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CHAPTER 0 
 

Introduction 
 
In the beginning the Universe was created. This has made a lot of people very angry and 

been widely regarded as a bad move. 
 

-Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979) 
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0 INTRODUCTION 

PAGOSA is a computational fluid dynamics computer program developed at Los Alamos 
National Laboratory (LANL) for the study of high-speed compressible flow and high-rate 
material deformation. PAGOSA is a three-dimensional Eulerian finite difference code, 
solving problems with a wide variety of equations of state (EOSs), material strength, and 
explosive modeling options.  
 
This document presents the finite difference equations that are used in the PAGOSA 
continuum mechanics computer code. This program is especially intended to be used for 
the numerical simulation of the interactions of gases, fluids, and solids. 
 
PAGOSA is used to investigate high-pressure and high-strain-rate phenomena associated 
with explosive-driven systems, high-velocity impacts, etc., where material pressures 
range from kilobars to megabars. At these pressures all materials exhibit considerable 
volume changes so that incompressibility is not a valid assumption. These types of 
continuum mechanics computer codes are intended to resolve the behavior of 
compression and rarefaction waves generated within materials. 
 
In common parlance, PAGOSA often is called a hydrocode, wave code, or shock code. 
These synonyms deserve a small digression, and the following explanation is given by 
Zukas:1 
 

What is a hydrocode and where did it get that ridiculous name? Hydrocodes 
fall into the very large category of computational continuum mechanics. 
They were born in the late 1950’s when, following the development of the 
particle-in-cell (PIC) method at Los Alamos National (then Scientific) 
Laboratory, Robert Bjork at the Rand Corporation applied PIC to the 
problem of steel impacting steel and aluminum impacting aluminum at 
velocities of 5.5, 20 and 72 km/s. This is cited in the literature as the first 
numerical investigation of an impact problem. Because such impact 
velocities produce pressures in the colliding materials exceeding their 
strength by several orders of magnitude, the calculations were performed 
assuming hydrodynamic behavior (material strength is not considered) in the 
materials. Hence, the origin of the term hydrocode—a computer program for 
the study of very fast, very intense loading on materials and structures. 
…Such calculations are no longer performed in hydrodynamic mode yet the 
old name has stuck. 

                                                 
1Jonas Zukas, Introduction to Hydrocodes (Studies in Applied Mechanics 49) (Elsevier Ltd., Kidlington, 
Oxford OX5, UK, 2004), Preface, page v. 
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0.1 Algorithm 

The highlights of the PAGOSA continuum mechanics computer code are that 
 

 PAGOSA was created for simulations running on massively parallel 
supercomputers; 

 PAGOSA is a finite difference code with a Cartesian fixed orthogonal 
Eulerian mesh; 

 PAGOSA is a multi-material code—an arbitrary number of materials, per cell, 
can be easily computed and visualized; 

 time integration is fully explicit, with a timestep controlled by the Courant 
condition—the time integration is second-order accurate; 

 the Eulerian mesh is staggered, with cell-centered quantities (e.g., density and 
internal energy) and vertex-centered quantities (e.g., velocity) to increase 
accuracy; 

 a standard von Neumann artificial viscosity may be used to spread 
hydrodynamic shocks over several cells;  

 the upstream weighted, monotonicity-preserving advection scheme is 
conservative (total energy is not necessarily conserved during advection)—the 
donor cell (first-order), van Leer (second-order), and Youngs/van Leer (third-
order) methods are automatically selected, depending on the local conditions; 
and 

 PAGOSA uses an efficient material interface reconstruction algorithm so that 
all the interfaces within a cell can be easily represented. 

Figure 0.1 shows a simplified schematic of the computational cycle. First, the strain rates, 
EOS, artificial viscosity, and sound speeds are computed. On the first cycle, these 
computations are based on the initial conditions. The Courant condition (i.e., a stable 
timestep) for the cycle is next computed. 
 
The Lagrangian phase integrates the equation for a single timestep. A flowchart showing 
the details of the integration process is shown in Figure 0.2. The equations of motion are 
solved explicitly in time.  
 
The advection phases remap the Lagrangian variables back onto the original Eulerian 
mesh. A flowchart of the remap process is shown in Figure 0.3. 
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Figure 0.1. Flowchart showing an overview of the PAGOSA algorithm. The numbers in 

parentheses are the chapters and sections corresponding to the relevant physics. 

If trouble is encountered during a computational cycle, the cycle is completed, during 
which print and restart files are written. The error handling occurs inside the diagnostics 
computational block shown in Figure 0.1. 
 
Chapter 5 presents the predictor-corrector integration scheme used for the hydrodynamics 
variables in the Lagrangian phase. The integration scheme consists of two parts—the 
predictor and the corrector. Consider the differential equation 
 

 ( , )
d y

f x y
d x

 ,  0 0( )y x y  . 

 
The numerical solution of this equation is divided into intervals, or steps ix . Given a 
timestep h, the predictor step creates an approximation 1/2iy   at the halfway point 

/ 2ix h ; the corrector step then is applied: 
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Figure 0.2. Flowchart showing the Lagrangian phase of the PAGOSA algorithm. The numbers 

in parentheses are the chapters and sections corresponding to the relevant physics.  

 1
1/2 2 ( , )i i i iy y h f x y    predictor and 

 1
1 1/22( , )i i i iy y h f x h y     corrector . 

 
This sequence completes one timestep in the PAGOSA simulation. 
 
Conceptually, the Lagrangian phase creates a distorted mesh, which is remapped onto the 
original Eulerian mesh. This remap results in a transport of mass, energy, and momentum 
through each face of each cell of the Eulerian mesh. After the transport is complete in all 
three directions, new material mass densities, energies, and pressures are computed. A 
new velocity field is computed for the entire mesh. 
 
Next, the boundary conditions are applied to the exterior surface of the Eulerian mesh. 
Symmetries in the simulation can be exploited by using reflective (symmetry) boundary 
conditions. In this way the computational cost of a problem can be reduced. 
 
At the end of the Lagrangian and advection phases, all of the materials with strength are 
subjected to the yield criteria. Materials that have deformed beyond their elastic regime 
have “yielded” and flow plastically. The elastic-plastic von Mises yield criteria are 
described in Chapter 14. 
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Figure 0.3. Flowchart showing the advection phase(s) of the PAGOSA algorithm. The numbers 

in parentheses are the chapters and sections corresponding to the relevant physics. 

The governing equations representing the well-known conservation laws of mass, 
momentum, and energy are given in Chapter 1. The complete sets of equations solved by 
PAGOSA are presented there. The Navier-Stokes equations are written, and no derivation 
of those equations is presented. The user may consult any number of textbooks for the 
derivation.2 
 
The construction of the Eulerian grid is presented in Chapter 2. The Eulerian mesh is the 
computational domain of the simulation.  
 
Chapter 3 introduces the concept of strain rates and the numerical discretization of those 
rates. The basic numerical differencing techniques used in PAGOSA are detailed here. In 
Chapter 4 the Strang operator-splitting technique is applied to the governing equations of 
Chapter 1. The resulting Lagrangian- and advection-phase equations are numerically 
solved by the methods developed in Chapter 3. 
 
The integration of the basic hydrodynamic variables is presented in Chapter 5. The 
predictor-corrector technique used in PAGOSA is second-order accurate in time. 

                                                 
2L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Addison-Wesley Publishing Company, 
Inc., 1959), Chapter II, pp. 47–54. 
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Chapters 6, 7, and 8 are concerned with the thermodynamics of the simulation. The EOS 
provides a closure to the fundamental equations by connecting the density, energy, and 
pressure.  
 
A stable timestep must be computed for every step of the simulation. The Courant 
timestep controls are described in Chapter 9. 
 
The initial and boundary conditions for the governing equations are presented in Chapters 
10 and 11. The initial conditions apply to all of the fundamental variables in the 
simulation in the interior of the Eulerian mesh. The boundary conditions apply to the 
exterior surface of the Eulerian mesh. 
 
For high-explosive materials, a common method of releasing the chemical energy into the 
simulation is “programmed burn.” These algorithms are described in Chapter 12. 
 
The various divergence options are described in Chapter 13. Because PAGOSA has only 
one velocity field, choices exist regarding how that velocity field is applied in every cell 
of the simulation. 
 
Chapter 14 describes the algorithms for materials possessing strength, including the 
algorithm for elastic-plastic yield, as well as the various models for shear and yield 
moduli available in PAGOSA. 
 
Chapter 15 describes the algorithms for materials possessing damage or fracture models. 
 
Chapter 16 describes the algorithms for materials possessing a crush model. 
 
Appendices A–M contain detailed information on the derivations, as well as other 
additional information that supplements the development of the PAGOSA algorithms. 
The information in these appendices is not crucial to the understanding of the main points 
in the presentation; however, a more complete view of PAGOSA can be had by a careful 
reading of them. 
 
Note that acronyms are defined at the first instance in each chapter. 
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CHAPTER 1 
 

Governing Equations 
 

Great laws are not divined by flashes of inspiration, whatever you may think. It usually 
takes the combined work of a world of scientists over a period of centuries. 

 
-Isaac Asimov, Nightfall (1941) 
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1 GOVERNING EQUATIONS 

The partial differential equations solved in PAGOSA are presented. Many equivalent 
forms of the system of differential equations characterize the flow of inviscid3 fluids and 
solid materials in Eulerian coordinates, but certain formulations lead to considerably 
more accurate difference approximations than do others. These equations express the 
laws of conservation of mass, momentum, and energy locally. When these equations are 
combined with a material model relating stress to deformation, an equation of state  
(EOS),  and a set of initial and boundary conditions, they give a complete description of 
the motion of a continuum. The difference approximations have proven (empirically) to 
be quite accurate and generally most satisfactory for a wide range of three-dimensional 
problems. 
 
In the current formulation, density and the three components of velocity are considered to 
be fundamental variables; it is quite important to carry this notion over to the difference 
equations. 
 
The first condition, the equation of continuity, expresses the conservation of mass as4  
 

 U V W
t x y z

       
      

   
u    , (1.1) 

 
where u  is the velocity vector, ( , , )U V Wu . This equation defines the time evolution of 
density. 
 
The Navier-Stokes equations5 express the conservation of linear momentum as 
 

 
1 1 xyx xx xz

SF S SU U U U P
U V W

t x y z x x y z  
      

                
  , (1.2a) 

 
1 1y yx yy yzF S S SV V V V P

U V W
t x y z y x y z  

       
                

  , and (1.2b) 

 
1 1 zyzxz zz

SSF SW W W W P
U V W

t x y z z x y z  
      

                
  , (1.2c) 

 
where S  is the symmetric and traceless deviatoric stress tensor and is the difference 
between the total stress tensor and the isotropic pressure6 P. The total stress tensor is 

                                                 
3Inviscid is defined as having no viscosity. 
4G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, New York, New York, 
2000), p. 74. 

