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The interactions between cancer cells and their micro- and macroenvironment create a context 
that promotes tumour growth and protects it from immune attack. The functional association of 
cancer cells with their surrounding tissues forms a new ‘organ’ that changes as malignancy 
progresses. Investigation of this process might provide new insights into the mechanisms of 
tumorigenesis and could also lead to new therapeutic targets. 

Under normal conditions, ORGANS are made up of TISSUES that exchange information with 
other cell types via cell–cell contact, cytokines and the EXTRACELLULAR MATRIX (ECM). 
The ECM, which is produced by collaboration between STROMAL fibroblasts and 
EPITHELIAL cells, provides structural scaffolding for cells, as well as contextual information. 
The endothelial vasculature provides nutrients and oxygen, and cells of the immune system 
combat pathogens and remove apoptotic cells. Epithelial cells associate into intact, polarized 
sheets. These tissues communicate through a complex network of interactions: physically, 
through direct contact or through the intervening ECM, and biochemically, through both soluble 
and insoluble signalling molecules. In combination, these interactions provide the information 
that is necessary to maintain cellular differentiation and to create complex tissue structures. 
 
Occasionally, the intercellular signals that define the normal context become disrupted. 
Alterations in epithelial tissues can lead to movement of epithelial sheets and proliferation — for 
example, after activation of mesenchymal fibroblasts due to wounding.Normally, these 
conditions are temporary and reversible, but when inflammation is sustained, an escalating 
feedback loop ensues.Under persistent inflammatory conditions, continual upregulation of 
enzymes such as matrix metalloproteinases (MMPs) by stromal fibroblasts can disrupt the ECM, 
and invading immune cells can overproduce factors that promote abnormal proliferation. As this 
process progresses, the normal organization of the organ is replaced by a functional disorder 
(FIG. 1). If there are pre-existing epithelial cells within this changing context that possess 
tumorigenic potential, they can start to proliferate. Alternatively, the abnormal interactions 
might lead to genomic instability within the epithelial cells and the acquisition of tumorigenic 
potential. The proliferating cancer cells can then interact with their microenvironment and 
enhance the abnormal interactions. At this point, the tumour has become its own organ,with a 
distinct context that now defines all its cellular responses.Here,we will examine how the 
mechanisms that contribute to the normal context also act to suppress developing tumours, how 
disruption of this context initiates and supports the process of tumorigenicity, and how some 
cells with a tumorigenic genotype can become phenotypically normal if the context is 
appropriately manipulated. 
 
An innate anticancer mechanism 
 
An important feature of the normal stromal context is the generation and maintenance of 
epithelial-cell polarity. Epithelial cells receive a variety of orientational cues from the 
environment that help them establish cellular apical and basal surfaces and to maintain the 
differentiated state. Loss of polarity has been shown to lead to increased cell proliferation and 
tumorigenesis (BOX 1).The basal surface of epithelial cells associates with the BASEMENT 
MEMBRANE, a specialized form of ECM that provides both structural support and polarization 
signals to epithelia. The basement membrane is a dynamic structure. Changes in its composition 
lead to changes in cell shape and behaviour1, altered binding affinity or cellular distribution of 



cell-surface receptors2, and cellular responses to soluble molecules3.Depending on the 
composition and physical characteristics of the basement membrane, different soluble factors can 
have completely different cellular effects, such as inducing cell proliferation, growth arrest, 
differentiation or apoptosis4. 
 
Epithelial cells maintain physical contact with their neighbours through a combination of 
ADHERENS JUNCTIONS, GAP JUNCTIONS, TIGHT JUNCTIONS and DESMOSOMES 
(FIG. 2).Of these, adherens junctions have been a particular focus of studies into the signals that 
generate epithelial-cell polarity, but more recent investigations have revealed mechanisms by 
which gap junctions, tight junctions and desmosomes also contribute to the formation of 
polarized epithelial tissues5–8. 
 
Adherens junctions are contacts between adjacent epithelial cells and are anchored to the 
cytoskeleton. Cadherins (such as E-CADHERIN) traverse the membrane, associating with 
cadherins on adjacent cells in a calcium-dependent manner. On the cytoplasmic face, β-catenin 
connects to the cadherin tail and associates with α-catenin,which in turn binds to actin. Loss or 
alteration of these components leads to premalignant phenotypes and even tumorigenesis9–11.Of 
these components, E-cadherin has been a particular target of study, as this molecule is lost in 
many types of tumour9, and its restoration can suppress cellular transformation. Decreased E-
cadherin function is a component of EPITHELIAL–MESENCHYMAL TRANSITION, invasive 
tumour growth and metastasis11–13. Loss of E-cadherin can be accompanied by increased 
expression of alternate cadherin isoforms that promote inappropriate survival signals and 
enhance the malignant phenotype14.However, as all cellular responses are tissue- and context-
dependent, there can be no universal generalizations, as shown by the fact that E-cadherin gain 
of function is an early step in ovarian carcinoma15. 
 
