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(Mg volume fraction of material (m) (2.1, B)
¥ yield function argument (14.3)

7 arbitrary hydrodynamic variable (2.0, 4.0)

@ JWL EQOS constant (6.5)

@ axial rotation vector (1.0, H)

r Gruneisen parameter (6.6)

Ax  cell width—x dimension (2.0)
Ay  cell width—y dimension (2.0)
Az cell width—z dimension (2.0)
Q.  rotation rate tensor (1.0, 14.3, 1)

In these equations, dots refer to the time derivative of the variable. The subscripts i, j, and
k can assume the values x, y, or z.

The equations are written in full three-dimensional (3D) Cartesian component form,
which should give the reader a better understanding of the equations and techniques
being used in PAGOSA.

To make this document as widely accessible as possible, only a modest mathematical
background is presumed—essentially, a thorough understanding of calculus and vector
analysis. The equations are almost always written in their 3D Cartesian component form.
More elaborate technical issues are reserved for the many appendices.
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CHAPTERO

Introduction

In the beginning the Universe was created. This has made a lot of people very angry and
been widely regarded as a bad move.

-Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)
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Chapter 0 Introduction

0 INTRODUCTION

PAGOSA is a computational fluid dynamics computer program developed at Los Alamos
National Laboratory (LANL) for the study of high-speed compressible flow and high-rate
material deformation. PAGOSA is a three-dimensional Eulerian finite difference code,
solving problems with a wide variety of equations of state (EOSs), material strength, and
explosive modeling options.

This document presents the finite difference equations that are used in the PAGOSA
continuum mechanics computer code. This program is especially intended to be used for
the numerical simulation of the interactions of gases, fluids, and solids.

PAGOSA is used to investigate high-pressure and high-strain-rate phenomena associated
with explosive-driven systems, high-velocity impacts, etc., where material pressures
range from kilobars to megabars. At these pressures all materials exhibit considerable
volume changes so that incompressibility is not a valid assumption. These types of
continuum mechanics computer codes are intended to resolve the behavior of
compression and rarefaction waves generated within materials.

In common parlance, PAGOSA often is called a hydrocode, wave code, or shock code.
These synonyms deserve a small digression, and the following explanation is given by
Zukas:!

What is a hydrocode and where did it get that ridiculous name? Hydrocodes
fall into the very large category of computational continuum mechanics.
They were born in the late 1950’s when, following the development of the
particle-in-cell (PIC) method at Los Alamos National (then Scientific)
Laboratory, Robert Bjork at the Rand Corporation applied PIC to the
problem of steel impacting steel and aluminum impacting aluminum at
velocities of 5.5, 20 and 72 km/s. This is cited in the literature as the first
numerical investigation of an impact problem. Because such impact
velocities produce pressures in the colliding materials exceeding their
strength by several orders of magnitude, the calculations were performed
assuming hydrodynamic behavior (material strength is not considered) in the
materials. Hence, the origin of the term hydrocode—a computer program for
the study of very fast, very intense loading on materials and structures.
...Such calculations are no longer performed in hydrodynamic mode yet the
old name has stuck.

Lyonas Zukas, Introduction to Hydrocodes (Studies in Applied Mechanics 49) (Elsevier Ltd., Kidlington,
Oxford OX5, UK, 2004), Preface, page v.
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0.1 Algorithm

The highlights of the PAGOSA continuum mechanics computer code are that

e PAGOSA was created for simulations running on massively parallel
supercomputers;

e PAGOSA is a finite difference code with a Cartesian fixed orthogonal
Eulerian mesh;

e PAGOSA is a multi-material code—an arbitrary number of materials, per cell,
can be easily computed and visualized;

e time integration is fully explicit, with a timestep controlled by the Courant
condition—the time integration is second-order accurate;

e the Eulerian mesh is staggered, with cell-centered quantities (e.g., density and
internal energy) and vertex-centered quantities (e.g., velocity) to increase
accuracy;

e a standard von Neumann artificial viscosity may be used to spread
hydrodynamic shocks over several cells;

o the upstream weighted, monotonicity-preserving advection scheme is
conservative (total energy is not necessarily conserved during advection)—the
donor cell (first-order), van Leer (second-order), and Youngs/van Leer (third-
order) methods are automatically selected, depending on the local conditions;
and

e PAGOSA uses an efficient material interface reconstruction algorithm so that
all the interfaces within a cell can be easily represented.

Figure 0.1 shows a simplified schematic of the computational cycle. First, the strain rates,
EOS, artificial viscosity, and sound speeds are computed. On the first cycle, these
computations are based on the initial conditions. The Courant condition (i.e., a stable
timestep) for the cycle is next computed.

The Lagrangian phase integrates the equation for a single timestep. A flowchart showing
the details of the integration process is shown in Figure 0.2. The equations of motion are
solved explicitly in time.

The advection phases remap the Lagrangian variables back onto the original Eulerian
mesh. A flowchart of the remap process is shown in Figure 0.3.
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Figure 0.1. Flowchart showing an overview of the PAGOSA algorithm. The numbers in
parentheses are the chapters and sections corresponding to the relevant physics.

If trouble is encountered during a computational cycle, the cycle is completed, during
which print and restart files are written. The error handling occurs inside the diagnostics
computational block shown in Figure 0.1.

Chapter 5 presents the predictor-corrector integration scheme used for the hydrodynamics
variables in the Lagrangian phase. The integration scheme consists of two parts—the
predictor and the corrector. Consider the differential equation

d
d—§= F(x,y), Y(%)=Y, -

The numerical solution of this equation is divided into intervals, or stepsx . Given a
timestep h, the predictor step creates an approximation vy, ,, at the halfway point
X, +h/2; the corrector step then is applied:
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Figure 0.2. Flowchart showing the Lagrangian phase of the PAGOSA algorithm. The numbers
in parentheses are the chapters and sections corresponding to the relevant physics.

Vi = Yi +1h F (X, ;) predictor and
Yia =Y +h f (5 +3hy,0,) corrector .

This sequence completes one timestep in the PAGOSA simulation.

Conceptually, the Lagrangian phase creates a distorted mesh, which is remapped onto the
original Eulerian mesh. This remap results in a transport of mass, energy, and momentum
through each face of each cell of the Eulerian mesh. After the transport is complete in all
three directions, new material mass densities, energies, and pressures are computed. A
new velocity field is computed for the entire mesh.

Next, the boundary conditions are applied to the exterior surface of the Eulerian mesh.
Symmetries in the simulation can be exploited by using reflective (symmetry) boundary
conditions. In this way the computational cost of a problem can be reduced.

At the end of the Lagrangian and advection phases, all of the materials with strength are
subjected to the yield criteria. Materials that have deformed beyond their elastic regime
have “yielded” and flow plastically. The elastic-plastic von Mises yield criteria are
described in Chapter 14.
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Figure 0.3. Flowchart showing the advection phase(s) of the PAGOSA algorithm. The numbers
in parentheses are the chapters and sections corresponding to the relevant physics.

The governing equations representing the well-known conservation laws of mass,
momentum, and energy are given in Chapter 1. The complete sets of equations solved by
PAGOSA are presented there. The Navier-Stokes equations are written, and no derivation
of those equations is presented. The user may consult any number of textbooks for the
derivation.’

The construction of the Eulerian grid is presented in Chapter 2. The Eulerian mesh is the
computational domain of the simulation.

Chapter 3 introduces the concept of strain rates and the numerical discretization of those
rates. The basic numerical differencing techniques used in PAGOSA are detailed here. In
Chapter 4 the Strang operator-splitting technique is applied to the governing equations of
Chapter 1. The resulting Lagrangian- and advection-phase equations are numerically
solved by the methods developed in Chapter 3.

The integration of the basic hydrodynamic variables is presented in Chapter 5. The
predictor-corrector technique used in PAGOSA is second-order accurate in time.

?L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Addison-Wesley Publishing Company,
Inc., 1959), Chapter Il, pp. 47-54.
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Chapters 6, 7, and 8 are concerned with the thermodynamics of the simulation. The EOS
provides a closure to the fundamental equations by connecting the density, energy, and
pressure.

A stable timestep must be computed for every step of the simulation. The Courant
timestep controls are described in Chapter 9.

The initial and boundary conditions for the governing equations are presented in Chapters
10 and 11. The initial conditions apply to all of the fundamental variables in the
simulation in the interior of the Eulerian mesh. The boundary conditions apply to the
exterior surface of the Eulerian mesh.

For high-explosive materials, a common method of releasing the chemical energy into the
simulation is “programmed burn.” These algorithms are described in Chapter 12.

The various divergence options are described in Chapter 13. Because PAGOSA has only
one velocity field, choices exist regarding how that velocity field is applied in every cell
of the simulation.

Chapter 14 describes the algorithms for materials possessing strength, including the
algorithm for elastic-plastic yield, as well as the various models for shear and yield
moduli available in PAGOSA.

Chapter 15 describes the algorithms for materials possessing damage or fracture models.
Chapter 16 describes the algorithms for materials possessing a crush model.

Appendices A-M contain detailed information on the derivations, as well as other
additional information that supplements the development of the PAGOSA algorithms.
The information in these appendices is not crucial to the understanding of the main points
in the presentation; however, a more complete view of PAGOSA can be had by a careful

reading of them.

Note that acronyms are defined at the first instance in each chapter.
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CHAPTER 1

Governing Equations

Great laws are not divined by flashes of inspiration, whatever you may think. It usually
takes the combined work of a world of scientists over a period of centuries.

-Isaac Asimov, Nightfall (1941)
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Chapter 1 Governing Equations

1 GOVERNING EQUATIONS

The partial differential equations solved in PAGOSA are presented. Many equivalent
forms of the system of differential equations characterize the flow of inviscid® fluids and
solid materials in Eulerian coordinates, but certain formulations lead to considerably
more accurate difference approximations than do others. These equations express the
laws of conservation of mass, momentum, and energy locally. When these equations are
combined with a material model relating stress to deformation, an equation of state
(EOS), and a set of initial and boundary conditions, they give a complete description of
the motion of a continuum. The difference approximations have proven (empirically) to
be quite accurate and generally most satisfactory for a wide range of three-dimensional
problems.

In the current formulation, density and the three components of velocity are considered to
be fundamental variables; it is quite important to carry this notion over to the difference
equations.

The first condition, the equation of continuity, expresses the conservation of mass as*

a—’O+U a’O+Va'0+Wa—p:—pV-u (1.1)
ot oX oy 0z ’ '

where u is the velocity vector, u=(U,V,W). This equation defines the time evolution of
density.

The Navier-Stokes equations® express the conservation of linear momentum as

[ 0S
Q+U£+V@+Wyzi—lﬁ+i aSXX+ Xy+aSXZ : (1.2a)
ot oX oy oz p pox p| Ox 0y 0z

F [0S, oS
%4_ U%+Vﬂ+ Wﬁ =_y_£@+i yx+ ¥y
ot 0X oy oz p poy p| Ox 0Oy

0S
W, yW W W _F 10P 1105, O 05 ,  (L.2c)
ot oX oy oz p poz p|l ox 0y 0z

0S
+ yz} , and (1.2b)
0z

where S is the symmetric and traceless deviatoric stress tensor and is the difference
between the total stress tensor and the isotropic pressure® P. The total stress tensor is

®Inviscid is defined as having no viscosity.

*G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, New York, New York,
2000), p. 74.

*lbid., p. 147.

81t should be mentioned that the mechanical pressure cannot always be identified with the thermodynamic
pressure, but the difference is usually of little consequence from an engineering point of view.

11
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never computed in PAGOSA and therefore is omitted in this overview. These three
equations define the time evolution of the velocity field.

The deviatoric stress tensor,” a symmetric tensor,® expresses the relationship between
stress and strain as

Sxx =2G ( e‘xx _%V ’ U) ) S.xy =2G ( e.><y) , (13a,b)
S,,=2G (¢, -3V u), S, =2G(¢é,,) ,and (1.3c,d)
S,=2G(¢é,-1V-u), S,=2G(e,) . (1.3e,f)

The shear modulus, G, is evaluated using one of several available flow-stress models
(e.g., Elastic-Perfectly-Plastic, Steinberg-Cochran-Guinan, Kospall, and Johnson-Cook).
The shear modulus, G, contains the material information about melting, pressure, and
density dependencies and the material-specific constants. These flow-stress models are
described in Section 14.4.

The terms in the brackets in Egs. (1.2a—c) are computed only for materials with strength.
Equations (1.3a—f) are not computed for purely hydrodynamic materials. This concept
applies to all the optional physics (e.g., burn, fracture, and crush). The physics is
computed only for a material when appropriate. In this way, the computational overhead
is reduced to what is necessary to satisfy the physics.

The stress deviators are further adjusted for material rotation, plasticity, fracture, damage,
and spall and are described in Chapter 14. This second-order tensor S has three
invariants:’

J, =trace(S)=S,+S,+S,=0 , (1.4a)
J, =4trace(S*)=4(S; +S;, +S,)+S; +S; +S;, ,and (1.4b)
3, =det(S) . (L.4c)

The invariants of tensors is an important concept in continuum mechanics. The second
invariant J, will become important when we consider the yield stress of a material.

The spatial velocity gradient tensor can be decomposed into a symmetrical part and an
antisymmetrical (also called skew-symmetric) part. The symmetrical part of this tensor
can be identified with the strain rate tensor é in the limit of small strains.'® In this limit,
the strain rate tensor can be written as

"This constitutive relation has many names: Hooke’s law, the linear stress-strain equations, etc. A simple
derivation is given in Appendix A.

¥The symmetry of the tensor is a consequence of the conservation of angular momentum.

*The values of J,,J,,J, are the same (invariant), regardless of the orientation of the coordinate system.

191.s. Sokolnikoff, Mathematical Theory of Elasticity (McGraw-Hill, New York, 1956), pp.29-33.

12
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_ou 6 1(oU oV
€ =50 w=5 a_y+5 : (1.5a,b)
Y . _1f{oU oW
"oy “ =252 Tox ) +and (L5c.d)
. _OW . _1{ov oW
é, =77 €y =5 EJra_y (1.5e,)

The trace of the strain rate tensor is the divergence of the velocity vector, given as
e, +e, +6, :a—U+a—V+a—W=V'u . (1.6)
» ox 0y o0z

The trace of the strain tensor (without the time derivative) is called the dilatation. The
dilatation represents the contraction or expansion of a material element. Mathematically,
it is simply

dilatation=e, +e, +e, . (1.7)

In fluid mechanics, a flow is called incompressible if the divergence of the velocity field
is identically zero. This flow corresponds to a material element having no change in
volume (contraction or expansion). In PAGOSA, which solves the equations for
compressible flow, a material cannot be truly incompressible. However, a material can
have a very large value for a bulk compression modulus. The excursions from
incompressible flow can be made arbitrarily small from an engineering point of view.

The antisymmetrical (skew-symmetric) part of the spatial velocity gradient tensor is the
vorticity tensor, the components of which are

Xy:_QyX:l U _ov =—1lo, |, (1.8a)
2\ 0y 0Ox

Q, :—QZX:%(%—U—(Z—WJ: lo, ,and (1.8b)
z X

Q, =_sz=l N oW =lo, , (1.8c)
2\ 0z 0y

where o is the axial vector'? associated with the vorticity tensor.

!15ee Section 6.3, Polynomial Equation of State, for an example.
2\Mathematically the axial vorticity vector is the curl of the velocity vector. For example, if V xu =0, the
flow is called irrotational.

13
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In matrix form,

0 w Qe 0 -o, o,
1
Q=-Q, 0 Q,|l=z| o, 0 -o
2
-Q, -Q, 0 -0, o, 0

The pressure is assumed to be related to the density and internal energy by the equation
P=P(p,E) EOS. (1.9)

The EOS can be analytic or tabular and includes phase transitions for each material. The
EOS must be solved in conjunction with the equation for specific internal energy as

e, §+U§+V§+W§ =—PV.Uu
ot 0X oy 0z . _ .
o Su€utS,8, +5,8, (1.10)
+2(S,,8, +S,6,+S,€,)

Xy Xz ¥xz

The internal energy is further divided into an elastic distortional energy and plastic work.
The difference is that the plastic work results in raising the internal energy of the
material, whereas the elastic distortional energy is recoverable by the system. These
details will be discussed in Chapter 14.

The above development is for a single material. The above equations are applied to every
material in PAGOSA. In the following algorithm descriptions, the fundamental variables
are scaled by a volume fraction representing the amount of each material in a particular
region of space. The material interface treatment is a unique and powerful feature in
PAGOSA.

Remarkably, these equations capture the flow and deformation of gases, fluids, and solids
and the interactions between them, when formulated for multifield* flow. The history of
these equations is a fascinating story in its own right. The history of modern physics is
intimately tied to these equations because originally the luminiferous aether was believed
to behave as an elastic solid.*

The first step in numerically solving the above equations is to create a computational
grid. The creation of the Eulerian grid is discussed in the next chapter.

BD.A. Drew and S.L. Passman, Theory of Multicomponent Fluids (Applied Mathematical Sciences 135)
(Springer Publishing Company, New York, 1998).

YSir E. Whittaker, A History of the Theories of Aether and Electricity (Dover Publications, Inc., Mineola,
New York, 1989), Chapter V: “The Aether as an Elastic Solid,” pp. 128-169.
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CHAPTER 2

The Eulerian Grid

Every cubic inch of space is a miracle.

-Walt Whitman, Miracles (1871)

15
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Chapter 2 The Eulerian Grid

2  THE EULERIAN GRID
The computational domain is a box (mathematically it is a cuboid™ or rectangular

parallelepiped). The user chooses the computational range of interest by choosing the
coordinate ranges

[Xoin = Xenax J D 1Y min + Yimaxd © [Znin = Zima ) Eulerian computational domain .

The governing equations are solved numerically with the appropriate initial and boundary
conditions. The computational domain is divided into cells'® bounded by the surfaces

X, =X, +([1—1)AX 1=12,.0
Y; =Y t(J-DAY 1=12,..., J,x »and
2, =7,;,, +(k-1)Az k=12,....K,..

where Ax,Ay,Az are the grid spacings and the dimensions of a single Eulerian cell. The

cell dimensions are shown in Figure 2.1. The coordinates of the lower left corner of the
cell with the indices (i,j,k) correspond to

(Xiyjzx). The cell is the basic spatial

discretization in the solution of the partial

differential equations. The cell and the

entire mesh are fixed in space. Materials

move through the grid (also referred to as a

mesh) subject to the governing equations

and initial and boundary conditions. As

time progresses, the variables are computed

at fixed points of the grid. In the Eulerian

formulation, the volume of the cell is

invariant, and changes in density are due to

Figure 2.1. A single Eulerian cell in the ~ changes in the mass of a material in a

computational domain. particular cell.

The important geometric properties of the Eulerian cell include

Cell widths AX,Ay,Az,

Cell volume Vol =AxAyAz ,and

Face areas Area, = Ay Az X component
Area, = AXAz y component
Area, = AXAy Z component

A cuboid is defined as a closed box with three pairs of rectangular faces. The black monolith with side
lengths of 1, 4, and 9 in the book and film version of 2001: A Space Odyssey is an example of a cuboid.
*The terms “cell” and “zone” are used interchangeably in the text.
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Chapter 2 The Eulerian Grid

The numerical solution of partial differential equations'’ involves a two-step process:

1. Create a finite difference scheme (a difference approximation to the partial
differential equations on a grid).

2. Solve the difference equations; the solution is written in the form of a high-
order system of linear and/or nonlinear algebraic equations.

The numerical treatment of the original partial differential equations requires that the
variables be discretized temporally and spatially.

In PAGOSA, a staggered grid is used, where some variables are centered on the cell
vertices, whereas others are cell centered. The discretization begins with the basic cell-
centered hydrodynamic variables, as shown in Figure 2.2:

Density p(t;x,y,2) Priasa, jsza
Internal energy E(t;xY,2) Ein+1/2,j+1/2,k+uz Cell Centered
Pressure P(t;xy,2) Piil/z,j+1/2,k+1/2

The superscript refers to a discrete time (n), and the subscripts refer to a discrete position
in space (in this case, the center of the cell). Note: The superscript (n) is not an exponent
or a power-law index, but simply a time index.

The cell centers are located at the geometric center of the cell; the center coordinates are
X.,» =3 (X +X;,,) , much as for the other coordinates.

i+1

The velocity vector is defined at the cell vertices:

X velocity U(t;x,Y,2) ule
Y velocity V(t;Xx,Y,2) Vv Vertex Centered
Z velocity W (t;X,Y,2) W,

The superscript in this case refers to a half-timestep (n + %2), and the subscript refers to a
vertex located at (i,j,k). The time centering of the above equations is only an example.
The exact time centering [i.e., (n), (n + %), or (n + 1) as superscripts] will be deferred
until the discussion in Chapter 5, Integration of the Hydrodynamic Variables.

The variables from the original partial differential equations (e.g., U, p) are continuous
functions of space and time. This statement is not true of the finite difference

"william H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes in
Fortran: The Art of Scientific Computing, second edition (Cambridge University Press, New York, New
York, 1992), pp. 818-849.
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representation described above. In the literature of finite difference equations, the two

functions are often denoted differently to distinguish between the continuous and discrete

functions."® For example, the discrete functions and their solutions will depend on the

choice of grid spacing (zone size). In this text, the same symbols will be used for both
descriptions.

In PAGOSA, the choice of placing
the velocity vector at the cell vertices
is not universal. Some Eulerian
hydrodynamics codes locate the
velocities on the cell faces,® whereas
others locate them at the cell center
with the other variables.*® The exact
placement of variables on a mesh is
an active area of research, and the
choice of discretization is an art. The
advantage of having eight velocity
vectors associated with each cell is

Figure 2.2. The spatial centering of the that complex Ve|0CIty_ fields can be
PAGOSA state variables. represented accurately in PAGOSA.

2.1 Mixed Cells

Some cells in the computational domain will contain more than one material.”* These
mixed cells present one of the central challenges for Eulerian hydrocodes. Multi-material
cells computationally represent the interface between materials.

The volume fractions® are defined as

™02 vz = Traction of the cell volume occupied by material (m)

For a cell, the volume fractions must sum to a value of unity by definition as

(m) _
Z ¢|+1/2,j+1/2,k+1/2 =1,
m

M. Shashkov, Conservative Finite-Difference Methods on General Grids, Stanly Steinberg, ed. (CRC
Press, Boca Raton, Florida, 1996), p. 6.

%F.H. Harlow and J.E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow
of Fluid with Free Surface,” The Physics of Fluids, Volume 8, Number 12, pp. 2182-2189 (1965).

2. Johnson, “OIL, A Continuous Two Dimensional Eulerian Hydrodynamic Code,” General Atomic
report GAMD-5580 (revised) (1965).

IA cell containing only one material is called a pure cell. All other cells are called mixed cells.

2C.W. Hirt and B.D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,”
Journal of Computational Physics, 39, pp. 201-225 (1981).
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where the summation is over all the materials defined in the simulation. As the simulation
progresses, the volume fractions are recomputed for each new timestep. The question is
how to compute the initial volume fractions. These fractions are computed using a
variation of a Monte-Carlo technique.”® Each cell is sampled with a regular array of
“particles,” and the resulting statistics are used to compute the initial volume fractions. A
more detailed discussion is given in Appendix B.

Most cells in a simulation are pure cells. The single-material-governing equations shown
in Chapter 1 apply directly in this case. For example, cell average pressures are identical
to the material pressures. No interfaces exist in these cells.**

On the other hand, mixed cells provide a richness and complexity to the solution of the
governing equations. In a mixed cell, each material possesses its own density, internal
energy, and pressure. In general, no attempt is made to force a pressure or temperature
equilibrium between the individual materials (see Chapter 13 for a more complete
explanation). The cell average pressure is the volume fraction average of each material
pressure. Each material in a mixed cell has its own interface represented by a plane; in
this way, the materials can be localized within the cell.

2.2 Finite Differences

It is natural to divide the simulation time interval [0,T] into short subintervals, with a step
denoted At. In general, the time intervals will change as the simulation progresses [i.e.,
the time interval (also called the timestep) will change, depending on the exact physical
state at that time]. The simulation time after N steps is

N
t" =t,+ Y At" , the simulation time at cycle N
=1

The finite difference method is a numerical technique for approximating the solution of
partial differential equations. A partial derivative is replaced with a finite difference as,
for example, the partial time derivative of an arbitrary function

n+l

—_— _n .
5_1,” N Wiz, jv2kw2 ~ Vi, j+12, k12 2.1)
ot At"

n+1

H n+l
where we have used the standard notation v (t", X;,15: ¥j,12s Zisw2) = Vitwa, jevzkena.

Now suppose we wish to create a finite difference approximation for the equation

Z\William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes in
Fortran: The Art of Scientific Computing, second edition (Cambridge University Press, New York, New
York, 1992), pp. 155-158.

*The only pathological exception is when two adjacent pure cells have different materials. The material
interface coincides with the cell face.
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Y _ F(t,x) , and (2.2a)
ot
l//n+1 _l//n
i+1/2, j+1/2,k+ i+1/2, j+1/2 k+ +.
1/2,j+1/2 l/ZAtn 1/2, j+1/2,k+1/2 _ lzizl/z'j+l/2'k+1/2, Atn :tn 1 _tn . (22b)

Solving this equation yields the following algebraic equation:

n+1 | neEn
l//i+1/2,j+1/2,k+1/2 _l//i+1/2,j+1/2,k+1/2-'_At I:i+1/2,j+1/2,k+1/2 . (23)

This technique will be used repetitively in the following chapters. The finite difference
approximations® to the governing equations will be developed in the following chapters.

2.3 Momentum Control Volume

The momentum control volume, or dual mesh, surrounds the vertex. This volume is
staggered with respect to the original Eulerian mesh, which is created by connecting the
centroids of the Eulerian cells and therefore is identical to the Eulerian mesh, but
translated by half a cell in each dimension, as shown in Figure 2.3. In three dimensions,
each vertex is surrounded by eight Eulerian cells.

44

Momentum Control Volume

___________

@ Vertices

—— Eulerian Grid

- ==-=~ Control Volume

Figure 2.3. A cross section of the momentum control volume. The two-dimensional cut of this
control volume passes through the vertex (i j,k).

The mass of a single Eulerian cell is computed by

— (N )]
mi+%,j+%,k+% - z ¢i+%,j+%,k+% pi+%,j+%,k+%V0|i+%,j+%,k+l ! (24)
J

2

»R.D. Richtmyer and K.W. Morton, Difference Methods for Initial-Value Problems, second edition
(reprinted) (Krieger Publishing Company, Malabar Florida, 1994).
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where the summation is over all materials (j). The mass associated with the vertex is
computed by

1
Massi,j,k =3 (mi+%,j+%,k+% + mi+%,j+%,k—% + mi+%,j—%,k+% + mi+%,j—%,k—% 2.5)
My s TMig e TMig s mi—%,j—%,k—%)
and the x component of momentum associated with the vertex is
Momentum, ;, =Mass; ; U;;, - (2.6)

The momentum control volume becomes important in the discussion of solving the
momentum equations (1.2abc).

2.4  Ghost Cells

An extra layer of cells is added to the outside of the computational grid to aid in the
construction and implementation of the boundary conditions. In the literature on Eulerian
hydrodynamics codes, these “extra” cells are called ghost cells or guard cells. The
addition of the external cells is used to extend the grid so that the solver need not be
directly aware of its computational boundary.

Two types of boundary conditions are implemented in PAGOSA—reflective and
transmissive boundaries. These conditions are discussed in Chapter 11.

The boundary conditions are applied to all six exterior faces of the computational grid.
Each face of the Eulerian mesh can have a different boundary condition. Other boundary
conditions may be added in the future.

2.5 Grid Decomposition

The solution of three-dimensional problems requires large amounts of memory and
processing power to produce mesh-converged results in a reasonable time. The
orthogonality of the grid allows for a straightforward spatial decomposition, as illustrated
in Figure 2.4.
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Chapter 2 The Eulerian Grid

Figure 2.4. Domain decomposition of an Eulerian grid. The example shows the grid being
decomposed onto eight processors. The size and shape of the decomposed grid are
the same on each processor.
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CHAPTER 3

Strain Rates

I have no satisfaction in formulas unless I feel their numerical magnitude.

-Lord Kelvin, Life of Sylvanus Thompson
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3 STRAIN RATES

The strain rate calculation in PAGOSA requires the evaluation of all the derivates of the
velocity vector u = (U,V,W). Specifically, the derivatives that need to be evaluated are

ox oy oz

[au oU au} {av oV av} and {aw oW aw}

ox' oy’ oz ox ' oy 01

Before we can construct a numerical approximation to the above partial derivatives, we
need to take a mathematical detour. Start with the divergence theorem?®

IVF d3x=IF~ﬁd2x : (3.1)
\% S

Let F=¢ c, where c is a constant vector =0 and ¢ is a scalar that is a function only of
position. Then we have

[v-Fdx=ci|pdx . (3.2)
\ S

However, the divergence produces
V-F=V-(cp)=CcVp+pV-c=CVp (3.3)

because c is a constant vector. In this case, the divergence theorem reduces to
c-{ vadsx—j¢ﬁd2x}=0 . (3.4)
S

Because ¢ is nonzero and arbitrary, the dot product cannot be zero unless the quantity
inside the brackets is zero.

Next, take the limit of the volume as it approaches zero. In this limit, we assume that the
gradient is uniform and constant over the volume or has a mean value®’ of

AVol -0 AVol —

; 3y _ i 3y _ i a2
lim Jv(pdx_Amowvjd X = Ilmoi(pndx , (3.5)

where j d3x=AVol .
\

%p_Morse and H. Feshbach, Methods of Theoretical Physics, Part | (McGraw Hill, New York, 1953), pp.
37-39.
?"In the sense of given by the mean value theorem for integration.
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Then under these circumstances,

Vo = I¢nd X . (3.6)

lim
AVol >0 AVO|

Apply this new definition of the gradient to a single cell in the Eulerian mesh. The
volume element isAVol = AXAy Az, the unit normals A are the Cartesian unit vectors,
and the surface areas are those of the cell.

The gradient of a scalar field, in this case the x component of the velocity U , can be
computed from the surface integral of the velocity field

<ﬁ>Udydz @Udydz U -U,,
ax AVO'%O AXAY Az Ax Ay Az AX

3.7)

The term in the square brackets is the integral average of the velocity over the relevant
surface area. Evaluating the integrals at the limits of the integration produces the final
result?® in Eq. (3.7). U, is the area-averaged velocity on the x face of the cell. The value
of U, is computed as the arithmetic average of the corner vertex velocities:**

U,

%(U k+U k+Ui,j,k+l+Ui,j+1,k+l) ' (3.8)

i,j+1,

The scheme is shown in Figure 3.1. The other gradients are handled similarly.

Figure 3.1. The gradient finite difference computation.

