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87544 
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Sum mary, V,re present a multilevel adaptive refinement technique for unstructured 
quadrilateral meshes in which the mesh is kept conformal at all times. This means 
that the refined mesh, like the original, is formed of only quadrilateral elements 
that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral 
element do not lie in an edge of another quadrilateral. Elements are refined using 
templates based on 1:3 refinement of edges. We demonstrate that by careful design 
of the refinement and coarsening strategy, we can maintain high quality elements 
in the refined mesh. "lYe demonstrate the method on a number of examples with 
dynamically changing refinement regions. 

1 Introduction 

Adaptive mesh refinement is a well-known and widely employed technique for accu­
rately capturing special features of the solution in steady and unsteady simulations. 
In 5uch simulations, adaptive refinement enables the capturing or complex solution 
features by focusing refinement in cri tical areas without having to refine the mesh 
everywhere. Adaptive mesh refinement is now standard practice in simplicial meshes 
(triangular and tetrahedral) in a wide variety of applications. The unique topolog­
ical properties of simplices allow the refinement in sllch meshes to be confined to 
fairly local regions while maintaining a high element quality [9J and keeping the 
mesh conforming. Conformity of the mesh implies that the intersection of a pair of 
elements, if not null, is strictiy a lower dimensional mesh entity such as a face, an 
edge or a vertex. Non-conformity of mesh is commonly interpreted to mean that a 
lower order boundary entity (e.g. a vertex) of one element lies on a higher order 
boundary entity (e.g. an edge) of another element. 

For quadrilateral meshes, the most common approach to adaptation is to re­
fine elements in a non-conformal way. This allows the refinement to remain local 
but introduces non-conformal nodes which lie on the edges of neighboring elements. 
However, mesh non-conformity necessitates augmentation of the PDE solution al­
gorithm to deal with the special nodes. Non-conformity is typically dealt with by 
constraining the solution at the non-conformal nodes to be dependent on the solu­
tion at the nodes of the edge it lies on using constraint equations [13J or Lagrange 
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multipliers [3] or by the use of mortar elements to link the non-matching elements 
[11· 

In this research we describe a technique to refine an unstructured quadrilateral 
mesh such that the result is also a heirarchically refined, conforming mesh of only 
quadrilaterals with high quality albeit a little worse than the parent mesh quality. 

2 Previous Work 

There ha~ been considerable reseaxch on conformal triangular refinement for adap­
tive simulations since termination of refinement for simplices is very easy (sec, [or 
example, [10]). However, for quadrilateral meshes most researchers choose to use non­
conformal quadtree type refinement with specialized code to handle non-conformal 
nodes (see, for example, [2]). There have been only a few articles describing confor­
mal quadrilateral mesh refinement and coarsening, and even fewer that deal with the 
issue in a dynamic set.tIng, i.e., conformally refining and coarsening a quadrilateral 
mesh that has been previously refined. 

One of the best known papers on the issue of conformal quadrilateral refinement 
is by Schneiders [12]. In the paper, Schneiders discusses 2-refinement (bisection of 
edges) and 3-refinement (trisection of edges). He chooses the trisection of edges be­
cause it simplifies the algorithm. The refinement information is propagated from 
elements to nodes and refinement templates are defined based on the number of 
marked nodes (See Figure 2). The refinement templates are chosen such that t.he 
~cheme is stable, i.e., the quality of elements does not deteriorate with increasing 
refinement levels. However, even though in this research, uniformly refined quadri­
laterals have trisected edges and are split into 9 child quadrilaterals, templates used 
in adjacent elements to terminate the refi>lement have bisected edges as seen in the 
figure. In general, Schneiders scheme is expected to create more elements for the 
purpose of termination than the scheme presented here. Still, it is a valid scheme 
for conformal quadrilateral refinement and has been used by other researchers such 
as Zhang and Bajaj [16]. Schneiders has extended t.he work to hexahedral refine­
ment a~ well but correctly points out that certain refinement. patterns for the faces 
of hexahedra may not admit a valid decomposition of the parent hexahedron. Ito 
et.a!. have also used Schneiders' approach for octree based hexahedral refinement 
templates [7] 

Tchon et.a!. have proposed a quadrilateral refinement strategy in which they find 
layers of elements, shrink the layers of elements and reconnect the shrun k layer with 
the surrounding mesh [15]. Clearly this strategy assumes certain structure to the 
mesh and specific refinement patterns while ignoring the issues of multiple levels of 
refinement, mesh quality and dynamic adaptation. Hence, the approach is of limited 
utility. 