5Ibid., p. 147. 
6It should be mentioned that the mechanical pressure cannot always be identified with the thermodynamic 
pressure, but the difference is usually of little consequence from an engineering point of view. 
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never computed in PAGOSA and therefore is omitted in this overview. These three 
equations define the time evolution of the velocity field. 
 
The deviatoric stress tensor,7 a symmetric tensor,8 expresses the relationship between 
stress and strain as 
 

 1
32 ( )xx xxS G e  u   , 2 ( )xy xyS G e     , (1.3a,b) 

 1
32 ( )yy yyS G e   u   ,   2 ( )xz xzS G e     , and (1.3c,d) 

 1
32 ( )zz zzS G e  u   , 2 ( )yz yzS G e     . (1.3e,f) 

 
The shear modulus, G, is evaluated using one of several available flow-stress models 
(e.g., Elastic-Perfectly-Plastic, Steinberg-Cochran-Guinan, Kospall, and Johnson-Cook). 
The shear modulus, G, contains the material information about melting, pressure, and 
density dependencies and the material-specific constants. These flow-stress models are 
described in Section 14.4.  
 
The terms in the brackets in Eqs. (1.2a–c) are computed only for materials with strength. 
Equations (1.3a–f) are not computed for purely hydrodynamic materials. This concept 
applies to all the optional physics (e.g., burn, fracture, and crush). The physics is 
computed only for a material when appropriate. In this way, the computational overhead 
is reduced to what is necessary to satisfy the physics. 
 
The stress deviators are further adjusted for material rotation, plasticity, fracture, damage, 
and spall and are described in Chapter 14. This second-order tensor S has three 
invariants:9 
 
 1 ( ) 0xx yy zzJ trace S S S    S    , (1.4a) 

 2 2 2 2 2 2 21 1
2 2 2( ) ( )xx yy zz xy xz yzJ trace S S S S S S      S    , and (1.4b) 

 3 ( )J det S    . (1.4c) 

 
The invariants of tensors is an important concept in continuum mechanics. The second 
invariant J2 will become important when we consider the yield stress of a material. 
 
The spatial velocity gradient tensor can be decomposed into a symmetrical part and an 
antisymmetrical  (also called skew-symmetric) part. The symmetrical part of this tensor 
can be identified with the strain rate tensor e  in the limit of small strains.10 In this limit, 
the strain rate tensor can be written as 
 

                                                 
7This constitutive relation has many names: Hooke’s law, the linear stress-strain equations, etc. A simple 
derivation is given in Appendix A. 

8The symmetry of the tensor is a consequence of the conservation of angular momentum. 
9The values of 

1 2 3, ,J J J  are the same (invariant), regardless of the orientation of the coordinate system. 
10 I.S. Sokolnikoff, Mathematical Theory of Elasticity (McGraw-Hill, New York, 1956), pp.29-33. 
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 xx

U
e

x





  , 
1

2xy

U V
e

y x

  
    

    , (1.5a,b) 

 yy

V
e

y





   , 
1

2xz

U W
e

z x

  
    

    , and (1.5c,d) 

 zz

W
e

z





  , 
1

2yz

V W
e

z y

  
    

    . (1.5e,f) 

 
The trace of the strain rate tensor is the divergence of the velocity vector, given as 
 

 xx yy zz

U V W
e e e

x y z

  
      

  
u      . (1.6) 

 
The trace of the strain tensor (without the time derivative) is called the dilatation. The 
dilatation represents the contraction or expansion of a material element. Mathematically, 
it is simply 
 
 xx yy zzdilatation e e e      . (1.7) 

 
In fluid mechanics, a flow is called incompressible if the divergence of the velocity field 
is identically zero. This flow corresponds to a material element having no change in 
volume (contraction or expansion). In PAGOSA, which solves the equations for 
compressible flow, a material cannot be truly incompressible. However, a material can 
have a very large value for a bulk compression modulus.11 The excursions from 
incompressible flow can be made arbitrarily small from an engineering point of view. 
 
The antisymmetrical (skew-symmetric) part of the spatial velocity gradient tensor is the 
vorticity tensor, the components of which are 
 

 1
2

1

2xy yx z

U V

y x


  
         

   , (1.8a) 

 1
2

1

2xz zx y

U W

z x


  
       

  
   , and (1.8b) 

 1
2

1

2yz zy x

V W

z y


  
         

   , (1.8c) 

 
where   is the axial vector12 associated with the vorticity tensor.  
 

                                                 
11See Section 6.3, Polynomial Equation of State, for an example. 
12Mathematically the axial vorticity vector is the curl of the velocity vector. For example, if 0 u , the 

flow is called irrotational. 
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In matrix form, 
 

0 0
1

0 0
2

0 0

xy xz z y

xy yz z x

xz yz y x

 
 
 

     
     

  
    

      



 




Ω    . 

 
The pressure is assumed to be related to the density and internal energy by the equation 
 
 ( , )P P E  EOS.    (1.9) 
 
The EOS can be analytic or tabular and includes phase transitions for each material. The 
EOS must be solved in conjunction with the equation for specific internal energy as 
 

 
2

2( )

( xx xx yy yy zz zz

xy xy xz xz yz yz

E E E E
U V W P

t x y z
S e S e S e

S e S e S e


    

           
  

  

u

  
  

   . (1.10) 

 
The internal energy is further divided into an elastic distortional energy and plastic work. 
The difference is that the plastic work results in raising the internal energy of the 
material, whereas the elastic distortional energy is recoverable by the system. These 
details will be discussed in Chapter 14. 
 
The above development is for a single material. The above equations are applied to every 
material in PAGOSA. In the following algorithm descriptions, the fundamental variables 
are scaled by a volume fraction representing the amount of each material in a particular 
region of space. The material interface treatment is a unique and powerful feature in 
PAGOSA. 
 
Remarkably, these equations capture the flow and deformation of gases, fluids, and solids 
and the interactions between them, when formulated for multifield13 flow. The history of 
these equations is a fascinating story in its own right. The history of modern physics is 
intimately tied to these equations because originally the luminiferous aether was believed 
to behave as an elastic solid.14 
 
The first step in numerically solving the above equations is to create a computational 
grid. The creation of the Eulerian grid is discussed in the next chapter. 

                                                 
13D.A. Drew and S.L. Passman, Theory of Multicomponent Fluids (Applied Mathematical Sciences 135) 

(Springer Publishing Company, New York, 1998). 
14Sir E. Whittaker, A History of the Theories of Aether and Electricity (Dover Publications, Inc., Mineola, 

New York, 1989), Chapter V: “The Aether as an Elastic Solid,” pp. 128–169. 
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CHAPTER 2 
 

The Eulerian Grid 
 

Every cubic inch of space is a miracle. 
 

-Walt Whitman, Miracles (1871) 
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2 THE EULERIAN GRID 

The computational domain is a box (mathematically it is a cuboid15 or rectangular 
parallelepiped). The user chooses the computational range of interest by choosing the 
coordinate ranges  
 
 min max min max min max[ : ] [ : ] [ : ]x x y y z z   Eulerian computational domain . 

 
The governing equations are solved numerically with the appropriate initial and boundary 
conditions. The computational domain is divided into cells16 bounded by the surfaces  
 
 min ( 1)ix x i x      max1, 2,...,i i      , 

 min ( 1)jy y j y      max1, 2,...,j j    , and 

 min ( 1)kz z k z      max1, 2,...,k k    , 

 
where , ,x y z    are the grid spacings and the dimensions of a single Eulerian cell. The 
cell dimensions are shown in Figure 2.1. The coordinates of the lower left corner of the 

cell with the indices (i,j,k) correspond to 
(xi,yj,zk). The cell is the basic spatial 
discretization in the solution of the partial 
differential equations. The cell and the 
entire mesh are fixed in space. Materials 
move through the grid (also referred to as a 
mesh) subject to the governing equations 
and initial and boundary conditions. As 
time progresses, the variables are computed 
at fixed points of the grid. In the Eulerian 
formulation, the volume of the cell is 
invariant, and changes in density are due to 
changes in the mass of a material in a 
particular cell. 
 

The important geometric properties of the Eulerian cell include 
 
 Cell widths  , ,x y z   , 
 Cell volume  Vol x y z       , and 

 Face areas   xArea y z     x component  

   yArea x z     y component   

   zArea x y     z component   . 

                                                 
15A cuboid is defined as a closed box with three pairs of rectangular faces. The black monolith with side 

lengths of 1, 4, and 9 in the book and film version of 2001: A Space Odyssey is an example of a cuboid. 
16The terms “cell” and “zone” are used interchangeably in the text. 

Figure 2.1. A single Eulerian cell in the 
computational domain.  
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The numerical solution of partial differential equations17 involves a two-step process: 
 

1. Create a finite difference scheme (a difference approximation to the partial 
differential equations on a grid). 

2. Solve the difference equations; the solution is written in the form of a high-
order system of linear and/or nonlinear algebraic equations. 

The numerical treatment of the original partial differential equations requires that the 
variables be discretized temporally and spatially.  
 
In PAGOSA, a staggered grid is used, where some variables are centered on the cell 
vertices, whereas others are cell centered. The discretization begins with the basic cell-
centered hydrodynamic variables, as shown in Figure 2.2: 

 Density ( ; , , )t x y z   1/2, 1/2, 1/2
n
i j k     

 Internal energy ( ; , , )E t x y z  1/2, 1/2, 1/2
n
i j kE     Cell Centered 

 Pressure ( ; , , )P t x y z  1/2, 1/2, 1/2
n

i j kP    

 
The superscript refers to a discrete time (n), and the subscripts refer to a discrete position 
in space (in this case, the center of the cell). Note: The superscript (n) is not an exponent 
or a power-law index, but simply a time index.  
 
The cell centers are located at the geometric center of the cell; the center coordinates are 

1
1/2 12 ( )i i ix x x   , much as for the other coordinates. 

 
The velocity vector is defined at the cell vertices:  
 
 X velocity  ( ; , , )U t x y z  1/2

, ,
n
i j kU     

 Y velocity  ( ; , , )V t x y z  1/2
, ,
n

i j kV   Vertex Centered  

 Z velocity   ( ; , , )W t x y z   1/2
, ,
n

i j kW    

 
The superscript in this case refers to a half-timestep (n + ½), and the subscript refers to a 
vertex located at (i,j,k). The time centering of the above equations is only an example. 
The exact time centering [i.e., (n), (n + ½), or (n + 1) as superscripts] will be deferred 
until the discussion in Chapter 5, Integration of the Hydrodynamic Variables. 
 
