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A Regularization Approach to Hydrofacies Delineation 

Daniel M. Tartakovskya and Brendt E . Wohlbergb
, * 

aDepartmenl of Mechanical and Aerospace Engineering, Un iversity of .alifom ia. San Diego, USA 
hTheoretical Division, Los Alamos National Laboratory, USA (*brendt@tmail.lan!. gov) 

Abstract. We cons ider an inverse problem of identi fy ing complex intemal slrucluf s of composite (geolog ical ) materials 
from sparse mea. urements of system parameters and sy tern states . Two conceptual frameworks 
for identifying in temal boundaries between constitutive materials in a composite are considered . A sequential approach 
rdies on support vector machines, nearest neighbor classifiers. or geostatisti cs to reconstruct boundaries from 
measurements ofsystem parameters and then lIses system states data to refine the reconstruction. A joint approach inverts 
the two data sets simultaneously by employing a regularization approach . 

Keywords: Subsurface, Inverse mode ling, Statistical leaming theory, Total Variation regularization. 
PACS: 02.30.2z 92.40.Kf. 92.40.-t 

INTRODUCTION 

Many complex ph nomena in science and engineering take place in composite media, whose internal structures 
are uncertain . For exam ple, heterogeneous groundwater aquifers typically consist of multiple lithofacies, the spatia l 
arrangement of which significan tly affec ts flow and transport in the subsurface. The estimation of these lithofacies is 
complicated by the sparsity of data and by the lack of a clear corre lation between identifiable geologic indicators and 
attributes (e.g. hydraulic conductivity and porosity). This so-called zonation prob lem has been studi d in [1-4]. 
among others. 

Data which are used in geomaterials c1assiiication procedures are typically obtained from core sample that often 
disturb soi ls and are by necessity sparse, thus contributing to predictive uncertainty associat d with the location of 
different geomaterials. Within a stochastic framework, th is uncertainty is quantified by treating a formation's 
properties as random fiel ds that are characterized by multivariate probability density functions or, equivalently, by 
their joint ensemble moments. Geostatistics has become an invaluable tool fo r estimating facies distributions at 
poin ts in a computational domain where data are not available, as well as for quantifying the corresponding 
uncertainty [5]. 

Recently we demonstrated that both Support Vector Machine (SVM) [6,7] and nearest-neighbor classification [8] 
techniques provide a viable alt rnative to geostatistical frameworks by allowing one to de lineate lithofacies in the 
absence of sufficient data parameterization without treating geologic parameters as random and, hence. without the 
need for the ergodicity assumption. These approaches have b en used to reconstruct interfac s from both well [7.8] 
and poorly [9] differen tiated parameter data. 

In this study, we present two al ternative approaches to hydrofacies de lineation from both system parameter (e.g., 
porosity. hydraulic or electrical conductiv ity. etc. ) and system state (e.g., hydraulic head, solute concentration. 
temperature, etc. ) data. The fi rs t approach relies on a sequential use of data. whcrein system slate data are used to 
refine an SVM-based reconstruction [6,7] of interfaces from parameter data. The second approach relies on a 
functional minimization approach to reconstruct interfaces from both system state and system parameter data 
simultaneously. We demonstrate these ideas on a synthetic case of steady-state flow through a composite domain Q 

consisting of two materials eparated by highly irregu lar boundaries (see Fig. I). For simplicity, the hydraulic 
conductiv ity of each material is assumed to be constan t. 

The facies delineation problem can b formulated as follows. Given sy t m-parameler data K, :; Kex ) , 

i = I, ... ,N, system-state data h, == hCx), j = 1, ... . N
h

, and a model connecting the two-e.g., a teady-state flow 



quati oll V ' (/(\111 ) = 0 for 'Vx E Q with appropriate boundary conditions- fi nd the boundaries between ubdomain 
Q, and Q , ( Q = Q ,U Q ,) cons jst i n~ of materials M, and M , . respectiv I)' . To simp lify the re~entation. we 

a~sume that both Jata st: ts are collected at the same N location x" i = 1,,,. ,N where N = N , = N, . 

~ ~ 

(a) (b) 
FIGLRE I. Flow domain cons isti ng of two contrasting lithofacies (a). A highly conducting material is shov.-TJ in red and a low 

conducting materia l in blue. The corresponding hydraulic head distribution (b). 

SEQUENTIAL INVERSION WITH SVM 

In v('rsion a/System Parameter Data 

Sinct! pantmeter data K, '" K(x ,) , i = 1, .. . ,lV uniquely characterize con. tituti ve materials M , amI M " the points 
where they are taken can be labeled by means of the ind icator fun tion 

{

+1 
I '" I (x ) = , . -1 

x E n, 

X, E Q 
(I ) 

This step typically invo lves an analysis of a data histogram, which is often nontrivial when constitutive materi al s 
(e.g., geological litho facies) are helemgl:neo Lls. Here we a utnt: lhat the avail able p ramet r data K, '" K (x ), 
i = 1, ... ,N are we ll differen ti ated. so that the process of ass igning the values of the indicator functi on -' to point. x" 
i = / , .. . ,N does not introduce interpretive errors. This assumption can be rel axed to account for poor differentiation 
of data [9\. 

The SVM approach to del ineation of boundaries between Q, and Q , is to mini mi ze the quadratic unctional 

(2 ) 

where R x ,x ) is a given Mercer ke rnel, subj ct to the constraint~ 

o ~ y, ~ , }: y,l = 0 . (3 ) ., 

This opt imization problem has a well -defined global millimum that is inO uenccd by the choice of the fitting 
parameter C. Let y: (i = 1 ... . ,lV ) denote a solution of the optimization problem (2)-(3) . Then the indicator funct ion 
I(x ) at any poi nt x . and hence the boundary separa ting the two materials, is given by L6.7] 

lex) = Sign[ ~ rJ,R(x,.x ,) +b' J. b' =1,- ~ yJ,R(X ;,X). (4) 



for some j such that }' I > O. 