*The difference scheme presented is spatially second-order accurate.
“The integral average is approximated by the arithmetic average of the four corner velocities. However, the
same answer is arrived at if it is assumed that the velocity is a bilinear function of position on the face.
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The strain rates are defined as

. ou | . _1lau LoV
exx: PYRL eX - !
ox | o2 ay ox
. oV | . 1[eu ow ]
&, =—1 é,=—|—+—| ,and
oy | 2| 0z Ox |
[aw s _llov oV aw
“ ooz | 2 az oy |

and the finite difference approximations are

. Ji _UI 1
€ ji—1 1 1% ,
o] i3 d ke AX
[0,-0,, V-V,
éxy i-1,j-% k+i_>£ ! T + ! i—1 1
e 2_ Ay AX
e.xz i—L j4d k—l_>1 Jk Gk_l _|_V\_/i _V\_/I—l ’
2 z 2_ Az AX
V. -V
: i Vija
S
1[V, -V, W, W,
&t S| 22| and
é 1 1 1% M
22| ik Az

Strain Rates

(3.9a,b)

(3.9¢,d)

(3.9¢,1)

(3.10a)

(3.10D)

(3.10c)

(3.10d)

(3.10e)

(3.10f)

Note that the strain rates are cell-centered quantities, whereas the velocities are vertex
centered. In mathematical terms, the difference operator maps vertex quantities to cell-
centered quantities.

Finally, the divergence is computed as

V-u=¢,+e€e, +€, ,

and the finite difference approximation is

V.u|__l e Ji_Ui—l n Vj _VH + VVk -W,,
e AX Ay Az
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CHAPTER 4

Operator Splitting

No need to ask. He’s a smooth operator.

-Sade, Diamond Life (1984)
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4 OPERATOR SPLITTING

Operator-splitting methods are mathematical techniques used for solving partial
differential equations. These methods are commonly used to reduce the computational
effort required to solve the complex governing equations into a simpler set of equations.
We begin with the three-dimensional (3D) Euler equations:*

Conservation Law

+pV-u=0 Mass 4.2)

9P y2P yOP wor
ot 0X oy 0z
ouU +U6U+V6U +W8U+££:
ot oX oy 0z p OX

ﬂ+uﬂ+vﬂ+wﬂ+l£=o Momentum (Y) 4.3)
ot 0 X oy oz paoy

oW oW oW oW 10P_

0 Momentum (X) 4.2)

+U + +——=
ot OX oy oz poz
8E+ 8E+V8E+W8E P

U +—V-u=0 Internal ener , 4.5
ot o0X oy oz p 4 (4.5)

0 Momentum (Z) ,and (4.4)

where the velocity vector is defined as u=(U,V,W).
A variety of approaches exists for the differencing of the equations. The method used in

PAGOSA is based on the “Strang operator-splitting” technique.®* The above equations all
have the form

%—‘/t’+(L1+L2+L3)y/:0 , (4.6)

where i is any of the variables (i.e., p,U,V, W, E). The operators L;, L,, and L3 are
linear (spatial) partial differential operators. If D, is a finite-difference approximation
toL,, then the finite-difference equivalent® of the above operator equation is simply

" =(1-D,At-D, At-D, At) " . (4.7)

This equation can be rewritten to within a second-order approximation as

"™ =(1-D,At) (1- D, At) (1-D, At) y" +O(At?) . (4.8)

*The body forces and stress deviators are unnecessary for this discussion.

*Gilbert Strang, “On the Construction and Comparison of Difference Schemes,” SIAM Journal of
Numerical Analysis, Volume 5, Issue 3, pp. 506-517 (September 1968).

%A variation of Eq. (2.3).
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The time operator is “split” in the specific sequence:

oy’ , oy’ . oy
ik S , =—L : =— , and
ot - ot 2 ot ald
oy :81// +81// +81//
ot ot ot ot

(4.9)

or, in the finite-difference form,
y'=(1-D,At) y"
v"=(1-D,At) ' (4.10)
l//n+1 — (1_ D3 At) l//”
which will provide a second-order accurate solution of the original equations.®® The
attraction of operator splitting is clear.** The operator splitting replaces a complex set of

equations with three much simpler equations.®> The PAGOSA version of this operator-
splitting technique results in the following equations.

4.1 Lagrangian Phase

Conservation Law

op

Eﬂov.u:o Mass | (4.11)

ou  19P_4 Momentum (X) , (4.12)
ot  pox

ov, 19P_4 Momentum (Y) (4.13)
ot poy

oW, 10P _, Momentum (Z) , and (4.14)
ot poz

9 ,Py.u-o0 Internal energy . (4.15)
ot p

The equations in the Lagrangian phase are simply the 3D Lagrangian hydrodynamic
equations, the difference properties and behaviors of which are well understood from
decades of experiences with Lagrangian hydrocodes. The remainder of the technique
results in three additional sets of equations associated with the three Cartesian axes.

*The second-order accuracy is described in Chapter 5 (Integration of the Hydrodynamic Variables).

¥G.1. Marchuk, Methods of Numerical Mathematics, Second Edition, translated by A.A. Brown (Springer-
Verlag, New York, 1982), Section 9.4, pp. 421-439.

®D. Gottlieb, “Strang-Type Difference Schemes for Multi-Dimensional Problems,” SIAM Journal of
Numerical Analysis, Volume 9, Issue 4, 650-661 (September 1972).
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4.2 X Advective Phase

a—’O+U

ot
ou

—+
ot

oV

—+

ot
oW

—
ot
6E+U

ot

op _
L=
ouU
—=
v
—=

u W _
O X

OE _
0X

0

0

0

0

4.3 Y Advective Phase

9P,y 2P _y
ot oy
CIUNIVEITIIN
ot oy
a_v+ a_V:O
ot oy
W W
ot oy
9E |\ OE g
ot oy

4.4 Z Advective Phase

ot 0z
Y WY,
ot 0z
N owd g
ot 0z
W W g
ot 0z
9E W2E g
ot 0z

These equations are the Eulerian-, remap-, or advection-phase equations.

Operator Splitting

Conservation Law

Mass

Momentum (X)

Momentum (Y)

Momentum (Z) , and

Internal energy.

Conservation Law

Mass ,

Momentum (X)
Momentum (Y)
Momentum (Z) , and

Internal energy.

Conservation Law

Mass ,

Momentum (X)
Momentum (Y)
Momentum (Z) , and

Internal energy .
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The advection phase essentially forms a three-stage remapping procedure from the
distorted Lagrangian grid (produced by the Lagrangian phase) back to the original
Eulerian grid.* The Lagrangian phase may be regarded as a sequence of computations
based on the (fictitious) Lagrangian grid, which coincides with the Eulerian mesh at the
beginning of the phase. The advection phases conduct the transport of mass and material
quantities between cells and may be viewed as a remapping of the distorted Lagrangian
grid back onto the fixed Eulerian grid. In the Lagrangian phase, the density has a constant
value and is adjusted at each new timestep by the mass transport of the advection phases.

Figure 4.1 illustrates the situation where the x-advection remap is executed first.
However, the three 1D advection phases in the orthogonal coordinate directions should
alternate (permute) in sequence in successive timesteps to achieve overall second-order
accuracy in time. The advection remap permutation tends to mitigate any directional bias
in each computational cycle. The choices of how to start the permutation cycle and which
permutations to use are outstanding research issues. In PAGOSA, all six spatial
permutations are used, beginning with the x direction.

Vol =Vol (1+V -u At)

: ol | Lagrangian ! Vol :,
l : Phase L. )
L
X . o ] ” :
Vol =Vol® — Vol — At X-advection Remap
- |

!
!
1
X 1
!
i
!

—————————

¥ £ i
Vol' =Vol® - Vol —At |, Y-advection Remap

Voi? = Volt — Vol 2% A

l oz

Vol™ = val®

Z-advection Remap
(into the page)

[

Figure 4.1. A typical sequence of Lagrangian and advection steps.

*Methods that perform the advection in a single conservative step are collectively called unsplit advection
methods. Although unsplit methods have a theoretical advantage over operator-splitting methods, the
advantage remains largely theoretical.
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In PAGOSA, the advection order is permuted as

Timestep Advection Order

X-Y-Z
Z-X-Y
Y-Z-X
X-Z-Y
Y-X-Z
Z-Y-X
X-Y-Z (permutations repeat every six timesteps)

~No o, wWwN -

etc.

Next, we examine the procedures that PAGOSA uses to solve the individual phases—the
Lagrangian phase and the three advection phases.

Notice that the variables p,U,V,W,E have been split into two. For example, a
density pis associated with the Lagrangian phase, and another is associated with the
Eulerian (remap) phase. During a computational timestep, both sets of variables are
computed and used.

45 Lagrangian Phase

The solution of the Lagrangian mass conservation, Eq. (4.11) in our finite-difference
form, is*’

Vol™ =Vol"[1+ (V-u) At], and p"" = p" (Vol" /Vol ™). (4.31a,b)

If all of the materials within the zone are assumed to undergo uniform compression (or
expansion) during the timestep, then all of the individual volume fractions remain
unchanged. This assumption is clearly poor for cells containing mixtures of solids and
liquids or gases.

The actual integration of the Lagrangian phase, Eq. (4.31), is discussed in Chapter 5,
Integration of the Hydrodynamic Variables. The time centering of the divergence and
timestep is also discussed in this chapter.®

Finally, notice that the product of the divergence and the timestep is a dimensionless
quantity that “controls” the fractional change in volume for that single timestep. This
observation implies that the timestep should be limited by the inverse of the divergence
of the velocity: one of several limits placed on the timestep. These timestep controls are
discussed in Chapter 9.

¥'See Appendix D for the complete derivation of this expression.
*The complete spatial and time indices have been omitted in Eq. (4.31) for clarity.
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The Lagrangian momentum equations [Eqgs. (4.12), (4.13), and (4.14)] are the next to be
solved. The components of the pressure gradient can be put in a finite-difference form
using the same methodology developed in Chapter 3. However, because the velocity is
spatially vertex centered, the relevant volume is the momentum control volume
surrounding the vertex.*® The gradient® is

P _ ﬁ) P dydz N (Pi.ys — Piyp) Area,
OX  Avol-0 AxAyAz AxAyAz

(4.32)

where the Area; is the relevant surface area of the momentum control volume and the
volume in the denominator is the momentum control \N/olume associated with the vertex
located at (i, j,k) . The average cell-centered pressure P is used to compute the gradient.

The finite-difference form of Eq. (4.12) is

Uin+1 _nUin _ (,F\Slrjrl//i_ ﬁirllIZ) Areai . (433)
At p, AXAYyAz

Notice that the denominator on the right-hand side of the equation is simply the mass of
the momentum control volume. One modification is necessary for this equation. The
artificial viscosity is an additional “pressure” that can contribute to the acceleration. With
the artificial viscosity term, Q, added, the equation is

~ (Piz+Q',) Area, — (Piuz +Q",,) Area
Mass;’

Uin+l — U-n

A" (4.34)

The term inside the brackets is the x component of the acceleration. All components of
accelerations are limited so that “numerical” noise is suppressed in the simulation. A user
cutoff parameter is used to suppress small accelerations.

The Q term will contribute only in a few cells around shock locations. Otherwise, it has a
value of zero away from shocks.* The artificial viscosity is added for purposes of
numerical stability, entropy production at shocks, and energy conservation. Equation
(4.34) is the x-momentum finite-difference solution of the Lagrangian-phase equations.*?

¥9See Section 2.3 for a description of the momentum control volume.

“*The gradient is computed as in Eq. (3.6); however, in this case, the areas and volumes are computed with
respect to the vertex-centered momentum control volume.

*See Chapter 8 for details.

**The gravitational body forces are included by simply adding g,At to the right-hand side of Eq. (4.34).
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For vertices surrounded by cells of void, the velocities are zero. The vertex mass (Mass;)
is computed from the eight surrounding Eulerian cells as

Mass" =13 p/vol ", (4.35)

where the mass is computed from the average cell density and the Eulerian cell volumes.

This velocity equation is used in the predictor-corrector integration of the Lagrangian
equations [Egs. (4.11)—(4.15)]. The integration algorithm is discussed in Chapter 5. The
Lagrangian energy equation (4.15) is solved in the same manner as (4.11).

4.5.1 Lagrangian Setup for Advection

The last step in the Lagrangian phase is to compute the volume fractions that will be
advected in the advection phases.

The idea is to compute the volume fraction of the advected portion of a material on one
side of a plane that passes through the Eulerian cell, as shown in Figure 4.2.

AVol
£=

= advection volume fraction

Vol
/—%

flux direction <j

oy
G
e

Figure 4.2. A cross section of an Eulerian cell showing a material interface with a direction
vector [, a volume fraction to be advected ¢ (relative to the full cell volume Vol), and
the volume fraction of the advected portion of the material Vp.

In this case, we know the volume of the cell (Vol), we know the direction vector
associated with the interface (i), and we know that this vector points out of the material
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that lies “behind” the plane. The volume fraction of the advected portion of the material
is what is to be computed.

The derivation of the algorithm used to calculate the advection volumes is given in
Appendix G.* The advected portion of material (m) is given by

v,=eV'(np) (4.36)

where
p=p|nl+il-8) -] m]] (4.37)

and Vv’ is the volume fraction of material within a unit cube, which is behind the interface
plane. Note that if p'<0, then the plane lies entirely outside the advection volume and
v, =0. Conversely, if p'>p, . ,then v'=1and v, =¢.

The algorithm described above is based on the Los Alamos National Laboratory
publication LA-UR-07-2274.** The complete derivation is presented in that document.
The interface reconstruction is an integral part of the advection process.

An example is shown in Figure 4.3. Four materials exist in a single Eulerian cell at a
moment in time. A priority number is associated with each material. The priority number
provides an ordering to the material advection sequence. This “onion skin” method® is
used in PAGOSA to provide a systematic reconstruction for the multi-material, multiple
interface cells (mixed cells). The last material is computed separately so that material
masses and volume fractions are conserved.

The order of material advection has not been addressed. PAGOSA uses a scheme
whereby each material is given a priority. The advection order starts with priority 1
through the maximum number of materials. There are several potential problems with
this algorithm. The priorities for each material are in general spatially and temporally
dependent, but are instead arbitrarily specified as constants by the user.*

Nothing precludes the intersection of interfaces within a cell (resulting in negative
volume fluxes).”” Intersections of material (T and Y junctions) cannot be properly

*® The definitions of the variables in Eqgs. (4.36) and (4.37) are detailed in Appendix G.

“Chuck Zemach, “Notes on Calculation of the Volume of a Stretched Cube behind a Truncating Volume,”
Wayne Weseloh, editor, Los Alamos National Laboratory report LA-UR-07-2274 (March 1, 2007).

**David L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortion,” Numerical
Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors, (Academic Press, London England,
1982), pp. 273-285.

*®Wayne Weseloh, “PAGOSA Input Reference Manual,” Version 17.0, Los Alamos National Laboratory
report LA-CP-10-00113, p. 64 (January 2010).

“"The probability of this occurrence increases with the number of materials in a cell.
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represented.*® In addition, a poor normal () estimation can lead to misrepresentations in
the interface topology.

3+4

2+3+4

Y
Y

1 1+2 1+2+3

Figure 4.3. An Eulerian cell containing four materials separated by three distinct interfaces (left)
is simplified into a sequence of three separate two-material (one-interface)
representations (right) by accumulating materials at each step in the sequence. The
accumulation order depends on the specific material priorities [e.g., the priority 1
material is treated first (second left); the priority 2 material is accumulated next (third
left), followed by the priority 3 material]. The numbers refer to the priority number.

An excellent review article on the volume of fluid interface treatments is given by Pilliod
and Puckett.*

. Caboussat, M. Francois, R. Glowinski, D. Kothe, and J. Sicilian, “A Numerical Method for Interface

Reconstruction of Triple Points within a Volume Tracking Algorithm,” Mathematical and Computer
Modelling, Volume 48, pp. 1957-1971 (2008).

*James E. Pilliod Jr. and Elbridge G. Puckett, “Second-Order Accurate Volume-of-Fluid Algorithms for
Tracking Material Interfaces,” Journal of Computational Physics, Volume 199, pp. 465-502 (2004).
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46 Advection Phases

In the advection phase (also called the remap phase), the hyperbolic advection equation

W L% g (4.38)
ot 0X
is integrated forward in time, where the variable y represents any advected (usually
conserved) quantity, such as the mass, momentum, specific internal energy, and stress
deviator. The characteristic speed a is the local time-centered fluid velocity in that cell.

A variant of van Leer’s® monotonic upwind scheme proposed by Youngs™ is currently
used in PAGOSA.

Advection: The horizontal flow of water or air.

Webster’s College Dictionary, 1991

Consider the 1D x-advection equation for the conservation of mass [as shown in Eq.
(4.16) repeated below]. The partial differential equation is

a—’O+U op 0

ot O X

The general solution of this equation is

p(x,t)=F(x-Ut) , (4.39)

where F is an arbitrary differentiable function. In this case, the function represents a
density wave traveling to the right with speed U , which has a shape that does not change
as it moves. The initial wave profile is given by p(x,0) =F(x), which is d’Alembert’s
solution to the advection equation. An example of the solution is shown in Figure 4.4 for
a Gaussian pulse as an initial condition.

B van Leer, “Towards the Ultimate Conservative Difference Scheme IV. A New Approach to Numerical
Convection,” Journal of Computational Physics, Volume 23, Issue 3, pp. 276-299 (March 1977).

*David L. Youngs, “Time Dependent Multi-Material Flow with Large Fluid Distortion,” Numerical
Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors (Academic Press, London, England,
1982), pp. 273-285.
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Figure 4.4. The solution of the advection equation.

The precise finite-difference form of Eq. (4.16) depends on the sign of the velocity U.
The differences are always on the “upwind” (or upstream) side of the cell at which the
gradient is being evaluated. Mathematicians often refer to difference equations just with
positive coefficients®® and therefore obscure the issue. In PAGOSA, the finite-difference
equation is most generally written as

n+1 n

pi,l _pifl _in - _In— .
b tLul pl:O, ifU>0 ,and (4.402)
At AX
p_n+1 _ p_n /—)_n _ IBn
i-1 i-1 +U i+1 i =O, ifU<0 ’ (440b)
At AX

where p, is the density at the i cell boundary. The cells used in constructing the gradient
depend on the sign of the velocity, as shown in Figure 4.5.

Rewriting Eq. (4.34a) for the case U >0, we have
pl=p -0 -pl) (4.41)

where 7 is the Courant number. Mathematically, it is defined as

n=U(At/AX) definition of the Courant number.>®

*2G.E. Forsythe and W. Wasow, Finite Difference Methods for Partial Differential Equations (Wiley,
Hoboken, New Jersey, 1960).

**The term is named after Richard Courant (1888-1972), a mathematician whose work in the analysis of
numerical methods laid much of the groundwork for modern computational fluid dynamics.
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U=<0
Downwind 7 Donor Upwind
. o] i7 ot .
7
Upwind Donor% Downwind
_

U=0

Figure 4.5. Diagram of the advection cells involved in Eq. (4.34). For a positive velocity
(U >0), the lower portion of the diagram defines the downwind, donor, and upwind
cells. The negative velocity case is shown on top. The crosshatched area is the
advection volume.

The Courant number is important in establishing the stability limitations of the specific
numerical method. A necessary condition for the stability of the above scheme is

0<|n|<1 Stability criterion for the Courant number.

The mass flowing across the cell boundary i during a timestep is simply p. U At, where
the advection density p, evaluated at the boundary is given by>*

Pl =pl, +1(1-n)AXD, . (4.42)

Physically, this means that information cannot transit a cell in less than a single timestep.
This restriction is discussed more fully in Chapter 9 on timestep controls.

The variable D, is a finite-difference approximation of the cell boundary density gradient
(i.e., D, ~0p/0x). In PAGOSA, the possible choices for D, are

First Order: D, =0 |, (4.433)
pirll _pin_i
Second Order: D, =———~+* , and (4.43b)
AX
—n) PP PL— Pl
Third Order: D, = (2=n) Py 2+ (L+7) Py 2 (4.43c)
3 AX 3 AX

The first-order method, sometimes called the donor cell method, is diffusive and often
produces poor results. The second- and third-order methods are much less diffusive but

*The detailed derivation is given in Appendix E.
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suffer from nonphysical oscillations and occasionally negative densities. These
deficiencies are corrected by limiting the density gradients in the following manner:

A ‘ pirl.; _Pin_; ‘ pin_; _Pin_;
D, =S min< D, , 2 z 2.2 2 : (4.44)
AX AX
where
-1 Py <Py
S= 0 Sign (,Oirl; _pin_;) * Sign (,Oin_; _pin,g) ) (4-45)

+1 n n
Piy = Py

which is the Youngs/van Leer gradient limiter method.*® Details of the methodology are
given in Appendix E.

The above discussion applies to the density equations [Egs. (4.16), (4.21), and (4.26)] and
the internal energy equations [Egs. (4.20), (4.25), and (4.30)]. The actual integration of
the advection phase equations is discussed in Chapter 5, Integration of the Hydrodynamic
Variables.

4.6.1 Advection of Momentum

The final equations to be solved [Egs. (4.17)—(4.19), (4.22)—(4.24), and (4.27-4.29)]
describe the evolution of the velocity field. For example [as shown in Eq. (4.17) repeated
below],

Y. udl
ot 0X

is the x-momentum update for the x-advection phase.

The momentum advection proceeds in exactly the same way as that previously described
in Appendix E, with two important differences. The control volume of interest in this
case is the momentum control volume centered on the cell vertex. The fundamental
variable in this case is momentum instead of velocity.

From the cell-centered advection described previously, we know the mass in the
advection control volume before and after the three advection phases. Upwind,

*David L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortions,” Numerical
Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors (Academic Press, London, England,
1982), pp. 273-285.
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downwind, and donor cells are identified by the amount of mass crossing the surface of
the control volume. Downwind is assumed to be a positive mass flux in the positive
coordinate direction. Imagine the indices in Figure 4.5 shifted half a cell to the right:

Mass'U." + Flux,, — Flux,,
Mass'™** ’

n+l _
U=

(4.46)

where the Flux is the momentum flux at the surface of the momentum control volume. It
is simply a statement of the conservation of linear momentum.*® In this way, the linear
momentum is conserved by construction. The momentum flux is computed as

Flux|, =AMass!, [U] +1(1-7)D; | , (4.47)

where the mass increment is computed in the direction of the advection [W in the case of
Eq. (4.27) shown above].

Just as with the cell-centered advection, three advection sweeps are performed after the
Lagrangian phase occurs. All of the advection sweeps happen in concert, as shown in
Figure 0.3.

The fluxes are computed at cell centers using the variable D., which in this case is a
finite-difference approximation of the vertex velocity gradient (i.e., D, ~dU/dx). In
PAGOSA, the possible choices for D, are

First Order: D =0 (4.48a)

Uin _Uin—l

Second Order: D, =
AX

, and (4.48Db)

Third Order: D, = 2= Yiu
3 AX 3 AX

i _Ui +(1+77) Ui _Ui—l (448C)

These gradient limiters are again used to suppress oscillations and enforce a consistency
with the cell-centered advection:
. ‘Uirll_uin ‘Uin _Uin—l
D, =S min< D, , 2 , 2 , (4.49)
AX AX

**David J. Benson, “Momentum Advection on a Staggered Mesh,” Journal of Computational Physics,
Volume 100, pp. 143-162 (1992).
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where
-1 u'<ul,
S= 0 sign(U,-U")#sign (U'-U") (4.50)
+1 u'>u',
and
n=W,"(At/Ax) = AMass’ , / Mass;" . (4.51)

See Section 5 in Appendix E for the motivation of this expression.

4.6.2 Energy Advection

The internal energy advection equations [Egs. (4.20), (4.25), and (4.30)] are solved in a
slightly different manner from that shown for the densities. Start with the internal energy
equation [as shown in Eq. (4.20), which is repeated below]:

§+U E:O
ot OX

Then apply the substitution E — pE in the above equation. The result is

a(’OE)+U 6(,0E):p §+U§ +E 8—p+Ua—p
ot 00X ot 0X ot 0X

= p[0]+E[0]=0

(4.52)

Thus, the conservation law applies equally well to the product of density and internal
energy. The finite-difference equation of this new equation is

n+lpn+l n n — = —
P EL —ALEL PE —pEL
U ——=0 . (4.53)
At AX

Rewritten in the same style as Eq. (4.41), we have
n+lp=n+ n n Atr_=  _ =
PIE =B U PE -PLEL] (4.54)

Now the mass associated with the advection volume is

sm =pUAAt | (4.55)
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The first term in the square brackets of Eq. (4.54) can be manipulated in the following
way:

o oU. E E piflé‘mi E|
UiﬁpiEi :(pIUIAAt) 1 :5ml 1 — 2
AX AX A A PV,
_ 2 2 2 (4.56)
pi,lé‘mi Ei om, =
= - = I pi_lEl
m_, m.,
Thus, the internal energy update now appears as
pifrr%lEiflj%l = p,n,%E,n,% _77|:p|n_%E| - pin,%Ei—l] ’ (457)
where®
n=om/m_, . (4.58)

The densities at all of the necessary spatial and temporal positions are known, so the
internal energy then may be computed with the same advection scheme presented earlier.
Multiplying by the updated advection volume, we finally have

E™ =(E",p" Vol", +6m_E , —SmE)/mass™ . (4.59)

Solving this last equation completes all of the advection of all hydrodynamic variables.

*'See Appendix E, Section 5 for details.
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CHAPTER 5

Integration of the Hydrodynamic Variables

Nature laughs at the difficulties of integration.

-Pierre-Simon Laplace, The Armchair Science Reader (1959)
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5 INTEGRATION OF THE HYDRODYNAMIC VARIABLES

The integration of the Lagrangian- and Eulerian-phase equations [Egs. (4.11)—(4.30)] is
described in this chapter. The equations follow the form

‘Z—fz Fty), (5.1)

where F is a source term in the Lagrangian and Eulerian equations. For simplicity, we
consider a scalar variable v, which may be any of the hydrodynamic state variables.
Various methods for solving the above equation are possible. The clear candidates for the
time discretization are

e the explicit Euler method (forward scheme):
y" =y "+ AR ") (5.2)
e the implicit Euler method (backward scheme):
"=y + AtF(t" ™) and (5.3)
e the semi-implicit Euler method (trapezoidal scheme):
y" =y ARy R Y] (5.4)
Note that these schemes may be interpreted either as finite-difference approximations of

the time derivative or as finite-difference approximations of the time integration of the
source term. Indeed,

() =y )+ | :ﬂ Fdt (5.5)

and the various schemes can be viewed as different ways of approximating the integral.

The explicit and implicit Euler methods are first-order accurate, whereas the trapezoidal
scheme is second-order accurate.

However, before proceeding, a serious handicap should be noted. The source term F
depends on the unknown variable y, and we face the problem of not being able to
calculate F™' =F(t"","") before we know ", which is to be computed from F"".
A vicious circle is created here. We need to circumvent the exact calculation by searching
for a good approximation.
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Such an approximation is possible by using a guess " in the F term at time t"":
F™ S ™), (5.6)
as long as the variable y~ is a sufficiently good estimate of y"*'. The closer y is to

w"™, the more faithful the scheme is to the ideal implicit value. If this estimate y~ is
provided by a preliminary explicit (forward) step, according to

v =y HLALF @, ") predictor, (5.7)
F" =3(F"+F™) =1[F(t",y")+ F(t"",»""?)] evaluation, and (5.8)
"™ =y +AtF"? corrector, (5.9)

then we obtain a two-step algorithm that is second-order accurate in time.*® This second-
order method is a particular member of a family of so-called predictor-corrector methods,
in which a guess y~ is used as a proxy for " in the computation of the complicated
source terms.

The integration process begins at time level t", as shown in Figure 5.1.

t=t"
tn+1
tn+1f2
ti’!
B
i-1 -1 1 i+1 i+l

Cell-centered state variables (P,E,SU, etc.)

Vertex-centered state variables (U,V,\W)

Figure 5.1. The integration step begins with all the variables at a time (n). The velocities are
shown as triangles and the state variables as circles. The velocities are spatially
centered on vertices, whereas the other state variables are cell centered.

*®William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in
Fortran: The Art of Scientific Computing, second edition (Cambridge University Press, New York, New
York, 1992), Section 16.7, pp. 740-744.
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5.1 Predictor Stage

The predictor stage of the integration (see Figure 5.2) starts with the following steps:

Vo™ =Vol"[ 1+(V-u)" At" | (5.10a)

"2 = o (Vol™ /Vol™2) | (5.10b)

EMV2 = E" - P—n+ ?n (V-u)"iAt" ,and (5.10c)
P p

Pn+1/2 -P (pn+l/2’ En+112) ) (510d)

The internal state cell-centered variables are advanced to half-timestep values. The basic
hydrodynamic variables are shown above; however, if the material has strength, then the
stress deviators, plastic work, and the other strength-related variables are also advanced.
This procedure also applies to the various fracture and crush variables that are chosen and
initialized in a simulation. The spatial indexing has been omitted for clarity.

t ="V (Predictor)

tn+1

|
(‘} %\\ tn+1/2
—

i-1 -1 i i+1 1+l
Cell-centered state variables (P,E,Su-, etc.)

Vertex-centered state variables (U,V, W)

Figure 5.2. The predictor integration step advances the state variables to a time (n+1/2). The
velocities are advanced to a time (n+1) using the state variables, which are
evaluated at a time (n+1/2).

Before the corrector stage can be applied, the velocity at the half-timestep must be
computed. The velocities are vertex-centered quantities, so the appropriate volume is the
momentum control volume, as described in Section 2.3. The mass associated with this
control volume is the vertex mass.
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5.2 Lagrangian Velocity Update

The Lagrangian velocity update (see Figure 5.3) begins with computing the vertex
masses™

Mass’ =1 p"Vol" and (5.11a)

U in+1 -U in _ |: (Ppr:rIlZ/Z + Q.lezz) Areai+l|</2| (I:)nirllzl2 |n+1}/22) Area At" (511b)
a.SSi

and similarly for the other components of the velocity vector.’® The volume in
Eq. (5.11a) is the original Eulerian cell volume and not the distorted Lagrangian volume.
Equation (5.11b) is the finite-difference solution to Eq. (4.12). The spatial derivative has
been discretized over the momentum control volume in the manner described in Section
4.5. The resulting velocity vector is u™* = (U™, V"™ W"?).

Figure 5.3. The Lagrangian velocity update first integrates the velocities to the time Sn+1). It
then averages the two velocities to create a temporally centered velocity u™2,

The half-timestep velocities and divergences are then computed as

n+1/2 n+1)

HCH
. 5.11c
Iy (5.11c)

(V u)n+1/2 (V U) +(V u)n+l)

n+1/2 n+l

% For the Lagrangian phase, remember that Mass" = Mass"™"? = Mass
The term inside the brackets of Eq. (5.11b) is the acceleration. Acceleratlon cutoffs are applied to each
component of the acceleration terms to suppress numerical “noise” in the simulation.
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An interesting validation for the choice of the time-centered velocity is given in Douglass
and Stagg’s Los Alamos National Laboratory 2007 report.®* Energy conservation for the
Lagrangian predictor-corrector integration timestep can be achieved only by the above
choice of velocities.

5.3 Corrector Stage

The corrector stage (see Figure 5.4) of the integration uses the updated velocity
information to construct the (n+1) values of the hydrodynamic variables for each
material:

Vol™ =Vol"[ 1+(V-u)"At" | (5.12a)

p"t=p"(Vol" /Vol ™) (5.12h)
n+1/2 n+1/2

giogro| P — + Q~n (V-u)""?At" | and (5.12¢)
p p

Pn+1 =P (pn+l’en+l) . (512d)

t=+"" (Corrector)

Cell-centered state variables (P,E,Sij, etc.)

Vertex-centered state variables (U,V,W)

n+1/2

Figure 5.4. The corrector integration step uses the time-centered velocity u to update the

state variables from time (n) to time (n+1).