Gap junctions are channel-forming complexes that allow passive diffusion of small signalling 
molecules between neighbouring cells5.The particular composition of CONNEXIN subunits 
within a gap junction determines the type of molecule that can be transported16. Much remains to 
be learned about how the specific combination of connexins facilitates tissue interactions, but it 
is clear, again, that generalizations should be avoided, as the expression patterns (and probably 
the function) of connexins are tissue dependent and change during tumour progression17,18. For 
example, some breast cancer cells upregulate connexin 32 (Cx32)19, but loss of Cx32 contributes 
to hepatocellular carcinoma20,21; Cx43 inhibits tumorigenicity of lung, cervical and bladder 
carcinoma cells22–24, but has no effect on squamous cell carcinomas25; and other connexins can 
facilitate cell adhesion during metastasis26. 
 
Changing interactions between adjacent tissues might also affect tumour development (FIG. 3). 
For example, in the normal human mammary gland (FIG. 1), the ductal–lobular system is 
composed of an inner layer of luminal epithelial cells, which line the duct and produce milk 
during lactation, and an outer layer ofmyoepithelial cells, which express a number of proteases 
during tissue remodelling to pave the way for emerging ductules. This double-layered structure is 
separated from the INTERSTITIAL MATRIX by an intact basement membrane27. Breast cancer 
arises mainly in the luminal epithelial compartment, but myoepithelial cells also express 
molecules that have been shown to suppress transformation of luminal epithelial cells in vivo27 
(TABLE 1). These proteins have been named ‘class II tumour suppressors’28 and production 



of these proteins allows myoepithelial cells to act as tumour suppressors in the breast27,29. 
 
In combination, these mechanisms create a dynamic equilibrium that helps cells to maintain a 
normal, differentiated phenotype. This equilibrium might attenuate the consequences of genetic 
mutations, as consideration of the frequency of spontaneous mutations indicates that many 
epithelial cells should possess oncogene-activating mutations, yet cells continue to function 
normally30,31.Analyses of normal epithelial tissue adjacent to tumours have shown that similar 
patterns of mutations can be found in both, indicating that malignant cells can exist within 
normal tissues but be restrained by normal contextual cues32–34. 
 
Activated stroma as a carcinogen 
 
Whereas normal stroma can delay or prevent tumorigenesis, abnormal stromal components can 
promote tumour growth (FIG 4).Acquired or inherited mutations that alter stromal-cell function 
can release the suppression placed on context-inhibited malignant cells. Literature that spans 
more than a century has shown that inflammation associated with tissue wounding can produce 
tumours (REFS 35–38 and references therein) (BOX 2). .Barcellos-Hoff and colleagues39 have 
shown that irradiation of the mammary-gland stromal component promotes the tumorigenic 
potential of non-irradiated epithelial cells. These investigators had previously shown that even 
low levels of irradiation lead to remodelling of the ECM in breast tissue and activation of latent 
transforming growth factor-β (TGF-β), which affects tissue and organ function40.Moinfar et al.41 
examined genetic alterations in tumour-associated stroma from several independent cases of 
mammary carcinoma, and found chromosomal rearrangements that were not present in the 
malignant carcinoma cells. These results indicate that characteristic mutations that affect stromal 
cells might have contributed to the formation of the epithelial tumours.Moreover, studies of a 
subset of inherited cancer-susceptibility syndromes42,43 also indicate that alterations in stromal 
cells can contribute to tumorigenesis. So, aberrations in stroma can both precede and stimulate 
the development of epithelial cancers44,45. 
 
Matrix metalloproteinases 
 
MMPs can degrade ECM and are involved in promoting the inflammatory response, normal 
tissue remodelling, wound healing and angiogenesis46. These enzymes, however, also have an 
important function in malignancy (BOX 2). The sustained presence of these proteinases in the 
tumour environment, produced both by the activated cells and by the cancer cells, leads to 
destruction of normal ECM. Degradation of ECM stimulates both proliferative and apoptotic 
mechanisms, which can lead to the selection of apoptosis-resistant carcinoma cells and enhanced 
invasive potential47,48. In the tumour context, direct association of MMPs with specific ECM 
receptors provides spatial control of MMP activity and directional signals to the invading tumour 
cells49. 
 
