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ABSTRACT

Significant changes were made in design limits for
pressurized vessels in the 2007 version of the ASME Code
(Section VIII, Div. 3) and 2008 and 2009 Addenda. There is
now a local damage-mechanics based strain-exhaustion limit
as well as the well-known global plastic collapse limit.
Moreover, Code Case 2564 (Section VIII, Div. 3) has recently
been approved to address impulsively loaded vessels.

It is the purpose of this paper to investigate the
plastic collapse limit as it applies to dynamically loaded
spherical vessels. Plastic instabilities that could potentially
develop in spherical shells under symmetric loading
conditions are examined for a variety of plastic constitutive
relations. First, a literature survey of both static and dynamic
instabilities associated with spherical shells is presented.
Then, a general plastic instability condition for spherical
shells subjected to displacement controlled and impulsive
loading is given. This instability condition is evaluated for six
plastic and visco-plastic constitutive relations. The role of
strain-rate sensitivity on the instability point is investigated.
Calculations for statically and dynamically loaded spherical
shells are presented, illustrating the formation of instabilities
as well as the role of imperfections. Conclusions of this work
are that there are two fundamental fypes of instabilities
associated with failure of spherical shells. In the case of
impulsively loaded vessels, where the pulse duration is short
compared to the fundamental period of the structure, one
instability type is found not to occur in the absence of static
internal pressure. Moreover, it is found that the specific role
of strain-rate sensitivity on the instability strain depends on
the form of the constitutive relation assumed.

1. INTRODUCTION

Design rules for impulsively loaded containment
vessels have recently been accounted for in Section VIII,
Division 3 (High Pressure Vessels) of the ASME Code
through Code Case 2564.

Edward A. Rodriguez
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505-672-9177
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Plastic tensile instability is one potential mechanism
leading to global failure of pressure vessels. This instability is
well known to occur for spherical pressure vessels subjected to
static pressure loading, i.e., ‘load control’. However, for
conditions of ‘displacement control’, closely associated with the
impulsive loading condition, less is known. For sudden impulsive
pressure loading, the loading may be completed well before peak
response of the vessel occurs.

A detailed discussion of earlier instability investigations
[1-5] for spherical shells under static (load and displacement
control) and pressure-pulse loading is presented in [6]. These
investigations were almost exclusively limited to a plastic stress-
strain law of the form

—n

o=Ce ()

where O is equivalent true stress, £ is equivalent true strain, and
C and n are material constants. The instability conditions and
associated instability strains reported for static-pressure loading
(load control), displacement (volume) control, and pressure-pulse
loading generally differed among the various papers summarized
in [6]. These differences in the instabilities would be anticipated,
given that the instability behavior must be different for static-
pressure loading when compared with short-duration impulsive
pressure loading. In particular, the pressure would no longer be
acting when peak response of an impulsively loaded vessel is
reached. However, discrepancies between reported instability
strains under displacement control were also noted in [6].

Updike and Kalnins [7] developed a numerical
methodology for determining the plastic tensile instability limit for
static pressure loading of axisymmetric vessels. They report that
the plastic tensile instability limit (instability pressure) is an upper
bound to actual burst test results. Hillier [8] addresses the
difference between strains at instability and strains at fracture,
which may account for some of the differences between
calculations and experiments brought out by Updike and Kalnins
[7]. A detailed investigation of plastic instability of static-pressure-
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loaded vessels is presented by Mou, et al. [9], where it is
shown that there exist two types of instabilities: Global and
Local. Results are illustrated for both cylindrical and spherical
shells. Global plastic instability (also termed ‘structural
instability’) occurs when the (monotonically increasing)
pressure reaches a maximum in the vessel; whereas local
plastic instability (termed ‘material instability’) is related to
the type of instability that occurs in the tension test where the
increase in resistance due to strain hardening is just balanced
by the decrease in area due to thinning of the specimen.
Explicit solutions are presented in [9] for a bilinear stress-
strain curve.

In cases where the shell is loaded by a dynamic
internal pressure pulse with duration on the order of or greater
than the vessel response time, Tugcu [10] terms the global
plastic instability as a dynamic instability with respect 1o time.

