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Conformal Refinement of Unstructured
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Summary. We present a multilevel adaptive refinement technique for unstructured
quadrilateral meshes in which the mesh is kept conformal at all times. This means
that the refined mesh, like the original, is formed of only quadrilateral elements
that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral
element do not lie in an edge of another quadrilateral. Elements are refined using
templates based on 1:3 refinement of edges. We demonstrate that by careful design
of the refinement and coarsening strategy, we can raintain high quality elements
in the refined mesh. We demonstrate the method on a number of examples with
dynamically changing refinement regions.

1 Introduction

Adaptive mesh refinement is a well-known and widely employed technique for accu-
rately capturing special features of the solution in steady and unsteady simulations.
In such simulations, adaptive refinement enables the capturing ol complex solution
features by focusing refinement in critical areas without having to refine the mesh
everywhere. Adaptive mesh refinement is now standard practice in simplicial meshes
(triangular and tetrahedral) in a wide variety of applications. The unique topolog-
ical properties of simplices allow the refinement in such meshes to be confined (o
fairly local regions while maintaining a high element quality [9] and keeping the
mesh conforming. Conformity of the mesh implies that the intersection of a pair of
elements, if not null, is strictly a lower dimensional mesh entity such as a face, an
edge or a vertex. Non-conformity of mesh is commonly interpreted to mean that a
lower order boundary entity (e.g. a vertex) of one element lies cn a higher order
boundary entity (e.g. an edge) of another element.

For quadrilateral meshes, the most common approach to adaptation is to re-
fine elements in a non-conformal way. This allows the refinement to remain local
but introduces non-conformal nodes which lie on the edges of neighboring elements.
However, mesh non-conformity necessitates augmentation of the PDE solution al-
gorithm to deal with the special nodes. Non-conformity is typically dealt with by
constraining the solution at the non-conformal nodes to be dependent on the solu-
tion at the nodes of the edge it lies on using constraint equations [13] or Lagrange
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multipliers [3] or by the use of mortar elements to link the non-matching elements
1

In this research we describe a technique to refine an unstructured quadrilateral
mesh such that the result is also a heirarchically refined, conforming mesh of only
quadrilaterals with high quality albeit a little worse than the parent mesh quality.

2 Previous Work

There has been considerable research on conformal triangular refinement for adap-
tive simulations since termination of refinement for simplices is very easy (sec, for
example, [10]). However, [or quadrilateral meshes most researchers choose to use non-
conformal quadtree type refinement with specialized code to handle non-conformal
nodes (see, for example, [2]). There have been only a few articles describing confor-
mal quadrilateral mesh refinement and coarsening, and even fewer that deal with the
issue in a dynamic setting, i.e., conformally refining and coarsening a quadrilateral
mesh that has been previously refined.

One of the best known papers on the issue of conformal quadrilateral refinement
is by Schneiders [12]. In the paper, Schneiders discusses 2-refinement (bisection of
edges) and 3-refinement (trisection of edges). He chooses the trisection of edges be-
cause it simplifies the algorithm. The refinement information is propagated from
elements to nodes and refinement templates are defined based on the number of
marked nodes (See Figure 2). The refinement templates are chosen such that the
scheme is stable, i.e., the quality of elements does not deteriorate with increasing
refinement levels. However, even though in this research, uniformly refined quadri-
laterals have trisected edges and are split into 9 child quadrilaterals, templates used
in adjacent elements to terminate the refiiement have bisected edges as seen in the
figure. In general, Schneiders scheme is expected to createc more elements for the
purpose of termination than the scheme presented here. Still, it is & valid scheme
for conformal quadrilateral refinement and has been used by other researchers such
as Zhang and Bajaj [16]. Schneiders has extended the work to hexahedral refine-
ment as well but correctly points out that certain refinement patterns for the faces
of hexahedra may not admit a valid decomposition of the parent hexahedron. Ito
et.al. have also used Schneiders’ approach for octree based hexahedral refinement
Lemplates [7]

Tchon et.al. have proposed a quadrilateral refinement strategy in which they find
layers of elements, shrink the layers of elements and reconnect the shrunk layer with
the surrounding mesh [15]. Clearly this strategy assumes certain structure to the
mesh and specific refinement patterns while ignoring the issues of multiple levels of
refinement, mesh quality and dynamic adaptation. Hence, the approach is of limited
utility.