Stromelysin-1 (SL-1, also known as MMP-3), is an MMP that is involved in both mammary-
gland development and breast cancer50,51. Cellular context determines the response of mammary 
epithelial cells to SL-1 treatment: when grown in basement-membrane gels, mammary epithelial 
cells undergo growth arrest and become functionally differentiated; subsequent treatment of 
these cells with SL-1 causes apoptosis52. However, when cultured on two-dimensional matrices 



and allowed to continuously proliferate, mammary epithelial cells react to treatment with SL-1 
by undergoing an epithelial–mesenchymal transition and becoming tumorigenic50. 
 
In transgenic mice that express SL-1 in mammary luminal epithelial cells, the mammary glands 
show morphogenesis defects and contain pre-neoplastic lesions44,53,54 that eventually lead to full 
malignancies50,54. Here, the causative mechanism seems to be that SL-1 — expressed ectopically 
at low levels in the epithelial cells — is subsequently produced at much higher levels by the 
stromal fibroblasts44, showing that a moderate disruption contributes to a self-sustaining 
tumorigenic state. Similar reciprocal feedback mechanisms have been observed in transgenic 
mice with altered expression of MMP-7 (REF. 55), MMP-11 (REF. 56) and MT1-MMP57. 
 
Immune function in the tumour context 
 
Immune surveillance is the mechanism by which the immune system targets and destroys 
developing malignancies. Investigations of transgenic mice with deficient responses to 
interferon-γ (IFN-γ), a cytokine that has been shown to be required for migration of T cells to 
tumour sites58,59, have led to increased interest in the mechanisms by which immune cells target 
tumours60,61. Although T cells seem to be the main effectors of immune surveillance62, the innate 
immune system (which includes natural killer cells, macrophages, monocytes and mast cells) is 
also involved63–65. 
 
Malignant cells evade immunosuppression by downregulating intrinsic immunogenicity66,67. The 
tumour vasculature contributes to this process by preventing extravasation of the antitumour T 
cells, while continuing to allow the passage of innate immune cells68. Studies by Gloria Heppner 
and colleagues (REF. 69, and references therein) showed that natural killer cells actually 
provided positive signals for progression of preneoplastic mammary lesions. This initially 
controversial concept has received support from recent investigations of carcinomas of the 
skin70,71, pancreas72 and mammary gland73, showing that innate immune cells promote 
tumorigenesis by producing MMPs, inducing the stroma to produce MMPs and by activating 
latent MMPs that are present in the ECM74–76. The resultant increase in proteolytic activity 
potentiates tumour progression by further degrading ECM, activating tumour-associated 
fibroblasts and enhancing angiogenesis70,72.  
 
Macrophage migration inhibitory factor (MIF) is another immunomodulator that is associated 
with tumour progression. This cytokine has been shown to be overexpressed by tumour cells77, 
contributing to neoangiogenesis and to epithelial cell proliferation77, as well as suppressing 
immune surveillance78. MIF might also contribute to the genomic instability within tumours, as 
MIF suppresses p53 function79, potentially leading to the attenuation of normal apoptosis and 
growth-arrest mechanisms and allowing for the accumulation of additional oncogenic 
mutations80. This might be one of the mechanisms by which persistent inflammation can increase 
the risk of cancer81. 
 
Tumour-cell plasticity 
 



One manifestation of the distinct tumour context is that cells from a given malignant tissue are 
not limited to that tissue’s normal panoply of physiological processes. The classic work of 
Beatrice Mintz (discussed below) is a prime example of this, but a more recent example can be 
found in ‘vasculogenic mimicry’, a process in which aggressive tumours can augment normal 
angiogenesis by forming hollow channels that connect to the existing vascular system.These 
vessels are believed to transport blood into the depths of the tumour82,83.This concept has now 
been well-characterized84–87 and could represent a general component of tumour 
development88.To produce more selective antiangiogenic therapies, it might be necessary 
to combine detailed examinations of vasculogenic mimicry with existing models of tumour 
angiogenesis. 
 