®1Rod Douglass and Alan Stagg, “A Vertex-Staggered Hydrodynamics Model for Compressible Flows,”
Los Alamos National Laboratory report LA-UR-07-6986 (2007). Section 4.1.5 gives the detailed
derivation.
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The corrector completes the integration for a timestep. The procedure is carried out for
each material in a cell. Thus, each material in a cell has its own density, internal energy,
pressure, etc. No pressure or temperature equilibrium is enforced in this methodology.

In the above discussion, it has been assumed that the divergence of the velocity is applied
uniformly to all materials in a cell. Uniform compression for all materials in a mixed cell
is only one of the divergence methods available in PAGOSA. The divergence is related to
the compression of the material [see Egs. (1.6) and (1.7) and Appendix D].

The solution to the basic Navier-Stokes hydrodynamic equations is now complete. Each
of the governing equations has been solved. An outline of the equations and solutions is
given in Table 5.1. The mass, momentum, and energy conservation laws are completely
represented.

The derivations and solutions presented thus far have omitted the stress deviators for
brevity. The development of the algorithms dealing with strength is delayed until Chapter
14. The equations and solutions for the various flow-stress models available in PAGOSA
are presented in Section 14.4. Each component of a multi-material cell carries a complete
set of computational variables, including the stress deviators, elastic distortional energy,
and plastic strain. Following the current PAGOSA philosophy, each material suffers the
same “cell” strain rate, but the constitutive relations are applied to each material
independently of the others.
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Integration of the Hydrodynamic Variables

Table 5.1 A Schematic of the Hydrodynamic Variables, Their Conservation Equations,

Variable

P

Governing
Equation

(1.1)

(1.2a)

(1.2b)

(1.2c)

(1.10)

(1.9)

and Their Finite-Difference Solutions

Operator
Split®

(4.11) Lag
(4.16) Eul
(4.21) Eul
(4.26) Eul

(4.12) Lag
(4.17) Eul
(4.22) Eul
(4.27) Eul

(4.13) Lag
(4.18) Eul
(4.23) Eul
(4.28) Eul

(4.14) Lag
(4.19) Eul
(4.24) Eul
(4.29) Eul

(4.15) Lag
(4.20) Eul
(4.25) Eul
(4.30) Eul

N/A

Finite-Difference
Solution

(5.12b)

(4.34) U
(4.34) V
(4.34) W

(5.11b) U
(4.46)
(4.46)
(4.46)

(5.11b) V
(4.46)
(4.46)
(4.46)

(5.11b) W
(4.46)
(4.46)
(4.46)

(5.12¢) E

(4.59, Appendix E.5)
(4.59, Appendix E.5)
(4.59, Appendix E.5)

(Chapter 6)

®The operator-splitting equations are represented by the one Lagrangian-phase equation (Lag) and three orthogonal
Eulerian-phase equations (Eul).
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CHAPTER 6

Equation of State

The ideal gas law is the equation of state of a hypothetical ideal gas.
It is a good approximation (...) although it has severe limitations.

-Max Planck, Treatise on Thermodynamics (1903)
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Chapter 6 Equation of State

6 EQUATION OF STATE

The set of conservation equations solved in PAGOSA contains six dependent variables:
velocity (three components), pressure, mass density, and specific internal energy. This
system of equations is closed mathematically by specifying an equation of state (EOS)
for each material. The EOS specifies the pressure for a given material as a function of the
density and specific internal energy®” as

P=P(p,E) (6.1)
for each material (m) in the cell. A few of the forms of this equation are described in the

following pages. The average pressure in a cell is simply the volume-fraction-weighted
average of all the material pressures in a cell, as defined by

F=3mgmp (6.2)

where ™¢ is the volume fraction for material (m).

The following notation is used in describing the various EOSs:

e=p, E internal energy per original volume,
U= pﬁ - compression / expansion factor, and
0
V,=1
o=1/m specific volumes.
V=1/p

6.1 Ideal Gas EOS

One of the simplest forms of an EOS is the ideal gas law®

P=(y-1)pE  Ideal GasEOS , (6.3)

where y is ratio of specific heats at constant pressure and constant volume. The ideal gas
law is favored for monatomic gases at high temperatures and low pressures. This law
does not factor in the size of the molecules or intermolecular attractions. However, it is
often used in limited regimes, with the value of y adjusted to fit some data, but only to
get a qualitative understanding of how the system will behave using an easily
manipulated EOS.

%2This type of EOS is denoted “incomplete” because the temperature cannot be calculated unless the
specific heat is known.
%t is a simply derived alternative to the well-known equation PV = nRT.
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6.2 Void EOS

Another commonly used EOS is void. For this EOS, the density, specific internal energy,
and pressure are all set to zero:

oMy
n 1

0
0 Void EOS . (6.4)
0

This form has the advantage that no sound speed is computed, and therefore, the material
cannot control the timestep in a simulation. The other advantage is void closure. Imagine
two materials that are about to collide. The interface reconstruction within a cell allows
the three materials to be represented by two planes. If the intervening material is a void,
then the void closure model can be invoked. This option allows the two materials to come
smoothly into contact without creating bubbles or small densities that are often
problematic for any other EOS.

6.3 Polynomial EOS

A common analytic EOS is the polynomial EOS, which is often used in fitting
experimental EOS data. This EOS has the form

P=a,+au+au’ +a,u’+e(b,+bu+bu’ +b,u*) Polynomial EOS . (6.5)

The constantsa, and b, can assume different values in expansion and compression:

a;:{

and similar expressions for b, .

a;, wu=0  compression
u<0  expansion

e

a,

One clear simple case of the polynomial EOS is a constant pressure. In this case,
a, = P, =constant, and the other constants have the value zero. Another special case of
the polynomial EOS can be demonstrated by considering the bulk modulus for adiabatic
compression, which is defined as

o) enf).

Integrating the expression, the pressure is (for moderate compression/expansion)

P=xlog,(1+ u)

skpu—tpfvicgd et oo A<pu<l
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Thus, to first order, the EOS is
P=xu=x(p/p,-1).
In terms of the polynomial EOS, a, = «, and all the other constants have a value of zero.

6.4 Modified Osborne (or Quadratic) EOS

This form was originally derived by Group T-5 at Los Alamos Scientific Laboratory in
the 1950s as a fit between low-pressure Hugoniot data and the high-pressure Thomas-
Fermi-Dirac theory.** One of the reasons for the particular form of the equation,
sometimes called the quadratic EOS,*®® was the small amount of memory of the
computers then in use.

* 9 * 2 * 2 2
p_Aiptau + (0 + b p+b, ) e+ (CotCutc p)e Oshorne EOS. (6.6)
£+&,

Many of the original constants found by R. K. Osborne are still in use today.
The constantsa,, b, , and ¢, assume different values in expansion and compression:

O ai >0  compression
* la¢ wu<0  expansion

and similar expressions for b,andc,. The traditional Osborne EOS is recovered by
setting

e c e c e c
a,=-a,, b, =b, , and c,=c,=0.

The constants of the Osborne EOS need to be scaled in the case of an alloy or isotope
where the constants are not known. A suggested scaling is given by Lambourn:®’

a,a, should be scaled with p} ,
by,b,,b,,&,  should be scaled with p, , and
Cy,C, should not be scaled (should remain at their original values).

%R.P. Feynman, N. Metropolis, and E. Teller, “Equations of State of Elements Based on the Generalized
Fermi-Thomas Theory,” Physical Review, Volume 75, Issue 10, p. 1561 (January 1949).

%F H. Harlow and W.E. Pracht, “Formation and Penetration of High-Speed Collapse Jets,” The Physics of
Fluids, Volume 9, Number 10, pp. 1951-1959 (October 1966).

T.D. Riney, “Numerical Evaluation of Hypervelocity Impact Phenomena,” in High Velocity Impact
Phenomena, edited by R. Kinslow (Academic Press, New York/London, 1970), pp. 157-212.

’B.D. Lambourn, “Density Scaling for the Osborne Equation of State,” Atomic Weapons Research
Establishment (AWRE) HWH Note No. 3/80, Aldermaston, Berkshire, UK (October 1980).
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6.5 Jones-Wilkins-Lee (or JWL) EOS

The JWL EOS® is often used for computing the EOS of high-explosive detonation
products. Its development began with an equation proposed by Jones and Miller®® and
extended by Wilkins.”® It is therefore now referred to as the JWL EOS. The EOS is
written as

P= A{ —ﬁﬂ} e fn 4B {1—ﬁﬁ} e ™ LmppE  JWLEOS, (6.7)
R 0, R, o

where the five constants (A,B,R,,R,,®) are experimentally determined. Note that the
constants A and B have the units of pressure, whereas the other constants are
dimensionless.

If the high explosive (HE) is detonated by the program burn algorithm, the pressure and
energy are gradually deposited into a cell over several timesteps. The pressure is scaled
by a factor called the burn fraction Bf . The burn fraction values range between zero and
one. A value of zero indicates that the detonation wave has not yet reached the cell, and a
value of one indicates a completely burned cell. The program burn algorithm defines a
“burn time” for each cell vertex in the simulation.”" Of the eight cell vertices, the
difference between the minimum and maximum burn times is referred to as the burn
interval for a cell.

Mathematically, we have

toin = Min (b, 4,8, 1,1, 1,1, 1)

Lo = MaX (1,8, 8,8, 8,1, 1, 1)
timewal :tmax _tmin

0 if t<t
min) / t if t,, <t<t..

1 if t>t

min

Bf =4 (t—t

interval

S8E.L. Lee, H.C. Hornig, and J.W. Kury, “Adiabatic Expansion of High Explosive Detonation Products,”
Lawrence Radiation Laboratory, University of California report UCRL-50422 (May 2, 1968).

%H. Jones and A. Miller, “The Detonation of Solid Explosives: The Equilibrium Conditions in the
Detonation Wave-Front and the Adiabatic Expansion of the Products of Detonation,” Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 194, No. 1039
(November 9, 1948), pp. 480-507.

M. Wilkins, “The Equation of State of PBX 9404 and LX04-01,” Lawrence Radiation Laboratory,
University of California report UCRL-7797 (1964).

™n reactive burn models, the burn fraction is evolves according to the physics of the reaction progress.
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This procedure usually results in the cell pressure developing over four or five timesteps.
The maximum timestep is adjusted so that a cell cannot burn in fewer steps. Tables of
constants for many explosives have been compiled by Brigitta Dobratz.”

The constants used in the PAGOSA code have a slightly different form from the original
JWL form. The translation between the two forms is

PAGOSA Dobratz Handbooks

\W

(4
Bl A
Cl=p,R, R,
B2 B
C2=pR, R,
e0 =E,/ p, Eo

The main advantage of the JWL EOS lies in its ability to describe the Chapman-Jouget
adiabat accurately. The above parameters have been chosen to satisfy the measured
Chapman-Jouget state, the measured expansion of a cylinder test, some asymptotic
thermodynamics limitations, and hydrodynamic continuity equations.

6.6 Gruneisen (or Us-Up) EOS

The most common description of solids uses the measured Hugoniot curve as a reference
and uses the Gruneisen relationship to extrapolate off the reference curve. It is often the
case that the Hugoniot curve can be represented over a large range of pressures as a

simple linear expression®"*in the U,-U, plane:

U, =c,+sU, Gruneisen EOS (6.8a)
P=P,+(I'/V)(E-E,), (6.8b)
Pi=FR+ Cg Mo —V)IVo—s(Vo-V)] -, (6.8¢c)
E,=E,+3(R,+P,)(,-V) ,and (6.8d)
r=r,+r,(vV/v,), (6.8e)

where P, is the pressure on the Hugoniot, E,, is the energy on the Hugoniot, V, is the
initial specific volume (p,'), and V is the state-specific volume (o). In the above

"?Brigitta M. Dobratz, “Properties of Chemical Explosives and Explosive Simulants,” Lawrence Livermore
Laboratory, University of California report UCRL-14592 (July 31, 1974).

M. van Thiel, A.S. Kusubov, and A.C. Mitchell, “Compendium of Shock Wave Data,” Lawrence
Radiation Laboratory, University of California report UCRL-50108, Volume 1, Supplement 1 (October
1967).

"Stanley P. Marsh, LASL Shock Hugoniot Data (University of California Press, Berkeley, California,
1980).
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expressions, ¢, and s are constants obtained from the relationship between shock speed
U, and particle speed U, .

The Hugoniot pressure relation contains a simple pole at s=V,/(V,—V). This relation
puts a limit on the allowable density for this EOS. If a maximum density is not specified,
then a maximum is imposed by

pmax=ma><[99%po( J 2/30}

where p, is the nominal mass density.

This particular EOS is sufficiently different from the others described that a short
description of the derivation is warranted. The thermodynamic states off of the Hugoniot
curve can be obtained by constructing a Taylor expansion, at constant density, about the
reference Hugoniot curve. Mathematically, it is

0°P

P(p.E)= P(p){ j[E— Eq(p )]+—{ ][E—EH(p>]2+

where E—E,, (p) is the displacement from the Hugoniot curve. The values denoted with
the subscript H are points on the reference Hugoniot curve. The definition of the
Grineisen parameter I' is

(@j =Lp=T/V Grineisen relation .

oE ),

It is usually assumed that the parameter is a linear function of the compression/expansion,
ie, T'=T,+I,(p,/p), so that the higher-order terms in the Taylor expansion vanish.
The EOS becomes

P(p,E)=R,(p)+(I'/V)[E-E,(p)] .

Experimentally, it has been found that for many solids, the Hugoniot curve can be
represented as a simple linear curve in the U -U, plane. Contrary to what is usually
found in the literature, c, is not the bulk sound speed in the ambient state. Rather, it is the
value of the intercept of the U-U,, line.”

™Ya Zel’dovich and Yu Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena
(Dover Publications, Mineola, New York, 2002). See footnote, p. 710.
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6.7 SESAME EOS

A tabular EOS that represents hundreds of materials and experiments is available using
the Los Alamos National Laboratory (LANL) SESAME database.”®”” The database
contains EOS tables for pressure and internal energy as a function of temperature. The
database library has several advantages: it can accurately represent phase transitions, it
represents a wide range of temperatures and densities, and it represents the best
experimental and theoretical data available at LANL. The data are inverted before they
are used in PAGOSA so that the pressure is solely a function of density and internal
energy. The SESAME EOS is

P=Peoe (0r.Er),  SESAME EOS (6.9)

where Pyq,e 1S the tabular EOS. The tabular database is read using the EOS package
(EOSPAC) software library.”® The library software allows for various ways of
interpolating and scaling the tabular data.

The relation of “code” input to the tabular EOS is given by

pr =(SR)p
E, =(E+ES)/SR,

where

SR
ES

density scaling ratio and
energy shift.

The scaling ratio parameter SR is often useful in modeling isotopic mixtures. For
example, if At is the atomic mass for a particular SESAME EQOS, an EOS for an atomic
mass A is obtained by setting the scaling ratio

SR=Ar/A.

Suppose we wish to model a gas of hydrogen (H,). The SESAME identification number
for deuterium is 5263. A scaling ratio of SR = 2 scales the SESAME tabular deuterium
EOS to hydrogen. Similarly, a scaling ratio of SR = 0.8 scales the SESAME tabular
deuterium EOS to a 50%:50% mixture of deuterium and tritium (DT).

®SP. Lyon and J.D. Johnson, “SESAME: The Los Alamos National Laboratory Equation of State
Database,” Los Alamos National Laboratory report LA-UR-92-3407 (October 1992).

""K.S. Holian, “T-4 Handbook of Material Properties Data Bases, Volume Ic: Equations of State,” Los
Alamos National Laboratory report LA-10160-MS (November 1984).

"®David A. Pimentel, “EOSPAC 5 User Manual,” Los Alamos National Laboratory report LA-UR-03-4510,
Version 5.35, Revision 0 (August 2003).
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The energy shift is defined by

ES = -AE (initial — final) ,

where AE is the energy required to transform the low-density phase to the high-density
phase. There are two cases. If the initial phase is stable, then the value of ES is negative.
If the initial phase is metastable, then the value of ES is positive.

The pressure-density curve at T = 0 K is commonly called the “cold curve” and was
traditionally modeled by empirical formulas (e.g., analytic potentials combined with the
Thomas-Fermi-Dirac theory). The modern theory uses relativistic electronic band
structure methods to compute the cold curve. The total pressure can be thought of as
being the sum of the cold-curve pressure and the thermal pressure (i.e., the pressure due
to positive internal energies).

6.7.1 Ramp Treatment

For the treatment of foams and certain types of phase transitions, it is possible to modify
the SESAME EOS by adding a ramp (see Figure 6.1) that describes the behavior of the
material under low stress. The material begins in a porous or low-density state. The EOS
in this regime is

P=A (p/p-1), SESAME ramp treatment for foams and
certain types of phase transitions
where p, is the initial N

density and A, is the bulk
modulus. The bulk modulus
can be computed from the
sound speed as

SESAME Hydrostat
(crushed)

Pressure

A =pya’,

where a is the bulk sound
speed. IfA=0, then no
ramp calculation is done.

At some value of pressure -
P, the material begins to | |

crush, or transform, to a & >
SESAME EOS. The EOS Density
of the “crush curve” is given by

P=A,(p/p—1-A). Figure 6.1. The SESAME ramp treatment.
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If A,=0, then no crush regime exists and the equation represented by the first line is
continued until it crosses the SESAME curve.

The value of A,can be computed from the crossing at the transition pressure P,, or it can
be guessed at if no other information is available:

) __hBA if B, is known.
Pl - A1A3

A,=A, /10 if P, cannot be measured.

The transition pressure for foams is often small (< 1 kbar). On the other hand, for a phase
transition, the value of P, must be determined from experiments. The value of A, can be
adjusted to give the appropriate slope for the crush curve. In the absence of any data, the
default value (A, =0 ) should give acceptable results.

However, a better value might be "

A,=P [1/A-1/A,].

At some pressure P,, the crush curve crosses the SESAME curve. At that point the
material is “crushed.” Subsequently, the material may behave either reversibly (follow
the ramp on expansion) or irreversibly (remain on the high-density phase on expansion).
Foams are normally reversible; however, phase transitions may exhibit either behavior.
Materials may also behave irreversibly if they melt (i.e., if the melt energy or melt
temperature is exceeded).

6.7.2 SESAME Body Internal Energy lteration °

In some cases the initial conditions for a particular SESAME material are not completely
known. For example, the user may know the initial density and a desired initial pressure
but not know the corresponding initial internal energy. PAGOSA provides a solution to
this dilemma by providing a mechanism for setting the initial density and pressure within
a body specification. PAGOSA and EOSPAC together then iterate until the appropriate
initial internal energy is found.

Given the density and the desired initial pressure, the EOS is

P=P(p,E) .

The value of P, should be measured in this case. B.I. Bennett, Los Alamos National Laboratory, private
communication, October 22, 1984.
®Never use the SESAME body iteration option with the ramp treatment. The results are often wrong.
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If the desired initial pressure is P, and the desired initial density is p,, then the EOS can
be written as

P,=P(p,,E’) .
The problem is finding the value of internal energy E”that satisfies this relation. The

algorithm for finding E” starts with the Newton-Raphson method.®* The method is often
written as

n=12,3,..., max.iteration .

To apply this method to our problem, we first start with an approximation for the
derivative:

oP) PR-P
OE E,—E
P
The EOSPAC derivatives are with respect to the logarithm of density and energy, so
oP_) _g(2P
dlogE oE )
p p

The equation now can be cast in the Newton-Raphson form

E..=E,+(PR,-P)/ (8P/8E)p and
E.=E, [1+ (R, —P,) (6P /dlog E)ﬂ n=12,3,...,max.iteration .
The iteration process completes when the pressure is within an acceptable range of P, .

The convergence criterion used in PAGOSA is

|1-P,/P, | < tolerance .

Occasionally, the resulting initial internal energy has a small negative value. Some of the
SESAME tables have “poor” data in particular regions or the interpolation scheme is not
sufficient for the data provided. The user is always responsible for checking the results of
the PAGOSA-generated initial conditions.

Bwilliam H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes in
Fortran: The Art of Scientific Computing (Cambridge University Press, New York, New York, 1986),
pp. 254-259.
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6.8 Exponential EOS

The exponential EOS is unique in PAGOSA in that it specifies a pressure as a function of
time. Mathematically, the form is

P(t)=P,e“", Exponential EOS
where P, is the pressure at t =0 and « is the decay constant (with units of time™).

This analytic form of the EOS provides a simple time-dependent pressure that can be
used in certain test problems for validation and verification.®

6.9 Becker-Kistiakowsky-Wilson High-Explosive (BKW-HE) EOS

The BKW-HE EOS combines the solid Griineisen form and a BKW gaseous form to
model a shock-initiated HE. This form is usually used to model a shock-initiated
explosive as it transitions from an undetonated solid to a fully burned detonation product.
The discussion follows the one given in Mader.®®

The EOS computes the pressure, internal energy, specific volume, temperature, and burn
fraction for solids, gases, and mixtures of the two. The following subscripts are used in
this discussion:

g gaseous component,
H Hugoniot,

i isentrope, and

S solid component.

6.9.1 Solid Components
The solid, undetonated HE begins with a solid Mie-Grineisen EOS with a Walsh-
Christian temperature®® fit to a fourth-degree polynomial. The solid component uses the
Gruneisen form described above:

U,=¢,+sU,,
Co (Vo —Vi)
2 1
[Vo—s(Vo-V,) ]
E,=3(R,+P,)(V,-V,) ,and

P,=PF+

#\Wayne Weseloh, “The Response of a Spherical Shell to an Impulsive Pressure,” Los Alamos National
Laboratory report LA-UR-04-1683 (March 2004).

#Charles Mader, Numerical Modeling of Explosives and Propellants, Second Edition (CRC Press, Boca
Raton, Florida, 1998), pp. 308-311. Mader calls this his Hell Of a Mess (HOM) EOS.

#John Walsh and Russell Christian, “Equation of State for Metals from Shock Wave Measurements,”
Physical Review, Volume 97, pp. 1544-1556 (1955).
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r
P =P, +V_(ES _EH) )

S
where

F=T+T (Vs V)

log, T,, = F +G (log, V) + H (log, V,)* + 1 (log, V, )° + J (log, V,)* , and
23890

T, =T, +———" (E,-E,,) .

S H CV(SOIId)( S H)

The constant in the last equation is a conversion factor involving the mechanical
equivalent of heat. The units of heat capacity C, are (cal g* deg?), and the units of
internal energy are (Mbar cm® g™).

Constants for various explosives are given in Mader’s book?®® and the accompanying data
CD-ROM.

6.9.2 Gaseous Components
The detonation products are computed using the BKW EOS.®

log, (E,—Z)=K+L(log, P)+M (log, P)*+N (log, P)* +0 (log, P)* ,
log, T, =Q+ R (log, V) +5 (log, V,)* +T (log, V,)* +U (log, V)" ,
—B ™ =R+25(log,V,)+3T (log,V,)’ +4U (log,V,)* ,

log, P = A+B(log,V,)+C (log,V,)* + D (log,V,)* + E (log,V,)* ,

P =P+ L (E -E,),and
BV,

T, =T+ 200 g gy
C, (gas)

The parameter Z is a constant used to change the gas standard state to be consistent with
the solid explosive standard state (which in PAGOSA requires the value Z >0).

The final case is when a material is a combination of the solid and gaseous states. The
burn fraction Bf controls the mixture. For mixed components, we have 0 < Bf <1.

6.9.3 Mixed Components

The specific volumes and internal energies are partitioned as a linear combination of the
solid and gaseous components. The “burning” cells are assumed to be in pressure and
temperature equilibrium:

#Charles Mader, Numerical Modeling of Explosives and Propellants, Second Edition (CRC Press, Boca
Raton, 1998), pp. 377-408 (Appendix E).
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V =BfV, +(1-Bf )V ,
E=Bf E, +(1-Bf)E, ,
P=P =P ,and
T=T,=T; .

Equation of State

Substituting these equations into the ones above results in an equation representing the
temperature difference between the solid and gas. The Secant Method™® is used to solve
the resulting nonlinear algebraic equation. Limits are set at every cycle of the iteration to
prevent the solution from becoming unbounded or unphysical. Convergence is achieved
when the temperature difference between the solid and gaseous components is less than
tger (Usually ~10 K).

The solid component BKW-HE parameters are

O
o

= o

Q'o-U._.

3
B

R Oe—TOM

intercept of the Us/Uj line,

slope of the Us/U, line,

the first Grlineisen ratio,

the second Griineisen ratio,

initial pressure,

maximum allowable density (solid),

polynomial temperature coefficient,
polynomial temperature coefficient,
polynomial temperature coefficient,
polynomial temperature coefficient,
polynomial temperature coefficient,
heat capacity (solid), and

linear coefficient of thermal expansion.

%\illiam H. Press, Brian P. Flannery, Saul T. Teukolsky, and William T. Vetterling, Numerical Recipes in
Fortran: The Art of Scientific Computing (Cambridge University Press, New York, New York, 1986),

pp. 248-251.
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The gaseous state parameters are

HOM polynomial coefficient for the isentropic pressure,

HOM polynomial coefficient for the isentropic pressure,

HOM polynomial coefficient for the isentropic pressure,

HOM polynomial coefficient for the isentropic pressure,

HOM polynomial coefficient for the isentropic pressure,

HOM polynomial coefficient for the isentropic internal energy,
HOM polynomial coefficient for the isentropic internal energy,
HOM polynomial coefficient for the isentropic internal energy,
HOM polynomial coefficient for the isentropic internal energy,
HOM polynomial coefficient for the isentropic internal energy,
HOM polynomial coefficient for the isentropic temperature,

HOM polynomial coefficient for the isentropic temperature,
HOM polynomial coefficient for the isentropic temperature,
HOM polynomial coefficient for the isentropic temperature,
HOM polynomial coefficient for the isentropic temperature,
heat capacity (gas),

a constant used to offset (shift) the gas standard state (Z >0),
Pmax  Maximum allowable density (gas), and

Pmn  Minimum allowable density (gas).

NOCH0oonOO0OzZzZrAxmMmoO®>

The mixed state uses both the solid and gaseous parameters and the following conver-
gence criteria:

maxit maximum number of iterations for the mixed component solver, and
tdel  temperature difference convergence value.
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6.10 Pmin

It is often necessary to limit the pressures resulting from the EOS evaluation. Regions of
the EOS are suppressed for many reasons, which fall into three major categories.

The first category is demonstrated in Figure 6.2. The plot illustrates a van der Waals loop
in the EOS at room temperature. Problems arise when the material density falls below
some critical value. Material sound speeds become unphysical.®” A value of Pmin is
chosen to suppress the offending portion of the EOS.

-~

P

Figure 6.2. Example of the use of Pmin in an EOS with a van der Waals loop.

A second way that Pmin often is used is as a simple-minded spall model. When the
material pressure drops below Pmin, the pressure is held at Pmin, regardless of the
density and internal energy. This application of Pmin is an awkward attempt to
approximate the physics of the material in a state exceeding its dynamic tensile strength.
No change is made to the stress deviators S while the material is this state.®

The third way that Pmin is used in PAGOSA is as a floor or cutoff to the EOS. For
example, if it is desired that a material never go into tension during the simulation, then
setting Pmin to a value of zero will allow the material to experience only compression.

8 The sound speed is related to the slope of the adiabat at a given point.
®Every hydrocode implements Pmin in a different and unique manner. Reducing complicated physics to a
single parameter is at best a poor scheme.
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CHAPTER 7

Sound Speed

There is more to life than increasing its speed.

-Mohatma Gandhi (1869-1948)
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7 SOUND SPEED

When a material is perturbed, the net result is a wave propagating away from the
disturbed region into the undisturbed region. The speed at which the wave travels in a
given medium under specified conditions is known as the speed of sound. The speed of
sound does not explicitly appear in the hydrodynamics equations. However, it is used to

calculate the Courant timestep (see Chapter 9). It also can be used to check the
thermodynamics properties of materials in a cell.

The isentropic sound speed is defined as®*®

:_[OP
c =[6pl (7.2)

at constant entropy S. This form is not convenient for computation, so it is necessary to
recast the expression in terms of partial derivatives at constant density and constant
internal energy.

The pressure is a function of density and internal energy

P=P(p,E) . (7.2)

The differential is

oP oP
dP=|— | dp+| — | dE . 7.3
(@ol P KaE]p 9

The pressure also can be written as a function of density and entropy
P=P(pS) . (7.4)

The differential is

oP oP
dP=| == | dp+| =1 dS . 75
[@pl P (asj,, 79

¥|_D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Addison-Wesley Publishing Company
Inc. Reading Massachusetts, 1959), p. 246.

®ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic
Phenomena (Dover Publications Inc. Mineola, New York, 2002), p. 7.
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For an isentropic process, these two forms reduce to

oP P P
x> dp+(——jdE=[——jdp . (7.6)

The internal energy is a function of density and entropy
E=E(pS) . (7.7)

The differential is

oE oE
dE=|—| d — | dS . 7.8
[6/3]5 ’”(asjp 79

Combining Egs. (7.6) and (7.8) yields

GRGIRC
op ). \OE ) \Op)s \0p)s

Thus, given the definition of sound speed [Eq. (7.1)], we have

<(3)-(2)2))
op)s \9p ). \OE),\0p )
Using the first law of thermodynamics, for a single component system with one

reversible work mode, we have

dE = 5Q - 6W
=TdS—-pdV . (7.11)

:TdS+J;dp
Yo,

The coefficient of the second differential (density) now can be identified with the
corresponding differential in Eq. (7.8). If we substitute into Eq. (7.10), the sound speed is
computed for each material as

S L L L (7.12)
op). p\OE )
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The sound speed is used in various other parts of the computation cycle. For example, the
sound speed is used to establish the proper timestep for each computational step.™

7.1 Ideal Gas EOS Sound Speed

For the ideal gas equation of state (EOS), the pressure and sound speed are simply

P=(-1)pE and

) [apj P(@Pj
C=— | +—5| =—=
op ). p \0E ,
P
=(7—1)E+?(7—1)p : (7.13)
P
=r—=yr(-1DE
Yo

7.2 Void EOS Sound Speed
A void material has no sound speed, so the value is deliberately set to zero:
P=0 ,and
c?=0 . (7.14)
7.3 Polynomial EOS Sound Speed
The polynomial EOS is written as
P=a,+au+au’+ay’ +E(b+bu+bu’+bys’)

where

%1See Chapter 9 for more details.
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The partial derivatives for the sound speed calculation are

(55,505
0pJ)e \Op)\0p )¢
:i[a1+2a;,u+3a3,u2]+£[bl+2b;/,z+3b3/,12]
Lo Po
P(oP P .
—|— | =—| b, +bu+b i’ +by’
pZ(aE]p pZ[ 0 blﬂ Zﬂ 3111 :I
such that the sound speed is
2 1 * 2
¢’ =—|a +2au+3a,’ ]
Po
+£[bl+2b;u+3b3,u2]
Po
P .
"'?[bo + b+ by + oy’ |
7.4  Modified Osborne (or Quadratic) EOS Sound Speed

The Osborne EOS is written as

P:a1/"+a;ﬂ2+(bo+b1;u+b;/12)5+(co+C1,U+C;/12)‘92
£+é,

The partial derivatives for the sound speed calculation are

HREIC!