Needleman [I1] investigates the bifurcation of
elastic-plastic spherical shells subjected to static loading,
using a variational principle attributed to Hill. Two cases are
considered in [ll1]: prescribed internal pressure; and
prescribed change in volume enclosed by the shell. These
appear to be equivalent to ‘load” and ‘displacement’ control,
respectively. Needleman considers axisymmetric bifurcations,
i.e., those that vary only with the meridional coordinate ¢

(see Fig. 1), and introduces a complete set of bifurcation

modes using Legendre polynomials. It is found that the admissible
functions for the two cases differ: The mode q=0 is admissible for
prescribed internal pressure but is not admissible for the case of
prescribed change in volume. However, g=1 is admissible in both
cases: This mode corresponds to thinning at one pole with a
corresponding thickening at the other, which seems to be related to
necking localization. Had nonaxisymmetric modes been
considered as well in [I1], it is likely that the bifurcation mode
would have appeared more aligned with necking localization.
Summarizing, for static pressure loading, there is an instability in
the fundamental mode, q=0, and a bifurcation at larger
displacement in the g=1 mode. For a volume-prescribed change,
only the bifurcation in the g=1 mode occurs. These results are in
qualitative accord with Mou, et al. [9], using a different
methodology. For pressure loading, the instability in the q=0 mode
corresponds to the global or “structural” instability of Mou, et al.
[8], whereas the bifurcation in the g=! mode is analogous to the
local or “material” instability in [9].

A general instability condition for an impulsively loaded
spherical shell is presented in Section 2 for several constitutive
models. Finite element calculations for statically and dynamically
loaded spherical shells and comparisons with the numerical results
of others are presented in Section 3. Conclusions for this paper are
summarized in Section 4. Dynamic effects anticipated at higher
loading rates are discussed in the Appendix.

Figure 1. Coordinates of Spherical Shell

NOMENCLATURE

Ag original area of shell cross section
C,n power law material constants

D,m strain-rate material constants

N, normal force

p internal pressure
q axisymmetric mode number
r current radius

Io original radius

t current thickness

to original thickness

£ equivalent true strain

E; i true strain component

Ee,,g[_ i engineering strain component
p mass density

o equivalent true stress
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o, i" true stress component

O o i" engineering stress component

0,,.K generalized power law material constants
] meridional coordinate

()* denotes instability point

2. CALCULATION OF INSTABILITIES FOR A
SPHERICAL SHELL

As derived by Cooper [l], the instability for a
spherical shell subjected to displacement-controlled or
impulsive loading is analogous to the plastic tensile instability
that occurs in a uniaxially loaded tensile specimen. This type
of instability would occur when the force exerted by one
hemisphere upon the other reaches a maximum. This
instability would be followed by localized deformation
(necking) of the shell. Cooper [1] determines that this

instability occurs at a hoop strain of 3 (n +1) for the plastic

stress-strain relation shown in Eqn. (1). As shown in [6] this
instability strain is in fact much lower (n). A similar result has
been reported for cylindrical shells (with experimental
corroboration) by Nakamura, et al. [4]. A general expression
for this instability condition for a spherical shell along with the
equations leading up to the expression are needed in
developing the results in this paper. The previously developed
derivation from [1,6] is as follows:

Consider one half of a free, thin spherical shell. The
hemisphere is assumed loaded by some displacement-
controlled mechanism, such as the impulsive velocity from
some earlier transient pressure pulse loading. The total force
(normal force, Ng) imparted by one hemisphere upon the other
is

N, =2nmrto, (2)

where r is the current radius, t is the current thickness and oy is
the true in-plane stress normal to the cut surface. This normal
force is a maximum when its derivative is set to zero. Noting
that r, t, and o are variables, the differential of the normal
force becomes

d(N,) =2mo,dr +2mro ,dt

(3
+2mrtdo, =0
or
do,
& L% )
rot o,

True strains for this uniformly expanding spherical shell are

(5)

5
Eg =€, =In —
To

where ty and rp denote initial thickness and radius, respectively.

