. This result was presented as the percentage of calls 
r suIting in C++ exceptions out of the total number of calls made. An error rate of less than 0.1 % 
was deemed acceptable . Also, the error analysis reported the growth of unreleased memory across 
the Ii felime of the test rig. 

The test rig took some time to fully perfect, but intennediate versions were suffic ient to run iterative 
parallel testing fo r several months prior to the comp letion of the project. A mocked up distributed 
test bed already existed for the functional testing of NDAR-NC, and with slight modification th is 
tcst bed was re-used for the iterative testing. For months, automated tests were run day and night 
and through the weekends. The test rigs were run in windows capable of catching and reporting on 
C+ I exceptions, such that the causes of the failures could be tracked down and corrected . M emory 
growth could be watched, related to particular components, and alleviated. Two general ca tegories 
of problems were eventually isolated : minor memory usage anomalies that had always ex isted in the 
"legacy" code ofth c older applications, but that were not a problem until tested in an iterative 
fashion, and problems in the usage of so-called "smart pointers" an element of the COM 
infrastructure. Ironically, "smart pointers" are intended to make programming with C++ pointers 
easier and more transparent, but until you have studied them deeply, they tend to do the opposite. 

Several differ nt tests were planned and executed using test rig described above. Two are of 
particular int rest, from the standpoi nt of reliability testing. A set of five process sequences was 
identifi ed that between them tested every NDAR-N C component, including testing any given 
component on multiple data types, where applicable. This test was considered the acme, and was 
therefore run for 500 and 10000 iterations of all five sequences simultaneously, at different times, 
with results of th is test presented in Table 2. The rate at which unexpected C++ exceptions occurs 
has improved over time to the point that only a small handful occur in a test that makes 
approximately 750,000 method calls over a period of about 1 week. Furthennore, it is now 
suspected, but not conclusively confirmed, that the few exceptions that do occur are due to an 
oversight in the test li g that allows for resource conflicts between simultaneous processes under 
very rare circumstances, c ircumstances that would not occur in actual NDAR operation. 

Date Iterations Error rate (%) Errors (abs # errors) # Method calls 
Aug. 2007 500 .01 6 ~50000 

Nov. 2008 500 0.0 0 ~50000 

Jan . 2008 10000 .0005 3 ~75 0000 

Nov. 2008 10000 .0004 4 ~750000 

Table 2. Error rates for Iterative testmg of 5 test sequences sllTIultaneously. 

The most challenging test was one in which a severe network outage was simulated. The ND.A..R­
NC components would not be able to receive data under that condition, would not be able to do 
their analyses, and so needed to gracefully record the network problem to emergency log files and 
then await the network's recovery to resume activity. The ethemet connector between the data and 



analysis nodes w s disconnected in the middle of a long iterative test. As expected a flood of error 
messages were recorded in emergency logfiles on each node, and then activity r ouced to a min imal 
level until the network was re-established. Normal activity automatically resumed. 

BASELINE 2 REV/SON 1 TESTING 
Describe hov·" SCR / DR testing was done and plans for integrated testing. 

SUMMARY 
The US Support Program has worked with us over the years to implement the formal software 
engineering efforts and associated testing described in this paper. The quality of our products and 
services has demonstrably increased thanks to this support. MORE 

REFERENCES 

LA-UR test plans? 