_[a1+2a;,u+g(bl+2b;,u)+52(cl+20;u) 1

et & Po

P(aP _i(bo+b1y+b;y2+2(co+cly+c;y2)g)—P
p’\ OE P’ (e+&)
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Accordingly,

o _[a1+2a;u+g(bl+2b;,u)+gz(cl+202y)] 1

ce+¢g Yo
0 (7.16)
+i(b0+b1ﬂ+b;ﬂ2 +2(c, +cly+c;y2)g)—P
o’ (e+¢)
7.5 Jones-Wilkins-Lee (or JWL) EOS Sound Speed
The JWL EQS,
PzA[ _ﬁﬁ} eB[ _ﬁﬁ} s pE
R, po R, 0
is similarly evaluated in Eq. (7.12). The corresponding terms are
(ﬁ] :_&ie*&%/l’ + ARl pO |:1_2£j| elepolp
ap E R1 Po IOZ R1 Po
—%ie%p‘)/” +—BR2 Ao {1_££} e Remlr L E
R, po P’ R, Py
and
P[P} _po
p*\ OE p
Therefore,
c? :—&ie_&/’o/ﬂ " AR, p, {l—££:| o Runlp
R Py p’ Po
R, o P 2 Po
+0E+PZ
o

The above sound speed is for the detonation products of the explosive. Before and during
the detonation, the pressure in the undetonated explosive is zero and the sound speed is
set as follows:

83



Chapter 7 Sound Speed

D? Bf =0
c’=4 9D* O0<Bf<1 , (7.18)
CoL Bf =1

where D is the detonation velocity and Bf is the burn fraction.
7.6  Gruneisen (or Us-Up) EOS Sound Speed

The Grineisen EOS is
P=P,+(T'/V)(E-E,)
Differentiation according to Eq. (7.12) is provided with added complexity, where

P, =P +c (V,-V)[V,-s(V,-V)]~?
E,=E +3(R+PR,)(V,-V) and
L=r,+T,(V/V,)

where the specific volume is defined as
Vv El/p

such that

== (Vo =5 (Vo =V)) P+ 25(V,=V) (Vo =5 (Vo -V)) ° |

0 0 oV
(%“’V )l - a—v‘””l(%l
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oP aPH i ) i )
[EJE :(EJE "‘[ap(F/V )jE (E-E, )+(F/V)(ap(E E,, )jE

Thus,

and

p \OE

, (P, Kl B
c —(aij+[ap(F/V)jE(E E,)

+(F/V)(;—p(E—EH )) +§(F/V)

E

%(ﬂj :%(F/V) , and
, P

(7.19)

7.7 SESAME EOS Sound Speed

The EOS package (EOSPAC) utility software package® extracts the pressure from the
Los Alamos National Laboratory (LANL) SESAME database. The EOSPAC software
also supplies the partial derivatives of pressure with respect to density and internal
energy. The sound speed is computed directly from these numerical derivatives.

The EOSPAC derivatives are with respect to the logarithm of density and energy, so*

- Heema ..., (58] 2l(ee)
ap E p alogp E I SEsAME aE P E alogE P 1 SESAME

and the appropriate substitutions then are made into Eq. (7.12). The EOSPAC software
allows the tabular data to be interpolated in various ways [e.g., biquadratic (six-point)
interpolation]. The choice of interpolation method will influence the results of the partial
derivatives and therefore the sound speed.

An additional point, not referred to earlier, concerns SESAME materials that melt during
the simulation. Two SESAME tables can be loaded by PAGOSA—one for the unmelted
state and one for the melted state. Certainly, the sound speeds are very different for these
two states of the material. However, not every SESAME material has a corresponding
SESAME melt table. Compromises and engineering approximations immediately become

*2David A. Pimentel, “EOSPAC 5 User Manual,” Los Alamos National Laboratory report LA-UR-03-4510,
Version 5.35, Revision 0 (August 2003).
%*The logarithms are natural logarithms (logarithms to the base e).
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significant considerations. It is always important to understand and investigate the
assumptions and limitations in any EQS, including the SESAME EOS.

7.8 Exponential EOS Sound Speed

The exponential EOS is
P(t)=P e
In this case, the pressure is not a function of either density or internal energy, so
=0 . (7.20)

The exponential EOS is intended to be a pressure (normal stress boundary condition) for
particular simulations. As a consequence, the thermodynamics of this material should
play little or no role in the simulation.

7.9 PAGOSA Sound Speed

The internal sound speed computed by PAGOSA is altered in an attempt to find the
largest possible “wave” velocity. The goal is to eventually compute a stable timestep for
the simulation. The total sound speed,

4G 2Q
szcéos"'_ t—

— (7.21)
3p P

is composed of three parts. The first term is the sound speed corresponding to the EOS
P=P(p,E), the second term converts the sound speed to a longitudinal elastic wave
speed for elastic-plastic materials, and the third term ensures the stability in the presence
of shocks (Q terms) .

The diagnostic information in PAGOSA returns only the isentropic sound speed.
However, it is important to understand that internal to PAGOSA, the sound speed has
additional terms. It is hoped that in the future, these terms can be computed individually
and their influence on the timestep can be evaluated individually.
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CHAPTER 8

Artificial Viscosity

The equations of hydrodynamics are modified by the inclusion of additional terms which
greatly simplify the procedures needed for stepwise numerical solution of the equations
in problems involving shocks.

-J. von Neumann and R.D. Richtmyer (1950)
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8 ARTIFICIAL VISCOSITY

The mathematical basis for all PAGOSA algorithms is the assumption that we are dealing
with a continuum. This assumption precludes the presence of shock waves because, in
this formalism, shocks are mathematical discontinuities. Although it is possible to devise
mathematical methods that create internal floating boundaries connecting regions of
continuous flow, the complexity for three-dimensional (3D) flows becomes numerically
intractable. To complicate the matter further, shocks often interact in complicated ways.

Typical shock widths are very narrow and require extremely small cell dimensions to
resolve properly. The computer memory and time requirements are prohibitive.

A solution to this dilemma was discovered by von Neumann and Richtmyer in 1950.
They introduced the concept of an artificial viscous pressure (often imprecisely called
the artificial viscosity) that, when added to the pressure, had the effect of smearing out
the shock wave over several cells, thus converting the discontinuity to a steep gradient.
The form of this artificial viscosity implemented in PAGOSA is discussed next. The
artificial viscosity is added to convert the kinetic energy into internal energy within the
shock.

For shock wave calculations, an artificial viscosity is necessary in the difference
equations to represent the shock discontinuities properly. The classical quadratic artificial
viscosity, Q,, is computed as™

[V-u] if V-u<0

8.1
0 if V.-u>0 1)

Q=G Lzlb{

where C; is a constant (~2.0 for many Eulerian hydrodynamic codes), L is a length
appropriate to the cell in which the artificial viscosity is calculated, and p is the cell
average density.

The linear artificial viscosity is*

V.-u ifVv-u<o0

-G, Lpc , 8.2
Q=-Glr { 0 ifV-u>0 (82)

%J. von Neumann and R. D. Richtmyer, “A Method for the Numerical Calculation of Hydrodynamic
Shocks,” Journal of Applied Physics, Volume 21, pp. 232-237 (1950).

®R. Landshoff, “A Numerical Method for Treating Fluid Flow in the Presence of Shocks,” Los Alamos
Scientific Laboratory report LA-1930 (1955).
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where C; is a constant and € is the cell-average sound speed. The linear artificial
viscosity is used to damp out oscillations behind the shock waves.?® Both coefficients (C;
and C,) and the length scale L are user selectable.

These equations incorporate a suggestion by Rosenbluth?’ that the artificial viscosity
should have a value of zero when the fluid is undergoing an expansion (the divergence of
the velocity field is positive).

The total artificial viscosity,Q, is
Q=Q,+Q, . (8.3)

The artificial viscosity acts to spread the shock over a few cells in such a way that the
variables vary continuously through the region of the shock and satisfy the Rankine-
Hugoniot conservation relations. The shock will be spread over several zones, regardless
of the cell size. A few cells away from the shock, the artificial viscosity is zero.

The effect of artificial viscosity is very much cell size dependent. Simulations at very fine
mesh resolutions may not need any artificial viscosity. Further, in simulations where
extreme gradients do not exist, the artificial viscosity may need to be suppressed entirely.
The excessive use of artificial viscosity often damps out the solution. It is said that
experience is the key to success.

Shock artificial viscosities introduce problems and errors of their own. In strong shocks,
“wall heating” and “shock-less heating” can occur, leading to errors in the internal energy
surrounding the shock.®® Errors in internal energy lead to errors in density and the shock
speed. Many of these effects are seen in the so-called Noh problem.” The densities at
symmetry boundaries are usually severely reduced, and the internal energies are
significantly overpredicted. All of these anomalies are sensitive to mesh resolution.

Treating the artificial viscosity as a pressure term in the momentum and energy finite-
difference equations allows the work done by the viscosity to be identified with the
thermodynamic irreversibility of the shock. When we compare the energy equation with
the first law of thermodynamics:

%The coefficients used in Lagrangian hydrodynamics codes are different from the ones listed above.
’R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems, second edition
(Interscience Publishers, New York, New York, 1967), p. 313, footnote 11.
%\W.F. Noh, “Errors for Calculations of Strong Shocks Using an Avrtificial Viscosity and an Artificial Heat
Flux,” Lawrence Livermore National Laboratory report UCRL-53669 (1985).
®W.F. Noh, “Errors for Calculations of Strong Shocks Using an Avrtificial Viscosity and an Artificial Heat
Flux,” Journal of Computational Physics, Volume 72, pp. 78-120 (1987).
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dE=-(P+Q)dV

and
TdS=dE+PdV
— TdS=-QdV

The entropy increase dS is being generated by the artificial viscosity.

The entropy is not computed in PAGOSA,; however, it is a useful conceptual explanation
of the physical and numerical processes involved in the solution of the Navier-Stokes
equations.

An interesting problem is in the choice of the length parameter L. The Wilkin’s form*®
of the artificial viscosity, the default for PAGOSA, uses a length calculated across the
cell in the direction of the maximum pressure gradient. The length scale adapts in each
zone, depending on the local pressure gradients.

On the other hand, in 2D problems, the length scale could be computed in several
different ways. The appropriate length scale might be the diagonal distance across the
cell. The length scale computation is selected by the user.

In 1D problems, only Ax would be an appropriate length scale choice.
For an ideal shock, the pressure is a square wave. When the artificial viscosity is
computed and added to the pressure, the result is shown in Figure 8.1. The shock is

spread out over several cells, and the artificial viscosity is a fraction of the amplitude of
the pressure in the region of the shock and is nonexistent away from the shock.

Figure 8.1. A typical pressure and artificial viscosity in the region of a shock.

100\, L. Wilkins, “Use of Artificial Viscosity in Multidimensional Fluid Dynamic Calculations,” Journal of
Computational Physics, Volume 36, pp. 281-303 (1980).
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Computing a Timestep

I am not discouraged, because every wrong attempt discarded is another step forward.

-Thomas A. Edison (1847-1931)
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9 COMPUTING A TIMESTEP

The timestep in any simulation must be smaller than that given by the Courant-
Friedrichs-Lewy (CFL) condition.’® This condition is necessary for the stability of the
numerical solution of the partial differential equations. Physically, the timestep
restriction'® prevents information from moving beyond a cell in a single step.

A timestep for each component of the velocity is computed as follows.

At, =safeu-min( Ax/|U]) , (9.1)
At, =safeu-min( Ay /|V|) | (9.2)
At,, =safeu-min( Az /|W|) (9.3)
At :safec-min(Ax/[|u~ |+c]) , (9.4)
Aty =safec-min( Ay /[|[V|+c]) ,and (9.5)
Aty =safec~min(Az/[|v\7 |+c]) , (9.6)

where safeu and safec are safety factors (between 0 and 1) used to reduce the timestep
further and ensure numerical stability. The velocity components U, V, and W are
evaluated at the cell centers.® The location of the controlling timestep is also computed
and displayed for each cycle of the integration. This information is useful in
understanding what is controlling the timestep and where that control is specifically
located. Occasionally, a material can move into an equation-of-state (EOS) regime where
the calculated sound speed can be quite large. If the sound speed is large enough, it will
control the simulation with very small timesteps. In these cases, knowing the location and
state of the material can aid the user in setting appropriate density and pressure cutoffs.
The question reduces to knowing if the timestep control falls within a region of interest.

In addition, the divergence also has an associated timestep given by
At,,, =safed -min(1/|V-u|) . (9.7)

The safety factor safed is related to the amount that the cell can expand (or contract)
during the Lagrangian phase. This timestep condition helps keep distortions small during
a single timestep.

012 Courant, K. Friedrichs, and H. Lewy, “Uber die Partiellen Differenzengleichungen der
Mathematischen Physik,” Mathematische Annalen, Volume 100, Number 1, pp. 32-74 (1928). An
English language translation of the original German paper appears in “On the Partial Difference
Equations of Mathematical Physics,” IBM Journal, pp. 215-234 (March 1967).

192R D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems, second edition
(reprinted) (Krieger Publishing Company, Malabar, Florida, 1994), pp. 9-16, 45-48, and 83-90.

1%Ensuring that the sound speed and velocities are spatially centered in the same manner.
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In simulations involving the detonation of explosives with the programmed burn
algorithm, the timestep is limited so that the detonation wave traverses a cell in a few
steps (approximately four by default’®). In the timestep computation, to ensure the
stability during the high-explosive burn, a value of three times the detonation velocity is
used in place of the sound speed for cells containing undetonated or partially detonated
explosive. This restriction allows the pressure in the cell to build slowly as the energy is
deposited into the cell:

min(AXx,Ay, Az
At, = safec ( 3Dy ) , (9.8)

where D is the detonation velocity of the explosive.

The calculation timestep is the minimum of all the various controls, as shown in
Table 9.1:

At = min (Aty, At,, At,,, At,c, Atye, Ay, Aoy, Ay, Atya) (9.9)
where At,,,, IS a user-specified maximum timestep for the simulation.

The timesteps can be adjusted in other ways. The timestep can grow under certain
circumstances and is allowed to grow by a small factor for each new step. Typically this
increase is 5% to 10% in step size from cycle to cycle.

However, the timestep can shrink dramatically at any point in the simulation. For
example, if a detonation begins or if two shocks collide, then the timestep will adjust to
reflect the new physics in the simulation. The timestep will be computed subject to the
restrictions described above and subject to the minimum and maximum timestep values.

The timestep is also limited by minimum value. If the value of the timestep drops below a
specified minimum value (At,,, ), then the simulation is stopped. This situation can
occur when a calculation has difficulty with an EOS with unrealistic densities or internal
energies. If the timestep becomes too small, it is usually indicative of some problem in
the simulation.

In certain simulations, when an exact final simulation time is wanted, the timestep is
adjusted for the last integration step. If the normally computed timestep would overshoot
the desired time, a fraction of the timestep is used. This option is useful when simulations
are to be compared with experiments, for example.

1%The default user parameter is safec = %4, so the detonation requires a minimum of four steps to traverse a
cell.
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Table 9.1. The Timestep Controls in PAGOSA Hydrodynamics (the Controls Include the
Standard CFL Stability Restrictions, as Well as Controls Set at the User's

Discretion)
CODE CONTROL EQUATION
Div Aty 9.7)
Fin At" (L —AL)
G - At = growth At
[ At° Initial timestep
Max Aty User selectable
Min Aty User selectable
U At 9.1)
Y At,, 9.2)
W At,, (9.3)
Utc At (9.4)
V+c At (9.5)
W+c Aty (9.6)

The initial timestep, At°, is either set by the user or computed by trial and error from the
initial conditions. The user is encouraged to compute the initial timestep manually.
Appendix F provides a few important ideas for computing an initial timestep ( At°).

In cases where the timestep is too large for the Lagrangian or advection phases,’® the
PAGOSA algorithm “backs up” to the last simulation time and attempts a smaller
timestep. This backup capability is an important feature in PAGOSA and provides a
robust method of continuing a simulation when the CFL conditions vary significantly
over the course of the complete simulation.

The safety factors, growth factors, minimum timesteps, and maximum timesteps all have
default values in PAGOSA. These factors have been fine tuned and adjusted over many
years for typical problems of interest.

1%For example, if the Lagrangian-phase volume consumes the entire Eulerian cell volume. Another
common occurrence is when the Lagrangian-phase volume is negative.
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Initial Conditions

These mysteries are heightened when we reflect how surprising it is that the laws of
nature and the initial conditions of the universe should allow for the existence of beings
who could observe it.

-Steven Weinberg, Scientific American (October 1994)
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10 INITIAL CONDITIONS

The solution of the partial differential equations presented in Chapter 1 requires a set of
initial conditions for the fundamental variables at the beginning of the simulation (t =t,).

For every material and every cell, the following initial conditions are needed:

plt=t;xY,2) initial density,
pt=t,;%xy,2) initial volume fraction,
Ut=t,;x,y,2) initial x velocity,
V(t=t,;XY,2) initial y velocity,
W(t=t,;xY,2) initial z velocity, and
E(t=t,;x,y,2) initial internal energy

The pressures can be derived from the densities and internal energies. Similarly, the cell
masses can be derived from the densities, volume fractions, and cell sizes.

On the other hand, the stress deviators are initially zero.

S, (t=t,;x,y,2) =0
Sy (t=t;%Yy,2) =0
S, (t=t,;x,y,2)=0
S,, t=t,;%,y,2) =0
S, (t=t,;%Y,2) =0
S, (t=t,;X,y,2) =0.

There are no initial material stresses; this fact may be incompatible with the other initial
conditions specified by the user. It is important to ensure that all initial conditions are
consistent and compatible.

In the case of programmed burn explosives, the vertex-centered burn times are required
initial conditions. The “simple” programmed burn algorithms are detailed in Chapter 12.
The general three-dimensional programmed burn algorithm®® allows for more
complicated geometries, shadow regions, and multiple high-explosive materials.

Bt(x,y,2) programmed burn times (vertex centered)

1%Tom Bennion, Sean Clancy, and Wayne Weseloh (editors), “The PAGOSA 3D Programmed Burn
Algorithm,” Los Alamos National Laboratory report LA-UR-09-04016, Revision 1 (May 2009).
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Boundary Conditions

The cube which you will generate will be bounded by six sides,
that is to say, six of your insides.

-Edwin A. Abbott, Flatland (1884)
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11 BOUNDARY CONDITIONS

Boundaries on which the boundary conditions are set form the exterior surface of the
Eulerian computational domain. The two types of boundary conditions available in
PAGOSA are reflective (symmetry) and transmissive.

11.1 Reflective Boundary Conditions

The reflective boundary conditions, sometimes called the symmetry boundary conditions,
represent a boundary of the Eulerian mesh where the interior is a mirror image of the
other side. No motion is possible normal to the boundary; only motion tangential to the
boundary is allowed. In the current implementation of PAGOSA, materials contacting a
reflective (symmetry) boundary cannot subsequently pull away from it.

At a reflective (symmetry) boundary, the ghost cells are the mirror image of their “real”
neighbors. For example, on the xmin boundary surface, the boundary conditions would be

Ug,j,k :_UZn,j,k
) e
Vi =0
n n Y Y
Wo,j,k =_W2,j,k
®
and
P P
n __n
¢%,j+%,k+% = ¢%,j+%,k+% ®
n _.n
Pkt = P3 ikl angentid
n n . utangmﬁal U ui@ngmtial
By s =B * O
n _phn
P%,j+%,k+% - P%,j+%,k+% _—
_unm'mal uno unm’mal
o . ® O
The general prescription is shown in _
Figure 11.1. The cell-centered portion of G:;Tt E”l‘:'la"
the ghost cells is simply copied from the
adjacent Eulerian cells. However, the
velocities at handled differently. The _
normal component of the velocity is zero Reflective Boundary
at the reflective (Syn_]metry) boundar)_/, Figure 11.1. The reflective (symmetry)
whereas the tangential component is boundary conditions.
computed in the same manner as every
“interior” cell.
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The above situation is complicated at the intersection of two or three reflecting
boundaries. The row of ghost cells must be set appropriately in these cases.

11.2 Transmissive Boundary Conditions

The transmissive boundary conditions allow material to flow out of the computational
domain by absorbing all incident waves without generating any signals back into the
Eulerian mesh that might perturb the solution. Achieving this boundary condition is very
difficult, and implementations are generally poor in most Eulerian hydrocodes.

The transmissive boundary conditions (see example in Figure 11.2) provide a way to
anticipate the flow behavior at the very limit of the computational domain. The flow
properties at the boundary must derive from the knowledge of the flow inside the
computational domain, coupled with some approximations of the outside flow:

n _qpn _qn
Uo,j,k _Ul,j,k —Uz,j,k @
n _\/n
Voik =Vijk P £
n _ n
Wo,j,k _Wl,j,k @
and P P
®
n __n
¢%,j+%,k+% - ¢%,j+%,k+%
. tangential
n =" tangential F73 tangential
p%,jJr%,kJr% p%,j+%,k+% U ® A u
E' =E..
3 gk 3 i+pk+3
n — P n nartmal unomwl narmal
1jedket T T3 el ket u ® A u
. . . Ghost Eulerian
Some small amount of information is cell cell

reflected off of the transmissive
boundary back into the simulation. It is
always important to choose the position
of a transmissive boundary so that it has
only a minimal effect on the results of Figure 11.2. The transmissive boundary.
the simulation.

Transmissive Boundary
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11.3 Other Boundary Conditions

Other types of boundary conditions are possible and under consideration:
e inflow,

e periodic, and
e pinned, no slip, or no velocity.
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Programmed Burn

Double, double toil and trouble, fire burn, and caldron bubble.

-William Shakespeare, Macbeth (1603-1607)
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12 PROGRAMMED BURN

The programmed burn technique'® is used in PAGOSA to simulate the detonation of
explosives when the properties of that particular explosive are well known and its
behavior is not the focus of the study. The basic assumption is that the detonation wave
front travels in all directions at the Chapman-Jouget detonation'® velocity. The position
of the detonation front is predicted based on the initial configuration of the explosive.

The detonation burn times, Bt, are defined at the cell vertices. For simulations using the
programmed burn technique, the burn times are computed as part of the initial conditions.
The burn times are computed from a user-selected detonator type and the explosive
detonation velocity D. For vertices in no way connected to the explosive, the burn times
are set to a large value, btlim. For cells that contain any explosive, the burn time is
computed for every vertex. The propagation of the detonation is modeled by a simple
line-of-sight approximation to a complicated Huygen’s construction. The detonation
wave is regarded as a propagating energy deposition front in the explosive.

The difference between the minimum and maximum burn times of the eight cell vertices
is referred to as the burn interval for a cell. Mathematically, we have

toin = min (tl’tz’ts’tmts’te’twts)
toax = Max (t11t2't31t4vt51t6't7’t8)

tin'[erval = tmax - tmin
0 if t<t
Bf = (t - tmin)/tinterval if tmin <t< tma><
1 if t>t

The burn fraction, Bf, is used in the Jones-Wilkins-Lee (JWL) equation of state (EOS)
(Section 6.5) to allow a gradual deposition of pressure/energy into a cell. The energy
starts to deposit proportionally from the time when the detonation front first arrives at the
cell. This energy deposition, combined with the EOS of the explosive material, produces
a finite pressure in the cell, which then begins to affect other portions of the problem.
Detonation points normally occur on the surface of explosive regions. The available
simple (i.e., line-of-sight) detonator types are Point, Line, Plane, Cylinder, Sphere, and
Ring. These types are described in the following sections.

19programmed burn is not the only technique for handling explosives in PAGOSA. Several reactive burn
models are available for a more detailed study of explosive behavior.

1983.A. Zukas and W.P. Walters, Explosive Effects and Applications (Springer-Verlag Inc., New York, New
York, 1998), pp. 116-121, 127.
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12.1 Simple Point

If the initiation point of detonation is at (x,,Y,,z,), then the arrival time of the
detonation front to the cell vertex (i,j,k) is given by

Bt,,, =t;+R/D and (12.1)

R E\/(Xi,j,k _Xd)z +(yi,j,k - Yd)z +(Zi,j,k _Zd)2 )

where each detonation point has a detonation time, t,, and the explosive has a detonation
velocity D. The detonation will sweep out from the point spherically and cover the entire
mesh containing explosive.'%

12.2 Simple Line

If the initiation surface is a line and the line is aligned along one of the Cartesian axes,
then the arrival time of the detonation front to the cell vertex (i,j,k) is given by

Bt =t;+R/D and (12.2)
R = perpendicular distance from the vertex to the line,

where each detonation point has a detonation time, t,, and the explosive has a detonation
velocity D.

12.3 Simple Plane

If the initiation surface is a plane and the plane is located at ([0 : +o0], y,,[—00: +0]),
then the arrival time of the detonation front to the cell vertex (i,j,k) is given by

Bt,,, =t;+R/D and (12.3)

RE‘yi,j,k_yd‘ ’

where each detonation point has a detonation time, t,, and the explosive has a detonation
velocity D. In general, both sides of the plane will have detonation times. The detonation
waves themselves will be planes parallel to the detonation plane.

1%Any cell that has a non-zero volume fraction for the explosive material has eight vertex burn times.
""This is an example for the XZ plane. The other two cases are also available.
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12.4 Simple Cylinder

If the initiation surface is a cylinder and the cylinder axis is aligned along one of the
Cartesian axes, then the arrival time of the detonation front to the cell vertex (i,j,k) is
given by

Bt,;, =t, +R/D and (12.4)
R = radial distance from the vertex to the cylindrical surface,

where each detonation point has a detonation time, t,, and the explosive has a detonation
velocity D. In general, both sides of the cylindrical surface will have detonation times.
The detonation waves themselves will be cylinders concentric to the cylindrical
detonation surface.

12.5 Simple Sphere

If the initiation surface is a sphere, then the arrival time of the detonation front to the cell
vertex (i,j,k) is given by

Bt,,, =t;+R/D and (12.5)

R = radial distance from the vertex to the spherical surface,

where each detonation point has a detonation time, t,, and the explosive has a detonation
velocity D. In general, both sides of the spherical surface will have detonation times. The
center coordinates and radius of the detonation surface must be specified by the user. The
detonation waves themselves will be spheres concentric to the spherical detonation
surface.

12.6 Simple Ring

If the initiation surface is a ring, then the arrival time of the detonation front to the cell
vertex (i,j,k) is given by

Bt,,, =t;+R/D and (12.6)
R = minimum distance from the vertex to the ring surface,
where each detonation point has a detonation time, t,, and the explosive has a detonation
velocity D. If the inner radius of the ring detonator is zero, then the surface is a circle. In

addition, if the outer radius is larger than the computational mesh, this case reduces to a
simple plane detonator.
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12.7 Limitations of Simple Detonators

In some cases, the line-of-sight approach is a poor approximation to the physics in the
simulation. Situations exist where portions of the material are not within the line of sight.
These shadow regions can be important in a simulation. In these cases, other detonation
methods should be used.

Consider the complicated explosive geometry in Figure 12.1. The detonation point,
located on the left, has a limited line of sight to most of the explosive material. The
demarcation between the line-of-sight regions and the shadow regions is shown by the
red dotted lines. The distance calculations for the lines g and A will clearly be in error.
A contour plot of the burn times is one of the best methods of checking the computation.

Programmed High Explosive Burn

Detonation
point

Figure 12.1. An explosive is to be detonated at the point shown. The lines « and y point to
regions that are directly within the line of sight of the detonator. The lines £ and A
point to the shadow regions. The distance calculation assumptions are violated
because the line-of-sight path crosses another material.

The programmed burn methodology is most often used in conjunction with the JWL EOS
(Section 6.5). The combination ignores many physical properties that could be important
in a simulation. For example, the detonation front contains a reaction zone'*! of a finite
width. In the simple model of detonation, we treat the reaction zone as if it had zero
width. The detonation velocity varies as a function of the local shock curvature.**#1*3

The detonation velocity D in the line-of-sight programmed burn method is a constant.

p W. Cooper, Explosives Engineering, (Wiley-VCH, New York, New York, 1996), pp. 275-298.

112).B. Bdzil, D.S. Stewart, and T.L. Jackson, “Program Burn Algorithms Based on Detonation Shock
Dynamics: Discrete Approximations of Detonation Flows with Discontinuous Front Models,” Journal
of Computational Physics, Volume 174, pp. 870-902 (2001).

13p E. Lambert, D.S. Scott, S. Yoo, and B.D. Wescott, “Experimental Validation of Detonation Shock
Dynamics in Condensed Explosives,” Journal of Fluid Mechanics, volume 546, pp. 227-253 (2006).
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The programmed burn algorithm is a geometric construction approximating many
complicated nonlinear processes. This algorithm can be a very good approximation to
reality if the questions driving the simulation are not about details of the high-explosive
detonation."**

One way of avoiding the difficulties with shadow regions is for the user to construct a
series of connected regions, each with a single individual detonator. In the case shown in
Figure 12.2, the explosive has been divided into four regions. The first region, A, is the
line-of-sight region. The original detonation point is now designated as detonator 1 and
corresponds to region A. Regions B, C and D are shadow regions.

Programmed High Explosive Burn

I
|
|
D |
|
|

Figure 12.2. An explosive, shown in the previous figure, is to be detonated with four distinct
detonation points. Region A is the line-of-sight region, which will be detonated with
detonator 1 (the original detonator). Region B is a shadow region, detonated by
detonator 2. Region C is the second shadow region, detonated by detonator 3. The
remaining explosive material, D, will be detonated by detonator 4. The four regions
A, B, C, and D have the same material properties.

The detonation times for the four detonation points are

t =t, material A,
t,=t,+R,/D material B,
t,=t +R,/D material C, and
t,=t,+R,, /D material D,

where R, is defined as the minimum distance between points i and k. Each region would
need to have a unique material number for this method to work properly.

12.8 Other Detonation Models

Several other options exist in PAGOSA for the release of energy from an explosive,
including reactive burn models (CJ Volume, DynaBurn, Forest Fire, and Multi-Shock

YTom Bennion, Sean Clancy, and Wayne Weseloh (editors), “The PAGOSA 3D Programmed Burn
Algorithm,” Los Alamos National Laboratory report LA-UR-09-04016, Revision 1 (May 2009).
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Forest Fire). The description of these models is beyond the scope of this work and
therefore is not discussed here.
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CHAPTER 13

Divergence Options

One cannot escape the feeling that these mathematical formulas have an independent
existence and an intelligence of their own, that they are wiser than we are, wiser even
than their discoverers.

-Heinrich Hertz (1857-1894)
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13 DIVERGENCE OPTIONS

The implementation of material models in PAGOSA is made somewhat difficult because
of the use of a single velocity field for all materials. Under certain circumstances, mixed
cell components can behave nonphysically if they possess very different compressibilities
or shear moduli. Various divergence models have been developed to handle these
situations.

To understand why divergence is central to this issue, consider the Lagrangian equation
[EqQ. 4.11)] developed in Chapter 4:

8—'0+,0V-u:0

ot

Rewriting Eq. (4.15) with the reference density explicitly included, we find
4 0
Vu=—(p /p) E(p/po) : (13.1)

If the compression and the rate of compression are increasing, then the divergence is
negative.

13.1 Uniform

All materials in a mixed cell are uniformly compressed (or expanded) at the same rate
using the same value of divergence. No distinction is made between gases, liquids,
metals, or voids within a single Eulerian cell. The differences in compressibility between
materials are ignored, and all materials are treated with the same value.

Consider the right-hand side of Eq. (13.1). Using this uniform compression model, all
materials in a mixed cell would be subject to the same divergence.