The variables from the original partial differential equations (e.g., U,  ) are continuous 
functions of space and time. This statement is not true of the finite difference 

                                                 
17William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes in 

Fortran: The Art of Scientific Computing, second edition (Cambridge University Press, New York, New 
York, 1992), pp. 818–849. 
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representation described above. In the literature of finite difference equations, the two 
functions are often denoted differently to distinguish between the continuous and discrete 
functions.18 For example, the discrete functions and their solutions will depend on the 
choice of grid spacing (zone size). In this text, the same symbols will be used for both 

descriptions.  
 
In PAGOSA, the choice of placing 
the velocity vector at the cell vertices 
is not universal. Some Eulerian 
hydrodynamics codes locate the 
velocities on the cell faces,19 whereas 
others locate them at the cell center 
with the other variables.20 The exact 
placement of variables on a mesh is 
an active area of research, and the 
choice of discretization is an art. The 
advantage of having eight velocity 
vectors associated with each cell is 
that complex velocity fields can be 
represented accurately in PAGOSA.  
 

2.1 Mixed Cells 

Some cells in the computational domain will contain more than one material.21 These 
mixed cells present one of the central challenges for Eulerian hydrocodes. Multi-material 
cells computationally represent the interface between materials. 
 
The volume fractions22 are defined as 

 ( )
1/2, 1/2, 1/2  fraction of the cell volume occupied by material ( )m

i j k m        . 

 
For a cell, the volume fractions must sum to a value of unity by definition as 

 ( )
1/2, 1/2, 1/2 1m

i j k
m

        , 

 

                                                 
18M. Shashkov, Conservative Finite-Difference Methods on General Grids, Stanly Steinberg, ed. (CRC 

Press, Boca Raton, Florida, 1996), p. 6. 
19F.H. Harlow and J.E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow 

of Fluid with Free Surface,” The Physics of Fluids, Volume 8, Number 12, pp. 2182–2189 (1965). 
20W. Johnson, “OIL, A Continuous Two Dimensional Eulerian Hydrodynamic Code,” General Atomic 

report GAMD-5580 (revised) (1965). 
21A cell containing only one material is called a pure cell. All other cells are called mixed cells. 
22C.W. Hirt and B.D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” 

Journal of Computational Physics, 39, pp. 201–225 (1981). 

Figure 2.2. The spatial centering of the 
PAGOSA state variables.  



Chapter 2 The Eulerian Grid 

20 

where the summation is over all the materials defined in the simulation. As the simulation 
progresses, the volume fractions are recomputed for each new timestep. The question is 
how to compute the initial volume fractions. These fractions are computed using a 
variation of a Monte-Carlo technique.23 Each cell is sampled with a regular array of 
“particles,” and the resulting statistics are used to compute the initial volume fractions. A 
more detailed discussion is given in Appendix B. 
 
Most cells in a simulation are pure cells. The single-material-governing equations shown 
in Chapter 1 apply directly in this case. For example, cell average pressures are identical 
to the material pressures. No interfaces exist in these cells.24 
 
On the other hand, mixed cells provide a richness and complexity to the solution of the 
governing equations. In a mixed cell, each material possesses its own density, internal 
energy, and pressure. In general, no attempt is made to force a pressure or temperature 
equilibrium between the individual materials (see Chapter 13 for a more complete 
explanation). The cell average pressure is the volume fraction average of each material 
pressure. Each material in a mixed cell has its own interface represented by a plane; in 
this way, the materials can be localized within the cell. 

2.2 Finite Differences 

It is natural to divide the simulation time interval [0,T] into short subintervals, with a step 
denoted t . In general, the time intervals will change as the simulation progresses [i.e., 
the time interval (also called the timestep) will change, depending on the exact physical 
state at that time]. The simulation time after N steps is 
 

 0
1

N
N n

n

t t t


      ,  the simulation time at cycle N   . 

 
The finite difference method is a numerical technique for approximating the solution of 
partial differential equations. A partial derivative is replaced with a finite difference as, 
for example, the partial time derivative of an arbitrary function 
 

1
1/2, 1/2, 1/2 1/2, 1/2, 1/2

n n
i j k i j k

nt t

  
     


 

   , (2.1) 

 
where we have used the standard notation 1 1

1/2 1/2 1/2 1/2, 1/2, 1/2( , , , )n n
i j k i j kt x y z  
      . 

 
Now suppose we wish to create a finite difference approximation for the equation 
 

                                                 
23William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes in 

Fortran: The Art of Scientific Computing, second edition (Cambridge University Press, New York, New 
York, 1992), pp. 155–158. 

24The only pathological exception is when two adjacent pure cells have different materials. The material 
interface coincides with the cell face. 
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 ( , )F t x
t





 , and (2.2a) 

 
1

1/2, 1/2, 1/2 1/2, 1/2, 1/2
1/2, 1/2, 1/2

n n
i j k i j k n

i j kn
F

t

 
     

  





,    1n n nt t t      . (2.2b) 

 
Solving this equation yields the following algebraic equation: 
 
 1

1/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2
n n n n
i j k i j k i j kt F 
              . (2.3) 

 
This technique will be used repetitively in the following chapters. The finite difference 
approximations25 to the governing equations will be developed in the following chapters. 

2.3 Momentum Control Volume 

The momentum control volume, or dual mesh, surrounds the vertex. This volume is 
staggered with respect to the original Eulerian mesh, which is created by connecting the 
centroids of the Eulerian cells and therefore is identical to the Eulerian mesh, but 
translated by half a cell in each dimension, as shown in Figure 2.3. In three dimensions, 
each vertex is surrounded by eight Eulerian cells.  
 
 
 
 
 
 
 
 
 

 

 
Figure 2.3. A cross section of the momentum control volume. The two-dimensional cut of this 

control volume passes through the vertex (i,j,k).  

The mass of a single Eulerian cell is computed by 
 
 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

( ) ( )
, , , , , , , ,

j j
i j k i j k i j k i j k

j

m Vol                ,  (2.4) 

 

                                                 
25R.D. Richtmyer and K.W. Morton, Difference Methods for Initial-Value Problems, second edition 

(reprinted)  (Krieger Publishing Company, Malabar Florida, 1994).  
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where the summation is over all materials (j). The mass associated with the vertex is 
computed by 
 

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

1
, , 8 , , , , , , , ,

, , , , , , , ,

(

)

i j k i j k i j k i j k i j k

i j k i j k i j k i j k

Mass m m m m

m m m m

           

           

   

  
   , (2.5) 

 
and the x component of momentum associated with the vertex is 

 

, , , , , ,i j k i j k i j kMomentum Mass U    . (2.6) 

 
The momentum control volume becomes important in the discussion of solving the 
momentum equations (1.2abc). 

2.4 Ghost Cells 

An extra layer of cells is added to the outside of the computational grid to aid in the 
construction and implementation of the boundary conditions. In the literature on Eulerian 
hydrodynamics codes, these “extra” cells are called ghost cells or guard cells. The 
addition of the external cells is used to extend the grid so that the solver need not be 
directly aware of its computational boundary. 
 
Two types of boundary conditions are implemented in PAGOSA—reflective and 
transmissive boundaries. These conditions are discussed in Chapter 11. 
 
The boundary conditions are applied to all six exterior faces of the computational grid. 
Each face of the Eulerian mesh can have a different boundary condition. Other boundary 
conditions may be added in the future. 

2.5 Grid Decomposition 

The solution of three-dimensional problems requires large amounts of memory and 
processing power to produce mesh-converged results in a reasonable time. The 
orthogonality of the grid allows for a straightforward spatial decomposition, as illustrated 
in Figure 2.4. 
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Figure 2.4. Domain decomposition of an Eulerian grid. The example shows the grid being 

decomposed onto eight processors. The size and shape of the decomposed grid are 
the same on each processor. 
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CHAPTER 3 
 

Strain Rates 
 

I have no satisfaction in formulas unless I feel their numerical magnitude. 
 

-Lord Kelvin, Life of Sylvanus Thompson 
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3 STRAIN RATES 

The strain rate calculation in PAGOSA requires the evaluation of all the derivates of the 
velocity vector u = (U,V,W). Specifically, the derivatives that need to be evaluated are 

 , , , , , ,  and , ,
U U U V V V W W W

x y z x y z x y z

             
                  

 . 

 
Before we can construct a numerical approximation to the above partial derivatives, we 
need to take a mathematical detour. Start with the divergence theorem26 

 3 2n̂
V S

d x d x  F F    . (3.1) 

 
Let F c , where c  is a constant vector  0  and   is a scalar that is a function only of 
position. Then we have 

 3 2n̂
V S

d x d x  F c    . (3.2) 

 
However, the divergence produces 

 ( )           F c c c c  (3.3) 
 
because c  is a constant vector. In this case, the divergence theorem reduces to 

 3 2ˆ 0n
V S

d x d x 
    
 
 c    . (3.4) 

 
Because c  is nonzero and arbitrary, the dot product cannot be zero unless the quantity 
inside the brackets is zero.  

Next, take the limit of the volume as it approaches zero. In this limit, we assume that the 
gradient is uniform and constant over the volume or has a mean value27 of 

 3 3 2

0 0 0
ˆlim lim lim n

Vol Vol Vol
V V S

d x d x d x  
     

        , (3.5) 

 

where 3

V

d x Vol   . 

                                                 
26P. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw Hill, New York, 1953), pp. 

37–39. 
27In the sense of given by the mean value theorem for integration. 
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Then under these circumstances, 
 

 2

0

1
ˆlim n

Vol
S

d x
Vol

 
 

 
     . (3.6) 

 

Apply this new definition of the gradient to a single cell in the Eulerian mesh. The 
volume element is Vol x y z     , the unit normals n̂  are the Cartesian unit vectors, 
and the surface areas are those of the cell. 

The gradient of a scalar field, in this case the x component of the velocity U , can be 
computed from the surface integral of the velocity field 
 

 1

0

1
lim i i

Vol

U d y d z U d y d z U UU

x x y z x y z x


 

      
         

      . (3.7) 

 
The term in the square brackets is the integral average of the velocity over the relevant 
surface area. Evaluating the integrals at the limits of the integration produces the final 
result28 in Eq. (3.7). iU  is the area-averaged velocity on the x face of the cell. The value 
of iU  is computed as the arithmetic average of the corner vertex velocities:29 
 
 1

, , , 1, , , 1 , 1, 14 ( )i i j k i j k i j k i j kU U U U U          . (3.8) 

 
The scheme is shown in Figure 3.1. The other gradients are handled similarly. 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 3.1. The gradient finite difference computation. 

