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ABSTRACT 
Significant changes were made in design limits for 

pressurized vessels in the 2007 version of the ASME Code 
(Section VIII, Div. 3) and 2008 and 2009 Addenda. There is 
now a local damage-mechanics based strain-exhaustion limit 
as well as the well-known global plastic collapse limit. 
Moreover, Code Case 2564 (Section VIII, Div. 3) has recently 
been approved to address impulsively loaded vessels. 

It is the purpose of this paper to investigate the 
plastic collapse limit as it applies to dynamically loaded 
spherical vessels . Plastic instabilities that could potentially 
develop in spherical shells under symmetric loading 
conditions are examined for a variety of plastic constitutive 
relations. First, a literature survey of both static and dynamic 
instabilities associated with spherical shells is presented. 
Then, a general plastic instability condition for spherical 
shells subjected to displacement controlled and impulsive 
loading is given. This instability condition is evaluated for six 
plastic and visco-plastic constitutive relations. The role of 
strain-rate sensitivity on the instability point is investigated. 
Calculations for statically and dynamically loaded spherical 
shells are presented, illustrating the formation of instabilities 
as well as the role of imperfections. Conclusions of this work 
are that there are two fundamental types of instabilities 
associated with failure of spherical shells. In the case of 
impulsively loaded vessels, where the pulse duration is short 
compared to the fundamental period of the structure, one 
instability type is found not to occur in the absence of static 
internal pressure. Moreover, it is found that the specific role 
of strain-rate sensitivity on the instability strain depends on 
the form of the constitutive relation assumed. 

1. INTRODUCTION 
Design rules for impulsively loaded containment 

vessels have recently been accounted for in Section VIII, 
Division 3 (High Pressure Vessels) of the ASME Code 
through Code Case 2564. 

Edward A. Rodriguez 
Global Nuclear network Analysis, LLC 

PO Box 4850 
Los Alamos, NM 87544 USA 

505-672-9177 
erodriguez@gnna.net 

Plastic tensile instability is one potential mechanism 
leading to global failure of pressure vessels . This instability is 
well known to occur for spherical pressure vessels subjected to 
static pressure loading, i.e., 'load control' . However, for 
conditions of 'displacement control ' , closely associated with the 
impulsive loading condition, less is known. For sudden impulsive 
pressure loading, the loading may be completed well before peak 
response of the vessel occurs. 

A detailed discussion of earlier instability investigations 
[1-5] for spherical shells under static (load and displacement 
control) and pressure-pulse loading is presented in [6]. These 
investigations were almost exclusively limited to a plastic stress­
strain law of the form 

-n 
a=Cc (I) 

where a is equivalent true stress, C is equivalent true strain, and 
C and n are material constants . The instability conditions and 
associated instability strains reported for static-pressure loading 
(load control) , displacement (volume) control, and pressure-pulse 
loading generally differed among the various papers summarized 
in [6]. These differences in the instabilities would be anticipated, 
given that the instability behavior must be different for static­
pressure loading when compared with short-duration impulsive 
pressure loading. In particular, the pressure would no longer be 
acting when peak response of an impulsively loaded vessel is 
reached. However, discrepancies between reported instability 
strains under displacement control were also noted in [6]. 

Updike and Kalnins [7] developed a numerical 
methodology for determining the plastic tensile instability limit for 
static pressure loading of axisymmetric vessels. They report that 
the plastic tensile instability limit (instability pressure) is an upper 
bound to actual burst test results . Hillier [8] addresses the 
difference between strains at instability and strains at fracture , 
which may account for some of the differences between 
calculations and experiments brought out by Updike and Kalnins 
[7]. A detailed investigation of plastic instability of static-pres sure-
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loaded vessels is presented by Mou, et al. [9], where it is 
shown that there exist two types of instabilities : Global and 
Local. Results are illustrated for both cylindrical and spherical 
shells. Global plastic instability (also termed 'structural 
instability') occurs when the (monotonicaUy increasing) 
pressure reaches a maximum in the vessel; whereas local 
plastic instability (termed ' material instability ' ) is related to 
the type of instability that occurs in the tension test where the 
increase in resistance due to strain hardening is just balanced 
by the decrease in area due to thinning of the specimen. 
Explicit solutions are presented in '[9] for a bilinear stress­
strain curve. 

In cases where the shell is loaded by a dynamic 
internal pressure pulse with duration on the order of or greater 
than the vessel response time, Tugcu [10] terms the global 
plastic instability as a dynamic instability with respect to time. 