13.2 Void Closure

Void closure is a phenomenon that occurs when a void material is sandwiched between
two nonvoid materials. For the uniform case described above, all the materials in mixed
cells under compression will be squeezed in proportion to their material volume fraction.
This squeezing leads to over-compression of the nonvoid materials, which is clearly
nonphysical. In reality, the voids would be squeezed out before any compression of the
materials occurred. In practice, the void closure model in PAGOSA allows the void to be
squeezed out between two objects that are colliding. Without the model, a small amount
of void would remain forever sandwiched between the two objects.
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The details of the void closure model are as follows.**> During both the predictor and
corrector steps of the Lagrangian phase in PAGOSA, the velocity divergence is examined
in each mixed cell. If the divergence is negative (i.e., the cell is contracting), the cell is
inspected for the presence of void materials. If void material is found, then the minimum
and maximum priorities of all materials present in the surrounding 26 neighboring cells
are determined. If the priority of the void to be closed is between the minimum and
maximum priorities of the neighboring cells, then that void will be contracted
preferentially. That is, the void will take up any contraction of the cell before any other
materials are allowed to compress. If the volume of the void is insufficient to use the
contraction entirely, then the other materials in the cell will share the remaining
contraction according to their individual volume fractions. If the priority of a closeable
void does not occur between the minimum and maximum priorities of the neighboring
nonvoid materials, it may still be allowed to close if no neighboring cells are pure void
cells.

In PAGOSA, when a void is preferentially contracted in a mixed cell, the contributions to
the energy change from the nonvoid materials are multiplied by a scalar factor.
Figure 13.1 shows a diagram of the derivation of this factor for a mixed cell containing
one solid material and a void.

At the start of the Lagrangian phase, we have

mat¢o = the volume fraction of the material and
vl = the volume fraction of the void.

After the contraction occurs during the predictor portion of the Lagrangian phase, we
have

™4, = the volume fraction of the material and
Y44, = the volume fraction of the void.

Figure 13.1(a) shows the partitioning of material and void in the cell before contraction.
The whole cell will contract by AV (which has a negative value) during the predictor
portion of the Lagrangian phase.

Figure 13.1(b) illustrates the case where the contraction is apportioned between material
and void according to their individual volume fractions. In this case, the volume change
of the solid material after the predictor phase is given by

°K.S. Holian [Los Alamos National Laboratory (LANL)], D.J. Cagliostro (LANL), T.F. Adams (LANL),
and B. Parker [Atomic Weapons Research Establishment (AWRE), United Kingdom], private
communication, November 9, 1990.
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AV =My AV (13.2)

mat
Figure 13.1(c) illustrates the case in which void closure occurs, and the void contracts
before the solid material is allowed to contract. In this case, the volume change of the
material is given by

AV =™% (V +AV)— "4 V . (13.3)

mat

The factor that multiplies the contribution to the energy change by the contraction of the
material then is the change in volume of the material with void closure divided by the
change in volume of the material without void closure, as

_ mat¢1 (V +AV) _mat¢0 V

f t
mai ¢0 AV

(13.4)

The densities of the nonvoid material components of the mixed cell are clearly modified
by this preferential contraction of the void.

e Original Cell Volume »

} AV

fe——  NewCellVolume —

.

—

material
I:I void

je——  New Cell Volume

. - B

Figure 13.1. Schematic showing two different methods of contracting void in a mixed cell. At the
beginning of the Lagrangian phase (a), the mixed cell contains solid material and
void. If the contraction is apportioned between solid and void according to volume
fractions, then the solid is preferentially compressed (b). If the void contracts before
the solid is allowed to contract, then the result is (c).
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13.3 Pressure Relaxation '°

The pressure relaxation algorithm is designed to reduce, but not eliminate, pressure
differences among materials in a mixed cell. It is more general than the void-closure
algorithm but is still expected to produce good results for a void closure.

A relaxation method was chosen over an equilibrium method for two reasons. The waves
that reduce pressure differences within the zone have finite speeds that may be too small
to produce equilibrium within the timestep, and forced equilibrium can result in
unphysical behavior. Consider the simple problem of gas expanding into a void.'*’
Forcing equilibrium during the Lagrangian phase would put all of the cell volume change
into the gas and result in the gas moving through the mesh at the rate of one cell per
timestep.

Consider a material-dependent compression that consists of the usual uniform
compression followed by a relaxation of the material pressure ™P toward a common
cell pressure P, with a material-dependent time constant ™z .

The resulting Lagrangian equation for a material pressure ™P is

(m)
D™p P-P
— My M2y My )2y T

13.5
Dt (mz (13.5)

Subtracting the effect of uniform compression produces a Lagrangian equation for the
material volume fraction as

1 D(m) . (m)|:)_|:>e
<m>¢W¢=V'( )“‘V'“=W

(13.6)

Requiring the sum of the changes in volume fraction to be zero for the cell gives

(m)¢ (m)p (m)¢
P = _— —_ | 13.7
eq (; (m)p (m)C2 (m)‘l'j/[; (m)p (m)C2 (m)z.j ( )

The form of the relaxation algorithm is determined by the choice of the time constant
Mz . Some possible choices are ™z = At, which produces the “equilibrium” form of the
algorithm, and ™z =™gL/™c, which produces the Riemann-like form of the
algorithm. In the Riemann-like form, L is a measure of the cell thickness and ™z is the

18This section was adapted from the writings of James W. Painter, Los Alamos National Laboratory
(1994).

"\\ayne Weseloh, “PAGOSA Sample Problems,” Los Alamos National Laboratory report LA-UR-05-
6514 (August 2005), pp. 5-12 (Blowoff).
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estimated time for the wave to traverse material (m) and change the material pressure
from ™P to P, .

In the equilibrium form, B,, takes on the well-known form

(m)¢ (mp (m)¢
Py = (Zm)—(m)p o j/ (Zm]—(m)p (m)CZJ (13.8)

and the volume fraction equation becomes

1 DMy P-P,
Mg Dt - ) 1, (M2 A

(13.9)

When the left-hand side of Eq. (13.9) is differenced, At cancels from the equation. To
first approximation, the changes in volume fractions will tend to equilibrate the material
pressures within a timestep At.

In the Riemann-like form, P, takes on the form

mp 1
P =( ] %—mcj / [Z()p—()cj ! (13.10)

and the volume fraction equation becomes

m (m)
D™ _ PPy
Dt ™p™McL

(13.11)

For a two-material cell, this form is similar to the methods developed by David
Youngs**® and Ransom and Hicks.'*®

For PAGOSA, a variation of the Riemann-like method was chosen. Modifications were
required to handle some of the difficulties with the basic method, such as ™z < At and a
potential instability associated with the artificial pressure Q .

“8David L. Youngs (AWRE, United Kingdom), private communication, January 15, 1992.
119/ H. Ransom and D.L. Hicks, “Hyperbolic Two-Pressure Models for Two-Phase Flow,” Journal of
Computational Physics, Volume 53, pp. 124-151 (1984).
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The differenced equation for ™g ,

mp_p
g Ot j (13.12)

(m) g _ (m)
¢ =""¢ (“ ™, 2

requires a stability and accuracy condition on the integration timestep ot, where ot < At .
St must be < ™7 to prevent overshoots of P,,» and it must be small enough to produce a
good approximation to the exponential correction of ¢. If St < At, relaxation subcycling
is required. For stability, the definition of ™z is replaced with
Mz = max[L/ ™c,1.1At/ (1- )], where f = max(safeu, safec) is a safety factor between
0 and 1. This definition guarantees that St< ™z. For accuracy and stability, the
fractional change in ™™g for any single material in a cell is allowed to be no larger than
the maximum allowable fractional change in the cell volume.

For the case™P <P,

Me 4 My > » Where My , Is estimated from

(m) ma) (P —mp
M+ MY | = ¢ +\/( Cj +[ = ] . (13.13)
2 2 (m)p

Equation (13.13) is obtained by applying a linear U,-U  approximation'*’ with s —>1 to
a two-material, one-dimensional planar boundary.

the singularity at ™c=0 is mitigated by replacing ™c with

When ™g" has been evaluated, the density and internal energy are updated according to

m P (13.14)
p ,0 (m)¢* ' .
and
(m) (m) g* _ (m)
ME" = "E - P [ ¢(m) ¢ j(1+v-uAt)—3(<m>F*—<m>F )V-uAt ,(13.15)
o ? Po
where
(m) o (m) .
0<™MF 51+[ fm) ¢°j(1+v “Atjﬂ . (13.16)
&, V-uAt

1205ee Chapter 6.6, Griineisen EOS.
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In the above equations, the subscript O indicates a value at the beginning of the
hydrodynamic timestep. ™¢" and g are the values of the volume fraction for
successive relaxation subcycles. The last term in Eq. (13.15) is required to partially
correct the defect in the relaxation process related to the artificial pressure Q. Without it,
the relaxation process tends to overexpand materials significantly to compensate for the
introduction of internal energy by Q. The current limits on F are imposed for stability
and may be relaxed in the future. The introduction of the last term in Eq. (13.15) requires
that the cell-averaged Q in the momentum equation be replaced with

Qz(m)lz* g, ™, (13.17)
ol

The approach described above works reasonably well if material strength effects are
insignificant compared with the basic hydrodynamics. However, if strength effects are
significant, the algorithm must be properly adjusted to avoid anomalous results. In
particular, instead of relaxing just the pressure ™P toward equilibrium, it is necessary to
relax ™P —ne«™Sen, where ™S is the material-dependent, deviatoric stress tensor and
n is the average unit interface normal vector for the mixed cell. The algorithm obtains the
average value for n by volume averaging the individual surface normals obtained by
interface reconstruction in the mixed cell.**

We therefore make the replacements

Mp  Mp _p,Mg,.n (13.18)
and
2 2 4 (m)G
(Me2 ¢ (Mg o (13.19)
2

where ™G is the material-dependent shear modulus. In addition, the zone strain-rate
tensor & used to update ™S is replaced with the material-dependent, strain-rate tensor
Me¢ | which is approximated by

_ (m)
mg=gy > D ¥

nn . 13.20
Mg Dt ( )

?Chapter 4.5.1 and Appendix C.
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CHAPTER 14

Strength

People do not lack strength, they lack will.

-Victor Hugo (1802-1885)
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14 STRENGTH

This chapter is concerned with materials that can support a shear without continuous
deformation. These elastic (and plastic) materials are different from the hydrodynamic
materials studied up to this point.*?? The stress deviators S will be fully described.

Consider the stress-vs-strain curve of a typical solid material. During the first portion of
the curve (up to a strain of less than ~1%), the stress and strain are proportional. This
proportionality holds until point a in Figure 14.1, the proportional limit, is reached. We
know that stress and strain are proportional because this segment of the line is straight.
Hooke’s Law, named after physicist Robert Hooke (1635-1703), is applicable in the
region in which stress and strain are proportional.

Every material has a unique elastic modulus value (the slope of the line segment Oa in

Figure 14.1). That is, the stress required to produce a given strain depends on the nature
of the material under stress.

a / Plastic regime

Stress
-

D Elastic regime
/

y

1

A/ Permanent deformation
]

I
0 <1 Strain 30 %

|

Figure 14.1. The elastic-plastic behavior of a typical ductile material (e.g., copper). Point a is the
proportional limit, point b is the yield point, point ¢ is a state in the plastic regime,
point d is the ultimate tensile strength of the material, and point e is the fracture
point.

From points a to b on the figure, stress and strain are not proportional; nevertheless, if the
stress is removed at any point between 0 and b, the curve will be retraced in the opposite
direction and the material will return to its original shape and length. In other words, the

122R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics: Commemorative Issue,
Three Volume Set (Addison Wesley, Reading, Massachusetts, 1989). See Volume Il, Chapters 38 and
39 on elasticity.
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material will snap back into shape in a reverse order to the way it snapped out of shape to
begin with. In region Ob, then, the material is said to be elastic or to exhibit elastic
behavior and point b is called the yield point or elastic limit.

If the material is stressed further, the strain increases rapidly; but when the stress is
removed at some point beyond b, say c, the material does not come back to its original
shape but returns along a different path to a different point, shown along the dashed line
in Figure 14.1. The length of the material at zero stress is now greater than the original
length, and the material is said to have a permanent deformation.

A further increase of stress beyond ¢ produces a large increase in strain until point e is
reached, at which point fracture takes place. Between points ¢ and e, the stress increases
until point d, the maximum or ultimate tensile strength of the material. From points b to
e, the metal is said to undergo plastic deformation. If large plastic deformation takes
place between the elastic limit and the fracture point, the metal is said to be ductile.
However, if fracture occurs soon after the elastic limit is passed, the metal is said to be
brittle.

In PAGOSA, the stress strain curve is idealized, as shown in Figure 14.2. Point a is the
yield point of the material. From points a to b on the figure, the material is in the plastic
regime. At some point b, the loading stops and the material releases elastically. After the
material has unloaded elastically (point c), the material can still unload plastically until it
reaches an equilibrium state.

\ <+—— Elastic release

a Plastic regime

Stress

+— Elastic regime

!

tension

compression 0 / Strain
c

Figure 14.2. The elastic-plastic behavior of a PAGOSA material with strength.

In the figure, the elastic release is a reversible process. The elastic release is essentially
parallel to the initial elastic loading. The plastic regime shows a positive slope, which
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represents work hardening in the material during plastic deformation. The empirical
formula used to model this process is described in Section 14.4.9.

Up to this point, the stress tensor and tensor notation have been
avoided. However, to progress forward, explicit use of the Cauchy
stress tensor and tensor notation is necessary and essential.

14.1 Cauchy Stress Tensor

A second-order tensor, the Cauchy stress tensor, completely describes the state of stress
of a material body. In previous chapters, the stress tensor had been decomposed into its

spherical and deviatoric parts:**®

o, =-P&, +S; . (14.1)

The Cauchy stress tensor is symmetric in its indices. If the stress deviator S; =0, then
the stress has the form o; =—Pg; . This form is called a pure hydrostatic state of stress,
and P is the hydrostatic pressure. The negative sign arises because, by convention, we
regard pressure, which causes compression, as positive, but we define compressive stress
as negative.

The stress deviator S in PAGOSA is associated with materials with a shear modulus G.
The constitutive relations are given in Chapter 1, Egs. (1.3a)—(1.3f). These constitutive
relations connect the stress deviator and the material strain rates. The strain rates act
differently, depending on the state of the material: elastic regime or plastic regime. The
next section describes the decomposition of the strains into their elastic and plastic parts.

Unlike finite elasticity, this model of elastic response does not carry the initial unstressed
state as a reference state and thus is more suited to elastic-plastic modeling, where the
plastic deformation continuously changes the zero-stress reference state.

14.2 Strain Rate Splitting

To separate the elastic and plastic flow behavior, the total linear strain is assumed to be
linearly separable into an elastic component and a plastic component:

e, =6 +e5 . (14.2)

It is found experimentally that, to a good approximation, the purely plastic component of
the deformation of most materials*** under hydrostatic loading should involve no volume

21t is a physically convenient decomposition for materials that exhibit plastic incompressibility. See P.J.

Maudlin, “Constitutive Behavior of Model FCC, BCC, and HCP Metals: Experiments, Modeling and
Validation,” Los Alamos National Laboratory report LA-UR-98-4891 (January 1999).
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change (dilatation). In other words, the plastic state of the material is incompressible.
Therefore,

&y =€+, +e, =0, (14.3)
which expresses the property for the plastic strain. It follows that the divergence is
V-u=6, =6 +6> =6, . (14.4)

For plastic behavior, the elastic component e; does not vanish in general. It is assumed
that any changes in the stress state in the plastic regime are an elastic response to the
elastic strain rates.

The details of the elastic-plastic response flow follow the Prandtl-Reuss treatment for
fully compact ductile metals as presented in Freudenthal and Geiringer.*”® The second
assumption in the Prandtl-Reuss treatment is that the plastic strain is proportional to the
current stress deviator:

&P =15, A>0 (14.5)

where A is the proportionality function between the plastic strain and the elastic-plastic
response flow rule.

The changes in the deviatoric stress tensor are given by
S; =2G(¢;-¢}) . (14.6)
A derivation of this constitutive relation is given in Appendix A.

In PAGOSA the elastic response of the material is decoupled from its thermodynamics.
Thus, for the elastic regime in the absence of shocks, the material response should be
isentropic. In particular, the isentropic part of the response should follow an adiabat of
the equation of state (EOS).

The basic elastic-plastic algorithm is shown in Table 14.1.

1243.J. Gilman, Micromechanics of Flow in Solids (McGraw-Hill, New York, New York, 1969).
125A.M. Freudenthal and M. W. Geiringer, “The Mathematical Theories of the Inelastic Continuum,” in
Handbuch der Phsyik (Springer-Verlag, New York, New York), Volume VI (1958).
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Table 14.1. The PAGOSA Elastic-Plastic Algorithm at a Glance

l 8u au_ if predcitor, u=u"
D& = J if corrector, u=u""? linear strain rate tensor
’ 2 6X a)(

2) &; =6, —30;€, linear deviatoric strain rate tensor

3 ij
au, oy
3) Qij —L linear spin (or rotation) tensor
2 ax 8Xi
4)Y and G flow-stress and shear modulus
5) Ry =, Soi’ =S Q rotation term

6) s;; =5 +2G & At—R; At

f (plastic) = 3345 for f >1
P -~ o2y? -

f (elastic) =1 for f <1

Snew S /\/_

9) Rij = %[Qim (Sr?];d + Sr::?w) - (Si?T:d +

10) Ae =¢; At—%(S”eW S+ RijAt)
11) Aef, =/ Zelel

13) AWP =S¢ Aef
14) ey, =e€gy + A},

15) E,oy = Egg + AW P/ p

elastic prediction (trial stress)

radial return correction

new stress deviator

Sim' )] rotation update

linear plastic strain tensor

change in equivalent plastic strain

deviatoric strain rate
change in plastic work

equivalent plastic strain

specific internal energy
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14.3 Yield Criterion

The plastic behavior of a metal is a reflection of modifications of the internal material
structure. At the macroscopic level, this behavior produces a material flow. This flow
results in permanent local deformations and energy dissipation, which contributes to the
local specific internal energy of the material.

The basic assumption is that there exists a scalar function of stress and strain, F(s,¢),
that characterizes the elastic and plastic states of the material.**® When the scalar function
IS negative, the state is elastic. When the scalar function is zero, the state is plastic; that
is, when F (o,€) =0 is reached, plastic deformations will develop. The case for which the
scalar function is positive is physically unreachable. Any tendency in the state variables
toward a positive scalar value is compensated by the plastic deformation such that the
zero scalar function value is maintained. The scalar value of zero is called the “yield
criterion.”

For isotropic materials, the yield criterion should be independent of the coordinate
system. In PAGOSA, this yield criterion is a function of the stress deviator invariants. In
particular, the second invariant is chosen.*?’

It is customary to relate the yield criterion to the yield stress Y, for the material in a
simple tension test. In the one-dimensional uniaxial stress configuration (simple tension),

yield occurs when

o, =Y, and all other components o;; =0

so that

S, =2Y,, S, =-1Y,, S =-1Y |

w3 z
and all the other stress deviators are zero.

The second invariant of the stress deviator tensor is related to the yield criterion by the
classic von Mises yield criterion*?®

'%The functional form of F (6, €) is termed the yield surface.

127See Eq. (1.4) in Chapter 1 for the three tensor invariants.
128Richard von Mises, “Mechanik der Festen Korper im Plastisch Deformablen Zustand,” Géttingen
Nachrichten Mathematische Physik., Volume 1, pp. 582-592 (1913).
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=1(S5+S,, +S5)+S, +S, +S.,
=5(3Y0 +3Y7+1Y2)+0+0+0=1Y7
This equation is the relation between the second deviatoric stress invariant and the yield

stress: the classical von Mises yield criterion. This form is generalized in PAGOSA by
replacing Y, by the yield function

J, :%Sijsji =3 Y 2oy )T (14.7)

The forms of the yield function Y available in PAGOSA are given in Sections 14.4.1 to
14.4.7. The arbitrary arguments y, are the dependencies of the yield function.

The yield limiting algorithm in PAGOSA can be understood best in a nine-dimensional
stress deviator space.’”® In this space, a stress deviator is represented by a vector S,
where its elements are the tensor components of S. The Euclidian norm of the vector S
IS given as

JZ

35,8, =4[s] - (14.8)
The classical von Mises yield criterion is

35iS;

2 Yij ’

(14.9)

which represents a hyper-sphere with a radius of /2/3 Y, where the specific value
depends on the current state variables influencing the yield function Y. States inside the
hyper-sphere are elastic, and states on the surface of the hyper-sphere are plastic:

Elastic: |S|< \/EY and (14.10a)
Plastic: |S]=4/2Y . (14.10b)
If components of the S vector are referred to the material (co-rotational) frame, the strain

rate deviator e can be represented in this space by a vector 2G e, where the elements are
scaled by 2G, whereG is the current shear modulus.

The elastic-plastic distortions are shown in Figures 14.3 and 14.4.

2The style and mathematical structure of this exposition is primarily credited to lan N. Gray, Atomic
Weapons Research Establishment (AWRE), Aldermaston, Berkshire, UK.
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Suppose the stress deviator vector at time t is S°and the vector at time t+ At is S*. The
yield criterion are shown as

S

i

:\EY

S

i

:\EY

Final Elastic State Final Plastic State

Figure 14.3. The two possible final states for a single timestep At. In the case where the
transition to a final state is elastic, the strain rate deviator is all elastic. On the other
hand, if the transition is to a final plastic state, the strain rate deviator splits into two
parts: elastic and plastic. The plastic contribution must lie on the yield surface. The
elastic part cannot exceed the yield surface under these circumstances. The vector
S is called the elastic predictor and has the value of the stress deviator if the total
strain rate deviator was all elastic. The conditions do not uniguely determine st
when the final state is plastic. The condition used in PAGOSA that provides a

. . . . . . 1P _ 1
unique solution is given by the mathematical expression €; At =135 .

Figure 14.4. The vector components of an elastic-plastic state.
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Now with the above condition, the values of S' ande; can be determined by (not
including the rotation terms)

(1) Elastic Prediction

S =S'+2G&At | (14.11)
(11) Yield Limiting

d (14.12)

sl—{ s \SﬂsV@ZY .
LA s| s Ey

(1) Strain Rate Deviator Splitting

(8-S’
2G At

L (14.13)

The above algorithm provides a first-order (backward) difference approximation to S*
ande’. It also has the virtue of automatically handling the elastic-plastic transitions, as
shown in Figures 14.3 and 14.4.

The stress deviator is updated so that the elastic predictor contains the rotation correction
terms

S,J = Si? +2G g At—(Q, S, - S, Q )At (14.14)
where all variables are appropriately time centered.

The plastic strain is computed as

(14.15)

P — g — (S; _Si?) + (€ Skj —Si ij)
P 26t 2G

Remember that in general, Gand Y are functions of density, pressure, and internal
energy. The specific forms are described in Section 14.4.1 through 14.4.7.

The velocity field at the start of a timestep (time t") is used to evaluate the divergence,
é,, Q... Using these values, a forward differencing of the stress deviator equations,
together with the yield-limiting algorithm, gives a first-order prediction of the stress
deviator at a half timestep t"*/? (t" +1 At). For multi-material cells, the cell strain rate is
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applied to each material component separately, regardless of its compressibility,** and
no attempt is made to force any equilibrium between the various components. Using the
velocity divergence to update the specific volume (and density) and forward differencing
the internal energy equation, using plastic strain rates from the yield-limiting algorithm,
allows a first-order EOS prediction of pressure at time t"*(t" +1 At). Again, a uniform
cell value of velocity divergence is applied to components of multi-material cells.

Straightforward spatial differencing of pressures and stress deviators at t"™?(t" +1At)
allows the acceleration equations to give a second-order update of the velocity field from
time t" to t+At.

From the velocity fields at times t" and t"+At, the divergence, é,, and Q_ are
evaluated at the half timestep t™?(t" +1At) and used in a second-order differencing of
the stress deviator and energy equations to update the remaining quantities at time
t" + At. See Chapter 5 on Integration for more details.

The Lagrangian phase passes cell velocities at half timesteps to the advection phases. To
avoid problems in consistency with the yield surface following advection, the last
Lagrangian step passes its elastic prediction (not yield-limited) value of the stress
deviator to the advection phases. The post-advection deviators are considered to be
elastic predictions and are yield limited according to the post-advection values of plastic
strain, pressure, and internal energy.

30As in the case of the “uniform” divergence option (Chapter 13.1).
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14.4 Flow-Stress Models

The flow-stress models give specific functional forms to the shear and yield moduli.

In situations where very high hydrodynamic pressures or large strains are created, the
constitutive relations may generate unrealistically large values for G and Y. To avoid this
problem, the user can supply a maximum permitted shear modulus G, and a maximum
permitted yield modulus Y, . In PAGOSA these limits are implemented as

G=min(G,G,,) and (14.16)

Y =min(Y,Y (24.17)

max)
If the yield modulus is set to a large value, then the material behavior is completely
elastic and no plastic deformation occurs. This flow-stress model can be useful in some
test problems and cases where the deformation is expected to be purely elastic.

14.4.1 Elastic Perfectly Plastic
The elastic-perfectly plastic model is an idealized material and the easiest to understand.
The shear and yield moduli are simply constants. The shear and yield moduli are

G=G,,and Y =Y, . (14.18)

In this case, the plastic regime, shown in Figure 14.5, is a horizontal line. The stress in
the plastic regime would be independent of the strain. The effects of thermal softening
and work hardening are absent from this model.

The class of elastic-perfectly plastic materials is an idealization to keep the constitutive
equations simple. The idealization is reasonable for materials that do not show significant

work hardening. The adequacy of this idealization depends on the purpose and
requirement of the specific application.

Figure 14.5. An elastic-perfectly plastic material.
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14.4.2 Modified Steinberg-Cochran-Guinan
The Modified Steinberg-Cochran-Guinan model™*! is applicable for high-strain-rate
materials (usually metals). The shear modulus and yield strength are functions of
equivalent plastic strain, pressure, and internal energy.

The shear modulus is

G =G, Py Frar (14.19)

P =1+7 P(p,/ p)*, and (14.20)
0 E>E,

Fonert = g HEE EoE (14.21)

Equation (14.20) is a pressure correction term, and Eq. (14.21) is a thermal softening
term. The yield strength is given by

Y=Y,[1+a (el +e")] P, Foy, and (14.22)

cor © melt ?

Po =1+7P(py/ p)”. (14.23)

Cl

The pressure correction terms are different for shear and yield; however, the thermal
softening term is the same for Egs. (14.19) and (14.22). The time-integrated equivalent
plastic strain is denoted e”.

This model requires seven user-supplied inputs: «, 3,7,7 ,6,€;, and E,,.
A single melt energy E,, is specified for the material. If the internal energy is greater than

this value, then both G and Y are set to a value of zero. The thermal softening is discussed
in Section 14.4.8.

B1p J. Steinberg, S.G. Cochran, and M.W. Guinan, “A Constitutive Model for Metals Applicable at High-
Strain Rate,” Journal of Applied Physics, Volume 51, Issue 3, pp. 1498-1504 (1980).
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14.4.3 Steinberg-Cochran-Guinan

The Steinberg-Cochran-Guinan model is a full-temperature version of the Modified
Steinberg-Cochran-Guinan model. The material temperatures (&) are obtained from the
SESAME database via the EOSPAC library (see Chapter 6, Section 6.7). The shear
modulus is

G =Gy (P — Fot) (14.24)
Py =1+7 P(py/ p)*  and (14.25)
Fret = 71 (0= Oron) - (14.26)

The yield strength is given by

Y=Y, [1rae +e)] (Po —Fru) (14.27)
P, =1+7P(p,/p)* ,and (14.28)
I:melt =)t (9_ eroom) (1429)

The pressure and thermal softening terms are different for the shear and yield equations.
The time-integrated equivalent plastic strain is denoted &° . It is computed simply as

t
e’ =[Zeperdt . (14.30)
0

This model requires nine user-supplied inputs: &, 8,7,7 71+ 77 ,€5,0 ., and 0

melt *

The pressure correction terms [Eqs. (14.24) and (14.27)] are set to a value of one in the
case where P <0 (i.e., tension). In the case where the material temperature exceeds the
melt temperature (6= 68,,,), both G and Y are set to a value of zero.
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14.4.4 Johnson-Cook (JC)
The Johnson-Cook (JC) model** is an empirical flow-stress model. The shear modulus
and yield strength are functions of equivalent plastic strain, pressure, and internal energy.

The shear modulus is

G=G,P, [1-max(0,T")"] and (14.31)

0" cor

P, =1+yP . (14.32)

cor

The yield strength is given by

Y =(Y,+Be,)(1+Clog, & )[1-max(0,T)"] , (14.33)

where the homologous temperature T is given by

T" Eﬂ (14.34)
E E

melt — —room

and the dimensionless plastic strain rate is
¢ =é/é,,and 6,=1.0s" . (14.35)
This model requires seven user-supplied inputs: B,C,n,m,E ., E and y'.

room?!

132G R. Johnson and W.H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains,
High Strain Rates, and High Temperatures,” Proceedings of Seventh International Symposium on
Ballistics, The Hague, The Netherlands, pp. 541-548 (April 1983).
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14.4.5 Preston-Tonks-Wallace (PTW)

The Preston-Tonks-Wallace (PTW) yield model is a physically based constitutive model.
The following have been taken from several sources: a published paper by PTW** and a
memorandum by Zocher and Flower-Maudlin.***

The shear modulus is
G =GO(1—afj , (14.36)

where G, is the initial shear modulus at 0 K and is a user-defined parameter and « is also
a user-defined dimensionless material constant. The normalized temperature in the above
equation is defined to be

T=T/T (14.37)

melt !

where Tpert IS either a user-defined melt temperature from data or the melt temperature
field generated by a SESAME melt model. The flow-stress (also known as yield strength
Y) for PTW is, as a function of the stress tensor o,

oc=2r |, (14.38)

or, in terms of normalized stress,

c=27G . (14.39)

The normalized stress is defined to be

;:;s+l(so—;yjloge 1-Wexp<— pe"‘//A - , (14.40)
p " Ts— Ty
S, -7y || exp| p — -1

SO_Ty

where the equivalent plastic strain  is calculated from the code. The parameter W is
defined as

33D L. Preston, D.L. Tonks, and D.C. Wallace, “Model of Plastic Deformation for Extreme Loading
Conditions,” Journal of Applied Physics, Volume 93, Issue 1, pp. 211-223 (January 2003).

B34M.A. Zocher and E.C. Flower-Maudlin, “The Implementation of Plasticity into CHAD,” Los Alamos
National Laboratory, X-4 memorandum to L.S. Bennett, M.B. Prime, M.W. Burkett, and R. Mason
(January 29, 1999).
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A A
s—Ty
A

W =1-exp| —p ?
So_Ty

(14.41)

The user-defined dimensionless parameters in the above and following equations are p,
So, and 6.

The yield stress 7, and saturation stress zs equations are defined at follows.

The yield stress is

2y = max{yo (¥, -y, )erf {KT In[f H,min{y{}%]h s, (%ﬂ} (14.42)

and the saturation stress is

;szmax{so—(so—sw)erf |:KT |n(7§ﬂ S [%j} . (14.43)

The “ erf *“ in the yield stress and saturation stress equations is the error function. The
equivalent plastic strain w and equivalent plastic strain rate y are used in the above
equations. The strain-rate scaling factor used in the equations above is defined to be

1/3
é=l(—4ﬂp j c (14.44)
2lam ) \ p

where M (=1.6605387 x 10* A) is the atomic mass of an atom. Clearly, p is the material
mass density. This strain-rate scaling factor is the reciprocal of the time required for a
shear wave to traverse a unit cell (atomic vibration frequency).