Several researchers have proposed a quadrilateral refinement strategy where the
end resull is a mixture of quadrilaterals and triangles, for example [4]. Similarly,
others have proposed hexahedral refinement strategies which result in a combination
of hexahedra and prisms. However, this confiicts with our stated goal of achieving
a conforming all-quadrilateral or all-hexahedral mesh.

Benzley et.al. have proposed quadrilateral mesh coarsening strategies that are
quite general and do have an advantage over nested refinement strategies in that
they can coarsen beyond the original resolution of the mesh [14].



Conformal Refinement of Unstructured Quadrilateral Meshes 3

The research that is closest to our research is the work by Sandhu et.al. [11]
although our work was developed without knowledge of this earlier research®. In
this work, Sandhu et.al. use node marking and trisection of edges to define tem-
plates for refining elements and terminating the refinement. They define one less
than the number of templates used in this work. Similar to our work, they also rec-
ommend undoing non-uniform refinement of quadrilaterals before further refnement
to maintain quality. However, all their examples show only static refinement and not
adaptation to dynamically changing solution features.

In this research we describe a dynamic 11esh adaptation strategy for quadrilateral
meshes that results in a conformal all-quadrilateral mesh with nested refinement.
Moreover, while not proved, we beleieve that the resulting mesh quality is bounded
by the quality of the parent mesh regardless of the number of levels of refinement
at each time step or the number of time steps in the mesh. The adapted mesh is
suitable for use in a wide range simulations without any special procedures since it
is composed of only conformal quadrilaterals. Finally, the nested refinement allows
for easy remapping of cell based quantities from one time step to another.

3 Description of Mesh Refinement/Coarsening
Algorithm

3.1 Overview

Qur adaptive mesh modification algorithm starts with tagging elements that must be
refined because they do not adequately represent some geometric feature or because
the solution error in these elements is deemed to be too high. These elements and
their edges are tagged for refinement (or coarsening), if necessary, to multiple levels
below (or above) their current level of refinement?. When an edge is adjacent to
two elements with different refinement levels, it is refined to the higher of the two
levels. Once the appropriate elements have been tagged by the application, the
mesh is coarsened wherever the application requests the elements to be larger than
they currently are. After coarsening, the mesh is refined wherever the application
requests elements to be smaller than they currently are. During both coarsening
and refinement, the refinement levels of elements are adjusted so that they are
consistent with their siblings (children of their parents) and such that the target
refinement levels of two adjacent elements do not differ by more than one. The
one-level difference rule ensures that the number of templates required to make the
mesh conforming is limited to a manageable number and that the mesh is smoothly
graded.

3This work has not been published in any journal that frequently publishes mesh-
ing related work and therefore, has hitherto gone unnoticed.

%Regardless of whether an element is being coarsened or refinement, we will
always refer to its target level in the heirarchy of meshes below the coarsest mesh
as its target level of refinement.
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3.2 Subdivision Templates

When some elements in the mesh get uniformly refined, adjacent quadrilaterals that
share an edge with the uniformly refined elements have one or more edges that are
refined. To make the mesh strictly conforming, these adjacent elements must also
be subdivided into quadrilaterals such that no new edges are refined. To facilitate
conformal subdivision of elements that are not uniformly refined, edges are trisected
instead of being bisected as in triangular meshes. The reason for choosing trisection
over bisection is that if an odd number of edges of a quadrilateral were bisected, the
resulting polygon would have an odd number of edges and could not be subdivided
into gquadrilaterals. The templates used for subdividing quadrilaterals with different
edges refined are shown below in Figure 1. Some of these templates have been
described in previous works [11] and some are new.

(a) (b) (c)

(a) (e) (f)

Fig. 1. Subdivision templates for quadrilateral refinement (thick edges are refined
edges) (a) unrefined quadrilateral (b) one edge refined (¢) two opposite edges refined
(d) two adjacent edges refined (e) three edges refined (f) all edges refined (uniform
refinement of quadrilateral).