Several researchers have proposed a quadrilateral refinement strategy where the 
end result is a mixture of quadrilaterals and triangles, for example [4]. Similarly, 
others have proposed hexahedral refinement strategies which result in a combination 
of hexahedra and prisms. However, this conflicts with our stated goal of achieving 
a conforming all-quadrilateral or all-hexahedral mesh. 

Benzley et.al. have proposed quadrila.teral mesh coarsening strategies that are 
quite general and do have an ad va.ntage over nested refinement. strategies in that 
they can coarsen beyond the original resolution of the mesh [141 
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The research that is closest to our research is the work by Sandhu et.a!. [11] 
although our work was developed without knowledge of this earlier research 3

. In 
this work, Sandhu et.a!. use node marking and trisection of edges to define tem­
plates for refining elements and terminating the refinement. They define one less 
than the number of templates used in this work. Similar to our work, they also rec­
ommend undoing non-uniform refinement of quadrilaterals before further refinement 
to maintain quality, However, all their examples show only static refinement and not 
adaptation to dynamically changing solution features. 

In this research we describe a dynamic l'lesh adaptation stra tegy for quadrilateral 
meshes that results in a conformal all-quadrilateral mesh with nested refinement. 
Moreover, while not proved, we beleieve that the resulting mesh quality is bounded 
by the quality of the parent mesh regardless of the number of levels of refinement 
at each time step or the number of time steps in the mesh, The adapted mesh is 
suitable for use in a wide range simulations without any special procedures since it 
is composed of only conformal quadrilaterals. Finally, the nested refinement allows 
for easy remapping of cell based quantities from one time step to another. 

3 Description of lVlesh Refinement/Coarsening 
Algorithm 

3.1 Overvie w 

Our adaptive mesh modification algorithm starts with tagging elements that must be 
refined because they do not adequately represent some geometric feature or because 
the solution error in these elements is deemed to be too high. These elements and 
their edges are tagged for refinement (or coarsening), if necessary, to multiple levels 
below (or above) their current level of reRnement4

. When an edge is adjacent to 
two elements with different refinement levels, it is refined to the higher of the two 
levels. Once the appropriate elements have been tagged by the application, the 
mesh is coarsened wherever the application requests the elements to be larger than 
they currently are. After coarsening, the mesh is refined wherever the application 
req llests elements to be smaller than they currently arc, During both coarsening 
and refinement, the refinement levels of elements are adjusted so that they are 
consistent with their siblings (children of their parents) and such that the target 
refinement levels of two adjacent elements do not differ by more than one. The 
one-level difference rule ensures that the number of templates required to make the 
mesh conforming is limited to a manageable number and that the mesh is smoothly 
graded, 

3This work has not been published in any journal that frequently publishes mesh­
ing related work and therefore, has hitherto gone unnoticed. 

4Regardless of whether an element is being coarsened or refinement, we will 
always refer to its target level in the heirarchy of meshes below the coarsest mesh 
as its target level of refinement 



;) Conformal Quad Refinement 

3.2 Subdi v ision Tem plates 

When some elements in the mesh get uniformly refined, adjacent quadrilaterals that 
sha.re an edge with the uniformly refined elements have one or more edges that are 
refined. To make the mesh strictly conforming, these adjacent elements must also 
be subdivided into quadrilaterals such that no new edges are refined. To facilitate 
conformal subdivision of elements that are not unifmmly refined, edges are trisected 
instead of being bisected as in triangula.r meshes. The reason for choosing trisection 
over bisection is that if an odd number of edges of a quadrilateral were bisected, the 
resulting polygon would have an odd number of edges and could not be subdi vided 
into quadrilaterals. The templates used for subdividing quadrilaterals with different 
edges refined are shown below in Figure 1. Some of these templates have been 
described in previous works [11] and some are new. 

la} Ib} Ie} 

Id} Ie} If} 

Fig. 1. Subdivision templates for quadrilateral refinement (thick edges are refined 
edges) (a) unrefined quadrilateral (b) one edge refined (c) two opposite edges refined 
(d) two adjacent edges refined (e) three edges refined (f) all edges refined (uniform 
refinement of quadrilateral) 