The flow-stress o and the shear modulus G are set to zero when the temperature is greater
than the melt temperature. The form requires both the maximum yield strength and initial
and maximum shear modulus. A von Mises yield criterion is used that results in a “radial
return” to the yield surface.

This model requires 14 user-supplied inputs: &,, p, So, Swey & % Yor Yoor Y1, Y2, B0 ¢, Trelts
and A.
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14.4.6 Mechanical Threshold Stress (MTS)

The mechanical threshold stress (MTS) yield model is a physically based constitutive
model founded on dislocation mechanics.'*® The accumulative flow-stress, also known as
yield strength Y, is calculated as

o =cat (ul ) iéi S, (14.45)
i=1

where S'a, Mo, and N are user-defined parameters. Currently, three terms are used in the
above equation. The summed product in the above equation separates the contribution
from interaction i into a structure evolution term gi modified with a constant-structure
deformation S; that is mainly a function of temperature and strain rate. The index i can
assume the values 1, 2, or 3, where they represent dislocation, interstitial atomic, and
solute atomic terms, respectively. The athermal threshold stress ga represents dislocation
interactions with long-range barriers, such as boundaries, and is assumed to be constant.
The shear modulus is

b.
G :[bl_e%/-r—z_l](l-i_ phard P) , (1446)

where b1, by, bs, and pharg are user-defined parameters. The pressure and temperature, P
and T, are calculated from the EOS. Generally, pnharg has a value of 0.7 for copper and 0.0
(zero) for most other materials.

The, oi described above is obtained from the structure evolution equation, which is a

differential hardening law:

A

9 g i-F(x,)] . (14.47)
oe

where the expression de¢ is just £0t, with & and £ being the total strain and total strain
rate, respectively. The equation for the dislocation rate &, varies according to the
material.

135p J. Maudlin, R.F. Davidson, and R.J. Henninger, “Implementation and Assessment of the Mechanical-
Threshold-Stress Model Using EPIC2 and PINON Computer Codes,” Los Alamos National Laboratory
report LA-11895-MS (September 1990).
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The five different possibilities are

idmts Theta equation

1) 6 =a-a,KT/ub®)In(é,/é) ,or

2) 6, =a+a,Ing+a;e , or
3) 6,=a+a,Iné+ae , or (14.48)
4) 6,=a —a,T , or

5) 6,=0,(5,/&) M ,

where aj, a,, and ag, are the three user-defined parameters. The F(X;) and X; are defined
as

F(x,)= anh(ax,) (14.49)
tanh o
and
X, =25, (14.50)
Os
respectively. The saturation threshold stress at 0 K is
R R & —kT/(uAby) R
Os =0 [—f’j -oa . (14.51)
g

In this equation,c;so,g'so, bs, and A are user-defined parameters, and k is the Boltzmann
constant. The last term in the above equation, O/\Ja, is usually nonzero for copper and zero
for all other materials. It should be noted that the relationships for&,, F(X;), c;so, and a
are material specific. A constant-structure deformation term S;, which is a function of
temperature and strain rate, is defined to be

N4
S, = 1_(%35/@}% , (14.52)
Hb®g;

where b is the magnitude of Burgers Vector (the inter-atomic distance in the slip
direction) and g; is a normalized activation energy for a given dislocation/obstacle
interaction.
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The flow-stress o and the shear modulus G are set to zero when the temperature is greater
than the melt temperature. If the SESAME melt model is specified for the associated
material, MTS uses the melt temperature field generated by the SESAME melt model
instead of the user-defined Tpei.

Currently, the SESAME EOS database must be used with this yield model. The form
requires both the maximum yield strength and the maximum shear modulus. A von Mises
yield criterion is used, which results in a “radial return” to the yield surface.

The dislocation rate equation must be chosen by specifying idmts = 1, 2, 3, 4, or 5. This
constant specifies which dislocation rate equation &, is used in the model.

This model requires 35 user-supplied inputs: by, b2, D3, Phard, €og s Jods Egir Jois Egss Joss
1/pd, 1/qd, 1/p|, 1/q|, 1/p3, 1/q3, ga, S-d, g-i, S-S, b, bO|tZ, Tme|t, Troom, Gminy Eminss A, OAJa,

Oo, a, A1, &, a3, &, and idmts.
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14.4.7 Kospall
The Kospall model™® is closely related to the Steinberg-Cochran-Guinan model. The
shear modulus contains two thermal softening terms and a pressure correction term:

G =G, (P = Fe) Hipere (14.53)

Po =1+bP(p,/ p)* | (14.54)

Frew =[N (0~ 0,0,) , and (14.55)
. 0 E>E

Hmelt = eng/(Eme) E<E . (1456)

Note that the input parameter h is taken as an absolute value to avoid confusion with
other hydrodynamics codes using the Kospall model.

Similarly, the yield modulus has two thermal softening terms:

Y=Y,[1+ae’] (P —Fra) Hpa (14.57)

Py =1+baP(p, /1 p)* | (14.58)

Foer =[N (0= 6,00) . and (14.59)

H e ={ _fE,(()E 5 =25 (14.60)
e " E<E,

The first thermal softening term is based on temperature, and the second is based on
internal energy. The temperatures are found from the SESAME database for the material
of interest.

This model requires eight user-supplied inputs: «, g,b, f,g,h,q, and 8

room *

1%6p 5. Steinberg and M.W. Guinan, “Constitutive Relations for the KOSPALL code,” Lawrence
Livermore National Laboratory report UCID-16326 (December 1973).
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14.4.8 Thermal Softening
The shear and yield moduli degrade (soften) as a function of the degree of melt. The term

) (14.61)

melt — E —E

m

is used in many of the flow-stress models to approximate this melt behavior.

The expression provides a crude model for the diminishing strength upon melting. The
parameter E_ specifies the specific internal energy for melting. In some strength forms,
it is a user-specified input; in others, it is obtained from the SESAME EOS database.

If E<E,, then the term is evaluated. If E > E_, the term and thus the yield strength are
set to zero. The melt term has no physical significance; it is simply a convenient
functional expression that provides a smooth transition to zero strength at melting.

The thermal softening coefficient & controls the shape of the melt function. Typical

values for & are in the range of 10 to 10° dimensionless units. A value of zero results in
a step function, as illustrated in Figure 14.6.

Figure 14.6. The thermal softening function F..e; as a function of the specific internal energy. In
the limit & — 0, the term becomes a step function.
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14.4.9 Work Hardening

Work hardening, also known as strain hardening, is the strengthening of a material by
plastic deformation. Work hardening is a consequence of plastic deformation—a
permanent change in shape. The associated elastic deformation is reversible. Most
materials do not exhibit only one or the other, but rather a combination of the two
deformations. Work hardening is most common in ductile materials such as metals.

If the material is work hardened, then some initial hypersurface represents the primary
yield. Further plastic straining alters the shape of the current yield surface. For example,
if Y, is the primary yield surface, then the distance to the von Mises yield surface is
Yox/m. Suppose that the straining continues beyond Y, to Y, and that the material is
then completely unloaded. The material now possesses a yield surface at a distance
le/m. The new surface surrounds and is “concentric” with the primary yield surface.
The implication here is that the material has been isotropically work hardened. This result
can be represented by a yield surface, which expands with stress and strain history,
retaining the same shape throughout.

Several empirical mathematical descriptions of the work-hardening phenomenon exist.

Holloman’s equation™’ is a power law relationship between the stress and the plastic
strain:

o=A(")" , (14.62)
where o is the stress, A is the strength hardening coefficient, e”is the plastic strain, and

n is the strain hardening index.™® Ludwik’s equation*®® is similar but includes the yield
stress

oY =A(e")" . (14.63)

If the material has a history of deformation, then the yield stress will be increased by a
term, which depends on the initial plastic strain e} as

o=Y+A(e; +ef)" . (14.64)

373.H. Holloman and J.D. Lubahn, “Plastic Flow of Metals,” Physical Review, Volume 70, Issue 9-10, p.
775 (October 1946).

B8A.W. Bowen and P.G. Partridge, “Limitations of the Hollomon Strain-Hardening Equation,” Journal of
Physics D, Applied Physics, Volume 7, pp. 969-978 (1974).

139, Ludwik, Elemente der Technologischen Mechanik (Springer, Berlin, Germany, 1909).
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The strain-hardening index can be evaluated by

_edo _dlog,(o)

= (14.65)
o de dlog,(e)

The index can be evaluated by examining the slope on a log-log plot of the data.

Work hardening is an important feature in correctly modeling the deformation of
materials in the plastic regime. The work-hardening term in many of the flow-stress
models has the form

Y[lrael+e)]” (14.66)

which is a generalization of Eq. (14.63). The material-specific inputs are «, 2, and e .
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CHAPTER 15

Fracture and Damage

“I lose my temper, but it's all over in a minute,” said the student. ""So is the hydrogen
bomb," I replied. "But think of the damage it produces!”

-Spencer Tracy (1900-1967)
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15 FRACTURE AND DAMAGE

The main objectives when modeling fracture/damage are to predict where the
fracture/damage will occur (see Rinehart and Pearson'*® for an introduction of fracture
under impulsive loading).

The fracture and damage models are able to describe the initiation and propagation of
these properties. PAGOSA possesses two models for fracture and damage: (1) the
Johnson spall model for investigating the ductile hole growth for materials under tensile
stresses and (2) The Johnson-Cook (J-C) damage model for investigating the fracture
characteristics of metals under impulsive loads.

The J-C damage model predicts fracture from dynamic loading conditions. The
formulation is similar in form to the flow-stress model described in Section 14.4.4.

The Johnson spall model predicts the growth of porosity (distension) in a material. One
of the simplest forms of mechanical spalling is the plate impact: two waves of
compression are reflected on the free-surfaces of the plates; they then interact to generate
a region of high-tension stress inside one of the plates. Voids are not created by
PAGOSA. However, the region of spallation and its volume can be estimated.

15.1 Johnson Spall **

The amount of spall with this model is described by a distention ratioe . If the solid
volume of a material (with all the pores removed) is defined as V, and the actual volume
of the material (with pores) is V , then the distention ratio is defined as

a=V1V, distention ratio. (15.1)

In terms of porosity, we have
p=2"= porosity. (15.2)

The ductile void growth can be described by a model that relates the pressure P and the
distention ratio « . The equilibrium P- « curve is given by

2Y a
P =———Ilog,| — | . 15.3
WIS s

0John S. Rinehart and John Pearson, Behavior of Metals under Impulsive Load (Dover Publications Inc.,
New York, New York, 1954), pp. 124-145.

1413.N. Johnson, “Dynamic Fracture and Spallation in Ductile Solids,” Journal of Applied Physics, Volume
52, Issue 4, pp. 2812-2825 (1981).
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If the pressure is negative and below the pressure determined from the equilibrium curve
for a given « , then voids will grow. Otherwise, the distention ratio will not be allowed to
increase any further. It is important to note that the value of the distention ratio o must
be greater than or equal to one. Also, for void growth to begin, the initial distention ratio
of a material must be slightly greater than one. For example, the initial distention ratio for
oxygen-free, high-conductivity (OFHC) copper*** has a value of 1.0003.

143

The time evolution of the distention ratio is given by integrating the rate™” equation as
0 Ap=>0
Y = and 154
“ { —@I ) (e -D)*a(@-1)" Ap<0 (154)
Ap= P+ﬂlogei , (15.5)
a a-1

where the constante, has replaced %Y, P is the material pressure, 7 is a coefficient
relating to the resistance to plastic flow void growth, and «, is the initial distention ratio.

The yield and shear moduli are modified to reflect the evolving porosity in the material.
The moduli are modified above the threshold stress value of Ap > 0. Then

Y >Y/a and (15.6)

G—>G(1—¢)(1—2¢;1:::] , (15.7)

where v is the Poisson ratio of the fracture material. The form of the shear modulus is

attributed to Mackenzie.*** The Johnson spall model may be used with any flow-stress
model described in Chapter 14 (Sections 14.4.1 through 14.4.7).

The Johnson spall model requires four inputs: «,, a7, and v.

The formulation restricts the Poisson ratio to values of £ <v < 3.

“21bid., p. 2821.

“bid., p 2817, Eq. (32).

1443 K. Mackenzie, “The Elastic Constants of a Solid Containing Spherical Holes,” Proceeding of the
Physical Society, Section B, Volume 63, Number 1, pp. 2-11 (January 1950).

156



Chapter 15 Fracture and Damage

15.2 Johnson-Cook Damage **

The damage in the cell is defined as

(15.8)

where Ac is the increment of equivalent plastic strain that occurs in one integration step
and " is the equivalent strain at fracture. Fracture occurs when D =1.0.

The general expression for the strain rate at fracture is given by Johnson and Cook* as

g" =[D,+D,exp(D,6")][1+D,log, (¢)][1+D;T] . (15.9)
where

o~ the dimensionless stress ratio,c” =, /&, for o~ <1.5;

o, theaverage of the normal stresses;

o the von Mises equivalent stress;

& the dimensionless strain rate, & = &/£, with §,=1.0s™; and

T°  the homologous temperature, T~ = (T =T, )/ (Trar = Troom) -

The J-C damage model can be used with any flow-stress model described in Chapter 14
(Sections 14.4.1 through 14.4.7).

The J-C damage model requires 10 material inputs: D,, D,, D,, D,, Dy,

e and damage,,,, -

room! emelt’ pfail’ mm’

The spall stress p,, is an experimentally determined value for this model. The strain
makes a transition (&' ) from Eq. (15.9) to a linear expression before spalling occurs.*’
The damage threshold ( damage,,,, ) is the value of D at the onset of damage (usually set
to a value of 1.0, as stated above).

%G.R. Johnson and W.H. Cook, “Fracture Characteristics of Three Metals Subjected to Various Strain
Rates, Temperatures, and Pressures,” Engineering Fracture Mechanics, Volume 21, Number 1, pp. 31—
48 (1985).

Y1hid., p. 40, Eq. (3).

“bid., p. 46, Figure 15.
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CHAPTER 16

Crush Model

Obstacles cannot crush me. Every obstacle yields to stern resolve.

-Leonardo da Vinci (1452-1519)
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16 CRUSH

The P-a crush model is based on the published version in the CTH Eulerian code used at
Sandia National Laboratories.**® The model originally was proposed by Hermann* as a

simple way to describe the compaction of pores in a material.

The model uses a distention ratio variable, defined as
a=plp , (16.1)

where ps is the density of the solid material and p is the macroscopic material density.
The equation of state (EOS) of the porous material is determined from the EOS of the
regular solid material as

P(PE.@) =~ P(p,E) =~ PapE) . (16.2)

The 1/a factor ensures thermodynamic consistency for the EOS. This improvement in the
crushing model was originally suggested by Carroll and Holt.**® The crushing behavior
(that is, the evolution of the distention ratio in time) is dependent on the pressure.

It is assumed that the material starts out at an initial distention ratio o:
A =Pyl Py (16.3)

where py is the reference density of the solid matrix and po is the initial density of the
porous material. An initial elastic region exists up to a pressure Pe, in which if the
pressure is relieved, the distention ratio will return to its initial value.

The actual compaction region starts at the pressure Pe, and all voids are crushed out (that
is numerically, o = 1) when the pressure reaches Ps. The maximum allowed distention
ratio for a given value of pressure between those two pressures is given by

2
amax(P)=1+(ae—1)[§s_P] forPe <P <P (16.4)

18G.1. Kerley, CTH Equation of State Package: Porosity and Reactive Burn Models, Sandia National
Laboratories report SAND92-0553 (April 1992).

YS\W. Hermann, “Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials,” Journal
of Applied Physics, Volume 40, pp. 2490-2499 (1969).

1O\M.M. Carroll and A.C. Holt, “Static and Dynamic Pore-Collapse Relations for Ductile Porous
Materials,” Journal of Applied Physics, Volume 43, pp. 1626-1636 (1972).
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Crushing as a function of time follows the pressure history according to

g=de _dadb _ (16.5)
dt dP dt

As the material compacts, if the pressure is suddenly decreased at any point, the material
will behave elastically (reversibly) until the pressure again increases to the maximum
pressure for a given distention ratio. Release and recompression behaviors are reversible
until all pores are crushed out. (The term “reversible” in this case has nothing to do with
the strength model; it is only relevant to the behavior of the P-a. model. However, as an
aside, a P-a material may also have strength.)

When material is compacting, the change in distention ratio with respect to pressure is
given by

o 90 (P) (e D(P.P)
dP (R-R)

for a=a,, and P>0 . (16.6)

In the elastic region, the change in distention ratio with respect to pressure is given by

a, =a’ (1—h—12j for a<a,, and/or P<0 , (16.7)
where
hotsle=C ol (16.8)
c, o,-1

The sound speed for the fully dense solid is given by c;, and that for the elastic region of
the porous material is c.. These values are input constants for the material and model in
the code and are generally obtained from experimental data.

The distention ratio parameter must be advanced in time in the Lagrangian phase of the
code and must be advected in the advection phase. However, in the advection phase, the
distention ratio is converted to porosity, which is then advected and subsequently
converted into a distention ratio. The model is fairly sensitive to the timestep. In fact, an
internal subcycling occurs to advance the distention ratio in time in the Lagrangian phase
in smaller steps. This subcycling can be controlled by the user. However, even the overall
timestep may need to be reduced to ensure that a simulation does not go unstable. In
addition, to be even more conservative, the user should specify that there be only one
Lagrangian cycle per advection step.
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A P-o model requires six material inputs: ¢, P,,P,,c,,c,, and v ,

where

o, the initial distention ratio,

P, the pressure at end of the elastic region,

P. the pressure at which all pores are crushed out,
C, the sound speed in the elastic region,

C, the sound speed of the fully dense solid, and

1% Poisson’s ratio.

The shear modulus G and yield modulus Y can be modified by the distention ratio. This
option modifies the moduli by

Y >Y/a and (16.9)

G—)G(l—¢)(1—2¢;1::t] , (16.10)

where the porosity is computed from the distention ratio [i.e., g=(a-1)/ a].

The SESAME EOQOS ramp treatment (see Section 6.7.1) cannot be used simultaneously
with the crush model. The two forms of handling porosity are inconsistent with one
another.
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Appendix A The Constitutive Equations
APPENDIX A. THE CONSTITUTIVE EQUATIONS

We assume that the deviatoric stress rates are a linear function of the velocity
gradients.”***? In tensor notation,

. 0 ..
Sy = A o and Ljkn=xy.z . (A1)

n

where A, is an arbitrary fourth-order tensor. First decompose the gradient into its
symmetrical and antisymmetrical parts:

u
Z_k:ékn+an =e.kn _%”knm wm ! (AZ)

n

where 7, is the Levi-Civita pseudotensor."*® Assume that the A, tensor is isotropic:*>*

Ay =G 8y 6y, +G' 5,6y +G" 6,6, (A.3)

in™ jk

where G,G’,and G" are scalar coefficients. The tensor A, is symmetrical in the indices
i and j because the stress deviator is symmetrical in these indices. This symmetry implies
that G' =G . The tensor is also symmetrical in the indices k and n. This symmetry results
in the antisymmetrical portion of Eq. (A.2) vanishing'® (i.e., z,,. = 0):

S;=G6,+Gé,+G"5,6, =2G§,+G"5, 6, - (A4)
The stress deviator tensor is traceless, and its derivative is also traceless. Thus,
S, =2G¢ +3G"¢, =(2G +3G") &, =0 . (A.5)

Therefore, the isotropic constitutive relation for deviatoric stress and the linearly elastic
small strains are

Sij =2G(¢;—30;6,)=2G(&~-36,V-u) . (A.6)

Equation (A.6) can be integrated in time, and the constant of integration is zero. Assume
the physical argument that no strains implies no stress.

IR de Saint-Venant, “Note & Joindre au Mémoire sur la Dynamique des Fluids,” Comptes Rendus,
Volume 17, pp. 1240-1244 (1843), originally presented on April 14, 1834.

152G.G. Stokes, Transactions of the Cambridge Philosophical Society, Volume 8, pp. 287 (1845) (also
appears in the collected works G.G. Stokes, Mathematical and Physical Papers, Volume I, p. 75).

153G. Arfken, Mathematical Methods for Physicists (Academic Press, Inc., Harcourt Brace Jovanovich
Publishers, Orlando, Florida, 1970), p. 132. It is sometimes called the permutation symbol.

1544, Jeffreys, Cartesian Tensors (Cambridge University Press, New York, New York, 1979), pp. 66-70.

%1t is assumed that a deviatoric stress cannot be created by a pure rotation.

167



Appendix A The Constitutive Equations

This page intentionally left blank.

168



Appendix B Initial Volume Fraction Calculation

APPENDIX B. INITIAL VOLUME FRACTION CALCULATION

The initial volume fractions ‘™¢ for each material are determined by sampling each
Eulerian cell. If a cell contains no interfaces, then the cell is called a pure cell and
contains only a single material. The volume fractions are zero for all materials, except for
one that has a value of unity. Most of the cells in an Eulerian simulation are pure.

If a cell contains more than one material, then that cell is selected for further sampling.
This first sampling pass seeks to identify the multi-material (mixed) cells and is the
coarse particle sampling. A second pass of sampling actually determines the numerical
approximation for the value of the volume fractions for each material in the mixed cells
and is the fine-particle sampling.

Consider the example of a multi-material cell shown in Figure B.1. If a 4 x 4 array of
sampling particles is distributed™® in the cell, then the first sampling pass would identify
the cell as mixed. The second pass, using the same sampling density, would conclude that
the material volume fractions are

(material1) + _ 6 (material 2)  _ 8 (material 3)  _ 2
=1 $=1. and =%

Volume Fractions

VOF=6/16

L VOF=8/16

Figure B.1. Volume fractions of a mixed cell containing three materials (four interfaces).

%In the original version of PAGOSA (circa 1992), the sampling particles were distributed randomly.
However, it was found that symmetries were broken by using this method. A symmetric body would
have more mass on one side of the symmetry plane than the other.
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Appendix B Initial Volume Fraction Calculation

A different sampling density would result in different initial volume fractions. The user is
responsible for deciding the cell size, coarse- and fine-sampling densities, and what
features are important to capture in the initial geometry of the simulation.

Each material in the cell possesses an interface. For example, in Figure B.1, the first
material has an interface represented by the blue line. The second material has two
interfaces: the green line and the blue curve. The third material has a single interface
represented by the green curve. In total, four interfaces are shown in Figure B.1.

The curved surfaces of the input body definitions will be represented by planes in each
cell. Each material interface in a cell is represented by a plane (see Appendix C).
Therefore, a part of the geometry information is lost in the surface reconstruction
algorithm. Small features less than a cell thick can be represented using this technique.
However, some pathological cases are of note.

Consider the case shown in Figure B.2, with four materials. In this case, one of the
materials has an orientation and a thickness that escape detection by our sampling
process. The cell would be identified as mixed during the coarse-particle sampling. How-
ever, only three of the four materials would be identified, which requires that the
sampling density be chosen with some care and a detailed knowledge of the parts in the
simulation.*® The volume fractions for this sampling density are

Pathological Case(s)

VOF=10/16 A ¢ ¢ ¢

(material 1) 4 __ 10
¢ 16
(material 2) + __ 2
¢ 16

(material 3)¢ —0 _ 0
16

(material 4)¢ _ 4
16

VOF= 0/16
=0=?
VOF=4/16
Figure B.2. A pathological case where some materials can go missing from a cell.

>"The total mass could be numerically correct. However, the mass distribution could be wrong.
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Appendix B Initial Volume Fraction Calculation

The thin layer of material (material 3) is missing, and the volume fraction for material 4
is also incorrect.

Doubling the fine-particle density (8 x 8 instead of 4 x 4) would capture part of the
missing material and result in a better balance between the representations of materials 3
and 4. Clearly, a tradeoff between computation and simulation fidelity is evident. A
higher density of sampling particles means a longer computation. Eventually, the user is
faced with the situation of diminishing returns. The extra accuracy is not worth the
computational effort.

This Monte Carlo technique is used to compute the initial volume fraction for a
simulation. As the simulation proceeds, the volume fractions for each cell are recomputed
based on the advection volumes (see Chapter 4 and Appendix E for details about the
advection algorithm).

Finally, a numerical example of the particle sampling technique is shown in Figures B.3
and B.4. An offset circle is placed in a uniform 4 x 4 Eulerian mesh. The exact volume
fractions and ideal interfaces are shown in Figure B.3.

00 00 00 00 0.0 0.0 0.0 0.0
0315 091322 | 081322 31515 0314 081244 | 091320 | 031762
N
091322 1.0 1.0 091322 /091363 1.0 1.0 091242 \
091322 1.0 1.0 091322 \ 091320 1.0 1.0 091363 /
Figure B.3. Exact volume fractions and ideal Figure B.4. Reconstructed interfaces and
interfaces. The ideal values for volume fractions based on the
the volume fractions are0.0%, PAGOSA initial volume fraction
algorithm with a small sampling
1,1 1. 9 ;
Lr-1/3+1~3151467 %, density.
141 (3 1~ 0
s +343-1~91.322295 %, and
100.0%

171



Appendix B Initial Volume Fraction Calculation

This page intentionally left blank.

172



Appendix C Youngs Interface Reconstruction

APPENDIX C. YOUNGS INTERFACE RECONSTRUCTION

The following is based on publication LA-UR-07-2274.°® The complete derivation is
presented in that document.

C.1 Analytic Geometry
Consider the equation of a plane in Cartesian R® space:

WX+ Y+ z—p=0 . (C.1)
Define the following quantities:

direction vector 1=y, 1y, 145) , and
distance parameter  p

The sense of xand the sign of p are not defined by the equation. For example, we could
say that

X = 1Y — 2 —(=p)=0
so that the direction of x and the sign of p are reversed.
The direction cosines of the normal to the plane are

lul :UZ ﬂs (CZ)
2 2 2! 2 2 2! 2 2 2 '
\/,Ul U, T \//ul U, T \//ul U,

and the distance from the coordinates’ “origin” to the plane is

P . (C.3)

AL+ +

Equation (C.1) divides all space into two regions. The direction vector points into the
region “in front of the plane” and away from the region “in back of the plane.” Given a
pointﬁz(xo,yo,zo) , then

18Chuck Zemach, “Notes on Calculation of the Volume of a Stretched Cube behind a Truncating Volume,”
Wayne Weseloh, editor, Los Alamos National Laboratory report LA-UR-07-2274 (March 1, 2007).
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Appendix C Youngs Interface Reconstruction

* X, lies behind the plane if X+ 1Y, + 14,20 — p <0 and
e X, liesin front of the plane if Xy + 1Yo + 1,20 — p >0

Suppose that X, = (X, ¥y, Z,) isapointand (u, p) is a plane. Define a right tetrahedron
with vertices P,,P,,P,,P, as follows (see Figure C.1):

o Set B =(X,Y0:2)-
e Draw lines through P, parallel to the X, y, and z axes.
e Define P, = intersection of the z line with the plane.

IfP, =(X,y,z),thenx=x,,y=Y,,and gz X, + 1,Y, +1,2—p =0, 0

z=[p—mX =Yl I 115

and
P, = (X Yo:l o= 1% = 11,Y0 1 1 115)

Plane
Hx+py+pz—p=0

PY

Py= (X, ¥0.20) Py

Figure C.1. Tetrahedron bounded by the (1, p) plane.

Similarly, P,,R, are the intersections of the x line and y lines into the plane,
respectively, and

Po =([p— 1Yo — 152, 114, Yy,2,) and
P =X [o— 11X — 13201 1145, 2)

Define

T, =0, if x, is in front of the plane,
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Appendix C Youngs Interface Reconstruction

T, =volume of the tetrahedron if x, is in back of the plane.
Then for x, in back of the plane, the volume of the tetrahedron is*

n:%;agx%axag , or

Toz(p_ILLlXO_ILIZyO_ILl3ZO)3 . (C.4)
|64 14, 15|

In this definition,
e T,isalways >0.

e T,=+oo ifanyoneof y,u,, u;=0, which corresponds to the (4, o) plane being
parallel to one or more of the X, y, and z axes.

o 4,1ty iy, p CAN have any sign, but |z u, 11, |>0.

e The expression forT, is unchanged under a (positive)
scaling ., — A%u . p— A’p.

C.2 Distance Parameter p
Consider a volume fraction v containing the origin and satisfying the relation

0<v<

N

The case where <v<1 is obtained by symmetry (discussed below). The plane is
described by the direction cosines (4, i, 1) , Which satisfy

Oy <p,<p, and g+ +p5 =1

The equation for the plane is X+ 1,y + 1,2 =p and has five different solutions for
p(u,Vv), which correspond to the five ways of slicing a cube with a plane.

The variable mask is logically true when a particular following case applies.

19 E. Dickson, “Note on the Volume of a Tetrahedron in Terms of the Coordinates of the Vertices,” The
American Mathematical Monthly, Volume 14, Number 6/7 (June-July, 1907), pp. 117-118.
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Appendix C Youngs Interface Reconstruction

Case 1. Triangular Section

Mask: 0<v<v,,where v, = s’ /6,41, With g, 0.

7 Solution: p =[6zu,4,v]"? (C.5)
Ifz, =0, then v=0.
Triangular
Case 2. Quadrilateral Section, Type A
Mask: v,<v<v,, where
P vy = [:“12 +31, (14 _M)]/Gﬂzﬂs with g, #0.

Solution: p:%[,ul +1/8,uz,u3v—%,uf} (C.6)

There is no solution if 1, =0. And z, =0 is acceptable.

Quadrilateral A

Case 3. Pentagonal Section

Mask: v,<v<v, if M+ Ly, > f (4, #0)

v,<vsv, if pu+u, <y

< In this last mask, if x =0, then v, =v,, where
3 3 3
Pentagonal V. = Hs — (s — 1) — (15— 1) and
3 ’
648, 15
Vo= (s + 1)1 215
Solution: p = g4 + 1, =2/ 241, cos[ (0—27)/3] , and (C.7)

0= COS_{:%(M—F'UZ _2ﬂ3v):l
e
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Case 4. Hexagonal Section

Mask: v,<v<3 if o +p,>p (1,#0) .

Solution: p = p, -2y ps —% cos[ (6-27)/3] ,and

po =%+, + 1) =p(v=3) ,and (C.8)
Hexagonal 0 =cos™ Buu oty (1-2V)
4(p5—3)"

Case 5. Quadrilateral Section, Type B

Mask: v,<v<3 it o+, < py

Both x4, =0and z, = 0 are acceptable.

Solution: p=, V+3 (14 +4,) . (C.9

Quadrilateral B

C.3 p Symmetry
For the case of 3<v<1, the solution is obtained by
PV)= P —p(L=V) (C.10)
where
Prmax = Ho T Hy T 13
C.4 Volumev

Given a vector 4 normal to a plane passing through a unit cube and which need not be
normalized but which satisfies

O<p<p,<p

and given p, where p/|u| is the distance from the origin to the plane and which
satisfies
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Appendix C Youngs Interface Reconstruction
0<p <P

where
Prax =t Tl + 1y

the case of $ p,., <2 < P 1S Obtained by symmetry (discussed below).

The volume fraction behind the plane that contains the origin has five different solutions
corresponding to the five ways of a plane slicing a cube.