Needleman [J 1] investigates the bifurcation of 
elastic-plastic spherical shells subjected to static loading, 
using a variational principle attributed to Hill. Two cases are 
considered in [It]: prescribed internal pressure; and 
prescribed change in volume enclosed by the shell. These 
appear to be equivalent to 'load' and 'displacement' control, 
respectively. Needleman considers axisymmetric bifurcations, 
i.e., those that vary only with the meridional coordinate rp 
(see Fig. I), and introduces a complete set of bifurcation 

modes using Legendre polynomials. It is found that the admissible 
functions for the two cases differ: The mode q=O is admissible for 
prescribed internal pressure but is not admissible for the case of 
prescribed change in volume. However, q=1 is admissible in both 
cases: This mode corresponds to thinning at one pole with a 
corresponding thickening at the other, which seems to be related to 
necking localization. Had nonaxisymmetric modes been 
considered as welJ in ( II], it is likely that the bifurcation mode 
would have appeared more aligned with necking localization. 
Summarizing, for static pressure loading, there is an instability in 
the fundamental mode, q=O, and a bifurcation at larger 
displacement in the q=1 mode. For a volume-prescribed change, 
only the bifurcation in the q= I mode occurs. These results are in 
qualitative accord with Mou, et al. [9 ~ , using a different 
methodology. For pressure loading, the instability in the q=O mode 
corresponds to the global or "structural" instability of Mou, et al. 
[8], whereas 'the bifurcation in the q=J mode is ana1logous to the 
local or "material" instability in [9]. 

A general instability condition for an impulsively loaded 
spherical shell is presented in Section 2 for several constitutive 
models. Finite element calculations for statically and dynamically 
loaded spherical shells and comparisons with the numerical results 
of others are presented in Section 3. Conclusions for this paper are 
summarized in Section 4. Dynamic effects anticipated at higher 
loading rates are discussed in the Appendix. 
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Figure 1. Coordinates of Spherical Shell 

NOMENCLATURE 

~ original area of shell cross section 

C, n power law material constants 
D,m strain-rate material constants 

normal force 

internal pressure 
axisymmetric mode number 
current radius 
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original radius 
current thickness 
original thickness 
equivalent true strain 

ith true strain component 

ith engineering strain component 

mass density 
equivalent true stress 
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O"j ilb true stress component 

ilb engineering stress component 

generalized power law material constants 

meridional coordinate 
denotes instability point 

2. CALCULATION OF INSTABILITIES FOR A 
SPHERICAL SHELL 

As derived by Cooper [I], the instability for a 
spherical shell subjected to displacement-controlled or 
impulsive loading is analogous to the plastic tensile instability 
that occurs in a uniaxially loaded tensile specimen. This type 
of instability would occur when the force exerted by one 
hemisphere upon the other reaches a maximum. This 
instability would be followed by localized deformation 
(necking) of the shell . Cooper [I] determines that this 

instability occurs at a hoop strain of 1- (n + 1) for the plastic 

stress-strain relation shown in Eqn. (I). As shown in [6] this 
instability strain is in fact much lower (n) . A similar result has 
been reported for cylindrical shells (with experimental 
corroboration) by Nakamura, et al. [4] . A general expression 
for this instability condition for a spherical shell along with the 
equations leading up to the expression are needed in 
developing the results in this paper. The previously developed 
derivation from [1,6] is as follows: 

Consider one half of a free, thin spherical shell. The 
hemisphere is assumed loaded by some displacement­
controlled mechanism, such as the impulsive velocity from 
some earlier transient pressure pulse loading. The total force 
(normal force, Ns) imparted by one hemisphere upon the other 
is 

No = 2:rrtO" 0 (2) 

where r is the current radius , t is the current thickness and Gs is 
the true in-plane stress normal to the cut surface. This normal 
force is a maximum when its derivative is set to zero. Noting 
that r, t, and Gs are variables, the differential of the normal 
force becomes 

d(N 0) = 2mO"odr + 2:rr0"0dt 

+ 2:rrtdO"o == 0 

or 

dr + dt + dO" 0 = 0 
r t 0"0 

(3) 

(4) 

True strains for this uniformly expanding spherical shell are 

3 

E, = In(:') 
E, = E. = In( :, J 

(5 ) 

where 10 and ro denote initial thickness and radius, respectively. 