The quadrilaterals that result from uniform refinement of a parent quadrilat-
eral are called regular elements as they are geometrically similar to their parents.
Quadrilaterals resulting from refinement of one, two or three edges of the parent
quadrilateral are called érregular quadrilaterals as they are not necessarily similar
to their parents.
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[t must be pointed out that the templates described above are different from the
templates in Schneiders’ work. Tn that work, refinement tags are transmitted to ver-
tices of elements and templates derived from the combinations of vertices tagged for
refinement. Those templates are shown in Figure 2. As can be seen [rom the picture,
the only template the two approaches have in common is the uniform refinement
template. In the remaining cases edges of elements that adjacent to uniformly re-
fined elements are refined using an irregular 1:2 pattern. Also, even if only one
edge of an element adjacent to a uniformly refined element is refined, the template
proposed by Schneiders refines two other edges of the element. This in turn forces
refinement of other elements. This leads us to conclude that the algorithm proposed
by Schneiders is more complex to implement and results in greater numbers of el-
ements. Figure 3 shows a simple example of this over-refinement as a consequence
ofuniform refinement of the central element in a 3x3 mesh of quadrilaterals. As can
be seen in the picture, Schneiders’s scheme modifies every element in the 3x3 mesh
while the proposed scheme affects anly the edge connected neighbors.

(a) (b) (c)

(d) (e)

Fig. 2. Schneiders’ subdivision templates for quadrilateral refinement (refinement
vertices are marked with circles) (a) unrefined quadrilateral (b) one vertex marked
(c) two adjacent vertices marked (d) two diagonally opposite vertices marked (e)
three vertices marked (f) all vertices marked (uniform refinement of quadrilateral).
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| a N/

(a) (b) (c}

Fig. 3. Comparison of Schneiders’ scheme and the proposed scheme of refinement on
a 3x3 grid of quadrilaterals (a) Central element refined uniformly (b) Surrounding
mesh made conforming by Schneiders’ scheme (¢} Surrounding mesh made conform-
ing by proposed scheme

3.3 Coarsening

In the mesh adaptation method presented here, coarsening of elements is done first
before refinement. In this approach, coarsening is performed strictly using the knowl-
edge of the hierarchical structure of the adapted mesh, i.e., if an element is to be
deleted then its siblings are also deleted simultaneously and the parent element is re-
stored. For this reason, the coarsening strategy of this paper cannot coarsen beyond
the original mesh. Coarsening is performed on elements whose current refinement
level is higher than the target refinement level. Before actual deletion of elements,
however, the target levels ol elements are adjusted to ensure that there is not more
than one level of difference between two adjacent elements and that the target levels
of siblings are consistent.

Cousider an element whose current refinement level is £, and target refinement
level is L;. Assume the maximum refinement level of all of its edge connected neigh-
bors (and therefore, all of its edges) is L,. Then, if the target refinement level of
this elememnt is less than one level lower than the maximum target of its edges,
then set the target level to be exactly one less than the maximum target level of
its edges. Algorithmically, this can be expressed more succintly as: if L, < L, — 1,
then L, = L. — 1. For example, if for a particular element L. =5, L, = | and the
neighbors have targets of 1, 3, 1, 2. Then L, = 3 and we set L, = 2.

For making the refinement levels consistent between siblings, we take a conser-
vative approach and mark an element and its siblings for coarsening only up to the
maximum level (smallest size), Ly, allowed by the element and all its siblings. So,
il Ly <= L, < L, then L, = L.. For example, it L, = 5, L, = 1 for an element,
but L, = 3, lL.e., one of the siblings of the element has a target level of 3. Then
we cannot coarsen the current element to a level lower than L, = 3. On the other
hand if L, < L, < L,, then L, = L.. For example, L, = 5, L, = 1 as before, but
L, =7, ie., a sibling wants to be refined from the current level while the element
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wants to be coarsened. Then the element cannot be coarsened above the current
level, L, = L..

Next the elements are coarsened one level at a time starting from the highest
level. Everytime an element and its siblings are deleted we transmit the target
refinement level to its parent. After coarsening the mesh at a particular level, we
redo the level adjustment before coarsening at the next lower level.