Case 1. Triangular Section
Mask: 0<p<y, ,
7 where
>0,
. 3
Triangular Solution: v(p) = P (C.11)
614141, 114
Case 2. Quadrilateral Section, Type A
Mask: w<p<u,, ,
where
/
#, >0
Quadrilateral A 3,73 )
Solution: v(p) = Bp —3mp+m) (C.12)
614,15
Case 3. Pentagonal Section
Mask: s, <p<min(g + i, 14,) With 2, >0 .
3 _ 3 _ 3
- Solution: v(p) = P =(p=t) ~(p=i) (C.13)
61418, 185
Pentagonal

178



Appendix C Youngs Interface Reconstruction

Case 4. Hexagonal Section

Mask: 1, <p<ip. M+ >y, and g >0

Solution:
3 _ _ 3 _ _ 3 _ _ 3
v(p)=2 (p—m) —(p—1,) —(p—1t5) (C.14)
61411, 1
Hexagonal
Case b. Quadrilateral Section, Type B

Mask: 1+ 1, <p 3 pra With 1+ 11, <

2p— (4 + 1) (C.15)

Solution: v(p)=
21,

Quadrilateral B

C.5 v Symmetry

For the case of £ p,.. <2 < P » the solution is obtained by

V(p)zl_v(pmax_p) ) (C16)

where

Prax = M+ Hy T [y
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Appendix D Lagrangian-Phase Equation

APPENDIX D. LAGRANGIAN-PHASE EQUATION

Consider the expansion of a fluid. Let V be the volume of the fluid element, bounded by
asurfaceS . Let S move with the fluid so that it always contains the same particles (i.e., a
Lagrangian surface). Let u be the velocity. Then u-n is the component of the velocity
along the outward normal vector n. As the fluid moves, a point on the surface is
displaced.

160

The Lagrangian equation for mass continuity " is given by
op
—+pV-u=0
o’

The mass within the bounded surface S is m. The mass density of the material within the
surface S is simply

p=m/Vol

Substituting the expression for density into the continuity equation, we find that

L ovol oo (D.1)
Vol ot

This expression in a finite difference form is

1 Vol™ —vol"
Vol" At

=(V-u)™t or (D.2)

Vol™ = Vol" [1+(V-u)At] | , (D.3)

where the superscripts refer to the (n) and (n+1) timesteps. The cell may contain multiple
materials, each with their own individual volumes. The Lagrangian volume is the sum of
all those individual volumes. The entire cell volume evolves subject to the expression in
Eqg. (D.3).

An alternate way of understanding Eq. (D.3) is by a first-principles derivation.

Consider the expansion of a fluid element. Let V be the volume of the fluid bounded by a
surface S. Let S move with the fluid so that it always contains the same material. Let u,

1%0 See Eq. (4.11) in Chapter 4 (Operator Splitting).
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Appendix D Lagrangian-Phase Equation

be the local fluid velocity. Then u; n, =u-f is the component of velocity in the direction
of the outward normal. As the fluid moves, a fluid element on the surface is displaced, as
shown in Figure D.1. The normal displacement in an infinitesimal time dt is u, n, dt.
Thus, the volume of the thin shell between the surface S at time t and the surface formed
later at time t + dt is

&Volume - dt fu;n d*x . (D.4)

udf «

Figure D.1. Lagrangian expansion of a fluid.

However, this volume is an increase in the volume V, and so we have

%?:Iuinidzx:ju-ﬁdzx:'[v-ud& (D.5)

by Green’s theorem. Partition the volume Vol, and consider a sequence of volumes, all
enclosing point P. Let the volumes shrink to point P. Then we have

im iijOI:Iimi V-ud®x=V-u (D.6)
vol-0 \/ol 6t vol-0 \/ol

evaluated at point P, exactly as was previously found in Eq. (D.1). The divergence of the
velocity at point P is the expansion of the fluid at point P.
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APPENDIX E. FIRST-, SECOND-, AND THIRD-ORDER ADVECTION

Consider the x-advection-phase

X X, X conservation of mass equation.
nAx « The one-dimensional equation is
U
: . : 0 0
i-2 i-1 i+4 i+3 PLLyP_o . (E.1)
o o o o ot oX

If we assume that the velocity U
is a constant, the finite difference
£=2 &=1 £=0 &=-1 E=-2 form can be written as

1 — —
P T% —P in—% P —Pia
+U =
Figure E.1. Cell advection diagram. At AX

O 1

where the p, densities are evaluated at the cell boundaries, as shown in Figure E.1.
Solving for the density at the new time, we have

At At
Moot U (B )=, —n(P" =P, n=Ut E.2
i-1 i-1 X ( i |71) -1 77( i |—l) 77 X ( )

The problem is to find the cell boundary densities o in terms of the surrounding cell-
centered densities. The mass flow through the cell boundary located at index i is equal to
p.U A, At, where A, is the cell boundary surface area.

First we choose a nondimensional spatial variable®

E=(x, —x)/AX . (E.3)

The velocity at& =0 is assumed to be positive.'® The time indices will be dropped for
the remaining portion of the derivation.

The density is assumed to be a polynomial function®® of the dimensionless spatial
variable (i.e., p=a+b&+c&?). The increasing orders of advection correspond to the
increasing degrees of the density polynomial. Note that the degree of the polynomial does
not necessarily correspond to a formal order of accuracy.

8For simplicity, assume a constant cell size. Variable zoning requires slight modifications to the
equations.

1%2This is only one case of the trichotomy. A negative velocity represents another case and is not derived
here. The zero velocity case is trivial.

163Richard L. Bowers and James R. Wilson, Numerical Modeling in Applied Physics and Astrophysics
(Jones and Bartlett Publishers, Boston, Massachusetts, 1991), pp. 238-243 and Appendix C.
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Appendix E First-, Second-, and Third-Order Advection
E.1  First-Order Advection

The density is assumed to be a constant function over the range £ =[0,1] as
p=a . (E.4)

The average density of the advection volume (£ =[0,7] ) is assumed to be the density at
the cell boundary. The cell boundary average density is

_ 17
pi="|pdi=a . E5)
%
The cell centered density is
1
pif%:'[pdéza . (E.6)
0

The coefficient a is thus known. First-order advection, also called upwind advection or
the donor cell method, is'®*

5 =0 First Order . (E.7)

>
Il
Tb

Upwind differencing is simple but known to be diffusive. The first-order method often
gives poor results.

E.2 Second-Order Advection

In this case, the density is assumed to be a linear function over the range & =[-11]. The
polynomial is

p=a+ bf ) (E-8)
The average density of the advection volume is assumed to be the density at the cell

boundary. The advection density is assumed to be constant in the range £ =[0,7]. The
cell boundary average density is

_ 17
pi:;Ipd§=a+%b77 : (E.9)
0

164Bram van Leer, “Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to
Residual-Distribution Schemes,” Communications in Computational Physics, Volume 1, Number 2 pp.
192-206 (April 2006).
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The cell-centered densities are
0
Pii = jpdf =a—+b ,and
-1
1
Piy= Ipdf =a+3b
0

The coefficients a and b are easily evaluated. They are
=3 (pi% +pi+%) , and

a
b =P~ pn%

The cell boundary density is
Ei :%(pi,%+pi+%)+%(pi,%_pi+%)77 )

which can be written as

pi=p+3(1-1)(p.—p) Second Order.

(E.10)

(E.11)

(E.12)

Equation (E.12) is second-order advection. This method is less diffusive than the first-

order method, but nonphysical oscillations and negative densities often occur.

It is interesting to note that in the limit as 77 — 0, the second-order method results in the
cell boundary average density being just the average of the densities on either side of the

boundary.

E.3 Third-Order Advection

In this case, the density is assumed to be of the form of a quadratic function over the

range of £ =[-1, 2]. The polynomial is
p=a+b&+cés
The cell boundary average density is

n
P =1fpdcf=a+%bf7+%w72
7%

The cell-centered densities are

185
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0
pi+%zj.pd§:a—%b+%c :
-1
1
Py = | pdé=a+ib+ic , and (E.15)
0
2
pi_%:jpd§:a+§b+%c :
1

We have three simultaneous equations with three unknowns. In matrix form, we have

6 3 2|a Pivv2
5|6 3 2|b Piv2
6 9 ldj|c Pian| - (E.16)

The solution of this 3 x 3 matrix equation is

a 2 5 1 pue
bl =3 -6 6 0)py,
c 3 6 3|, (E.17)

or
a= ,Di% +%(2Pi+% —,Oif% _pifg) '

b:pi_i_pi_,.; ) and
c :%(pn% _zpi—% +pi—%)

The cell boundary density is
Pi=p+5@2p, =P =P )30~ P )N +3 (P~ 20+ )T

=Py +G=3n+50°) (P — L)+ G—51) (P — P 5) -(E.18)
=Py +2A=mEC=-m(p., - ) +30+m (o —p5)]

The third-order method yields a cell boundary density of

P =Py +sU=ml@=m)(p,, - )+ A+m) (P, = p5)] Third Order .
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The third-order method is less diffusive than the second-order method but still exhibits
some minor problems with negative densities and nonphysical oscillations. These
problems can be eliminated by using the gradient limiters discussed next.

The methodology presented here presumably can be extended indefinitely. However, the
higher-order advection schemes require increasingly more complexity and more distant
cell information.

For all the possible advection methods discussed, the density at the cell boundary can be

written following the style of Youngs:'®

B =p, +1(1-7)AXD, (E.19)

where D, =0p/ox has the role of the density gradient. This formalism provides a
concise way of understanding the various methods. The gradients are

First Order: D=0 , (E.20a)
Pir ~ P
Second Order: D,=——+ ,and (E.20b)
AX
— Pii~ P Pi_r —Pis
Third Order: Y Can/) R SR B /) RGE S (E.20c)
3 AX 3 AX

The higher-order methods require more information to construct an approximation to the
density gradient at the cell boundary.

A physical interpretation of the above equations can be gained by considering a simple
example. A material of uniform density is moving with a positive velocity through the 1D
Eulerian mesh. In this case, all the gradients are zero. First, second, and third orders give
the same answer—simple downwind advection (donor cell advection). However, this
advection is only first order! First-order advection gives the correct answer in this simple
example. The cell boundary densities are the same as the cell-centered densities.

Next consider a square pulse with a uniform density moving with a positive velocity in a
1D Eulerian mesh. The top of the pulse exhibits the same behavior as described in the
previous example. Locally, the density gradients are all zero. Again, the result is first-
order advection. The gradients will be nonzero only near the edge of the pulse. The finite
difference gradients can capture the infinite slope at the edge of the pulse only partially.

%David L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortions,” Numerical
Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors (Academic Press, London England,
1982), pp. 273-285.
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The square pulse will smooth out over many advection steps. The higher-order advection
methods become important when the density gradients are large. The numerical advection
of a square pulse is shown at the end of this appendix.

E.4 Gradient Limiters and Monotonicity®¢’

The choice of advection order depends on the local density gradients. The third-order
method is clearly the best choice in most situations. In fact, it is the default advection
method used in PAGOSA. However, the third-order method is occasionally nonphysical.

Downwind e—— Dnw= (PH% - P,,%)"Ax

Upwind « -+ Upw=(p_ —p_ )/ Ax

¥ Order oo %(2—q)\an‘+§(l+r])‘Upw|

Figure E.2. Upwind, downwind, and third-order gradients.

The nonphysical behaviors can be eliminated by choosing D, such that 168

D, = min( 2‘,0“%—,0- ,

_1
=3

o 2p Ay

(E.21)

e ral SR e

)/ AX

The result is that in some cases the density gradient can be first, second, or third order,
depending on the exact local density distribution. Figure E.2 shows this option

1%6Bram van Leer, “Towards the Ultimate Conservative Difference Scheme IV. A New Approach to
Numerical Convection,” Journal of Computational Physics, Volume 23, pp. 276-299 (March 1977).

167Bram van Leer, “Towards the Ultimate Conservative Difference Scheme V. A Second-Order Sequel to
Godunov’s Method,” Journal of Computational Physics, Volume 32, pp. 101-136 (July 1979).

1%8 David L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortions,” Numerical
Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors (Academic Press, London England,
1982), pp. 277-285.
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graphically.*® It is a powerful and convenient way of understanding the various limiters
and monotonicity conditions that are needed to realize fully the third-order advection
method.

It is important to note that the gradients are limited and not the densities themselves. This
gradient limiting ensures that the conservation law is not violated.

In general, the van Leer limiter allows for the largest possible gradient without
oscillations and therefore the least amount of diffusion. This choice of nonlinear cutoff of
the density gradient also ensures that the new density gradient (at the next timestep,
n-+1) will have the following property:

n+l <

min(pl,, o) < oy smax (o', p1,) (E.22)

This condition guarantees that when a monotonic initial value distribution is advected,
the resulting distribution is also monotonic.*”

In highly discontinuous flows, the value of D, is modified to prevent undershoots and
overshoots. A multiplicative factor is constructed such that, as shown in Figure E.3,

S _ sign( ){o (P =P Py —p5) <0 €23)
=sIgn pi+1 _pi_; . .
z 2 1 (pi+% _pi,%) (pi,% _pi,%) >0

If the upwind and downwind gradients differ in sign, the factor S is set to zero.

(a) (b)

Figure E.3. The Youngs/van Leer gradient limiter. When (a), the gradients are monotonic, or
when (b), the gradients indicate that the density has reached a local maximum
(minimum).

169 Sean Clancy, Los Alamos National Laboratory, personal communication (June 5, 2008).
0Randall J. LeVeque, Numerical Methods for Conservation Laws, Second Edition (Birkhauser Verlag,
New York, New York, 1992), pp. 183-187.
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The sign factor for the value of S establishes the local sign of the gradient. The Youngs/
van Leer gradient limiter suppresses negative densities or reduces the density gradient to
zero if an extremum is reached or if the slope does not agree with the trend in density
averages.

An example of the effect of the gradient limiter is shown in the last section of this
appendix. The negative densities and other nonphysical behaviors readily apparent in the
third-order method are suppressed using the Youngs/van Leer gradient limiter.

E.5 PAGOSA Advection

All of these pieces are brought together in PAGOSA. Start with the following definitions:

Don=p", donor cell,
2

Upw=p', —p", upwind gradient, and

n

Dnw = e pi”_% downwind gradient,

and we define the following coefficients

& = oVol'; /Vol';
g, = 5mi_% / m_,
&=01+¢) /6
£,=(2-¢)16

The value 77, defined in Eq. (E.2), sometimes called the Courant number, can be related
to the fractional advection volume. The Courant number is less than unity because the
advection volume must be less than the original cell volume. The Courant number, at
index i, is

At _UAt A, Vol advection volume
' 'Ax Ax A, Vol , cell volume

2

2

The cell boundary density, with all factors included, is
p. = Don+S (1-& ) min(|Upw|,|Dnw|, &, |Upw| + &, |Dnw|)

The interface (cell boundary) mass flux is

om, =oVol , p
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The updated cell mass is

n+l

mass;’, = mass’, +om_, —om,
2 2

The new cell mass is the old cell mass plus the mass entering from the left boundary
minus the mass leaving through the right boundary. Remember that we have assumed that
U, >0; therefore, in every cell we have mass entering from the left and leaving to the
right.

The updated cell density is*"*
Pl =mass™! /(Vol”, +sVol", —sVol”, )
The new cell density is the new cell mass divided by the new associated cell volume.

Next, the specific internal energy is advected. The process is basically the same as that
described above, with a few exceptions. The specific internal energy is advected by mass
and not by volume, as was done previously.*’ Start with the following definitions:
Don=E, donor cell,
Upw=E", -E", upwind gradient, and

Dnw=E", -E", downwind gradient.

The cell boundary specific internal energy is
E, =Don+S (1-¢,) min(|Upw|,|Dnw|, &, |Upw|+ &, |Dnw|)

where S has the same form as before, except that specific internal energy functionally
replaces density in that equation [Eq. (E.23)].

The updated cell specific internal energy is

Ein_+%1 = (Ein_%pin_%VOIin-% + 5mi—l|§i71 - 5mi El) / mass]"y

i1
1=

This equation completes the advection-phase of the basic hydrodynamic variables.

71 The temporal indices (n) and (n+1) refer to before and after the advection sweep.
2Roger B. DeBar, “Fundamentals of the KRAKEN Code,” Lawrence Livermore Laboratory report UCIR-
760, pp. 13-14 (March 1974).
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Appendix E First-, Second-, and Third-Order Advection

Each of the finite difference equations has stability*” and convergence considerations,

dissipation,*™ dispersion,*” and phase errors.”® These analyses and considerations are
beyond the scope of this work. Please consult the literature.

The cell-centered quantities (e.g., strain rates, stress deviators, and elastic distortional
energy) are advected by mass in the same way that the specific internal energy is
advected. To prevent small values from being advected through the Eulerian mesh,
various cutoffs are imposed on the advection algorithm. If the advection volume is too
small, then it is set to zero.

The final section of this appendix gives a numerical example of advecting a square pulse.

Robert D. Richtmeyer and K.W. Morton, Difference Methods for Initial Value Problems, Second Edition
(Interscience Publishers, Malden, Massachusetts, 1967), pp. 320-330.

Dale R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (Springer-
Verlag, New York, New York, 1999), pp. 72-86.

5 awrence L. Tackas, “A Two-Step Scheme for the Advection Equation with Minimized Dissipation and
Dispersion Errors,” Monthly Weather Review, Volume 113, pp. 1050-1065 (June 1985).

1%\W.P. Crowley, “Numerical Advection Experiments,” Monthly Weather Review, Volume 96, pp. 1-11
(January 1968).
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E.6 Advection Example: Advection of a Square Pulse

An example of the advection of a square pulse is provided in Figure E.4.

Figure E.4. Advection of a square pulse.

The results of a test problem using the advection equations are shown in Figure E.4. A
square pulse with a uniform constant velocity is propagated through 300 cells. The exact
solution is shown in black in each case. The initial square pulse is 20 cells wide, with a
density of unity. The Courant number 7 =0.100.
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Appendix F Initial Timestep Calculation

APPENDIX F. INITIAL TIMESTEP CALCULATION

The timestep used for each cycle must be less than the maximum stable timestep for each
cell in the simulation. The initial timestep can be specified by the user for the simulation
and must satisfy the following conditions:

At® < min Ax , Ay : Az : (F.1)
max(|U|+c)  max(|V|+c)  max(|W|+c)

Two equations that are useful for estimating the initial timestep are the equations for the
sound speed of an elastic solid:

: equivoluminal wave propagation speed and (F.2)

C, = , irrotational (shear) wave propagation speed , (F.3)

where x is the bulk modulus, G is the shear modulus, and p is the mass density. In the
case of solid materials, the initial timestep can often be computed by

o min(Ax,Ay,Az)
max (c,,C, )

(F.4)

When the simulation involves HE, the sound speed for the undetonated explosive is set to
3D, where D is the explosive detonation velocity. The timestep for the explosive is then
given by

min(AX,Ay,Az
At° < safec ( 3Dy ) , (F.5)

where safec is the Courant safety factor described in Chapter 9.
The initial condition should be chosen by the user to be much smaller than any of the

above criteria. The timestep should “creep up” to a stable timestep determined from the
most restrictive criterion.
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Appendix G Multi-Material Interface Reconstruction for Advection

APPENDIX G. MULTI-MATERIAL INTERFACE RECONSTRUCTION FOR
ADVECTION "7

G.1 Reconstruction

For each sweep of the advection phase, it is necessary to compute the volume fractions
that will be advected in that sweep. The advection volume may contain several materials,
as shown in Figure G.1.

AVol
Vol
f—/\ﬁ

£= = advection volume fraction

3
\\

iy
flux direction <j ) \
A,

(AVol<Ocase ) i
terf;
Aca

o
e
=

Figure G.1. The advection volume (shown in yellow) contains three materials to be advected.
The flux direction in this case is negative.

The main object of this process is to find the advection volume for each material in a cell
given the advection volume and the volume fraction of each material in the donor cell
and its 26 neighbors. The notation for this appendix is

v = donor cell volume,
Av = advection volume,
Av, = advection volume for the material (m),
£ = Av/v advection volume fraction,
vV, = donor cell volume fraction of material (m),
<v L= total volume fraction up to the m™ interface,
<vp> = portion of <v) contained in the advection volume,
m m
n, = vector normal to the m™ interface, pointing out of the volume <v> , and
m
<Av>m = <Vp>m Av total advection volume up to the m™ interface.

Rick Smith, Los Alamos National Laboratory, personal communication, March 15, 1991.
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Appendix G Multi-Material Interface Reconstruction for Advection
The procedure for calculating the individual material advection volumes is to

e calculate ¢

e initializeall(v) =0 ,

e sum over the number of materials (m) (except for the last material):
o increment the sum and obtain (v)

calculate p,, from the gradients of (v}m (26 neighbors + donor) ,
o calculate <Vp>m (depends on &, p,, and (V) ) ,
o calculate Av, =(v,) Av—(Av)  ,and
o determine a new value of (Av) = <Vp>m AV

e end of material loop (m) , and

o calculate the last material AV, =AV—(AV)__

For the Av >0 cases (i.e., flux through the right face of the cell), we must ensure that the
donor cell quantities (in the cell to the left) are used. Also, it is necessary to replace
& = 1—¢ and substitute the advection volume fraction with its complement.

G.2 Volume Fraction Identifier

The idea is to compute the volume fraction of the advected portion of a material on one
side of a plane that passes through the Eulerian cell, as shown in figure G.2.

AVol ) .
Vo‘; = advection volume fraction

f—%

&=

flux direction <j

Dy
L
2

Figure G.2. A cross section of an Eulerian cell showing a material interface with a direction
vector , a volume fraction to be advected ¢ (relative to the full cell volume Vol), and
the volume fraction of the advected portion of the material Vp.
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Appendix G Multi-Material Interface Reconstruction for Advection

In this case we know the volume of the cell (\ol), the volume fraction of the materials
behind the plane (<v>), and the direction vector associated with the interface (u) and
which points out of the material that lies “behind” the plane.!”® The volume fraction of
the advected portion of the material is what is to be computed (<v,>) and is defined
relative to the full cell volume.

In the derivation, if we assume that the flux direction is for the positive flux, the solution
can be obtained by treating the nonadvected portion as the advection volume (see
Figures G.2 and G.3).

The coordinate system used here has X, at the origin (where X, is the vertex with the
same indices as the cell). In this derivation, it is assumed that the flux direction is
negative (through the face containing Xo).

For the case of positive flux, the solution can be obtained by treating the nonadvected
portion as the advection volume, as shown in Figure G.3.

l-¢ 3
—

Y

T
Fd
Yl
y &l
y.
AT

Fiumi
AT

E> flux direction

g
&z
3,

Xq
Figure G.3. The case of positive flux is simply the complement of the previous case shown in

Figure G.2.

If we denote the solution for positive and negative flux as Vi and V{7, respectively,
) i given i )
then V™ is given in terms of \V,~ by

VP (g)=Vol -V (1-¢) , (G.1)

where Vol is the full cell volume.

8 The direction vector for the interface is computed by a simple finite difference formula using the volume
fractions of the surrounding 26 cells.
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Appendix G Multi-Material Interface Reconstruction for Advection

The algorithm for the solution of V) is obtained in two steps (see Figure G.4):

Step 1. Find the equation of the plane p-x=d

Step 2. Transform the advection volume into a unit cube, and using the
equation for the plane in the transformed frame, find the volume fraction
V' of the material within this cube that is behind the plane (see

Appendix C for details). The solution for V, is then given by
V,=¢V'.

N

i)

Xy

Figure G.4. If we are given the volume behind the plane (v) and the unit normal y, the algorithm
will find the distance parameter d.

We begin with the detailed procedures for Step 1.

Step 1. Find the equation of the plane p-x=d in the coordinate frame x, with x, at
the origin.

Let x,, be the coordinate of the vertex toward which —p most closely points (i.e., p-X, is
a minimum for the vertex k =m}). Now translate to a frame x" with x at the origin as

X'=X=X, ., (G.2)
p-X'=d-d, ,and (G.3)
Ay =pX =3 (=] 10 )+ (Gt =| 1 )+ (s = 1) ] (G.4)
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Now normalize p to unity - a unit normal vector. Then

px'=p (G.5)
p=(d-d,)/|p| ,and (G.6)
i=p/|p| . (G.7)

By symmetry, the solution p(u,V) will not change if we replace

i>c=( i) &) (G.8)
and reorder the components of ¢ such that

0<c <c,<c, . (G.9)

The solution then is p(n,V) = p(c,V), which is derived in Appendix C and report LA-
UR-07-2274"",

The solution is then

d=|[p|p+d, . (G.10)
Note that |d|/|u| is the distance from the originx, to the plane. If d >0, then X, is behind
the plane and thus inside the material; however, if d <0, we have the situation where

X, Is in front of the plane and outside the material. The algorithm proceeds with Step 2.

Step 2. Next, transform to a coordinate system x in which the advection volume is
stretched to a unit cube (see Figure G.5):

X=(x1&x,,%) and (G.11)
g=(£,%,%) . (G.12)
Now translate these equations to a new frame x’ with X at the origin, where X, is the

vertex in the new unit cube representing the advection volume toward which —g most
closely points (i.e., g-x, is a minimum for the vertex k =m):

1Chuck Zemach and Wayne Weseloh (editor), “Notes on Calculation of the Volume of a Stretched Cube
behind a Truncating Volume,” Los Alamos National Laboratory report LA-UR-07-2274 (March 1,
2007).
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Figure G.5. The advection volume in the new coordinate system stretched to a unit cube.

X'=X-X, , (G.13)
g-xX'=d-d, =p" ,and (G.14)
dn=0-%,=%[(9, | 9. D+(9, -] 9, N+ (g~ os ) | - (G.15)

Now we need to determine the fraction v’ of the advection volume that lies behind the
plane. By symmetry, the solution v'(g,p") will not change if we permute the components
of

0<9,<09,<9;, . (G.16)

We can again use the results in Appendix C, which derivev(g,p) . The solution for v, is
then finally given by

V,=¢V'(g,0) and (G.17)
pl=d-d,=plg|+30-8)[a -[a]] . (G.18)

Note that if o' <0, then the plane lies entirely outside the advection volume and V, =0.
Conversely, if p'>p, .., then V'=1and V, =¢.

This algorithm is applied over all materials in the mixed cell, as described in Figure 4.3
and the associated text. A flowchart of that algorithm is shown at the beginning of this
appendix.
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APPENDIX H. THE CAUCHY-STOKES DECOMPOSITION THEOREM

The decomposition theorem developed by Cauchy'®® and Stokes™" states that

An arbitrary instantaneous state of a fluid particle moving along its path
may be resolved at each position x(P,t) as a superposition of (1) a
translation, (2) a rigid rotation, (3) a dilatation along three mutually
perpendicular axes, and (4) a shear motion.

Consider a velocity field u,(x,,t) of a moving fluid particle in a neighborhood of its
position x, at a time t. When the velocity field is continuous and differentiable, a Taylor
expansion of the velocity function near a point P exists and takes the form

ui

ui(xk,t):ui(P,t)+Z—(xk—P)+---. (H.1)

X;

The gradient can be decomposed into its symmetrical and antisymmetrical parts as

a6 4+0Q. =6 -1 (H.2)
ij ij ij 2°%m 'm0
6Xj

where the symmetrical tensor é is called the strain rate tensor, the antisymmetrical tensor
Q is called the vorticity tensor, and o is the axial vector associated with the vorticity

tensor. The permutation symbol r;;  is the Levi-Civita pseudotensor,'®? where

U (X, 1) =U;(P,t) +&;X; =5 775, X, @ ++++ . (H.3)
The second term can be written as

6 x =0 FEXX) + e (H.4)

117 OX 27
k

180D Augustin Cauchy, “Mémoire sur les Dilatations, les Condensations et les Rotations Produites par un
Changement de Forme dans un Systéme de Points Matériels,” in Oeuvres Complétes D’Augustin
Cauchy (Series 2) (Gauthier-Villars et Fils, Imprimeurs-Libraires du Bureau des Longitudes, de L’école
Polytechnique, Paris, 1841), Volume 12, pp. 343-367.

81George Gabriel Stokes, “On the Theories of Internal Friction of Fluids in Motion, and of the Equilibrium
and Motion of Elastic Solids,” in Mathematical and Physical Papers (Cambridge University Press,
London, 1845), Volume I, pp. 75-129 (1845).

182G. Arfken, Mathematical Methods for Physicists (Academic Press, Inc., Harcourt Brace Jovanovich
Publishers, London, England, 1970), p. 132. It is sometimes called the permutation symbol.
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This term represents a velocity field normal at each point to the quadratic surface
& XX, = constant, which contains the point P. Because the symmetric tensor possesses
three mutually perpendicular eigenvectors, the eigenvalues of the deformation tensor é
measure the rates of extension per unit length of the fluid particle at x, (P,t) in the
directions of the eigenvectors, which can always be taken as the three basis vectors of the

velocity field.

Therefore, Eq. (H.1) becomes

u (x,,t) = ui(P't)+%aiX(éinij)_”ijm X; (@, 12)+0(x*) . (H.5)

k
Thus, the first term represents a translation. Simple integration of the velocity field gives
the three translations. The second term determines the distortion of the fluid element. The
distortion consists of a dilatation (the diagonal terms of the tensor ¢,) and a
superposition of shear motions (the off-diagonal terms of the tensoré, ). The vorticity
tensor (or vorticity vector) determines the rigid rotation of a fluid particle that keeps its
volume and shape the same. The rotation axis is defined by the direction of the vorticity
vector and an angular velocity of «,, /2.

This result is profound. Each piece of the deformation can be computed independently,
and the results can be combined by linear superposition.

Consider the motion of a small mass of an arbitrary shape, such as a cube. The motion of
the cube may be divided into two types: a rigid body motion and a deformation motion.
The rigid body motion may be divided further into a translation and a rotation. As the
mass undergoes its rigid body motion, it can also deform. The deformation of the mass
can be completely specified by describing the dilatation (volumetric expansion or
contraction) and the shear strains of the mass, as shown in Figure H.1.

H.1 Translation

The translation is given by integrating the velocity vector u, which is closely related to
the advection (remap) phase.

H.2 Rotation

The rotation rate is the angular velocity vector wand is related to the vorticity™ tensor

Q. Rotation may or may not occur in a particular flow/deformation. A flow where the
vorticity is zero is known as irrotational flow.

1835ee Eq. (1.8).
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> Translation
Rigid Body Motion
/\/<> Rotation
J
N
/” Dilatation

> Deformation Motion

/\E Shear

Figure H.1. The types of motion that, when superimposed, completely describes the kinematics
of a small elemental mass. The cubical shape is arbitrary.

J

H.3 Dilatation

The dilatation represents the contraction or expansion of an elemental mass. The rate of
dilatation is related to the velocity divergence.'® The numerical value of the dilatation is
independent of the coordinate system because it is the first invariant of the strain rate
tensor [Eq. (1.5)].

H.4 Shear Deformation

A shear strain deformation is a strain that acts parallel to the surface of the material upon
which it is acting. Thus, in our cubic example, the 90° angles between faces diverge from
that value. The strain rate tensor [Eq. (1.5)] gives the rate at which the sides close toward
each other.