The quadrilaterals that result from uniform refinement of a parent quadrilat­
eral are called regular elements as they are geometrically similar to their parents. 
Quadrilaterals resulting from refinement of one, two or three edges of the parent 
quadrilateral are called irregular quadrilaterals as they are not necessarily similar 
to their parents. 
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It must be pointed out that the template:, described above are different from the 
templates in Schneiders' work. Tn that work, refinement tags are transmitted to ver­
tices of elements and templates derived from the combinations of vertices tagged for 
refinement. Those templates are shown in Figure 2. As can be seen from the picture, 
the only template the two approaches have in common is the uniform refinement 
template. In the remaining cases edges of elements that adjacent to uniformly re­
fined elements are refined using an irregular 1:2 pattern. Also, even if only one 
edge of an element adjacent to a uniformly refined element is refined, the template 
proposed by Schneiders refines two other edges of the element. This in turn for ces 
refinement of other elements. This leads us to conclude that. the algorithm proposed 
by Schneiders is more complex to implement and results in greater numbers of el­
ements. Figure 3 shows a simple example of this over-refinement as a consequence 
of uniform refinement of the central element in a 3x3 mesh of quadrilaterals. As can 
be seen in the picture, Schneiders's scheme modifies every element in the 3x3 mesh 
while the proposed scheme affects only the edge connected neighbors. 

(a) (b ) Ie) 

Id) Ie) 

Fig. 2. Schneiders' subdivision templates for quadrilateral refinement (refinement 
vertices a re marked with circles) (a) unrefined quad rilateral (b) one vertex marked 
(c) two adjacent vertices marked (d) two diagonally opposite vertices marked (e) 
three vertices marked (f) all vertices marked (uniform refinement of quadrilateral). 



6 Conformal Quad Refinement 

I~ ""',---/ / 1\_1 

I"'" / ~ /' 
I I I I 

/ 
"'" 

/' ~ 

/ /'-"", ~ V- \ 
(a) Ib) (c; 

F ig. 3 . Comparison of Schneiders' scheme and the proposed scheme of refinement on 
a 3x3 grid of quadrilaterals (a) Central element refined uniformly (b) Surrounding 
me!Oh made conforming by Schneiders' scheme (c) Surrounding mesh made conform­
ing by proposed scheme 

3,3 Coarsening 

In the mesh adaptation method presented here, coarsening of elements is done first 
before refinement. In this approach, coarsening is performed strictly using the knowl­
edge of the hierarchical structure of the adapted mesh, i.e., if an element is to be 
deleted then its siblings are also deleted simultaneously and the parent element is re­
stored. For this reason, the coarsening strategy of this paper cannot coarsen beyond 
the original mesh. Coarsening is performed on elements whose current refinement 
level is higher than the target refinement level. Before actual deletion of elements, 
however, the target levels or elements are adjusted to ensure that there is not more 
than one level of difference between two adjacent elements and that the target levels 
of siblings are consistent. 

Consider an element whose current refinement level is ['c and target refinement 
level is L,. Assume the maximum refinement level of all of its edge connected neigh­
bors (and therefore, all of its edges) is La. Then, if the target refinement level of 
this elememnt is less than one level lower than the maximum target of its edges, 
then set the target level to be exactly one less than the maximum target level of 
its edges. Algorithmically, this can be expressed more succintly as: if L, < La - 1, 
then L t = La - 1. For example, if for a particular element Lc = 5, L, = 1 and the 
neighbors have targets of 1, 3, 1, 2. Then La = 3 and we set L, = 2. 

For making the refinement levels consistent between siblings, we take a conser­
vative approach and mark an element and its siblings for coarsening only up to the 
m axi mum level (smallest size), Ls, allowed by the element and all its siblings. So, 
if L, <= L, < Lc then L, = Le. For example, if Le = 5, L( = 1 for an element, 
but L, = 3, i.e., one of the siblings of the element has a target level of 3. Then 
we cannot coarsen the current element to a level lower than L, = 3. On the other 
hand if L, < Lc < L" then L, = Le. For example, Lc = 5, L, = 1 as before, but 
L, = 7, i.e., a sibling wants to be refined from the current level while the element 
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wants to be coarsened. Then the element cannot be coarsened above the current 
level, L t = Le. 

Next the elements are coarsened one level at a time starting from the highest 
level. Every time an element and its siblings are deleted we transmit the target 
refinement level to its parent. After coarsening the mesh at a particular level, we 
redo the level adjustment before coarsening at the next lower level. 