Inversion of System State Data 

Incorporation of system state data h, ;: h(x ,) , i = I, .. . ,N into the SVM framework is challenging. since one 
cannot assign the indicator function to such data, and the re lationship between the two data Lypes is nonlinear. 
Following lID]. we use the parameter fi eld reconstruc ted with the SVM procedure (2)-( 4) as an initial guess for the 
optimization problem 

(5) 

subject to the constraints (3 ) and fixed)" > O. The system stat h' (x) is a sol ution of V' (KVh ) = 0 in which the 
hydraulic conductivity K (x ) is determ ined by the current slate of }'" i = 1, ... ,N. The SYM inversion aims to retain 
the maximization of the SYM margin based on conductivity data ( tep I), while minimizing the difference between 
the measured and computed heads (Step 2). This balance is controlled by the choice of the parameter A in (5). The 
higher its value, the more weight one assigns to the head measurements relative to the conductivity measurements. 
and vice versa. 

JOINT INVERSION VIA FUNCTIONAL MINIMIZATION 

Tn the SVM approach, hydraulic head data affect only the radial functions weights, which, in principle. might 
provid too few degrees of freedom . Indeed, one can expect tile e timated subdomain boundary to be overly mooth, 
when a conductivity data set is small. As an alternative, we introduce a hydrofacies delineation approach that is 
based on minimization of the following functional 

(6) 

Her k and b are the M-dimensional arrays representing K(x ) and hex) on the flow domain Q discretized into M 

elements; k and b are the N-dimensional arrays containing the measurements K
j

;: K (x ) and h, ;: h ex) 

(i = J, .. . ,N ), respectively: operator M, and M,. extract the solution values at measurement points x , ( i = I, ... ,N); 

F (k ) is a (finite-elements) representation of the fl ow equation V" (KVh) = 0 on the flow domain Q discretized into 
M lements; and regularizati n functions R, and R,. represent prior knowledge of the expected form of k and h 
solutions. respectively. Since the head field hex) is smooth, and the conductivity field K (x ) may have 
discontinuities. we choose 

R (h) = J..IIV'hll', " - 2 1 
R, (k ) = IIV'kll" (7) 

the latter being the Total Variation norm [11]. 
Minimization of the nonlinear fu nctional (6)-(7) is clearly more computationally expensive than solving the 

optimization problem (5). Yet its flexi bili ty is assigning re lative degrees of importance to the two clata types (system 
parameter data and system state data) contains the promise of a better performance. Below we conduct numerical 
experiments on the fields shown in Fig. I to demonstrate the performance of the SYM-based approach. The 
perfomlance of our joint inversion algorithm will be reported at the time of the ISCM- EPMESC meeting. 

COMPUTATIONAL EXAMPLE 

We employ the SVM-based algorithm to reconstruc t boundaries between the two materials hown in Fig. I (a) 
from N randomly selected data points x, (i = 1 .... ,N ). At these data points, both the system parameter K and the 
system state h are sampled. The va lues of the system state in Fig. I (b) are obtained by solv ing the fl ow equation 



V ' (KVh ) = O. This equation is subject to the Dirichlet boundary conditions 11 = HI and It = H , prescribed along the 
left and right vertical boundaries. respectively. The lower and upper hori/ontal boundaries are impermeable. 

The first ,tcp in the proposed algorithm onsists of the us of an SV M to reconstruct lhe boundaries from N = 100 
condul.:livil), measurements. The location of these measurements, the reconstructed boundaries. and the 
corresponding hydrau lic head distribution ar shown in Fig. 2(a). We used the Gaus_ ian kernel 

R(x, x ') = cxp(_IIX - ~' l l' l' 
20' 

(8) 

with 0 = 5, and set the SVM parameter C = 1000. These fix d values were chosen for good hydrofacies delineation 
performance based on our prev ious experience [7], but in actual applications these would bc chosen via a cross­
validation meth d. 

Xl JO 

(a ) (b) 

FIGURE 2. The system parameter K (x ) reconstnlcted trom N = 100 measurements , whose location are shown by the black 
dots (a) and the corresponding system state h(x) (b). 

Using the parameter tield K(x ) in Fig. 2(a) as an initial guess in the second step, and choosing }.. = 1000 to 
prov ide appropriate weighting to each tenn, we obtain the reconstructed boundaries and the corresponding hydraulic 
head distribution in Fig. 3. A com parison of the reconstructed parameter fields K (x) in Fig. 2(a) and Fig. 3(a) wi th 
the reference parameter field in Fig. I (a) reveals that the use of both system-parameter and system-state data 
noticeably improves the boundary reconstruction. 
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(a) (b) 

FIGURE 3. he system parameter K (x ) reconstructed from N = 100 measurements o f both the system parameter and the 
system state, whose I cations are shown by the black dots (a) and Ule co rresponding system state hex) (b). 

CONCLUSIONS 

We presented two approaches for identification of internal composition of composi te materials from sparse 
measurements of system parameters (material properties) and system states (physical quantities). The first, the 



Support Vector Machines (SVM). ass imilates data sequent ial ly, starting with parameter data. The second, total 
variation inversion. assi mi lates both data typ s simu ltaneously . T he SVM-based approach has been used to identify 
the internal structur of a ynthetic porous medium ; the s cond approach is currently under evelopment. Our 
pre liminary results. including those presented here, demonstrate the poten ti [ o f the proposed approaches. 
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