                                                 
28The difference scheme presented is spatially second-order accurate. 
29The integral average is approximated by the arithmetic average of the four corner velocities. However, the 

same answer is arrived at if it is assumed that the velocity is a bilinear function of position on the face. 
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The strain rates are defined as 

 
1

,
2x x x y

U U V
e e

x y x

     
          

     , (3.9a,b) 

 
1

,
2y y x z

V U W
e e

y z x

     
          

     , and (3.9c,d) 

 
1

,
2z z y z

W V W
e e

z z y

     
          

     , (3.9e,f) 

 
and the finite difference approximations are 
 

 1 1 1
2 2 2

1
, ,

i i
x x i j k

U U
e

x


  

 
   

    , (3.10a) 

 1 1 1
2 2 2

1 1
, ,

1

2
j j i i

x y i j k

U U V V
e

y x
 

  

  
    

    , (3.10b) 

 
1 1 1
2 2 2

1 1
, ,

1

2
k k i i

x z i j k

U U W W
e

z x
 

  

  
    

    , (3.10c) 

 1 1 1
2 2 2

1

, ,

j j
yy i j k

V V
e

y


  

 
   

    , (3.10d) 

 
1 1 1
2 2 2

11
, ,

1

2
j jk k

y z i j k

W WV V
e

z y


  

 
    

    , and (3.10e) 

 1 1 1
2 2 2

1
, ,

k k
z z i j k

W W
e

z


  

 
   

    . (3.10f) 

 
Note that the strain rates are cell-centered quantities, whereas the velocities are vertex 
centered. In mathematical terms, the difference operator maps vertex quantities to cell-
centered quantities. 

Finally, the divergence is computed as 
 
 x x y y z ze e e   u       , (3.11) 

 
and the finite difference approximation is 

 1 1 1
2 2 2

11 1
, ,

j ji i k k
i j k

V VU U W W

x y z
 

  

     
              

u    . (3.12) 
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CHAPTER 4 
 

Operator Splitting 

 
No need to ask. He’s a smooth operator. 

-Sade, Diamond Life (1984) 
 

 

 



Chapter 4 Operator Splitting 

32 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
  



Chapter 4 Operator Splitting 

33 
 

4 OPERATOR SPLITTING 

Operator-splitting methods are mathematical techniques used for solving partial 
differential equations. These methods are commonly used to reduce the computational 
effort required to solve the complex governing equations into a simpler set of equations. 
We begin with the three-dimensional (3D) Euler equations:30 
  
        Conservation Law 

 0     U V W
t x y z

       
     

   
u  Mass   , (4.1) 

 
1

0    
U U U U P

U V W
t x y z x

    
    

    
 Momentum (X)   , (4.2) 

 
1

0      
V V V V P

U V W
t x y z y

    
    

    
 Momentum (Y)   , (4.3) 

 
1

0   
W W W W P

U V W
t x y z z

    
    

    
 Momentum (Z)   , and (4.4) 

 0   
E E E E P

U V W
t x y z 

   
     

   
u  Internal energy   , (4.5) 

 
where the velocity vector is defined as ( , , )U V Wu . 
 
A variety of approaches exists for the differencing of the equations. The method used in 
PAGOSA is based on the “Strang operator-splitting” technique.31 The above equations all 
have the form 
 

1 2 3( ) 0L L L
t

 
   


   , (4.6) 

 
where   is any of the variables (i.e., , , , , U V W E ). The operators L1, L2, and L3 are 
linear (spatial) partial differential operators. If 1D  is a finite-difference approximation 
to 1L , then the finite-difference equivalent32 of the above operator equation is simply  
 

1
1 2 3(1 )n nD t D t D t            . (4.7) 

 
This equation can be rewritten to within a second-order approximation as  
 

1 2
1 2 3(1 ) (1 ) (1 ) ( )n nD t D t D t O t              .  (4.8) 

                                                 
30The body forces and stress deviators are unnecessary for this discussion. 
31Gilbert Strang, “On the Construction and Comparison of Difference Schemes,” SIAM Journal of 

Numerical Analysis, Volume 5, Issue 3, pp. 506–517 (September 1968). 
32A variation of Eq. (2.3). 
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The time operator is “split” in the specific sequence: 
 

1 2 3, , ,  and

,

L L L
t t t

t t t t

    

   

           
  

     
  

   

     (4.9) 

 
or, in the finite-difference form, 
 

1

2

1
3

(1 )

(1 )

(1 )

n

n

D t

D t

D t

 
 

 

   
   

  

   ,  (4.10) 

 
which will provide a second-order accurate solution of the original equations.33 The 
attraction of operator splitting is clear.34 The operator splitting replaces a complex set of 
equations with three much simpler equations.35 The PAGOSA version of this operator-
splitting technique results in the following equations. 

4.1 Lagrangian Phase 

     Conservation Law 

0
t

 
  


u  Mass   , (4.11) 

1
0

U P

t x
 

 
 

 Momentum (X)   , (4.12) 

1
0

V P

t y
 

 
 

 Momentum (Y)   , (4.13) 

1
0

W P

t z
 

 
 

 Momentum (Z)   , and (4.14) 

0
E P

t 


  


u  Internal energy   . (4.15) 

 
The equations in the Lagrangian phase are simply the 3D Lagrangian hydrodynamic 
equations, the difference properties and behaviors of which are well understood from 
decades of experiences with Lagrangian hydrocodes. The remainder of the technique 
results in three additional sets of equations associated with the three Cartesian axes. 

                                                 
33The second-order accuracy is described in Chapter 5 (Integration of the Hydrodynamic Variables). 
34G.I. Marchuk, Methods of Numerical Mathematics, Second Edition, translated by A.A. Brown (Springer-

Verlag, New York, 1982), Section 9.4, pp. 421-439. 
35D. Gottlieb, “Strang-Type Difference Schemes for Multi-Dimensional Problems,” SIAM Journal of 

Numerical Analysis, Volume 9, Issue 4, 650–661 (September 1972). 
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4.2 X Advective Phase  
     Conservation Law 

0U
t x

  
 

 
 Mass   , (4.16) 

0
U U

U
t x

 
 

 
 Momentum (X)   , (4.17) 

0
V V

U
t x

 
 

 
 Momentum (Y)   , (4.18) 

0
W W

U
t x

 
 

 
 Momentum (Z)   , and (4.19) 

0
E E

U
t x

 
 

 
 Internal energy. (4.20) 

4.3 Y Advective Phase  
     Conservation Law 

0V
t y

  
 

 
 Mass   , (4.21) 

0
U U

V
t y

 
 

 
 Momentum (X)   , (4.22) 

0
V V

V
t y

 
 

 
 Momentum (Y)   , (4.23) 

0
W W

V
t y

 
 

 
 Momentum (Z)   , and (4.24) 

0
E E

V
t y

 
 

 
 Internal energy. (4.25) 

4.4 Z Advective Phase  
     Conservation Law 

0W
t z

  
 

 
 Mass   , (4.26) 

0
U U

W
t z

 
 

 
 Momentum (X)   , (4.27) 

0
V V

W
t z

 
 

 
 Momentum (Y)   , (4.28) 

0
W W

W
t z

 
 

 
 Momentum (Z)   , and (4.29) 

0
E E

W
t z

 
 

 
 Internal energy   . (4.30) 

 
These equations are the Eulerian-, remap-, or advection-phase equations. 
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The advection phase essentially forms a three-stage remapping procedure from the 
distorted Lagrangian grid (produced by the Lagrangian phase) back to the original 
Eulerian grid.36 The Lagrangian phase may be regarded as a sequence of computations 
based on the (fictitious) Lagrangian grid, which coincides with the Eulerian mesh at the 
beginning of the phase. The advection phases conduct the transport of mass and material 
quantities between cells and may be viewed as a remapping of the distorted Lagrangian 
grid back onto the fixed Eulerian grid. In the Lagrangian phase, the density has a constant 
value and is adjusted at each new timestep by the mass transport of the advection phases.  
 
Figure 4.1 illustrates the situation where the x-advection remap is executed first. 
However, the three 1D advection phases in the orthogonal coordinate directions should 
alternate (permute) in sequence in successive timesteps to achieve overall second-order 
accuracy in time. The advection remap permutation tends to mitigate any directional bias 
in each computational cycle. The choices of how to start the permutation cycle and which 
permutations to use are outstanding research issues. In PAGOSA, all six spatial 
permutations are used, beginning with the x direction. 

Figure 4.1. A typical sequence of Lagrangian and advection steps. 

                                                 
36Methods that perform the advection in a single conservative step are collectively called unsplit advection 

methods. Although unsplit methods have a theoretical advantage over operator-splitting methods, the 
advantage remains largely theoretical. 
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In PAGOSA, the advection order is permuted as 
 

Timestep Advection Order 
 

1  X-Y-Z 
2  Z-X-Y 
3  Y-Z-X 
4  X-Z-Y 
5  Y-X-Z 
6  Z-Y-X 
7  X-Y-Z  (permutations repeat every six timesteps) 

 etc. 
 
Next, we examine the procedures that PAGOSA uses to solve the individual phases—the 
Lagrangian phase and the three advection phases. 
 
Notice that the variables , , , ,U V W E  have been split into two. For example, a 
density  is associated with the Lagrangian phase, and another is associated with the 
Eulerian (remap) phase. During a computational timestep, both sets of variables are 
computed and used.  

4.5 Lagrangian Phase 

The solution of the Lagrangian mass conservation, Eq. (4.11) in our finite-difference 
form, is37 

 1 [1 ( ) ]n nVol Vol t     u ,  and 1 1( / )n n n nVol Vol   . (4.31a,b) 
 
If all of the materials within the zone are assumed to undergo uniform compression (or 
expansion) during the timestep, then all of the individual volume fractions remain 
unchanged. This assumption is clearly poor for cells containing mixtures of solids and 
liquids or gases.  
 
The actual integration of the Lagrangian phase, Eq. (4.31), is discussed in Chapter 5, 
Integration of the Hydrodynamic Variables. The time centering of the divergence and 
timestep is also discussed in this chapter.38 
 
Finally, notice that the product of the divergence and the timestep is a dimensionless 
quantity that “controls” the fractional change in volume for that single timestep. This 
observation implies that the timestep should be limited by the inverse of the divergence 
of the velocity: one of several limits placed on the timestep. These timestep controls are 
discussed in Chapter 9. 

                                                 
37See Appendix D for the complete derivation of this expression. 
38The complete spatial and time indices have been omitted in Eq. (4.31) for clarity. 
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The Lagrangian momentum equations [Eqs. (4.12), (4.13), and (4.14)] are the next to be 
solved. The components of the pressure gradient can be put in a finite-difference form 
using the same methodology developed in Chapter 3. However, because the velocity is 
spatially vertex centered, the relevant volume is the momentum control volume 
surrounding the vertex.39 The gradient40 is 
 

 
 

1/2 1/2

0

( )
lim i i i

Vol

P dy dz P P AreaP

x x y z x y z
 

 


 

      
    , (4.32) 

 
where the Areai is the relevant surface area of the momentum control volume and the 
volume in the denominator is the momentum control volume associated with the vertex 
located at ( , , )i j k . The average cell-centered pressure P  is used to compute the gradient. 
 