3.4 Refinement

The most important rule imposed during refinement is that trrequler elements are
never refined as their repeated subdivision can lead to unbounded deterioration of
quality. Instead, whenever an irregular element is tagged for refinement, the element
and its siblings are deleted and its parent element is tagged for uniform refinement
upto the maximum level requested by the element and its siblings. This rule ensures
thal the quality of the refined mesh is always bounded by the quality of the parent
mesh. Schneiders defines refinement schemes with this property as being stable [12].

Refinement of the mesh and adjustient of levels before refinement is bit more
complex than coarsening because regular and irregular elements have to be dealt
with separately. On the other hand, level adjustment has to be done only once
before multilevel refinement as opposed to the doing it at each level for coarsening.

To do level adjustment for refinement, we look at each element whose target
refinement level L, is higher than its current refinement level, L.. Then we get the
maximum refinement level, L, of all its edge connected neighbors. As before, if
its target refinemnent level is one less than maximum target level of the neighboring
elements, i.e. L, < L,—1, then adjust the target level of this element as L, = L, — 1.
Also, if the element is irregular and onc of its edges is to be refined, then mark the
element and its siblings for deletion and mark its parent to be refined to L,. Finally,
if two adjacent elements are to be subdivided irregularly, ensure that the common
edge of the two is also to be subdivided. This ensures better element quality as
shown in Figure 4.

Then we delete the irregular faces and subdivide the remaining faces according
to the templates based on the number ol edges that are refined. Everytime we refine
an element, we mark all its children with the target refinement level. We continue
to iterate over the mesh elements until all elements have reached their target level
of refinement.

4 Remapping or Solution Transfer

Unlike mesh adaptation for capturing geometry, adaptation to reduce solution er-
ror for solving a PDE is tightly coupled with the issue of remapping or transfer of
quantities from the base mesh to the adapted mesh. This remapping must be done
accurately and in a conservative manner (for example, the densities of the child ele-
ments must be assigned such that the total mass of the parent element is conserved).
When we coarsen & group of elements, we can just sum up the mass {or energy) of
the child elements and assign it to the parent. On the other hand, when we refine an
element uniformly, then one can equidistribute the mass over the children (less ac-
curate) or do a linear reconstruction of the density function over the parent element
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(c1 (d)

Fig. 4. Refining the common edge between two irregularly refined elements (a) Two
adjacent elements with one edge refined (b) same elements with their common edge
refined {c) One element with two edges refined next to an element with one element
refined (d) same elements with their common edge refined

and integrate over each child to get its mass (more accurate). Field variables (such
as velocity) can be obtained by either evaluating an interpolant over the parent at
nodes of the child or by solving a local problem over the refined elements using the
solution over the base mesh to impose boundary conditions for the local problem.
Also, in the proposed algorithm, special care must be taken for remapping when
irregular elements are targeted for refinement since the mesh is coarsened back to
the parent element and refined down uniformly. Using a summation of masses of
the irregular children to get a mass for the parent element and then redistributing
it to the regular children can be a poor choice and will lead to lower order accu-
racy remapping. Rather, it is better to use an intersection based remapping routine
locally to get second order accuracy [5].

5 Results

We first present a static example of refinement of a structured mesh mesh adapted
to a superimposed line in the mesh. Any element that is intersected by the line is
refined up to level 3 (level 0 is the original mesh). The superimposed line goes from
(—0.3082071.106007) to (1.106007 — 0.308207). The quality of the mesh before and
after the refinement is also compared in terms of the average condition number of
the element, %, defined as the mean of the condition numbers [8, 6] at all corners
of the element. One can see from the histogram of the refined mesh that it is not
shifted dramatically from the ideal case and that the worst quality element has
an average condition number of only 1.69. In fact, in simulations where a line is



Conformal Refinement of Unstructured Quadrilateral Meshes 9

moved diagonally across the domain and the mesh refined around it, the worst
element condition number stays at 1.69. Also, the worst element quality stays at
1.69 regardless of what the refinement level is applied to elements intersected by the
line.