3.4 Refineme nt 

The most important rule imposed during refinement is that irregular elements aTe 

never refined as their repeated subdivision can lead to unbounded deterioration of 
quality. Instead, whenever an irregular element is tagged for refinement, the element 
and its siblings are deleted and its parent element is tagged for uniform refinement 
upto the maximum level requested by the element and its siblings. This rule ensures 
thaL the quality of the refined mesh is always bounded by the quality of the parent 
mesh. Schneiders defines refinement schemes with this property as being stable [12]. 

Refinement of the mesh and adjustment of levels before refinement is bit more 
complex than coarsening because regular and irregular elements have to be dealt 
with separately. On the other hand, level adjustment has to be done only once 
before multilevel refinement as opposed to the doing it at each level for coarsening. 

To do level adjustment for refinement, we look at each element whose target 
refinement level L t is higher than its current refinement level, Le. Then we get the 
maximum refinement level, La of all its edge connected neighbors. As before, if 
its target refinement level is one less than maximum target level of the neighboring 
elements, i.e. L t < La - 1, then adjust the target level of this element as L t = La. - 1. 
Also, if the element is irregular and one of its edges is to be refined, then mark the 
element and its siblings for deletion and mark its parent to be refined to Lt. Finally, 
if two adjacent elements are to be subdivided irregularly, ensure that the common 
edge of the two is also to be subdivided. This ensures better element quality as 
shown in Figure 4. 

Then we delete the irregular ['aces and subdivide the remaining faces according 
to the templates based on the number of edges that are refined. Every time we refine 
an element, we mark all its children with the target refinement level. We continue 
to iterate over the mesh elements until all elements have reached their target level 
of refinernenL. 

4 Remapping or Solution Transfer 

Unlike mesh adaptation for capturing geometry, adaptation to reduce solution er­
ror for solving a PDE is tightly coupled with the issue of remapping or transfer of 
quantities from the base mesh to the adapted mesh. This remapping must be done 
accurately and in a conservative manner (for example, the densities of Lhe child ele­
ments must be assigned such that the total mass of the parent element is conserved). 
'VVhen we coarsen a group of elements, we can just sum up the mass (or energy) of 
the child elements and assign it to the parent. On the other hand, when we refine an 
element uniformly, then one can equidistribute the mass over the children (less ac­
curate) or do a linear reconstruction of the density funeLion over the parent element 
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'. 
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Fig. 4. Refining the common edge between two irregularly refined elements (a) Two 
adjacent elements with one edge refined (b) same elements with their common edge 
refined (c) One element with two edges refined next to an element with one element 
refined (d) same elements with their common edge refined 

and integrate over each child to get its mass (more accurate). Field variables (such 
as velocity) can be obtained by either evaluating an interpolant over the parent at 
nodes of the child or by solving a local problem over the refined elements using the 
solution over the base mesh to impose boundary conditions for the local problem. 
Also, in the proposed algorithm, special care must be taken for remapping when 
irregular elements are targeted for reRnement since the mesh is coarsened back to 
the parent element and refined down uniformly. Using a summation of masses of 
the irregular children to get a mass for the parent element and then redistributing 
it to the regular children can be a poor choice and will lead to lower order accu­
racy remapping. Rather, it is better to use an intersection based remapping routine 
locally to get second order accuracy [51. 

5 Resul ts 

'liVe first present a static example 0[' refinement of a structured mesh mesh adapted 
to a superimposed line in the mesh, Any element that is intersected by the line is 
rPfl ned up to level 3 (level 0 is the original mesh). The superimposed line goes from 
(-0.3082071106007) to (1.106007 - 0.308207). The quality of the mesh before and 
after the refinement is also compared in terms of the average condition number of 
the element, Fe, defined as the mean of the condition numbers [8, 6) at all corners 
of the element. One can see from the histogram of the refined mesh that it is not 
shifted dramatically from the ideal case and that the worst quality element has 
an average condition number of only 1.69. In fact, in simulations where a line is 
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moved diagonally across the domain and the mesh refined around it, the worst 
element condition number stays at 1.69. Also, the worst element quality stays at 
1.69 regardless of what the refinement level is applied to elements intersected by the 
line. 