The finite-difference form of Eq. (4.12) is 
 

 
 


1
1/2 1/2( )

n nn n
i ii i i

n

i

U U P P Area

t x y z


  

 
   

   .  (4.33) 

 
Notice that the denominator on the right-hand side of the equation is simply the mass of 
the momentum control volume. One modification is necessary for this equation. The 
artificial viscosity is an additional “pressure” that can contribute to the acceleration. With 
the artificial viscosity term, Q, added, the equation is 
 

 
 

1/2 1/21 1/2 1/2( ) ( )
n nn n
i in n ni i i i

i i n
i

P Q Area P Q Area
U U t

Mass
   

   
   

  
   . (4.34) 

 
The term inside the brackets is the x component of the acceleration. All components of 
accelerations are limited so that “numerical” noise is suppressed in the simulation. A user 
cutoff parameter is used to suppress small accelerations. 
 
The Q term will contribute only in a few cells around shock locations. Otherwise, it has a 
value of zero away from shocks.41 The artificial viscosity is added for purposes of 
numerical stability, entropy production at shocks, and energy conservation. Equation 
(4.34) is the x-momentum finite-difference solution of the Lagrangian-phase equations.42 
 

                                                 
39See Section 2.3 for a description of the momentum control volume. 
40The gradient is computed as in Eq. (3.6); however, in this case, the areas and volumes are computed with 

respect to the vertex-centered momentum control volume. 
41See Chapter 8 for details. 
42The gravitational body forces are included by simply adding 

xg t  to the right-hand side of Eq. (4.34). 
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For vertices surrounded by cells of void, the velocities are zero. The vertex mass (Massi) 
is computed from the eight surrounding Eulerian cells as 
 

1
8

nnn
iiMass Vol     , (4.35) 

 
where the mass is computed from the average cell density and the Eulerian cell volumes. 
 
This velocity equation is used in the predictor-corrector integration of the Lagrangian 
equations [Eqs. (4.11)–(4.15)]. The integration algorithm is discussed in Chapter 5.  The 
Lagrangian energy equation (4.15) is solved in the same manner as (4.11). 

4.5.1 Lagrangian Setup for Advection 
 
The last step in the Lagrangian phase is to compute the volume fractions that will be 
advected in the advection phases.  
 
The idea is to compute the volume fraction of the advected portion of a material on one 
side of a plane that passes through the Eulerian cell, as shown in Figure 4.2. 
 
 

 

 

 

 

 

 

Figure 4.2. A cross section of an Eulerian cell showing a material interface with a direction 
vector µ, a volume fraction to be advected ε (relative to the full cell volume Vol), and 
the volume fraction of the advected portion of the material Vp. 

In this case, we know the volume of the cell (Vol), we know the direction vector 
associated with the interface (µ), and we know that this vector points out of the material 
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that lies “behind” the plane. The volume fraction of the advected portion of the material 
is what is to be computed. 
 
The derivation of the algorithm used to calculate the advection volumes is given in 
Appendix G.43 The advected portion of material (m) is given by 
 
 pv v ( , )   μ    , (4.36) 

 
where 
 

 1
1 12 (1 )           μ     (4.37) 

 
and v  is the volume fraction of material within a unit cube, which is behind the interface 
plane. Note that if 0  , then the plane lies entirely outside the advection volume and 

pv 0 . Conversely, if max   , then v 1   and pv  . 
 
The algorithm described above is based on the Los Alamos National Laboratory 
publication LA-UR-07-2274.44 The complete derivation is presented in that document. 
The interface reconstruction is an integral part of the advection process. 
 
An example is shown in Figure 4.3. Four materials exist in a single Eulerian cell at a 
moment in time. A priority number is associated with each material. The priority number 
provides an ordering to the material advection sequence. This “onion skin” method45 is 
used in PAGOSA to provide a systematic reconstruction for the multi-material, multiple 
interface cells (mixed cells). The last material is computed separately so that material 
masses and volume fractions are conserved.  
 
The order of material advection has not been addressed. PAGOSA uses a scheme 
whereby each material is given a priority. The advection order starts with priority 1 
through the maximum number of materials. There are several potential problems with 
this algorithm. The priorities for each material are in general spatially and temporally 
dependent, but are instead arbitrarily specified as constants by the user.46  
 
Nothing precludes the intersection of interfaces within a cell (resulting in negative 
volume fluxes).47 Intersections of material (T and Y junctions) cannot be properly 
                                                 
43 The definitions of the variables in Eqs. (4.36) and (4.37) are detailed in Appendix G. 
44Chuck Zemach, “Notes on Calculation of the Volume of a Stretched Cube behind a Truncating Volume,” 

Wayne Weseloh, editor, Los Alamos National Laboratory report LA-UR-07-2274 (March 1, 2007). 
45David L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortion,” Numerical 

Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors, (Academic Press, London England, 
1982), pp. 273–285. 

46Wayne Weseloh, “PAGOSA Input Reference Manual,” Version 17.0, Los Alamos National Laboratory 
report LA-CP-10-00113, p. 64 (January 2010). 

47The probability of this occurrence increases with the number of materials in a cell. 
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represented.48 In addition, a poor normal (μ ) estimation can lead to misrepresentations in 
the interface topology. 

 
Figure 4.3. An Eulerian cell containing four materials separated by three distinct interfaces (left) 

is simplified into a sequence of three separate two-material (one-interface) 
representations (right) by accumulating materials at each step in the sequence. The 
accumulation order depends on the specific material priorities [e.g., the priority 1 
material is treated first (second left); the priority 2 material is accumulated next (third 
left), followed by the priority 3 material]. The numbers refer to the priority number. 

An excellent review article on the volume of fluid interface treatments is given by Pilliod 
and Puckett.49  

                                                 
48A. Caboussat, M. Francois, R. Glowinski, D. Kothe, and J. Sicilian, “A Numerical Method for Interface 

Reconstruction of Triple Points within a Volume Tracking Algorithm,” Mathematical and Computer 
Modelling, Volume 48, pp. 1957–1971 (2008). 

49James E. Pilliod Jr. and Elbridge G. Puckett, “Second-Order Accurate Volume-of-Fluid Algorithms for 
Tracking Material Interfaces,” Journal of Computational Physics, Volume 199, pp. 465–502 (2004). 
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4.6 Advection Phases 

In the advection phase (also called the remap phase), the hyperbolic advection equation   
  

 0a
t x

  
 

 
  (4.38) 

 
is integrated forward in time, where the variable   represents any advected (usually 
conserved) quantity, such as the mass, momentum, specific internal energy, and stress 
deviator. The characteristic speed a  is the local time-centered fluid velocity in that cell. 
A variant of van Leer’s50 monotonic upwind scheme proposed by Youngs51 is currently 
used in PAGOSA.  
 
 

  Advection:  The horizontal flow of water or air. 
 
    Webster’s College Dictionary, 1991 
 
 
 
Consider the 1D x-advection equation for the conservation of mass [as shown in Eq. 
(4.16) repeated below]. The partial differential equation is 
 

0U
t x

  
 

 
   .  

 
The general solution of this equation is  
 

( , ) F( )x t x U t      , (4.39) 

 
where F is an arbitrary differentiable function. In this case, the function represents a 
density wave traveling to the right with speed U , which has a shape that does not change 
as it moves. The initial wave profile is given by ( ,0) F( )x x  , which is d’Alembert’s 
solution to the advection equation. An example of the solution is shown in Figure 4.4 for 
a Gaussian pulse as an initial condition. 
 

                                                 
50B. van Leer, “Towards the Ultimate Conservative Difference Scheme IV. A New Approach to Numerical 

Convection,” Journal of Computational Physics, Volume 23, Issue 3, pp. 276–299 (March 1977). 
51David L. Youngs, “Time Dependent Multi-Material Flow with Large Fluid Distortion,” Numerical 

Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors (Academic Press, London, England, 
1982), pp. 273–285. 
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Figure 4.4. The solution of the advection equation. 

The precise finite-difference form of Eq. (4.16) depends on the sign of the velocity U. 
The differences are always on the “upwind” (or upstream) side of the cell at which the 
gradient is being evaluated. Mathematicians often refer to difference equations just with 
positive coefficients52 and therefore obscure the issue. In PAGOSA, the finite-difference 
equation is most generally written as 
  

 
1 1
2 2

1
1

0
n n n n

i ii i
U

t x

   
  

 
 

, if 0U     , and (4.40a) 

 

 
1 1
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1
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n n n n

i ii i
U

t x

   
  

 
 

, if 0U     , (4.40b) 

 
where i  is the density at the i cell boundary. The cells used in constructing the gradient 
depend on the sign of the velocity, as shown in Figure 4.5.  
 
Rewriting Eq. (4.34a) for the case 0U  , we have 

 1 1
2 2

1
1( )n n n n

i ii i
    

       , (4.41) 

 
where   is the Courant number. Mathematically, it is defined as 
 

( / )U t x      definition of the Courant number.53   
 

                                                 
52G.E. Forsythe and W. Wasow, Finite Difference Methods for Partial Differential Equations (Wiley, 

Hoboken, New Jersey, 1960). 
53The term is named after Richard Courant (1888–1972), a mathematician whose work in the analysis of 

numerical methods laid much of the groundwork for modern computational fluid dynamics. 
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Figure 4.5. Diagram of the advection cells involved in Eq. (4.34). For a positive velocity 

( 0U  ), the lower portion of the diagram defines the downwind, donor, and upwind 
cells. The negative velocity case is shown on top. The crosshatched area is the 
advection volume. 

The Courant number is important in establishing the stability limitations of the specific 
numerical method. A necessary condition for the stability of the above scheme is 
 
 0 1     Stability criterion for the Courant number. 

 
The mass flowing across the cell boundary i during a timestep is simply i U t  , where 
the advection density i  evaluated at the boundary is given by54 
 

1
2

1
2 (1 )n n

i ii
x D         . (4.42) 

 
Physically, this means that information cannot transit a cell in less than a single timestep. 
This restriction is discussed more fully in Chapter 9 on timestep controls. 
 
The variable iD  is a finite-difference approximation of the cell boundary density gradient 
(i.e., iD x   ). In PAGOSA, the possible choices for iD  are 
 
 First Order: 0iD     , (4.43a) 
 

 Second Order:  
1 1
2 2

n n
i i

iD
x

  



   , and (4.43b) 

 Third Order:  
1 31 1
22 2 2

(2 ) (1 )

3 3

n nn n
ii i i

iD
x x

       
 

 
   .  (4.43c) 

 
The first-order method, sometimes called the donor cell method, is diffusive and often 
produces poor results. The second- and third-order methods are much less diffusive but 

                                                 
54The detailed derivation is given in Appendix E. 
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suffer from nonphysical oscillations and occasionally negative densities. These 
deficiencies are corrected by limiting the density gradients in the following manner: 
 

 
1 31 1
22 2 2min , 2 , 2

n nn n
ii i i

i iD S D
x x

     
       

   , (4.44) 

 
where 
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   , (4.45) 

 
which is the Youngs/van Leer gradient limiter method.55 Details of the methodology are 
given in Appendix E. 
 