Corresponding differential strains are 

dc = dt 
r t 

Assuming incompressibility of plastic strains, 

Co +crp +cr = 0 

c r = -2co 

dC r = -2dco 

(6) 

(7) 

Substituting appropriate expressions from Equations (5)- (7) 
into Equation (4) results in 

(8) 

Equivalent strain, E, is defined as 

[Jze r = k -E, )' +k, -E,)' 
(9) 

+(cz -cx )2 

Let 

Cx =co 

c y = crp (10) 

Substituting Equations (7) and (10) into Equation (9) results in 

E=2c o 

Equivalent Stress, 0" , is defined as 

202 = (O"x - O"y)2 + (O"y - O"z)2 

+ (O"z - O"J2 

Let 
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(13) 

But 

(14) 

Combining Equations (12)-( 14) results in 

( 15) 

Now from Equation (II), 

(16) 

and from Equation (15), 

(17) 

Combining Equations (8) and (15)-(17), 

= (18) 
d"£ 2 

Eqn. (18) is the needed expression from [1,6]. At this point, 
the stress-strain curve is yet to be specified. Six cases are 
considered as follows: 

2.1 Power Law: Assume an equivalent stress-equivalent strain 
curve of the form given by Equation (I). Substituting Equation 
( I) into (18), it is straightforward to show that 

"£* 
n=-

2 
(19) 

where the * denotes the instability point. From Equation ( II), 

(20) 

Therefore, the instability for a complete spherical shell under 
impulsive load occurs when the circumferential strain is equal 
to the strain at necking in the tensile test. This is the same 
result as obtained in the case of the cylindrical shell by 
Nakamura , et at. [4]. 

This instability is of a different nature than that 
associated with reaching maximum pressure. The instability 
associated with attaining maximum pressure is a global or 
structural instability, utilizing the terminology introduced by 

4 

Mou, et al. [9]. On the other hand, the instability associated 
with maximizing the normal force is local or material in 
nature . In fact, the global instability (for a cylinder andl a 
sphere) will not occur for impulsively loaded vessels in the 
absence of internal pressurization, whereas the local instab,ility 
does not depend upon a pressure load being present. 

Finally. inertial effects may well influence the 
initiation and growth of local instabilities, such as necking. 

2.2 Generalized Power Law: Now assume an equivalent 
stress-strain curve of the form, 

(21 ) 

Then, using Eqns. (II), (15), and (18), it is straightforward to 

show that the instability strain, E;, is given by the following 

transcendental equation: 

(2E*r[~ -1] = ao 
o. K 

Eo 
(22) 

2.3 Bilinear Form: For a bilinear stress-strain curve (n= I). 
Eqn. (22) reduces to 

* -1 ao E - --
o 2K 

(23) 

2.4 Generalized Power Law Including Strain Rate 
Sensitivity: Strain rate sensitivity can be included by adding a 
power-law term with exponent, m, similar to the work­
hardening exponent. n. This strain-rate sensitivity term is 
described by Keeler [12] and Boyce, et al [13]. Adding this 
term to Eqn. (21) results in 

(24) 

where D is a constant and £ denotes equivalent true strain 
rate. Using Eqns. (II), (IS), and (18), the instability strain is 
given by thefollowing transcendental equation: 

(25) 

As an example, from Keeler [12], for AKDQ steel, typical 
values of exponents are n=+0.21 and m=+O.O 12. Boyce, et al 
[13] report a range in m-values of 0.004-0.007 for four high­
strength, high-toughness steels, but state that these values are 
quite low compared to most metals, which fall in the range of 
m = 0.02-0.2, based on Ref. [14] . 

2.5 Bilinear Hardening with Strain Rate Sensitivity: For 
bilinear strain hardening (n=l) and power-law strain rate 
sensitivity, Eqn. (25) reduces to: 
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(26) 

The instability strain therefore depends on the current strain 
rate. Eqn. (26) reduces to Eqn. (23) in the absence of strain 
rate sensitivity. Note that the instabi lity strain decreases (for 
positive m), in agreement with Refs. [13] and [14], but 
apparently not with [12]. Keeler [12] states that a positive m­
value retards the growth of the incipient neck, implying an 

increase in ductility. 

2.6 Product-Type Bilinear Hardening and Linear Strain 
Rate Sensitivity: The commonly used Johnson-Cook 
constitutive relation utilizes a product-type law, where the 
strain-hardening term is mUltiplied with the strain-rate term. 
The following simplified stress-strain relationship, with 
bilinear strain hardening and linear strain rate sensitivity, has 
this type of attribute: 

(27) 

where A, B, and C are constants. Utilizing Eqns. (11), (15), 

and (18), the instability strain, c; , is: 
* A 

C =1--
o 2B 

(28) 

This result is the same as for bilinear strain hardening without 
strain rate sensitivity (Eqn. (22)). Therefore, strain rate 
sensitivity does not influence the instability strain for this form 
of stress-strain relationship. 