Haematological tumours 
 
More than 80% of human cancers are derived from the epithelium, but the role of context in the 
development and maintenance of cancer also seems to apply to tumours of haematological 
origin. Although most immune cells spend much of their lifespan in the circulatory system, key 
aspects of immune-cell development involve cell–cell and cell–ECM interactions within the 
stroma of the bone marrow, the thymus and the lymph nodes89,90. In haematopoietic cells, as in 
epithelial cells, these interactions control cell shape, adhesion and migration91. 
 
Accordingly, defects in the function of bone-marrow stromal cells can cause a predisposition to 
cancer, such as in cases of Shwachman–Diamond syndrome, an inherited preleukaemic disorder 
that is caused by a faulty bone-marrow microenvironment92. As with tumours that are derived 
from the epithelium, haematological tumour cells interact with their stromal microenvironment 
through cell-surface receptors93–95. These interactions lead to increased production of MMPs96,97, 
altered expression of ECM receptors98,99 and increased angiogenesis100,101. The interactions 
between haematological tumour cells and the tumour stroma are, therefore, a significant 
component of tumour growth and resistance to anticancer therapeutics102–106. 
 
Restoring the normal context 
 
Although an abnormal context can contribute to tumorigenesis and tumour progression, there is 
no compelling evidence that this process, once initiated, is irreversible. The possibility that 
reintroduction of the normal context could suppress the transformed phenotype was first 
suggested by the work of Mintz and Illmensee, who showed that TERATOCARCINOMA 
CELLS, even after prolonged passage, were still capable of differentiating and generating normal 
mice107. This seminal observation indicated that maintenance of a normal context could lead to 
inhibition or even reversion of tumours in situ. In another example, Rous sarcoma virus — one 
of the most potent oncogenic viruses — is not tumorigenic in the early embryo108, but when the 
embryonic cells that host the virus cells are put in culture, they become transformed109. In co-
culture assays, normal stromal cells inhibit the progression to epithelial malignancy110. Norbert 
Fusenig and colleagues have developed an assay to model the natural tissue context of the 
stratified skin epithelium111. Using this system, they were able to suppress early stages of 
neoplastic progression of malignant keratinocytes by introducing an excess of normal 
keratinocytes112. 
 



An assay involving a three-dimensional (3D) basement membrane113 has been used to investigate 
the response of a series of human breast-tumour cell lines at different stages of progression, 
cultured within a physiological context114. Although the nonmalignant cells are similar in 
appearance to the malignant cells when cultured on plastic substrata, the phenotypic differences 
are striking when the cells are cultured in a reconstituted basement membrane (rBM)115.Under 
these conditions, the non-malignant cells undergo growth arrest and form a polarized, alveolar 
structure, whereas the malignant cells proliferate and form amorphous structures. Analysis of 
ECM and growth-factor receptors in the non-malignant and malignant cell types indicates that 
the malignant cells overexpress INTEGRINS and epidermal growth factor receptor (EGFR). 
Addition of anti-β1-integrin antibodies to the malignant cells, when cultured in 3D rBM, 
downregulated EGFR expression, restored cellular organization, and decreased overall 
tumorigenicity115. This observation led to the discovery of a bidirectional cross-modulation of 
integrin and EGFR signalling that exists only when cells are cultured in 3D116. Furthermore, the 
tumorigenic phenotype of the malignant cells was reversed by treatment with EGFR-inhibitory 
antibodies, mitogen-activated protein kinase (MAPK) pathway inhibitors, or phosphatidylinositol 
3-kinase (PI3K) pathway inhibitors116,117. Inhibiting several different signaling pathways restores 
even an aggressive breast-cancer cell line to a normal phenotype117.  
 
Therefore, assays in which tumour cells are cultured in physiological conditions can be used to 
identify combinations of signalling inhibitors with the potential to reverse the progression of a 
broad range of tumours. The success of agents that are designed to inhibit other signal 
transduction pathways, such as herceptin (which blocks signalling by the EGFR ERBB2 (HER2) 
in breast cancer cells) and STI-571 (which inhibits BCR–ABL kinase activity in chronic 
myelogenous leukaemia cells) indicates that this might be a valid approach118,119. It is clear, 
however, that relapses occur and many patients do not respond. These agents were designed to 
target one particular oncoprotein, so it might be necessary — in cases of more complex cancers 
— to target both the tumour and its context, using combinations of drugs. 
 