Corresponding differential strains are

dt
de, =—
t
d (6)
v
de, =de, = —
r
Assuming incompressibility of plastic strains,
EgtE,+E, =0
£, =-2¢&, (7)

de, = -2de,

Substituting appropriate expressions from Equations (5)-(7)
into Equation (4) results in

= 4% ®)
° de,
Equivalent strain, £, is defined as
2
S =
o] le-e ol -
_‘/5 2 ] 2 ©)
+(e, -5,
Let
£, =&,
€y =& (10)

Substituting Equations (7) and (10) into Equation (9) results in
£=2¢, (1

Equivalent Stress, @ , is defined as

25 =(0, -o,f +(ch_ -0, )2
: (12)
+(O‘: —0_{)2

Let
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o, =0,
o,=0, (13)
o, =0,

But

O, =0, and (14)
o =0

o =0, (15)
Now from Equation (11),

de, =de |2 (16)
and from Equation (15),

do, = do (17

Combining Equations (8) and (15)-(17),

dc

g (18)
g 2

Eqn. (18) is the needed expression from [1,6]. At this point,
the stress-strain curve is yet to be specified. Six cases are
considered as follows:

2.1 Power Law: Assume an equivalent stress-equivalent strain
curve of the form given by Equation (1). Substituting Equation
(1) into (18), it is straightforward to show that

Ei
n=— (19)
2

where the * denotes the instability point. From Equation (11),
E,=n (20)

Therefore, the instability for a complete spherical shell under
impulsive load occurs when the circumferential strain is equal
to the strain at necking in the tensile test. This is the same
result as obtained in the case of the cylindrical shell by
Nakamura, et al. [4].

This instability is of a different nature than that
associated with reaching maximum pressure. The instability
associated with attaining maximum pressure is a global or
structural instability, utilizing the terminology introduced by

Mou, et al. [9]. On the other hand, the instability associated
with maximizing the normal force is local or material in
nature. In fact, the global instability (for a cylinder and a
sphere) will not occur for impulsively loaded vessels in the
absence of internal pressurization, whereas the local instability
does not depend upon a pressure load being present.

Finally, inertial effects may well influence the
initiation and growth of local instabilities, such as necking.

2.2 Generalized Power Law: Now assume an equivalent
stress-strain curve of the form,

O =0, +K&" (#2))

Then, using Eqns. (11), (I15). and (18), it is straightforward to
show that the instability strain, £, , is given by the following

transcendental equation:

n g,
2¢.)" -1[=—-2% (22
e )

8

2.3 Bilinear Form: For a bilinear stress-strain curve (n=1),
Eqgn. (22) reduces to
* (o
Eyg=1—— (23)
2K

2.4 Generalized Power Law Including Strain Rate
Sensitivity: Strain rate sensitivity can be included by adding a
power-law term with exponent, m, similar to the work-
hardening exponent, n. This strain-rate sensitivity term is
described by Keeler [12] and Boyce, et al [13]. Adding this
term to Eqn. (21) results in

0=0,+KE"+ DE" (24)

where D is a constant and £ denotes equivalent true strain
rate. Using Eqgns. (11), (15), and (18), the instability strain is
given by the following transcendental equation:

+ . 1
(25;)"[4—1}:.% (25)
&, K

As an example, from Keeler [12], for AKDQ steel, typical
values of exponents are n=+0.21 and m=+0.012. Boyce, et al
[13] report a range in m-values of 0.004-0.007 for four high-
strength, high-toughness steels, but state that these values are
quite low compared to most metals, which fall in the range of
m = 0.02-0.2, based on Ref. [14].

2.5 Bilinear Hardening with Strain Rate Sensitivity: For

bilinear strain hardening (n=1) and power-law strain rate
sensitivity, Eqn. (25) reduces to:
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O, D
s =1-—L———(2¢,)" 26
€o 2K 2K( &) (26)

The instability strain therefore depends on the current strain
rate. Eqn. (26) reduces to Eqn. (23) in the absence of strain
rate sensitivity. Note that the instability strain decreases (for
positive m), in agreement with Refs. [13] and [14], but
apparently not with [12]. Keeler [12] states that a positive m-
value retards the growth of the incipient neck, implying an

increase in ductility.

2.6 Product-Type Bilinear Hardening and Linear Strain
Rate Sensitivity: The commonly used Johnson-Cook
constitutive relation utilizes a product-type law, where the
strain-hardening term is multiplied with the strain-rate term.
The following simplified stress-strain relationship, with
bilinear strain hardening and linear strain rate sensitivity, has
this type of attribute:

& =[A+Be]1+CE| @7)

where A, B, and C are constants. Utilizing Eqns. (I1), (15),
and (18), the instability strain, £, is:

Y A
Ey = —E (28)

This result is the same as for bilinear strain hardening without
strain rate sensitivity (Egn. (22)). Therefore, strain rate
sensitivity does not influence the instability strain for this form
of stress-strain relationship.