3. NUMERICAL INVESTIGATION 

3.1 Finite Element Calculation results on Instabilities for 
Spherical Shells will be placed here by Edward Rodriguez. 

3.2 Comparisons with Mou, et al. [9]: Mou, et al. [9] present 
'structural' and 'material' instability strain results for a bilinear 
stress-strain curve, including a numerical example for a 
spherical shell. This same numerical example is utilized here 
to investigate instabilities of a spherical shell. 

From Eqn. (21), using n = I (bilinear stress-strain 
curve), the true stress, true strain relationship becomes 

(29) 

As shown in Eqns. (15) and (II), the equivalent true stress and 
strain are related to the principal true stress and strain 
components by 

(30) 

5 

Noting that the engineering hoop stress, a fngo ' and strain, 

cengO ' are related to the corresponding true stress, ao ' and 

true strain, Co through 

ao = a
engo 

(1 + c
engo

) 

Co = In(l + CeT/8o) 

then Eqn (29) can be written 

(31) 

(32) 

The normal force acting over one half the spherical shell (see 

Eqn. (2)) can be written No = aengoAo, where An is the 

original area of the shell cross section. This normal force in the 
spherical shell can be expressed in the nondimensional form 

- No 
suggested by Mou, et al. [9] as F = -- . For the spherical 

KAo 
shell, this can be written in terms of engineering hoop strain 
as: 

No ay; + 21n(1 + CeT/go) 
(33) 

A related expression can be developed for pressure in the 
spherical shell as a function of engineering hoop strain. First, it 
is noted that equilibrium requires 

pr 
ao=-

2t 
(34) 

where p is applied internal pressure, r is current radius and t is 
current thickness. 
Solving Eqn. (34) in terms of pressure and substituting the 
bilinear stress-strain relation, 

(35) 

where Co is the true hoop strain. Using Eqn. (31), Eqn. (35) 

can be written as 

(36) 

Constancy of volume in the plastic range requires that 

(37) 
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Utilizing Eqn. (37) with (36) results in 

Noting that 

then Eqn. (38) becomes 

(38) 

(39) 

Equations (33) and (40) are plotted in Figure 2 as a function of 

engineering hoop strain for (Yo / K = 0.1 . The peak of each 

curve corresponds to the respective instability point. Structural 
instability is seen to occur at an engineering hoop strain of 
0.33 in/in. Material instability occurs at an engineering hoop 
strain of 1.59 in/in. These curves can be directly compared to 
corresponding curves for a similar cylindrical shell example 
developed in Reference [9] . 

Spherical Shell: Structural and Material Instabilities for Sy/K=O.1 

0.9 

0.8 

0.7 

0' 0.6 
« 
~ 

if 0.5 --Structural Instability 

0' 
0.4 ... - -Material Instability 

(:) -~ :a: 0.3 

0.2 

0.1 

0 

0 0 .5 1.5 2 2.5 

Engineering hoop strain 

Figure 2. Structural and material instabilities for a spherical shell with bilinear stress-strain relation and (Yo / K = 0.1 

Results for the spherical shell numerical example in 
Mou, et al. [9] are shown in Fig. 3 (inside radius 100 in ; 

thickness I in; (Yo = 30ksi ; K = 60 ksi), with the instability 

true hoop strain of 0.751 (. This is the 'material ' instability 
described by Mou, et al . This result agrees with Eqn. (3.12) of 
Mou, et al [9 ]1 , but not with the reported value of 0.50 strain in 

6 

Section 4 .3 of [9] . The corresponding plot of internal pressure 
as a function of radial displacement, showing the ' structural' 
instability for this numerical example, is plotted as Fig. 4.3-2 
in Mou, et al. [9] and is not repeated here. The structural 
instability occurs at an engineering hoop strain of 0.0833 in/in. 