1845ee Eqs. (1.6) and (1.7).
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APPENDIX|. STRESS ROTATION

An important concept in the formulation of constitutive theories in deformations is that of
frame indifference, or objectivity.”® The basic idea is that the constitutive relation
between stress and strain should be unaffected by any rigid body rotations the material
may undergoing at a particular instant of time. Mathematically we describe this situation
by defining an alternative reference frame that is rotating and translating with respect to
the original Eulerian coordinate system. For the constitutive relations to be meaningful,
the tensor quantities we use (stress, stress rate, strain, and strain rate) should transform
according to the laws of tensor calculus. If a given quantity does this transformation, we
say it is material frame indifferent; if it does not, we say it is not properly invariant or not
objective. The deviatoric stress in the Eulerian (laboratory) frame is S* and is denoted S
in the material (rotated) frame of reference.'®®

The deviatoric stress tensor transforms as*®’
S; = Qi Sy Qmj ' (1.1)

where Q is a proper orthogonal (rotation) tensor that transforms the tensor S. Because Q
is an orthogonal tensor, the transpose is the inverse. Thus,

Qi Qu =0 - (1.2)
If we take the time derivative of the above equation,

QQu+Q;Qu=0 = QQ=-QQ; . (1.3)
Then we right-and-left multiply both sides of Eq. (1.1) by orthogonal tensors. Thus,

Si = Qi Sim Quj - (1.4)
The time derivative of the deviatoric stress tensor, Eq. (I.1), produces

SJ = Qik Skm Qmj +Qik Skm Qmj +Qik Skm Qmj . (1.5)

185 J.K. Dienes, “Analysis of Rotation and Stress Rate in Deforming Bodies,” Acta Mechanica, Volume 32,

Issue 4, pp. 217-232 (1979).

186G.A. Holzapfel, Nonlinear Solid Mechanics (John Wiley and Sons, Weinheim, Germany), pp. 192-196
(2001).

1873.L. Synge and A. Schild, Tensor Calculus (Dover Publications Inc., Mineola, New York), p. 13 (1978).
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If we substitute Eqg. (1.4) into the above equation,

SJ = Qik (an S:I le)Qmj +Qik S‘km Qmj +Qik (an S:I le)Qmj !
= Qik an S; é‘lj + Qik Skm Qmj + é‘in S; le Qmj , and
= Qik an S:j +Qik Skm Qmj + SiT le Qmj : (1.6)

If we apply Eq. (1.3),

S =Qi Qun Sy + Qi S @y — Sk Qu Q- (1.7)
If we introduce a new variable,

W, =Q,Q, - (1.8)

We will find that this rotation is actually related to the vorticity tensor, but for now it is
simply a mathematical convenience. Equation (1.7) is now written as

SJ =Qy Skn an +W,, S:j - SiT( ij - (1.9)
o
Material Rotation
Frame

Laboratory
Frame

Equation (1.9) is known as the Jaumann derivative,'®® or the Jaumann-Zaremba rate.*®

These objective rates are simply an application of the Lie derivative.’®® What is not
generally known or conceded is that Zaremba essentially introduced what is now known
as the Jaumann derivative [but commonly referred to as the corotational (sometimes
spelled “co-rotational”) derivative]. The rotational portion of Eq. (1.9) is computed
separately as

* *

Ry =W Sy —S; Wy - (1.10)

J

188G, Jaumann, “Geschlossenes System Physikalischer und Chemischer Diffcrentialgesefze,”
Sitzungsberichte Akademie Wissenschaften Wien, lla, p. 120 (1911).

1895, Zaremba, “Sur une Forme Perfectionnée de la théorie de la Relaxation,” Bulletin International de
I’Academie des Sciences de Cracovie, pp. 592-614 (1903).

1903 E. Marsden and TJR. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1983), pp. 99-102 (box 6.1).
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Next consider a line segment in the rotated configuration dx* referenced to the fixed

Eulerian configuration dX. This vector follows the standard transformation for

infinitesimal rotations'®* as

dx =Q,dX, . (1.11)

Left multiply the (transpose/inverse) rotation as

Qdx =QQ;d X, =8,dX, =dX, . (1.12)

Taking the time derivative of Eq. (1.11) yields'®?

dX:Edui:Qijdxj:Qiijkdxk - (1.13)
The time derivative of position is the velocity vector u. Thus, we have

ZAZQU ij ) (|-14)
X

However, we have previously decomposed the gradients of velocity as the sum of a

symmetric tensor and an antisymmetric tensor'® as

ou.
—L =6 +Q., . 1.15
axk ik ik ( )

Because Eqgs. (1.14) and (1.15) are equivalent,
Wik = Qij ij = éik +Qik : (|'16)
Substituting the above equation into Eq. (1.10) produces

R, =W, Sg — Sy W,
= (&4 + Q) S — Sic (8 + )
= O, Sy — S, Q + (&S —Siéy)
=0, S — S,y

(1.17)

BFor finite rotations, the derivation is much more complicated and results in many additional terms.
**’Because the Eulerian reference frame is independent of time, mathematically, d X, =0

1%35ee Chapter 1, Governing Equations, for the definitions.
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The strain rate tensor e and the deviatoric stress tensor S are both symmetric in their
indices; therefore, the term in the parentheses is zero.

The rigid body rotation must be subtracted out of the deviatoric stress tensor before we
can compute the deformation of the material in the cell. The velocity field applies to all
materials in a cell; therefore, the rotation also applies to all materials in a given cell.

The complete rotation terms*** in Eq. (1.10) are

R, =-2Q.S —-2Q_S

Xy < xy Xz~ xz !
R,= 2Q,8,-2Q,S, ,
Ry =Q,( Sy — S,)-9,5,-Q,S, . (1.18)
sz = sz (zsxx + Syy)_£2XySyZ +Q)’ZSX)’ ! and
R, = Qyz( S, +28yy) +Q, S, +Q,.S,,

These rotation terms are used in PAGOSA.

TheR,, is not needed because S is not directly computed. Remember that S is traceless:
S, =—(S,+ Syy) .
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APPENDIX J. DIAGNOSTICS

The diagnostics in PAGOSA allow the user to confirm the conservation laws for mass
and energy. The following sections detail the calculation of the various diagnostics
available.

J.1 Volume

The total volume of material (m) in the simulation is

(m) _ (m)
Volume = E ¢i+%’j+%’k+%Voli%j%’k% , J.1)
cells

where Vol is the Eulerian cell volume. The summation is over every cell in the Eulerian
mesh, excluding the ghost cells.

J.2 Mass

The total mass of material (m) in the simulation is

(m) _ (m) (m)
Mass = Z ¢i+%,j+%,k+% pi+%,j+%,k+% V0|i+%,j+%,k+% ) (‘]2)

cells

As before, the summation is over the entire Eulerian mesh.
J.3 Internal Energy

The internal energy of material (m) in the simulation is

(m) _ (m) (m) (m)
IE = Z ¢i+%,j+%,k+% pi+%,j+%,k+% Ei+%,j+%,k+% VOIH%,H%,H% : (‘]3)

cells

As before, the summation is over the entire Eulerian mesh.
J.4  Kinetic Energy

The kinetic energy poses a problem in computation. The mass is a cell-centered variable,
whereas the velocities are vertex centered. In PAGOSA, the square of the velocities is
averaged at the cell centers. First, the value of u-u is computed for each vertex. Next,
the cell-centered velocity is obtained by arithmetically averaging the eight vertex
quantities. This average magnitude is used to compute the kinetic energy. The kinetic
energy of material (m) in the simulation is

(m) — 1 (m) (m) 2 2 2
KE = ZZ ¢i+%,j+%,k+% pi+%,j+%,k+% V0|i+%,j+%,k+% <U +VI+W >

cells

(3.4)

ipd il gl
i+3, j+3.k+5

over the entire Eulerian mesh.
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J.5 Elastic Distortional Energy %

The elastic distortional energy is the energy in the material due to elastic distortions. The
elastic distortional energy W *is computed from the rate equation

PWE =S 6 +S 6° +S,6% +2(S, 6 +S,6,+S,6%) . (J-5)

XX XX 2% Xy Xy Xz ~Xz y.

The elastic energy can be recovered in the form of kinetic energy. Think of a spring
storing and releasing energy. This energy is computed for each material in the simulation
that possesses a deviatoric stress.

J.6 Plastic Work

The plastic work is the energy in the material due to plastic distortions. The plastic work
W Pis computed from the rate equation

pWP =S e +S € +S,e> +2(Ser +S.e>+S e ) . (J.6)

b7 vd Xy Xy Xz ¥xz yz

The plastic work is part of the internal energy of the material and is computed separately
for the convenience of the user. The plastic work represents an irreversible process.

J.7 Mass Melted

Only materials with a flow-stress model have a melt mass computed. First, determine that
the material exceeds the melt energy or temperature. The melt factor for material (m) is
computed as

(m)f — 1 (m)E > Emelt or (m)e > emelt ) (J7)
0 otherwise

Then

(m) — (m) (m) (m)
MaSS(meIt) - Z ¢i+%,j+%,k+% pi+%,j+%,k+% fi+%,j+%,k+% V0|i+%,j+%,k+% ) (J8)

cells

The total mass was melted for material (m). If the factor f has a value of one everywhere,
then the entire mass is melted and reduces to Eq. (J.2). The diagnostic holds for a
particular moment in time. The mass can melt, freeze, and melt again during the course of
the simulation.

1%1n PAGOSA the elastic distortional energy is computed separately and is not included in the total internal
energy. This point has been and continues to be controversial in hydrocode forums.
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J.8 Mass Burned

Only materials with a detonation model have a burn mass computed. The burn fraction'*®
Bf ranges from zero to one, as

(m) _ § (m) (m) (m)
MaSS(burn) - ¢i+%,j+%,k+% pi+%,j+%,k+% Bfi+%,j+%,k+% V0|i+%,j+%,k+% : (Jg)
cells

The total mass was burned (detonated) for material (m). If the factor Bf has a value of one
everywhere, then the entire mass is burned and reduces to Eq. (J.2)

J.9 Mixed-Cell Statistics

In normal circumstances, only a small percentage of the cells in a simulation is mixed.
The vast majority of cells contain a single material (pure cells). The mixed-cell statistics
can be useful to the user in several ways. First, the statistics reveal the cell with the
maximum number of materials. For example, if the maximum is two, then at least one
cell in the simulation contains two materials that share an interface. As this number
increases, the ability for the algorithm to represent the geometry accurately is severely
compromised. However, if this cell inhabits an unimportant region of the simulation, then
the statistic may be safely ignored. The volume fraction determines the type:

Mixed cells O<¢<l
Pure cells p=1

J.10 Minimum and Maximum Statistics

For each of the important simulation variables, the minimum and maximum values for
pure and mixed cells are tabulated. These statistics can be useful in determining the
extreme states of the materials in question. For example, an unphysical sound speed or
temperature may indicate that the equation of state is in a dubious regime.

1%gee Chapter 12 for the definition of a burn fraction.
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Appendix K Momentum Advection

APPENDIX K. MOMENTUM UPDATE

The stress deviators contribute to the velocity fields, as can be seen readily in Egs. (1.2a),
(1.2b), and (1.2c). The individual stress deviators contribute to the momentum in much
the same way as the pressure. The x component of the Navier-Stokes equation (Eg. 1.2a)
IS

0
U 10P 1{88m+_ xy+85ﬂ} (K.1)

E“;& ; ox o0y oz

The complication arises when we address the question of mixed cells. A mixed cell
contains materials of various densities, pressures, and stress deviators. Let us denote the
density of material (m) by ™ p, the pressure of material (m) by ™P, etc.

The equation for a particular material in a single Eulerian cell now can be written as

(m) (m) oMg (m)
(m)p% - _ 0P + 0 Sxx + L 0 sz (KZ)
ot OX OX oy 0z
Notice that the velocity U does not have a material index. The velocity field applies to all

materials in a cell.™®” Next, multiply both sides of the equation by the cell volume and the
material volume fraction. Then

ou oMmp
Vol Mg M 5 == = Vol Mg ——
?P P o )
K.3
(m) o(Mg (m)
+Vol Mg 0" Sy + al +8 S
00X oy 0z
When we sum over all materials in the momentum control volume and the
Mass = Vol Mg ™p (K.4)
then Eqg. (K.3) becomes
~ ~ as“ ~
Mass N _ —@+ O +—2+ 054 : (K.5)
ot oX ox o0y 0z

where the titles refer to the cell-averaged quantities.

¥"In theory, a velocity field could exist for each material in a cell.
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The partial derivatives are constructed in the same manner as described in Chapter 2.
However, the momentum control volume covers the eight cells that surround the vertex.
The differencing and integration are done in the same way as the other variables
described in Chapters 4 and 5.
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APPENDIX L. PIN PACKAGE

The pin diagnostic is used to record arrival times at a particular point in space. The
diagnostic is positioned near a material surface, and electrical connections carry the
timing signal to a recording device. The pin package in PAGOSA allows the user to
emulate this experimental diagnostic tool.

Consider a point in space inside the Eulerian mesh, as shown in Figure L.1. The pin is
located at

X=(Xp¥y12,) (L)

As the simulation proceeds, the material surface of interest will move into the Eulerian
cell containing the point x. The perpendicular distance of a point x to the material plane is
given by

_ ,LLlXp +lu2yp +/uBZp —-pP
N

d ’ (L.2)

where p is the distance parameter associated with the material plane. The material
surface is characterized by a direction vector, as described in Appendix C. With each new
timestep, a new distance is computed and stored for later use. Typically, the material
passes through the cell in a few timesteps, as shown in Figure L.2.

|
o

Hx+ iy + pz—p=10

Figure L.1. The material surface, shown as a yellow triangle, is represented as a plane
possessing a unique direction vector (44, t,, M) that points to the pin location
(shown as a blue dot). If the point x lies in front of the plane, the distances are
positive. If the point x lies behind the plane, the distances are negative.
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The optimal situation is when four distance data points are recorded—two with positive
distances and two with negative distances. Lagrange interpolation'*® is used to find the
zero crossing time, which occurs when the pin is on the material surface.

Figure L.2. A typical pin distance vs simulation time plot that points to the pin location (shown as
a blue dot). If the point x lies in front of the plane, the distances are positive. If the
point x lies behind the plane, the distances are negative.

Pathological situations can results in fewer than four data pints being available. The
crossing algorithm in PAGOSA changes, depending on the number of distance data
points available from the simulation. The individual cases are detailed below.

L.1  Four Points

When four data points are available for computing a pin-crossing time, the Lagrange
interpolation formula is

t — t1dz ds d4 + tz dl ds d4
o (dz _dl) (ds _d1) (d4 _dl) (dl_dz)(ds_dz)(d4 _dz) (L 3)
t,d, d,d, t,d, d,d, '

+ +
(dl _ds) (dz _ds) (d4 _ds) (d1 _d4) (dz _d4) (d3 _d4)

Appropriate checks are made to ensure that the denominators are not too small and that
the crossing time is within the proper range. These checks prevent extrapolation outside
the physical range of interest.

98william H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery, Numerical Recipes in
Fortran The Art of Scientific Computing, second edition (Cambridge University Press, New York, New
York, 1992), pp. 102-104.
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L.2  Three Points

Three data points allows for a second-order Lagrange interpolation to be used. The
crossing time is then

t _ t1dz ds + tz d1 ds + ts dldz . (L.4)
o (dz _dl) (ds _dl) (dl _dz) (ds _dz) (dl _ds) (dz - ds)

Appropriate checks are made to ensure that the denominators are not too small and that
the crossing time is within the proper range. These checks prevent extrapolation outside
the physical range of interest.

L.3 Two Points

When only two data points are available for a pin diagnostic, we resort to linear
interpolation to find the crossing time as

tcross = (d2t1 _dltz ) / (dz - dl) : (LS)

Appropriate checks are made to ensure that the denominator is not too small and that the
crossing time is within the proper range. These checks prevent extrapolation outside the
physical range of interest.

L.4 One Point

On rare occasions, the material flow is so complicated that only one distance point is
available for computing the pin-crossing time. The crossing time is estimated by linear
interpolation based on the maximum velocity allowed by the Courant timestep safety
factor safeu' as

t.. =t—t (d,/safeu) , (L.6)
where t is the current simulation time.

L.5 Zero Points

This pathological case is used when the material interface jumps over the cell containing
the pin diagnostic without ever being in the cell at any time. The pin-crossing time is
approximated by taking the average of the simulation times surrounding the event as

tCI’OSS :%(tl—i_tz) ! (L.?)

where t and t, are current and previous simulation times, respectively.

199 See Chapter 9.
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APPENDIX M. TRACERS

The tracer particle is an important diagnostic tool in PAGOSA. Massless tracer particles
are placed in the computational domain, and information at the particle location is
recorded for the benefit of the user.

Two types of tracer particles are available—Eulerian and Lagrangian. The Eulerian tracer
particle is fixed in space at its original coordinates. However, the Lagrangian tracer
moves with the material following the velocity field. Each tracer type has its own unique
uses and capabilities.

For example, if the simulation is given of an experiment that has a probe (sensor) fixed at
a particular location, the Eulerian tracer particle is the most appropriate choice to use for
modeling this probe. In the Taylor Anvil sample problem,?” the shape and deformation
of the projectile is one of the desired measurements. Placing Lagrangian tracer particles
on the surface of the projectile allows the diagnostic to move with the material surface.
Many other uses for the tracer diagnostic easily can be imagined.

M.1 Interpolation

The tracer particle begins its life at a point in space within the computational domain and
in a single Eulerian cell, as shown in Figure M.1. The velocities are defined at cell
vertices (Chapter 2), and some interpolation is necessary to estimate the velocity at the
particle coordinates (x,y,z). A tri-linear interpolation formula is used to find the velocity

Figure M.1. A tracer particle at (x,y,z) in an Eulerian cell.

2%\\/ayne Weseloh, “PAGOSA Sample Problems,” Los Alamos National Laboratory report LA-UR-05-
6514 (August 2005).
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at the tracer location. For the U velocity, the interpolation appears as

U(x,y,z)=a,+ax+a,y+a,z+a,xy+axz+a,yz+a,xyz , (M.1)

where the coefficients a,—a, are derived from the eight known velocities at the cell
vertices. The other components of velocity are found in the same way.

Once the velocity field is constructed at the point of interest, the Lagrangian tracer
particles can be moved by integrating the equations of motion for these massless
particles.

M.2 Integration

The integration applies only to the Lagrangian tracers because the Eulerian tracers are
fixed in space and report the changes in quantities as materials sweep past them.

The integration scheme follows the same predictor-corrector methodology presented in
Chapter 5. The positions of the Lagrangian tracers after one timestep are

X"V2 =x" 4+ u" At/ 2 predictor and (M.2)
X" = X"+ U2 At corrector . (M.3)

Because the interpolation point wanders from cell to cell, the interpolated function values
change continuously. However, the gradients (velocities and accelerations) of the
interpolated function change discontinuously at the boundaries of each cell.

The integration uses the velocity field generated by the Lagrangian-phase integration
described in Sections 5.1, 5.2, and 5.3. In theory, it is possible to use the velocity field
from the advection-phase solution (Section 4.6.1) instead of the Lagrangian-phase
solution; some other hydrocodes have this option. PAGOSA uses only the Lagrangian-
phase velocities.

At the new tracer position, a new interpolation is used to construct the appropriate
velocity field and prepare for the next integration step. This process is repeated for the
duration of the simulation. Lagrangian tracer particles can fly off the mesh during an
integration step. These particles are then lost to the simulation—no further information
can be recorded for these particles.

The same tri-linear interpolation is used for all variables of interest associated with the
tracer particle. For variables located at cell vertices (e.g., U, W, and Bt), the interpolation
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coefficients are obtained from the local vertices of the cell containing the tracer particle.
For variables located at cell centers (e.g., P, Q, and Bf), the interpolation coefficients are
obtained from the cell centers of the vertex volume containing the tracer particle.

M.3 Comments

The concept of a continuous variable field is useful in constructing a tracer particle
diagnostic. However, previously (Chapter 3.0) we assumed that the gradients were
uniform over the cell volume. No functional form was assumed for the fundamental
variables. The tracer diagnostic operates under slightly different assumptions than did the
fundamental hydrodynamics.

This concept illustrates an important point. The tracer diagnostic is only a diagnostic tool.
For example, a Lagrangian tracer particle placed on a material interface will not exactly
follow the movements of that interface. The particle may be in a different cell from the
interface. Or the particle may lead or lag the movement of the interface. The interface
reconstruction (see Section 4.5.1, Appendix C, and Appendix G) is based on a set of
algorithms that is different from the algorithms presented in this appendix.

Note that when the material volume fractions in a multi-material cell are adjusted during
the Lagrangian phase, a change is implied in the distribution of velocity field in the cell.
The movement of the Lagrangian tracer particle depends critically on the sub-cell
velocity distribution and needs to be adjusted if the pressure relaxation or void closure
divergence options are invoked (Chapter 13). No adjustments are necessary with the
uniform divergence option.
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acceleration, 38, 54, 138, 222
adiabatic, 62, 65, 132
advection

definition, 42

example, 193

first order, 184, 187

gradient limiters, 188

internal energy, 47

mass, 33, 34, 35

momentum, 33, 34, 35, 45

monotonic, 189

phase, 35, 42

pseudocode, 190

second order, 184

square pulse, 193

third order, 185

van Leer limiter, 189
aether, 14
angular momentum, 12
artificial viscosity, 38, 86, 123, 125, 223

linear, 89

quadratic, 89

von Neumann, 89
boundary conditions

reflective, 105

transmissive, 106
bulk modulus, 13, 62, 68, 195
Cartesian, 28, 34, 173
Cauchy stress tensor, 131
Cauchy-Stokes decomposition theorem

derivation, 203

dilatation, 205

rotation, 204

shear, 205

translation, 204
cell

area, 17

boundary, 183

size, 17

vertex, 17, 18

volume, 17
CFL condition, 97
Chapman-Jouget, 65, 111
cold curve, 68
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compression, 13, 37, 56, 61, 62, 63, 66,
75, 119, 122, 131, 155
computational grid, 14, 22, 113
conservation law, 7, 11, 33, 34, 35, 47,
56, 189, 211
angular momentum, 12
energy, 14
internal energy, 14
linear momentum, 11
mass, 11
constitutive equation, 167
constitutive relation, 12, 56, 131, 132,
139, 167, 207
coordinates
Eulerian, 17
corrector, 52, 53, 55, 222
Courant condition, 4, 95, 97
Courant number, 43, 44, 190, 193
crush, 8, 12, 53, 68, 161, 163
damage, 8, 12, 155, 157
deformation motion, 204
density
mass, 33, 34, 35
detonation, 64, 213
dilatation, 13, 132, 204, 205
direction vector, 39, 173, 198, 199, 217
distance parameter, 173, 200, 217
divergence theorem, 27
donor cell, 44, 184, 187, 190, 191, 197,
198
downwind, 46, 189, 190
dual mesh, 21
elastic
energy, 212
release, 162
work, 212
elastic distortional energy, 14, 56, 192,
212
elastic perfectly plastic, 139
elastic regime, 131, 132
energy
conservation, 34, 35
elastic distortional energy, 212
internal, 211
Kinetic, 211



plastic work, 212
specific internal energy, 14
energy shift, 67, 68
entropy, 38, 79, 80, 91
EOS
see equation of state, 11
EOSPAC, 67, 69, 70, 85, 141
equation of state, 11, 14, 57, 61, 111,
132,161, 213
BKW-HE, 71, 73
exponential, 71
gas, 61
Griineisen, 65
ideal gas, 61
JWL, 64, 65, 83, 111, 114
modified Osborne, 63
Osborne, 63
polynomial, 62
SESAME, 67, 68, 69, 70, 85, 141,
143, 147, 148, 149, 163
tabular, 67, 69
Us-Up, 65
void, 62, 119
Euler equations, 33
Eulerian
cell, 17, 183
cell area, 17
cell size, 17
cell vertex, 17
cell volume, 17
grid, 17, 22
Eulerian phase, 35, 36, 37, 42, 45, 47, 57
evolution equation
internal energy, 33, 34, 35, 47, 48,
191
mass, 33, 34, 35
momentum, 33, 34, 35, 215
expansion, 61, 66
exponential, 71, 86
finite difference approximation, 20, 29
finite difference equations, 20, 29, 181,
183, 192
advection, 183, 184, 185, 190
Lagrangian, 181
finite difference form, 181, 183
finite differences
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stability, 44
first law of thermodynamics, 80, 90
flow-stress
elastic perfectly plastic, 139
Johnson-Cook, 12, 142
Kospall, 12, 148
mechanical threshold stress, 145
models, 139
modified Steinberg-Cochran-Guinan,
140
Preston-Tonks-Wallace, 143
Steinberg-Cochran-Guinan, 12, 141
thermal softening, 149
work hardening, 150, 151
flux, 46
fracture, 8, 12, 53, 130, 155, 156, 157
Johnson spall, 155
Johnson-Cook damage, 157
frame indifference, 207
functions, 137, 140, 142
ghost cells, 22, 105, 106, 211
governing equations, 17, 20, 21, 33, 56
gradient limiter, 188
Grineisen, 65, 71, 84, 124
Grineisen parameter, 66
Gruneisen relation, 66
hexagonal section, 177, 179
high explosive, 64, 71, 111, 115
Hooke’s Law, 129
Hugoniot, 65
hydrocodes, 19, 34, 106, 222
ideal gas, 61, 81
incompressible, 13, 132
initial conditions, 69, 70, 97, 101, 111
integration, 18, 45, 51, 138, 222
interface
hexagonal section, 177, 179
pentagonal section, 176, 178
quadrilateral section
type A, 176, 178
type B, 177, 179
reconstruction, 41, 197
triangular section, 176, 178
interface reconstruction, 40, 62, 125,
173, 223



internal energy, 14, 33, 34, 35, 48, 75,
79, 80, 89, 101, 124, 134, 137, 138,
140, 142, 149, 191, 211
invariants, 12, 134
irrotational, 13, 195, 204
isotropic, 11, 134, 167
Jaumann derivative, 208
Johnson spall, 155
Johnson-Cook damage, 157
JWL EOS, 64
Lagrangian phase, 34, 37, 39, 46, 57,
120, 122, 138, 162, 181
Levi-Civita pseudotensor, 167, 203
linear momentum, 11, 46
mass, 33, 34, 35, 211
mass burned, 213
mass melted, 212
mechanical threshold stress, 145, 147
melt temperature, 69, 141, 143, 144, 147
mesh
Eulerian, 14, 17, 19, 36
mixed cells, 19, 20, 40, 56, 119, 120,
121, 122, 125, 169, 202, 213, 215
modified Steinberg-Cochran-Guinan,
140, 141
modulus
bulk, 13, 62, 68, 195
elastic, 129
shear, 12, 125, 131, 132, 135, 139,
140, 141, 142, 143, 144, 145, 147,
148, 149, 156, 163, 195

yield, 139, 140, 141, 142, 143, 148,
149, 156, 163

momentum
conservation, 33, 34, 35
equations, 12

momentum control volume, 21, 22, 38,
45, 46, 53, 54, 215, 216

monotonic, 42, 189

Monte-Carlo technique, 20

MTS
see mechanical threshold stress, 145,

147

multi-material, 19

Navier-Stokes equations, 11, 91, 215

Newton-Raphson method, 70
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Noh problem, 90

numerical approximation, 27, 169

operator splitting, 33, 34
stability, 44

PAGOSA, 3,11, 12, 13, 14, 18, 19, 22,
27, 33, 34, 36, 37, 40, 42, 43, 44, 46,
56, 61, 65, 67, 69, 70, 71, 72, 75, 85,
86, 89, 91, 97, 105, 111, 115, 119,
120, 123, 130, 131, 132, 134, 135,
136, 139, 155, 171, 188, 190, 210,
211, 217, 218, 221, 222

particle speed, 66

pentagonal section, 176, 178

permutation, 36, 203

phase errors, 192

phase transition, 67, 68

plastic
strain, 131, 137
work, 212

plastic regime, 129, 130, 131, 132, 139,
151

plasticity, 12

pmin, 75

Prandtl-Reuss treatment, 132

predictor, 52, 53, 222

pressure, 11, 14, 20, 56, 61, 62, 63, 64,
65, 67, 68, 69, 70, 71, 73, 75, 79, 81,
85, 86, 89, 91, 95, 96, 101, 111, 122,
123, 131, 137, 138, 139, 140, 141,
145, 148, 156, 161, 162, 215

pressure gradient, 38, 91

pressure relaxation, 122

Preston-Tonks-Wallace, 143

priority, 40, 41, 120

programmed burn, 96, 101, 111, 114,
115
limitations, 114

PTW
see Preston-Tonks-Wallace, 143

P-a crush model, 161

Q
see artificial viscosity, 38, 86, 123,

125, 223

quadrilateral section
type A, 176, 178
type B, 177,179



ramp treatment, 68, 163
Rankine-Hugoniot, 90
reconstruction
see interface reconstruction, 41, 197
remap
see Eulerian phase, 35
safec, 95, 195
safed, 95
safety factors, 95, 97
safeu, 95, 219
sampling density, 169, 170, 171
scaling ratio, 67
secant method, 73
SESAME, 67, 68, 69, 70, 85, 141, 143,
147, 148, 149, 163
energy shift, 67
iteration, 69
ramp, 68
scaling ratio, 67
shock speed, 66, 90
shock waves, 89, 90
sound speed, 62, 66, 68, 79, 80, 81, 82,
83, 85, 86, 90, 95, 96, 162, 163, 195,
213
exponential, 86
gas, 81
Grineisen, 84
ideal gas, 81
JWL, 83
modified Osborne, 82
Osborne, 82
polynomial, 81
SESAME, 85
tabular, 85
Us-Up, 84
void, 81
spatial centering
density, 18
internal energy, 18
pressure, 18
velocity, 18
specific internal energy, 14, 42, 61, 62,
134, 149, 191, 192
square pulse, 187, 192, 193
staggered grid, 18
statistics, 213
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Steinberg-Cochran-Guinan, 141, 148
strain, 131, 137
strain rate, 13, 27
Strang operator splitting, 7, 33, 34
stress tensor, 11, 12, 125, 131, 132, 143,
207, 210
T junctions, 40
tabular EOS
see SESAME, 67
Taylor expansion, 66, 203
tensor
antisymmetric, 12, 167, 203, 209
Cauchy, 131
spatial velocity gradient, 12
strain rate, 13, 27
stress tensor, 12
symmetric, 12, 167, 203, 204, 209
vorticity, 13
tetrahedron, 174
thermal softening, 139, 140, 141, 148,
149
Thomas-Fermi-Dirac theory, 68
timestep, 37, 97, 195
timestep controls
Courant, 43, 44, 79, 95, 190, 193, 195,
219
detonation, 96
divergence, 95
initial, 195
Lagrangian, 95, 181
tracers, 221
transport, 36
triangular section, 176, 178
uniform divergence, 223
upwind, 42, 189, 190
velocity divergence, 13, 120, 138, 205
vertex, 18
vertex mass, 39, 53
void closure, 119
volume, 177, 211
volume fraction, 14, 37, 39, 40, 61, 101,
119, 120, 121, 122, 123, 125, 169,
170, 171, 175, 178, 197, 198, 199,
213, 215, 223
defintion, 19
initial, 20, 169



von Mises, 6, 134, 147

von Neumann, 89

vorticity tensor, 203

wall heating, 90

work hardening, 150

Y junctions, 40

yield criterion, 134, 135, 136, 144, 147
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yield function, 135

yield modulus, 139, 148, 163

yield surface, 136, 138, 144, 147, 150

Youngs interface reconstruction, 173

Youngs/van Leer gradient limiter, 45,
189, 190

zone, 17, 19, 37, 91, 114, 122, 125
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