3. NUMERICAL INVESTIGATION

3.1 Finite Element Calculation results on Instabilities for
Spherical Shells will be placed here by Edward Rodriguez.

3.2 Comparisons with Mou, et al. [9]: Mou, et al. [9] present
‘structural’ and ‘material’ instability strain results for a bilinear
stress-strain curve, including a numerical example for a
spherical shell. This same numerical example is utilized here
to investigate instabilities of a spherical shell.

From Eqn. (21), using n = | (bilinear stress-strain
curve), the true stress, true strain relationship becomes

0=0,+K¢ (29)

As shown in Eqgns. (15) and (11), the equivalent true stress and
strain are related to the principal true stress and strain
components by

O =0,and £ =2¢, (30)

Noting that the engineering hoop stress, O, , » and strain,
Eonggr ATC related to the corresponding true stress, Oy, and
true strain, £, through
0, =0,,, (1+ Eung, )
31
& =In(l+¢,, )
then Eqn (29) can be written
0, +2KIn(l+¢,, )
T = £ (32)
1+ Eonsy

The normal force acting over one half the spherical shell (see
Eqn. (2)) can be written N, =0,, A;, where Ajis the

original area of the shell cross section. This normal force in the
spherical shell can be expressed in the nondimensional form

— Na )
suggested by Mou, et al. [9] as F' = —— . For the spherical

shell, this can be written in terms of engineering hoop strain
as:

o
N, _ %(+2ln(1+gmh) -~

KA, 154 "

A related expression can be developed for pressure in the
spherical shell as a function of engineering hoop strain. First, it
is noted that equilibrium requires

=L
2t

o, (34)

where p is applied internal pressure, r is current radius and t is
current thickness.

Solving Eqn. (34) in terms of pressure and substituting the
bilinear stress-strain relation,

2
p =—{[U0 +2Ke, | (35)
F

where £, is the true hoop strain. Using Eqn. (31), Eqn. (35)

can be written as

. z{i}[ﬁ][@ +2In(1+¢,,, )} (36)
K[E-O-J hw \Nr)LK

(i
Constancy of volume in the plastic range requires that

dmrlty = 4m’t (37)
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Utilizing Eqn. (37) with (36) results in

3
P _-2%||%oma+e,, ) (38)
K|l L
o
Noting that
L:M:H% (39)
o T ’

then Eqn. (38) becomes

2 o,
LA P [?ﬁ +2In(1+¢,,,, )] (40)

K(t_UJ (]' + Eenga

o

Equations (33) and (40) are plotted in Figure 2 as a function of
engineering hoop strain foro,, / K = 0.1. The peak of each

curve corresponds to the respective instability point. Structural
instability is seen to occur at an engineering hoop strain of
0.33 infin. Material instability occurs at an engineering hoop
strain of 1.59 in/in. These curves can be directly compared to
corresponding curves for a similar cylindrical shell example
developed in Reference [9].

Spherical Shell: Structural and Material Instabilities for Sy/K=0.1

0.9

0.8 +

ol

0.5

17
i N
N

p/(Kt0/r0), F/(KAO)

0.4 - -
0.3 \

' — Structural Instability'
= \|aterial Instability |

0.2 -

0.1 =

0 . T ;

0 0.5 1 1.5

Engineering hoop strain

Figure 2. Structural and material instabilities for a spherical shell with bilinear stress-strain relation and 0, /K = 0.1

Results for the spherical shell numerical example in
Mou, et al. [9] are shown in Fig. 3 (inside radius 100 in;
thickness 1 in; 0, = 30ksi; K = 60 ksi), with the instability
true hoop strain of 0.751 (. This is the ‘material’ instability

described by Mou, et al. This result agrees with Eqn. (3.12) of
Mou, et al [9], but not with the reported value of 0.50 strain in

Section 4.3 of [9]. The corresponding plot of internal pressure
as a function of radial displacement, showing the ‘structural’
instability for this numerical example, is plotted as Fig. 4.3-2
in Mou, et al. [9] and is not repeated here. The structural
instability occurs at an engineering hoop strain of 0.0833 in/in.