Copyright © 20 I 0 by ASME 



Hoop Force vs Radial Displacement for a spherical 
shell: radius=100 in; thickness=1 in; K=60 ksi; 

Sigy = 30 ksi 

40000000 

35000000 

/ 30000000 
III / J:I 25000000 
or I ~ 20000000 
LL 

g. 15000000 
0 
~ 

10000000 

5000000 

o +-------,------.------.-------.------.------~ 
o 50 100 150 200 250 300 

radial displacement, in 

Figure 3. Hoop force as a function of radial displacement for example problem utilized in Mou, et al. [9] 

4. RESULTS AND CONCLUSIONS 
There are two types of instabilities that are observed 

for spherical shells , and they are categorized as either "global 
(structural)" or "local (material)" in nature, using nomenclature 
introduced by Mou, et a\. [9]. In the case of a "global" 
instability, the shell radially expands, accelerating in 
uncontrolled manner by excess pressure loading, but 
deformations do not necessarily localize. This type of 
instability is associated with static internal pressure loading and 
occurs when the internal pressure reaches a maximum, i.e., 
dp=O. In this case, the increase in stress due to strain hardening 
is insufficient to overcome the decrease in carrying capacity due 
to shell thinning and increase in radius . It does not occur in the 
case of purely impulsive loading in the absence of a finite­
duration pressure pulse. 

The second type of instability, termed here "local" 
instability, leads to necking-type localization. It is the stress 
resultant, N, that reaches a maximum for this type of instability, 
i.e., dN=O. This local instability is associated with both 
pressurized shells and impulsively loaded shells, and manifests 
itself in the formation of local necking of the cross section. 
This local instability is the subject of the present paper. 
Utilizing a general instability expression for spherical shells 
under displacement (volume) control or impulsive loading, 
strain expressions at the point of instability are developed for a 
variety of plastic stress-strain relationships. The effect of strain­
rate sensitivity is also incorporated and its importance is found 
to depend upon the specific viscoplastic stress-strain 
relationship . 

7 

These results have implications regarding Section VIII, 
Division 3 of the ASME Code and associated Code Case 2564. 
Both have two general limit criteria for ductile elastic-plastic 
behavior: A global, plastic-instability collapse limit and local 
strain-exhaustion limits . It appears that , in the case of 
impUlsively loaded vessels, the global plastic-instability 
collapse limit would not occur in the absence of staltic pressure 
loading. The local (material) failure would be accounted for in 
the strain-exhaustion limits . 
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APPENDIX: A DISCUSSION OF DYNAMIC EFFECTS AT 
HIGHER LOADING RATES 

Over the past decade, a number of papers [16-18J have 
been written regarding numericall analyses of failure in 
dynamically loaded rings, although the loading levels appear to 
be beyond those of interest for incipient failure of pressure 
vessels. There are similarities between the dynamic response of 
impulsively loaded rings and spherical shells, and it is likely 
that spherical shells will exhibit some of the phenomena 
observed for rings at these higher loading rates. Therefore, 
results of these numerical studies are discussed below. In all 
cases examined, the governing equations are sufficiently 
complicated that closed form solutions are not possible. The 
finite element numerical solutions are run for specific cases 
only, so it is difficult to see the role of the individual parameters 
on the formation of instabilities. Also in some cases finite 
element size plays a role in the predicted localization, 
influencing the results (Schreyer and Chen [19], Needleman 
[20]). 

The rings in [16-18] are driven radially outward by 
sudden, impulsive loading. Failure by local necking is 
described . While quasi-static studies of ring expansion a\llude 
to the formation of a unique neck in the absence of inertia, these 
recent papers imply that for rings without any imperfection, 
necking is not observed. Dynamic necking apparently has to be 
triggered by small imperfections. The introduction of 
imperfections is required to initiate localization, although 
necking mayor may not occur at imperfection sites [17] . 
Mercier and Mol inari [16] also found that for dynamic cases, 
the instabilities introduced are not necessarily located at the 
sites at which unstable growth developed. 

Han and Tvergaard [21] investigate dynamic necking 
behavior for impulsively loaded, strain-rate-independent rings . 
They show that wave propagation is an important parameter 
associated with multiple neck formation . Guduru and Freund 
[22] investigate the closely related problem of a cylindrical rod. 
They predict an increase in the number of necks and an increase 
in the bifurcation strain with increasing extension rate. 

Grady and Benson [23] observe from experiments that 
the fracture strain is an increasing function of expansion speed 
of the ring. Thus, it has generally been found that average 
ductility of the rings increases with increasing initial impulse 
(or equivalently, velocity) and that the number of unstable necks 
that form increases with impulse level. However, the observed 
increase in apparent ductility with impulse level may well be 
associated with the increased numbers of necl<s formed at the 
higher loading levels. 

It should be emphasized, however, that much of the 
work on dynamic loading and fragmentation of rings, e.g., the 
work of Grady and Benson [23] discussed above, was 
performed at strain rates well beyond those of interest in this 
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paper, which is focused on impulse levels leading to incipient 
failure, not on full fragmentation of the vessel. 

9 Copyright © 2010 by ASME 