The above discussion applies to the density equations [Eqs. (4.16), (4.21), and (4.26)] and 
the internal energy equations [Eqs. (4.20), (4.25), and (4.30)]. The actual integration of 
the advection phase equations is discussed in Chapter 5, Integration of the Hydrodynamic 
Variables. 

4.6.1 Advection of Momentum  
The final equations to be solved [Eqs. (4.17)–(4.19), (4.22)–(4.24), and (4.27–4.29)] 
describe the evolution of the velocity field. For example [as shown in Eq. (4.17) repeated 
below], 
 

 0
U U

U
t x

 
 

 
  

 
is the x-momentum update for the x-advection phase. 
 
The momentum advection proceeds in exactly the same way as that previously described 
in Appendix E, with two important differences. The control volume of interest in this 
case is the momentum control volume centered on the cell vertex. The fundamental 
variable in this case is momentum instead of velocity.  
 
From the cell-centered advection described previously, we know the mass in the 
advection control volume before and after the three advection phases. Upwind, 

                                                 
55David L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortions,” Numerical 

Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors (Academic Press, London, England, 
1982), pp. 273–285. 
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downwind, and donor cells are identified by the amount of mass crossing the surface of 
the control volume. Downwind is assumed to be a positive mass flux in the positive 
coordinate direction. Imagine the indices in Figure 4.5 shifted half a cell to the right: 
  

 1
1

n n
n i i in out
i n

i

Mass U Flux Flux
U

Mass




 
    , (4.46) 

 
where the Flux is the momentum flux at the surface of the momentum control volume. It 
is simply a statement of the conservation of linear momentum.56 In this way, the linear 
momentum is conserved by construction. The momentum flux is computed as 
  

 1 1
2 2

1
2 (1 )n n n

i ii i
Flux Mass U D 

         , (4.47) 

 
where the mass increment is computed in the direction of the advection [W in the case of 
Eq. (4.27) shown above]. 
 
Just as with the cell-centered advection, three advection sweeps are performed after the 
Lagrangian phase occurs. All of the advection sweeps happen in concert, as shown in 
Figure 0.3. 
  
The fluxes are computed at cell centers using the variable iD , which in this case is a 
finite-difference approximation of the vertex velocity gradient (i.e., iD U x   ). In 
PAGOSA, the possible choices for iD  are 
 
 First Order: 0iD     , (4.48a) 
 

 Second Order:  1
n n
i i

i

U U
D

x





   , and (4.48b) 

 

 Third Order:  1 1(2 ) (1 )

3 3

n n n n
i i i i

i

U U U U
D

x x

    
 

 
   . (4.48c) 

 
These gradient limiters are again used to suppress oscillations and enforce a consistency 
with the cell-centered advection: 
  

 
1 1

min , 2 , 2
n n n n
i i i i

i i

U U U U
D S D

x x
 

        
   , (4.49) 

 
                                                 
56David J. Benson, “Momentum Advection on a Staggered Mesh,” Journal of Computational Physics, 

Volume 100, pp. 143–162 (1992). 
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where 
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and 
 
 1

2
( / ) /n n n

i ii
W t x Mass Mass         . (4.51) 

 
See Section 5 in Appendix E for the motivation of this expression. 

4.6.2 Energy Advection  
The internal energy advection equations [Eqs. (4.20), (4.25), and (4.30)] are solved in a 
slightly different manner from that shown for the densities. Start with the internal energy 
equation [as shown in Eq. (4.20), which is repeated below]:  
 

 0
E E

U
t x

 
 

 
   .   

 
Then apply the substitution  E E  in the above equation. The result is 
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   . (4.52) 

 
Thus, the conservation law applies equally well to the product of density and internal 
energy. The finite-difference equation of this new equation is  
 

 
1 1 1 1
2 2 2 2

1 1
1 1

0
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   . (4.53) 

 
Rewritten in the same style as Eq. (4.41), we have 
 

 1 1 1 1
2 2 2 2

1 1
1 1

n n n n
i i i ii i i i

t
E EE E U

x
   

    

     
   . (4.54) 

 
Now the mass associated with the advection volume is 

 i i im U A t      . (4.55) 
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The first term in the square brackets of Eq. (4.54) can be manipulated in the following 
way: 
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   . (4.56) 

 
Thus, the internal energy update now appears as 
 

 11 1 1 1 3
22 2 2 2 2
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E EE E     
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        , (4.57) 

 
where57 
 
 1

2
/i i

m m      .  (4.58) 

 
The densities at all of the necessary spatial and temporal positions are known, so the 
internal energy then may be computed with the same advection scheme presented earlier. 
Multiplying by the updated advection volume, we finally have 
 
 1 1 1 1 1

2 2 2 2 2

1 1
1 1( ) /n n n n n

i i i ii i i i i
E E Vol m E m E mass   

           . (4.59) 

 
Solving this last equation completes all of the advection of all hydrodynamic variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
57See Appendix E, Section 5 for details. 
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CHAPTER 5 
 

Integration of the Hydrodynamic Variables 
 

Nature laughs at the difficulties of integration. 
 

-Pierre-Simon Laplace, The Armchair Science Reader (1959) 
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5 INTEGRATION OF THE HYDRODYNAMIC VARIABLES 

The integration of the Lagrangian- and Eulerian-phase equations [Eqs. (4.11)–(4.30)] is 
described in this chapter. The equations follow the form 
 

 ( , )F t
t

 



,  (5.1) 

 
where F is a source term in the Lagrangian and Eulerian equations. For simplicity, we 
consider a scalar variable  , which may be any of the hydrodynamic state variables. 
Various methods for solving the above equation are possible. The clear candidates for the 
time discretization are 
 

 the explicit Euler method (forward scheme): 
 
 1 ( , )n n n nt F t         ,  (5.2) 
 

 the implicit Euler method (backward scheme): 
 
 1 1 1( , )n n n nt F t          , and  (5.3) 
 

 the semi-implicit Euler method (trapezoidal scheme): 
 
    1 1 11

2 [ ( , ) ( , ) ]n n n n n nt F t F t            .  (5.4) 

 
Note that these schemes may be interpreted either as finite-difference approximations of 
the time derivative or as finite-difference approximations of the time integration of the 
source term.  Indeed, 
 

 
1

1( ) ( )
n

n

tn n

t
t t F dt 


       , (5.5) 

 
and the various schemes can be viewed as different ways of approximating the integral. 
 
The explicit and implicit Euler methods are first-order accurate, whereas the trapezoidal 
scheme is second-order accurate.   
 
However, before proceeding, a serious handicap should be noted. The source term F 
depends on the unknown variable  , and we face the problem of not being able to 
calculate 1 1 1( , )n n nF F t     before we know 1n  , which is to be computed from 1nF  . 
A vicious circle is created here. We need to circumvent the exact calculation by searching 
for a good approximation.   
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Such an approximation is possible by using a guess *  in the F term at time 
1
2nt  : 

  

    
1 1
2 2 *( , )n nF F t   ,  (5.6) 

 

as long as the variable *  is a sufficiently good estimate of 1n  . The closer *  is to 
1n  , the more faithful the scheme is to the ideal implicit value. If this estimate *  is 

provided by a preliminary explicit (forward) step, according to 
 

 
1
2 1

2 ( , )n n n nt F t        predictor, (5.7) 

 
1 1
2 21 11 1

2 2( ) [ ( , ) ( , )]n nn n n n nF F F F t F t        evaluation, and (5.8) 

 
1
21 nn n t F       corrector, (5.9) 

 
then we obtain a two-step algorithm that is second-order accurate in time.58 This second-
order method is a particular member of a family of so-called predictor-corrector methods, 
in which a guess *  is used as a proxy for 1n   in the computation of the complicated 
source terms.  
 
The integration process begins at time level nt , as shown in Figure 5.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1. The integration step begins with all the variables at a time (n). The velocities are 

shown as triangles and the state variables as circles. The velocities are spatially 
centered on vertices, whereas the other state variables are cell centered. 

                                                 
58William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in 

Fortran: The Art of Scientific Computing, second edition (Cambridge University Press, New York, New 
York, 1992), Section 16.7, pp. 740–744. 
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5.1 Predictor Stage 

The predictor stage of the integration (see Figure 5.2) starts with the following steps: 
 

 1/2 1
21 ( )n n n nVol Vol t       u    , (5.10a) 

 
 1/2 1/2( / )n n n nVol Vol      ,  (5.10b) 
 

 


1/2 1
2( )

n n
n n n n

nn

P Q
E E t

 


 
      

  
u    , and (5.10c) 

 
 1/2 1/2 1/2( , )n n nP P E      .  (5.10d) 
 
The internal state cell-centered variables are advanced to half-timestep values. The basic 
hydrodynamic variables are shown above; however, if the material has strength, then the 
stress deviators, plastic work, and the other strength-related variables are also advanced. 
This procedure also applies to the various fracture and crush variables that are chosen and 
initialized in a simulation. The spatial indexing has been omitted for clarity. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2. The predictor integration step advances the state variables to a time (n+1/2). The 

velocities are advanced to a time (n+1) using the state variables, which are 
evaluated at a time (n+1/2).  

 
 

Before the corrector stage can be applied, the velocity at the half-timestep must be 
computed. The velocities are vertex-centered quantities, so the appropriate volume is the 
momentum control volume, as described in Section 2.3. The mass associated with this 
control volume is the vertex mass. 
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5.2 Lagrangian Velocity Update 

The Lagrangian velocity update (see Figure 5.3) begins with computing the vertex 
masses59: 
 

 1
8

n nn
iMass Vol     and (5.11a) 

 

 
1/2 1/2 1/2 1/2

1 1/2 1/2 1/2 1/2 1/2 1/2( ) ( )n n n n
n n ni i i i i i
i i n

i

P Q Area P Q Area
U U t

Mass

   
         
   

 

 
   (5.11b) 

 
and similarly for the other components of the velocity vector.60 The volume in 
Eq. (5.11a) is the original Eulerian cell volume and not the distorted Lagrangian volume. 
Equation (5.11b) is the finite-difference solution to Eq. (4.12). The spatial derivative has 
been discretized over the momentum control volume in the manner described in Section 
4.5. The resulting velocity vector is 1 1 1 1( , , )n n n nU V W   u . 

 
 

 

 

 

 

 

 
 
Figure 5.3. The Lagrangian velocity update first integrates the velocities to the time (n+1). It 

then averages the two velocities to create a temporally centered velocity un+1/2. 
 