Copyright © 2010 by ASME



Hoop Force vs Radial Displacement for a spherical
shell: radius=100 in; thickness=1 in; K=60 ksi;
Sigy =30 ksi
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20000000 - —
15000000 - —

Hoop Force, Ibs

10000000 -+ —_————

5000000 - —
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0 50 100

radial displacement, in

|
|
150 200 250 300
|
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Figure 3. Hoop force as a function of radial displacement for example problem utilized in Mou, et al. [9]

4, RESULTS AND CONCLUSIONS

There are two types of instabilities that are observed
for spherical shells, and they are categorized as either “global
(structural)” or “local (material)” in nature, using nomenclature
introduced by Mou, et al. [9]. In the case of a *“global”

instability, the shell radially expands, accelerating in
uncontrolled manner by excess pressure loading, but
deformations do not necessarily localize.  This type of

instability is associated with static internal pressure loading and
occurs when the internal pressure reaches a maximum, ie.,
dp=0. In this case, the increase in stress due to strain hardening
is insufficient to overcome the decrease in carrying capacity due
to shell thinning and increase in radius. It does not occur in the
case of purely impulsive loading in the absence of a finite-
duration pressure pulse,

The second type of instability, termed here “local”
instability, leads to necking-type localization. It is the stress -
resultant, N, that reaches a maximum for this type of instability,
i.e., dN=0. This local instability is associated with both
pressurized shells and impulsively loaded shells, and manifests
itself in the formation of local necking of the cross section.
This local instability is the subject of the present paper.
Utilizing a general instability expression for spherical shells
under displacement (volume) control or impulsive loading,
strain expressions at the point of instability are developed for a
variety of plastic stress-strain relationships. The effect of strain-
rate sensitivity is also incorporated and its importance is found
to depend wupon the specific viscoplastic stress-strain
relationship.

These results have implications regarding Section VIII,
Division 3 of the ASME Code and associated Code Case 2564.
Both have two general limit criteria for ductile elastic-plastic
behavior: A global, plastic-instability collapse limit and local
strain-exhaustion limits. It appears that, in the case of
impulsively loaded vessels, the global plastic-instability
collapse limit would not occur in the absence of static pressure
loading. The local (material) failure would be accounted for in
the strain-exhaustion limits.
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APPENDIX: A DISCUSSION OF DYNAMIC EFFECTS AT
HIGHER LOADING RATES

Over the past decade, a number of papers [16-18] have
been written regarding numerical analyses of failure in
dynamically loaded rings, although the loading levels appear to
be beyond those of interest for incipient failure of pressure
vessels. There are similarities between the dynamic response of
impulsively loaded rings and spherical shells, and it is likely
that spherical shells will exhibit some of the phenomena
observed for rings at these higher loading rates. Therefore,
results of these numerical studies are discussed below. In all
cases examined, the governing equations are sufficiently
complicated that closed form solutions are not possible. The
finite element numerical solutions are run for specific cases
only, so it is difficult to see the role of the individual parameters
on the formation of instabilities. Also in some cases finite
element size plays a role in the predicted localization,
influencing the results (Schreyer and Chen [19], Needleman
[20D.

The rings in [16-18] are driven radially outward by
sudden, impulsive loading. Failure by local necking is
described. While quasi-static studies of ring expansion allude
to the formation of a unique neck in the absence of inertia, these
recent papers imply that for rings without any imperfection,
necking is not observed. Dynamic necking apparently has to be
triggered by small imperfections. The introduction of
imperfections is required to initiate localization, although
necking may or may not occur at imperfection sites [17].
Mercier and Molinari [16] also found that for dynamic cases,
the instabilities introduced are not necessarily located at the
sites at which unstable growth developed.

Han and Tvergaard [21] investigate dynamic necking
behavior for impulsively loaded, strain-rate-independent rings.
They show that wave propagation is an important parameter
associated with multiple neck formation. Guduru and Freund
[22] investigate the closely related problem of a cylindrical rod.
They predict an increase in the number of necks and an increase
in the bifurcation strain with increasing extension rate.

Grady and Benson [23] observe from experiments that
the fracture strain is an increasing function of expansion speed
of the ring. Thus, it has generally been found that average
ductility of the rings increases with increasing initial impulse
(or equivalently, velocity) and that the number of unstable necks
that form increases with impulse level. However, the observed
increase in apparent ductility with impulse level may well be
associated with the increased numbers of necks formed at the
higher loading levels.

It should be emphasized, however. that much of the
work on dynamic loading and fragmentation of rings, e.g., the
work of Grady and Benson [23] discussed above, was
performed at strain rates well beyond those of interest in this
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paper, which is focused on impulse levels leading to incipient
failure, not on full fragmentation of the vessel.
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