Targeting the tumour organ 
 
The efficacy of targeting the tumour organ can be found in recent strategies for treating 
hepatocellular carcinoma. This cancer type is accompanied by a fibrotic stromal reaction in 
which HEPATIC STELLATE CELLS show increased proliferation, fibrogenesis and matrix 
degradation, as well as reduced retinoid production and cytokine release120 — physiological 
responses often found in tumour tissues. Recent clinical studies indicate that chemotherapy for 
hepatocarcinoma could be more effective if therapies to target the underlying liver fibrosis were 
also employed120,121.As fibrotic breast disease is also associated with a predisposition to breast 
cancer122, and environmentally induced fibrotic disorders of the lung can increase incidence of 
lung cancer123, targeting the tumour environment might also increase the treatment effectiveness 
for these types of cancer. 
 
Antagonism of the developing tumour context also offers potential for cancer prevention 
therapies124,125. In the best-characterized example of this approach so far, chronic suppression of 
inflammation through use of non-steroidal anti-inflammatory drugs (NSAIDs) has been shown to 
lower the incidence of colon and breast cancer125,126. This antitumour activity seems to occur 
through inhibition of cyclooxygenase-2 (COX2)127–129, an enzyme that is involved in the 



synthesis of pro-inflammatory prostaglandins (see the review by Rajnish Gupta and Raymond 
DuBois on pp. 11–21 in this issue). The demonstration of the role of COX2 in tumorigenesis 
serves as a remarkable example of how the several tissue types can collaborate to promote 
tumour progression, as fibroblasts, immune system cells and cells involved in neoangiogenesis 
are all part of this pathway130. 
 
The requirement of tumours for a vascular supply has also produced a diverse group of 
angiogenesis inhibitors that are currently undergoing evaluation in the clinic131. Similarly, the 
role of MMPs in tumorigenesis, tumour invasion and metastasis has prompted clinical testing of 
MMP inhibitors.Although the results with patients suffering from advanced stages of cancer 
have shown no clinical efficacy, recent data indicate that MMP inhibitors could be more 
successful when used in early-stage cancer or in conjunction with traditional treatment 
methods132,133. 
 
So, agents that target the tumour microenvironment represent an important new direction for 
cancer therapy. Just as the normal context creates a dynamic equilibrium to maintain normal 
tissue function, so the tumour context contains many overlapping mechanisms to maintain its 
functional disorder and to evade anticancer therapies. Therefore, it is likely that combinations of 
the next-generation therapeutic agents, targeting specific molecular targets,will be required not 
only to inhibit and destroy the tumour cells, but also to normalize the tumour microenvironment. 
Gaining a better understanding of the complexities of the tumour context will improve our 
prospects for developing effective cancer treatments. Dormant metastases are not the only sheep 
in wolves’ clothing — the altered microenvironment of the tumour is itself a powerful and 
insidious carcinogen that needs to be targeted. 
 
Keywords 

ORGAN 
An anatomically discrete collection of tissues, integrated to perform specific functions. 
 
TISSUE 
A relatively homogenous structure, composed of an organized collection of cells of similar 
morphology and function. 
 
EXTRACELLULAR MATRIX (ECM).  
A complex, threedimensional network of very large macromolecules that provides contextual 
information and an architectural scaffold for cellular adhesion and migration. 
 
STROMA 
Organ compartment serving as the connective tissue framework; includes fibroblasts, immune 
defence cells and fat cells.  
 
EPITHELIUM 
A diverse group of tissues that covers or lines nearly all body surfaces, cavities and tubes, 
functioning as interfaces between different biological compartments. Epithelial layers provide 
physical protection and containment, and also mediate organ-specific transport properties. 



BASEMENT MEMBRANE 
A specialized form of ECM that consists of laminins, collagen IV, nidogen (entactin), 
proteoglycans and a number of other glycoproteins that separates epithelia from underlying 
supporting tissues. Different organs have different compositions of basement membrane. 
 
ADHERENS JUNCTION 
A physical junction that links apicolaterally localized belts of actin in adjacent epithelial cells. 
 
GAP JUNCTION 
An aqueous channel that interconnects the cytoplasms of adjacent cells and allows direct 
exchange of small cytoplasmic components. It is created by the association of two hemichannels, 
each a hexamer of connexin subunits. 
 
TIGHT JUNCTION 
A component of cell–cell adhesion in epithelial and endothelial cell sheets. Acts as a mediator of 
the diffusion of solutes through the intercellular space. Also acts as a boundary between the 
apical and basal plasma-membrane domains. 
 
DESMOSOME 
An adhesive junction that anchors intermediate filaments between adjoining cells. 
 