The half-timestep velocities and divergences are then computed as 
 

  
1/2 11

2

1/2 11
2

( )

( ) (( ) ( ) )

n n n

n n n

 

 

 

       

u u u

u u u
   . (5.11c) 

                                                 
59 For the Lagrangian phase, remember that 1/2 1n n nMass Mass Mass   . 
60The term inside the brackets of Eq. (5.11b) is the acceleration. Acceleration cutoffs are applied to each 

component of the acceleration terms to suppress numerical “noise” in the simulation. 
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An interesting validation for the choice of the time-centered velocity is given in Douglass 
and Stagg’s Los Alamos National Laboratory 2007 report.61 Energy conservation for the 
Lagrangian predictor-corrector integration timestep can be achieved only by the above 
choice of velocities. 

5.3 Corrector Stage 

The corrector stage (see Figure 5.4) of the integration uses the updated velocity 
information to construct the (n+1) values of the hydrodynamic variables for each 
material: 
 

 1 1/21 ( )n n n nVol Vol t      u    , (5.12a) 

 
 1 1( / )n n n nVol Vol      , (5.12b) 
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 
      

  
u    , and (5.12c) 

 
 1 1 1( , )n n nP P e      . (5.12d) 
 

 

 

 

 

 

 

Figure 5.4. The corrector integration step uses the time-centered velocity un+1/2 to update the 
state variables from time (n) to time (n+1). 

                                                 
61Rod Douglass and Alan Stagg, “A Vertex-Staggered Hydrodynamics Model for Compressible Flows,” 

Los Alamos National Laboratory report LA-UR-07-6986 (2007). Section 4.1.5 gives the detailed 
derivation. 
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The corrector completes the integration for a timestep. The procedure is carried out for 
each material in a cell. Thus, each material in a cell has its own density, internal energy, 
pressure, etc. No pressure or temperature equilibrium is enforced in this methodology. 
 
In the above discussion, it has been assumed that the divergence of the velocity is applied 
uniformly to all materials in a cell. Uniform compression for all materials in a mixed cell 
is only one of the divergence methods available in PAGOSA. The divergence is related to 
the compression of the material [see Eqs. (1.6) and (1.7) and Appendix D]. 
 
The solution to the basic Navier-Stokes hydrodynamic equations is now complete. Each 
of the governing equations has been solved. An outline of the equations and solutions is 
given in Table 5.1. The mass, momentum, and energy conservation laws are completely 
represented. 
 
The derivations and solutions presented thus far have omitted the stress deviators for 
brevity. The development of the algorithms dealing with strength is delayed until Chapter 
14. The equations and solutions for the various flow-stress models available in PAGOSA 
are presented in Section 14.4. Each component of a multi-material cell carries a complete 
set of computational variables, including the stress deviators, elastic distortional energy, 
and plastic strain. Following the current PAGOSA philosophy, each material suffers the 
same “cell” strain rate, but the constitutive relations are applied to each material 
independently of the others.  
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Table 5.1 A Schematic of the Hydrodynamic Variables, Their Conservation Equations, 
and Their Finite-Difference Solutions 

 
 Variable  Governing   Operator  Finite-Difference  
   Equation  Splita    Solution 
 
    (1.1)   (4.11) Lag  (5.12b) 
      (4.16) Eul  (4.34) U 
      (4.21) Eul  (4.34) V 
      (4.26) Eul  (4.34) W 
 
 U   (1.2a)   (4.12) Lag  (5.11b) U 
      (4.17) Eul  (4.46)  
      (4.22) Eul  (4.46) 
      (4.27) Eul  (4.46) 
 
 V   (1.2b)   (4.13) Lag  (5.11b) V 
      (4.18) Eul  (4.46)  
      (4.23) Eul  (4.46) 
      (4.28) Eul  (4.46) 
 
 W   (1.2c)   (4.14) Lag  (5.11b) W 
      (4.19) Eul  (4.46)  
      (4.24) Eul  (4.46) 
      (4.29) Eul  (4.46) 
 
 E   (1.10)   (4.15) Lag  (5.12c) E 
      (4.20) Eul  (4.59, Appendix E.5)  
      (4.25) Eul  (4.59, Appendix E.5) 
      (4.30) Eul  (4.59, Appendix E.5) 
 
 P   (1.9)    N/A   (Chapter 6) 
 
aThe operator-splitting equations are represented by the one Lagrangian-phase equation (Lag) and three orthogonal 

Eulerian-phase equations (Eul).  
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CHAPTER 6 
 

Equation of State 
 

The ideal gas law is the equation of state of a hypothetical ideal gas. 
It is a good approximation (…) although it has severe limitations. 

 
-Max Planck, Treatise on Thermodynamics (1903) 
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6 EQUATION OF STATE 

The set of conservation equations solved in PAGOSA contains six dependent variables: 
velocity (three components), pressure, mass density, and specific internal energy. This 
system of equations is closed mathematically by specifying an equation of state (EOS) 
for each material. The EOS specifies the pressure for a given material as a function of the 
density and specific internal energy62 as 
 

( , )P P E   (6.1) 
 
for each material (m) in the cell. A few of the forms of this equation are described in the 
following pages. The average pressure in a cell is simply the volume-fraction-weighted 
average of all the material pressures in a cell, as defined by 
 

( ) ( )m m

m

P P  ,  (6.2) 

 
where ( )m   is the volume fraction for material (m).   
 
The following notation is used in describing the various EOSs: 
 
 E0    internal energy per original volume, 

1
0



   compression / expansion factor, and 

0 01   

1

V

V







  specific volumes. 

6.1 Ideal Gas EOS 

One of the simplest forms of an EOS is the ideal gas law63  
 

EOS Gas Ideal)1( EP    ,  (6.3) 
 
where   is ratio of specific heats at constant pressure and constant volume. The ideal gas 
law is favored for monatomic gases at high temperatures and low pressures. This law 
does not factor in the size of the molecules or intermolecular attractions. However, it is 
often used in limited regimes, with the value of   adjusted to fit some data, but only to 
get a qualitative understanding of how the system will behave using an easily 
manipulated EOS. 

                                                 
62This type of EOS is denoted “incomplete” because the temperature cannot be calculated unless the 

specific heat is known. 
63It is a simply derived alternative to the well-known equation PV = nRT. 
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6.2 Void EOS 

Another commonly used EOS is void. For this EOS, the density, specific internal energy, 
and pressure are all set to zero: 
 

0
EOS Void0

0





P
E


 .  (6.4) 

 
This form has the advantage that no sound speed is computed, and therefore, the material 
cannot control the timestep in a simulation. The other advantage is void closure. Imagine 
two materials that are about to collide. The interface reconstruction within a cell allows 
the three materials to be represented by two planes. If the intervening material is a void, 
then the void closure model can be invoked. This option allows the two materials to come 
smoothly into contact without creating bubbles or small densities that are often 
problematic for any other EOS. 

6.3 Polynomial EOS 

A common analytic EOS is the polynomial EOS, which is often used in fitting 
experimental EOS data. This EOS has the form 
 

* 2 3 * 2 3
0 1 2 3 0 1 2 3( )    Polynomial EOSP a a a a b b b b               . (6.5) 

 
The constants *

2a and *
2b  can assume different values in expansion and compression: 

 

* 2
2

2

0     compression

0 expansion

c

e

a
a

a





  
 

 
and similar expressions for *

2b .  
 
One clear simple case of the polynomial EOS is a constant pressure. In this case, 

0 0 constant,a P   and the other constants have the value zero. Another special case of 
the polynomial EOS can be demonstrated by considering the bulk modulus for adiabatic 
compression, which is defined as 
 

SS

PP




























 )1(  . 

 
Integrating the expression, the pressure is (for moderate compression/expansion) 
 

2 3 41 1 1
2 3 4

log (1 )

            -1 1

eP  

        

 

      
 . 
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Thus, to first order, the EOS is 
 

 10  P  . 

 
In terms of the polynomial EOS, 1a , and all the other constants have a value of zero. 

6.4 Modified Osborne (or Quadratic) EOS 

This form was originally derived by Group T-5 at Los Alamos Scientific Laboratory in 
the 1950s as a fit between low-pressure Hugoniot data and the high-pressure Thomas-
Fermi-Dirac theory.64 One of the reasons for the particular form of the equation, 
sometimes called the quadratic EOS,65,66 was the small amount of memory of the 
computers then in use.  
 

* 2 * 2 * 2 2
1 2 0 1 2 0 1 2

0

( ) ( )
Osborne

a a b b b c c c
P

       
 

      



 EOS. (6.6) 

 
Many of the original constants found by R. K. Osborne  are still in use today. 
 
The constants *

2a , *
2b , and *

2c assume different values in expansion and compression: 
 

expansion

ncompressio    

0

0

2

2*
2 











e

c

a

a
a  

 
and similar expressions for *

2b and *
2c . The traditional Osborne EOS is recovered by 

setting 
 
 2 2 2 2 2 2 ,          ,  and    0e c e c e ca a b b c c      . 

 
The constants of the Osborne EOS need to be scaled in the case of an alloy or isotope 
where the constants are not known. A suggested scaling is given by Lambourn:67 
 

1 2,a a   should be scaled with 2
0  , 

0 1 2 0, , ,b b b   should be scaled with 0  , and 

0 1,c c   should not be scaled (should remain at their original values). 

                                                 
64R.P. Feynman, N. Metropolis, and E. Teller, “Equations of State of Elements Based on the Generalized 

Fermi-Thomas Theory,” Physical Review, Volume 75, Issue 10, p. 1561 (January 1949). 
65F.H. Harlow and W.E. Pracht, “Formation and Penetration of High-Speed Collapse Jets,” The Physics of 

Fluids, Volume 9, Number 10, pp. 1951–1959 (October 1966). 
66T.D. Riney, “Numerical Evaluation of Hypervelocity Impact Phenomena,” in High Velocity Impact 

Phenomena, edited by R. Kinslow (Academic Press, New York/London, 1970), pp. 157–212. 
67B.D. Lambourn, “Density Scaling for the Osborne Equation of State,” Atomic Weapons Research 

Establishment (AWRE) HWH Note No. 3/80, Aldermaston, Berkshire, UK (October 1980). 
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6.5 Jones-Wilkins-Lee (or JWL) EOS 

The JWL EOS68 is often used for computing the EOS of high-explosive detonation 
products. Its development began with an equation proposed by Jones and Miller69 and 
extended by Wilkins.70 It is therefore now referred to as the JWL EOS. The EOS is 
written as 
 

1 0 2 0/ /

1 0 2 0

1 1 JWL EOSR RP A e B e E
R R

        
 

    
       

   
 , (6.7) 

 
where the five constants ( ,,, 21 RRBA, ) are experimentally determined. Note that the 
constants A  and B  have the units of pressure, whereas the other constants are 
dimensionless.  
 