F ig. 5. A 20x20 structured mesh refined us­
ing distance from center as the refinement cri­
terion 

K. Original Refined 
1.0 - 1.5 400 12412 
1.5 - 2.0 0 1396 
2.0 - 3.0 0 0 
4.0 - 5.0 0 0 
5.0 - o o 

Next we show refinement induced by the same line in an unstructured quadri­
lateral mesh. Figure 6a shows the original mesh with the elements llJarked for re­
finement to level 3 due to intersection with the line (also shown). Figure 6b shows 
the refined mesh after the levels have been adjusted t.o enforce a one-level difference 
between adjacent elements. Also included is a table showing the distribution of' con­
dition numbers before and after refinement. The worst condition number goes from 
3.12 to 3.79 after refinemen t. 

In the following example, we show the several snapshots from an dynamic adap­
tation procedure where a circle of radius 0.1 is moved along a circular path in the 
domain. The center of the circle traces a circle of radius 0.2 centered at (0.5,0.5). 
The starting point of the circle center is (0.7,0.5). The target size for the elements 
to be refined is 0.05d where d is the distance between the centroid of t.he element 
and the center of the circle. As the circle moves, previously refined parts of the 
mesh are coarsened and new parts are refined with considerable overlap between the 
coarsened and refined regions. As expected, the worst element quality stays at 1.69 
throughout the dynamic adaptation procedure. 

Finally, we show several snapshots of a dynamic adaptation procedure in which 
elements intersecting two expanding circles are refined to level 4. One circle is cen­
tered at (0.0,0.0) and the other circle is centered at (1.0,025). Both circles start 
with a radius of 0.11 with their radii increasing in increments of 0.05. As the circles 
grow, they intersect each other and event.ually grow out of the domain. Elements 
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1.0 - 1.5 

1.5 - 20 
20 - 3.0 
30 - 4.0 
4.0 - 5.0 
5.0 - 7.5 

Original Refined 
1007 42491 

15 1776 
504 

1 l5 
o 0 
o 0 

(c) 

Fig. 6. Refinement of an unstructured mesh along a line (a) Target refinement levels 
(b) Refined mesh (c) Histograms of condition numbers 

that intersect one or the other circle are refined to a level of 3 while elemen ts that 
intersect both circles are refined to a level of 4 Again the worst quality is stays fixed 
at 1.69 throughout the adaptation process. 

6 Discussion 

This paper presented a comprehensive mesh adaptation procedure for quadrilaterals 
that results in conformal meshes with nested refinement. The refinement is based on 
templa tes devised from a consistent 1:3 refint'l£lenl of element edges. It also presented 
algorithms for adjustment of refinement levels of elements, both for coarsening and 
for refinement, such that there is never more than a one level difference between the 
refinement levels of adjacent elements. The quality of the refined mesh i" kept high 
by never refining irregular elements used to bridge refined and coarse regions of the 
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Fig . 7. Snapshots of dynamic mesh adaptation of a 20x20 structured mesh with 
respect to a circle rotating about the center of the doma.in 

mesh. Instead if irregular elements must be refined, they a.re deleted and their parent 
is uniformly refined instead. Using several dynamic mesh adaptation examples, it was 
shown that the procedure effectively refines the mesh where necessary and coarsens 
iL where iL is not. 

Although one other paper discussing similar templates and strategy was found 
a fter this algorithm was devised, that work is not very well known in meshing circles. 
Also, that paper does not discuss dynamic mesh adaptation and mesh coarsening 
explicitly although it also suggests that irregular elements not be refined. 

Compared to the algorithm proposed by Schneiders and the templates in his 
papers, this algorithm produces fewer elements and is simpler due to the consistent 
use of 1:3 edge refinement. Also, Schneiders does not discuss the issue of mesh quality 
when forced to refine irregular elements. Finally, the issue of solution transfer or 
variable refinement is addressed in the current paper which is often ignored in most 
conformal quadrilateral refinement papers. 

In 3D, the combinatorial complexity of the current aJgorithm could be more 
complex than that of Schneiders' algorithm. That is because this algorithm tags 
edges instead of vertices for refinement, thereby resulting in :['::0 12Ci = 4096 pos­
sible combinations. Of course, many of these can be eliminated due to symmetry of 
rotation and inversion. Even so, the number is expected to be higher than in Schnei­
ders' algorithm. Also, it is possible, just like in Schneiders' algorithm, that some 
s ubdivisions of the hexahedron faces may not admit a subdivision into hexahedra. 
In such a case, one can refine additional edges of such hexahedra to be able to mesh 
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Fig . 8. Snapshots of dynamic mesh adaptation of a 20x20 structured mesh with 
respect to two expanding circles 

them and propagate the refinement further. In such a case, one can only hope that 
the refinement does not consume the entire mesh. 
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