E-CADHERIN 
The main adhesion receptor in adherens junctions. Mediates Ca2+-dependent interactions 
between adjacent epithelial cells and regulates cell proliferation. It also sequesters the 
transcriptional co-activator β-catenin, a protein that can stimulate cell-cycle entry. The 
loss of E-cadherin from the cell surface might trigger epithelial–mesenchymal transition.  
 
EPITHELIAL–MESENCHYMAL TRANSITION 
Conversion from an epithelial to a mesenchymal phenotype, which is a normal component 
of embryonic development. In carcinomas, this transformation results in altered cell morphology, 
the expression of mesenchymal proteins and increased invasiveness. 
 
CONNEXIN 
Functions as a subunit of the gap junction hemichannel. Several members of the connexin family 
have been identified. 
 
INTERSTITIAL MATRIX 
The extracellular matrix (ECM) contained within the stroma. 
 
INTERMEDIATE FILAMENT 
A component of the eukaryotic cytoskeleton. Intermediate filaments form a dense network 
extending from the nucleus to the plasma membrane.  
 
TERATOCARCINOMA 
A malignant germ-cell tumour arising from the ovary or testis that is composed of embryonal 
carcinoma cells.  



INTEGRINS 
A family of more than 20 heterodimeric cell-surface extracellular matrix (ECM) receptors. They 
connect the structure of the ECM with the cytoskeleton and can transmit signalling information 
bidirectionally.  
 
HEPATIC STELLATE CELLS 
The principal fibrogenic cell type of the liver. They are located in a perivascular orientation and 
contain long cytoplasmic processes that interact with neighbouring cells. 
 
HEMIDESMOSOME 
An adhesion complex located at the interface of epithelial cells with the basement membranes. 
Responsible for linking keratin intermediate filaments to components of the extracellular matrix. 
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Figures, Boxes, and Tables 
 
FIGURE 1 
 

 
 
Normal versus malignant breast tumours. 
a | The normal mammary gland shows a highly structured and segregated architecture. Ducts are 
formed by a double layer of cells: luminal epithelial cells surrounded by a layer of myoepithelial 
cells, enclosed by the basement membrane. Stromal fibroblasts secrete a collagenous 
extracellular matrix (ECM), and blood vessels are centrally located and well defined. b | Lobular 
breast carcinoma is less organized. Tumour angiogenesis produces poorly defined blood vessels, 
and carcinoma cells intermingle with all the stromal elements. 
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FIGURE 2 
 

 
 
Mechanisms of cell–cell and cell–ECM interactions. Integrin and non-integrin cell-surface 
receptors form attachments with the actin filaments in the cytoskeleton, and are able to sense 
elements of the extracellular matrix (ECM) to promote growth-factor activation. Tight junctions 
act as a barrier to the diffusion of solutes through the intercellular space and act as a boundary 
between the apical and basolateral plasma-membrane domains. Adherens junctions, which 
consist of extracellular E-cadherin dimers connected to cytoplasmic α- and β-catenin molecules, 
are anchored to actin filaments. Gap junctions provide a communication mechanism by allowing 
solutes and small signalling molecules to pass between adjacent cells. Desmosomes serve as 
anchoring points for INTERMEDIATE FILAMENTS and also provide signalling information. 
 
 
 
 
 
 
 
 
 



FIGURE 3 
 

 
 
Differences in stroma between tumours. Interstitial stromal cells of normal and breast tumour 
tissues differ in levels of smooth muscle differentiation. a | Normal interstital stroma(s) does not 
express smooth muscle actin (red) or b | smooth muscle myosin (green), indicating that smooth 
muscle differentiation has not taken place, although these cells do produce blood vessels (bv). c–
f | Tumour tissues, by contrast, express high levels of smooth muscle actin (c,e). These images 
also show, however, that not all tumour stroma are similar. The tumour stroma shown in (c) and 
(d) expresses smooth muscle actin (c) but not smooth muscle myosin (d). In the tumour shown in 
e and f, the stromal cells express high levels of both actin and smooth muscle myosin. Adapted 
from REF. 142. 
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FIGURE 4 
 

 
 
The tumour microenvironment assay. a | Primary breast carcinoma cells form spherical 
colonies when cultured in three-dimensional collagen type I. b | Co-cultivation with stromal 
cells, however, causes the tumour cells to spread and become invasive. The degree of tumour 
growth increases with the density of the stromal cells. Staining of the coculture assay (c) and of 
tumour (d) with anti-vimentin antibody reveals the structural similarities of stromal cells in the 
presence or absence of cancer cells. (Reproduced with permission from REF. 142 © (1995) 
American Society for Clinical Investigation.) 
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