A Original Refined
1.0-15 400 12412
1.5-2.0 0 1396
20-3.0 0 0
4.0-35.0 0 0
5.0 - 0 0

|
|
Fig. 5. A 20x20 structured mesh refined us-

ing distance from center as the refinement cri-
terion

Next we show refinement induced by the same line in an unstructured quadri-
lateral mesh. Figure 6a shows the original mesh with the elements marked for re-
finement to level 3 due to intersection with the line (also shown). Figure 6b shows
the refined mesh after the levels have been adjusted to enforce a one-level difference
between adjacent elements. Also included is a table showing the distribution of con-
dition nurnbers before and after refinement. The worst condition number goes from
3.12 to 3.79 after refinement.

In the following example, we show the several snapshots from an dynamic adap-
tation procedure where a circle of radius 0.1 is moved along a circular path in the
domain. The center of the circle traces a circle of radius 0.2 centered at (0.5,0.5).
The starting point of the circle center is (0.7,0.5). The target size for the elements
to be refined is 0.05d where d is the distance between the centroid of the element
and the center of the circle. As the circle moves, previously refined parts of the
mesh are coarsened and new parts are refined with considerable overlap between the
coarsened and refined regions. As expected, the worst element quality stays at 1.69
throughout the dynamic adaptation procedure.

Finally, we show several snapshots of a dynamic adaptation procedure in which
elements intersecting two expanding circles are refined to level 4. One circle is cen-
tered at (0.0,0.0) and the other circle is centered at (1.0,0.25). Both circles start
with a radius of 0.11 with their radii increasing in increments of 0.05. As the circles
grow, they intersect each other and eventually grow out of the domain. Elements
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I Original Refined
1.0~1.5 1007 42491
15-20 15 1776
20-3.0 1 504
3.0-4.0 1 L&
4.0 - 5.0 0 0
50-175 0 0
(c)

Fig. 6. Refinement of an unstructured mesh along a line (a) Target refinement levels
{b) Refined mesh (c¢) Histograms of condition numbers

that intersect one or the other circle are refined to a level of 3 while elements that
intersect both circles are refined to a level of 4. Again the worst quality is stays fixed
at 1.69 throughout the adaptation process.

6 Discussion

This paper presented a comprehensive mesh adaptation procedure for quadrilaterals
that results in conformal meshes with nested refinement. The refinement is based on
templates devised from a consistent 1:3 refinetaent of element edges. [t also presented
algorithms for adjustment of refinement levels of elements, both for coarsening and
for refinement, such that there is never more than a one level difference between the
refinement levels of adjacent elements. The quality of the refined mesh is kept high
by never refining irregular elements used to bridge refined and coarse regions of the
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Fig. 7. Snapshots of dynamic mesh adaptation of a 20x20 structured mesh with
respect to a circle rotating about the center of the domain

mesh. Instead if irregular elements must be refined, they are deleted and their parent
is uniformly refined instead. Using several dynamic mesh adaptation examples, it was
shown that the procedure effectively refines the mesh where necessary and coarsens
it where il is not.

Although one other paper discussing similar templates and strategy was found
after this algorithm was devised, that work is not very well known in meshing circles.
Also, that paper does not discuss dynamic mesh adaptation and mesh coarsening
explicitly although it also suggests that irregular elements not be refined.

Compared to the algorithm proposed by Schneiders and the templates in his
papers, this algorithm produces fewer elements and is simpler due to the consistent
use of 1:3 edge refinement. Also, Schneiders does not discuss the issue of mesh quality
when forced to refine irregular elements. Finally, the issue of solution transfer or
variable refinement is addressed in the current paper which is often ignored in most
conformal quadrilateral refinement papers.

In 3D, the combinatorial complexity of the current algorithm could be more
complex than that of Schneiders’ algorithm. That is because this algorithm tags
edges instead of vertices for refinement, thereby resulting in Z:io 12C; = 4096 pos-
sible combinations. Of course, many of thesc can be eliminated due to symmetry of
rotation and inversion. Even so, the number is expected to be higher than in Schnei-
ders’ algorithm. Also, it is possible, just like in Schneiders’ algorithm, that some
subdivisions of the hexahedron faces may not admit a subdivision into hexahedra.
In such a case, one can refine additional edges of such hexahedra to be able to mesh
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Fig. 8. Snapshots of dynamic mesh adaptation of a 20x20 structured mesh with
respect to two expanding circles

them and propagate the refinement further. In such a case, one can only hope that
the refinement does not consume the entire mesh.
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