If the high explosive (HE) is detonated by the program burn algorithm, the pressure and 
energy are gradually deposited into a cell over several timesteps. The pressure is scaled 
by a factor called the burn fraction Bf . The burn fraction values range between zero and 
one. A value of zero indicates that the detonation wave has not yet reached the cell, and a 
value of one indicates a completely burned cell. The program burn algorithm defines a 
“burn time” for each cell vertex in the simulation.71 Of the eight cell vertices, the 
difference between the minimum and maximum burn times is referred to as the burn 
interval for a cell.  
 
Mathematically, we have 
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t t


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 


   
 

 . 

 

                                                 
68E.L. Lee, H.C. Hornig, and J.W. Kury, “Adiabatic Expansion of High Explosive Detonation Products,” 

Lawrence Radiation Laboratory, University of California report UCRL-50422 (May 2, 1968). 
69H. Jones and A. Miller, “The Detonation of Solid Explosives: The Equilibrium Conditions in the 

Detonation Wave-Front and the Adiabatic Expansion of the Products of Detonation,” Proceedings of the 
Royal Society of London. Series A, Mathematical and Physical Sciences, Volume 194, No. 1039 
(November 9, 1948), pp. 480–507. 

70M. Wilkins, “The Equation of State of PBX 9404 and LX04-01,” Lawrence Radiation Laboratory, 
University of California report UCRL-7797 (1964). 

71In reactive burn models, the burn fraction is evolves according to the physics of the reaction progress. 
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This procedure usually results in the cell pressure developing over four or five timesteps. 
The maximum timestep is adjusted so that a cell cannot burn in fewer steps. Tables of 
constants for many explosives have been compiled by Brigitta Dobratz.72  
 
The constants used in the PAGOSA code have a slightly different form from the original 
JWL form. The translation between the two forms is 
 
           PAGOSA  Dobratz Handbooks 
 
  W     

  B1    A 

C1 0 1R   1R  

B2    B 

C2 0 2R   2R   

  e0 0 0/E    E0 
 
The main advantage of the JWL EOS lies in its ability to describe the Chapman-Jouget 
adiabat accurately. The above parameters have been chosen to satisfy the measured 
Chapman-Jouget state, the measured expansion of a cylinder test, some asymptotic 
thermodynamics limitations, and hydrodynamic continuity equations.  

6.6 Grüneisen (or Us-Up) EOS 

The most common description of solids uses the measured Hugoniot curve as a reference 
and uses the Grüneisen relationship to extrapolate off the reference curve. It is often the 
case that the Hugoniot curve can be represented over a large range of pressures as a 
simple linear expression73,74 in the -S PU U  plane: 
 

0S PU c s U     Grüneisen EOS   , (6.8a) 

( / ) ( )H HP P V E E     ,  (6.8b) 
2 2

0 0 0 0 0( ) [ ( ) ]HP P c V V V s V V       , (6.8c) 
1

0 0 02 ( ) ( )H HE E P P V V     , and (6.8d) 

0 1 0( / )V V     , (6.8e) 

 
where HP  is the pressure on the Hugoniot, HE is the energy on the Hugoniot, 0V  is the 
initial specific volume ( 1

0
 ), and V  is the state-specific volume ( 1  ). In the above 

                                                 
72Brigitta M. Dobratz, “Properties of Chemical Explosives and Explosive Simulants,” Lawrence Livermore 

Laboratory, University of California report UCRL-14592 (July 31, 1974). 
73M. van Thiel, A.S. Kusubov, and A.C. Mitchell, “Compendium of Shock Wave Data,” Lawrence 

Radiation Laboratory, University of California report UCRL-50108, Volume 1, Supplement 1 (October 
1967). 

74Stanley P. Marsh, LASL Shock Hugoniot Data (University of California Press, Berkeley, California, 
1980). 
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expressions, 0c  and s  are constants obtained from the relationship between shock speed 

SU  and particle speed PU . 
 
The Hugoniot pressure relation contains a simple pole at 0 0/ ( )s V V V  . This relation 
puts a limit on the allowable density for this EOS. If a maximum density is not specified, 
then a maximum is imposed by  
  

 max 0 0max 99% , 2
1

s

s
         

 , 

 
where 0  is the nominal mass density. 
  
This particular EOS is sufficiently different from the others described that a short 
description of the derivation is warranted. The thermodynamic states off of the Hugoniot 
curve can be obtained by constructing a Taylor expansion, at constant density, about the 
reference Hugoniot curve. Mathematically, it is 
 

   
2

2

2

1
( , ) ( ) ( ) ( )

2H H H

P P
P E P E E E E

E E 

   
              

  , 

 
where ( )HE E   is the displacement from the Hugoniot curve. The values denoted with 
the subscript H are points on the reference Hugoniot curve. The definition of the 
Grüneisen parameter   is 
 

/
P

V
E 

       
  Grüneisen relation . 

 
It is usually assumed that the parameter is a linear function of the compression/expansion, 
i.e., 0 1 0( / )    , so that the higher-order terms in the Taylor expansion vanish. 
The EOS becomes 
 

( , ) ( ) ( / ) [ ( ) ]H HP E P V E E       . 

 
Experimentally, it has been found that for many solids, the Hugoniot curve can be 
represented as a simple linear curve in the -S PU U  plane. Contrary to what is usually 
found in the literature, 0c  is not the bulk sound speed in the ambient state. Rather, it is the 
value of the intercept of the -S PU U  line.75  

                                                 
75Ya Zel’dovich and Yu Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena 

(Dover Publications, Mineola, New York, 2002). See footnote, p. 710. 
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6.7 SESAME EOS 

A tabular EOS that represents hundreds of materials and experiments is available using 
the Los Alamos National Laboratory (LANL) SESAME database.76,77 The database 
contains EOS tables for pressure and internal energy as a function of temperature. The 
database library has several advantages: it can accurately represent phase transitions, it 
represents a wide range of temperatures and densities, and it represents the best 
experimental and theoretical data available at LANL. The data are inverted before they 
are used in PAGOSA so that the pressure is solely a function of density and internal 
energy. The SESAME EOS is 
 

),( TTSESAME EPP  ,  SESAME EOS  (6.9) 

 
where SESAMEP  is the tabular EOS. The tabular database is read using the EOS package 
(EOSPAC) software library.78 The library software allows for various ways of 
interpolating and scaling the tabular data.  
 
The relation of “code” input to the tabular EOS is given by  
 

(SR)

( ES) / SR ,
T

TE E

 
 

  

 
where 
 
 SR = density scaling ratio and 
 ES = energy shift. 
 
The scaling ratio parameter SR is often useful in modeling isotopic mixtures. For 
example, if AT is the atomic mass for a particular SESAME  EOS, an EOS for an atomic 
mass A is obtained by setting the scaling ratio  
 
 SR = AT / A . 
 
Suppose we wish to model a gas of hydrogen (H2). The SESAME identification number 
for deuterium is 5263. A scaling ratio of SR = 2 scales the SESAME tabular deuterium 
EOS to hydrogen. Similarly, a scaling ratio of SR = 0.8 scales the SESAME tabular 
deuterium EOS to a 50%:50% mixture of deuterium and tritium (DT). 

                                                 
76S.P. Lyon and J.D. Johnson, “SESAME: The Los Alamos National Laboratory Equation of State 

Database,” Los Alamos National Laboratory report LA-UR-92-3407 (October 1992). 
77K.S. Holian, “T-4 Handbook of Material Properties Data Bases, Volume Ic: Equations of State,” Los 

Alamos National Laboratory report LA-10160-MS (November 1984). 
78David A. Pimentel, “EOSPAC 5 User Manual,” Los Alamos National Laboratory report LA-UR-03-4510, 

Version 5.35, Revision 0 (August 2003). 
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The energy shift is defined by 
 
 ES = -∆E (initial → final) , 
 
where ∆E is the energy required to transform the low-density phase to the high-density 
phase. There are two cases. If the initial phase is stable, then the value of ES is negative. 
If the initial phase is metastable, then the value of ES is positive. 
 
The pressure-density curve at T = 0 K is commonly called the “cold curve” and was 
traditionally modeled by empirical formulas (e.g., analytic potentials combined with the 
Thomas-Fermi-Dirac theory). The modern theory uses relativistic electronic band 
structure methods to compute the cold curve. The total pressure can be thought of as 
being the sum of the cold-curve pressure and the thermal pressure (i.e., the pressure due 
to positive internal energies).  

6.7.1 Ramp Treatment 
For the treatment of foams and certain types of phase transitions, it is possible to modify 
the SESAME  EOS by adding a ramp (see Figure 6.1) that describes the behavior of the 
material under low stress. The material begins in a porous or low-density state. The EOS 
in this regime is 

 
)1( 01  AP  , 

 
where 0  is the initial 
density and 1A  is the bulk 
modulus. The bulk modulus 
can be computed from the 
sound speed as 
 

2
1 0A a  , 

 
where a  is the bulk sound 
speed. If 01A , then no 
ramp calculation is done.  
 
At some value of pressure 

1P , the material begins to 
crush, or transform, to a 
SESAME EOS. The EOS 
of the “crush curve” is given by  
 

2 0 3( 1 )P A A    . 

 

 

Figure 6.1. The SESAME ramp treatment. 
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If 02A , then no crush regime exists and the equation represented by the first line is 
continued until it crosses the SESAME curve.  
 
The value of 2A can be computed from the crossing at the transition pressure 1P , or it can 
be guessed at if no other information is available: 
  

1 1
2

1 1 3

P A
A

P A A



  if 1P  is known. 

 

2 1 /10A A    if 1P  cannot be measured. 

 
The transition pressure for foams is often small (< 1 kbar). On the other hand, for a phase 
transition, the value of 1P  must be determined from experiments. The value of 3A can be 
adjusted to give the appropriate slope for the crush curve. In the absence of any data, the 
default value ( 03 A  ) should give acceptable results.  
 
However, a better value might be 79  
 

3 1 1 2[1 / 1 / ]A P A A   . 

 
At some pressure 2P , the crush curve crosses the SESAME curve. At that point the 
material is “crushed.” Subsequently, the material may behave either reversibly (follow 
the ramp on expansion) or irreversibly (remain on the high-density phase on expansion). 
Foams are normally reversible; however, phase transitions may exhibit either behavior. 
Materials may also behave irreversibly if they melt (i.e., if the melt energy or melt 
temperature is exceeded).  

6.7.2 SESAME Body Internal Energy Iteration 80 
In some cases the initial conditions for a particular SESAME  material are not completely 
known. For example, the user may know the initial density and a desired initial pressure 
but not know the corresponding initial internal energy. PAGOSA provides a solution to 
this dilemma by providing a mechanism for setting the initial density and pressure within 
a body specification. PAGOSA and EOSPAC together then iterate until the appropriate 
initial internal energy is found. 
 
Given the density and the desired initial pressure, the EOS is 

( , )P P E  . 
 

                                                 
79The value of 1P  should be measured in this case. B.I. Bennett, Los Alamos National Laboratory, private 

communication, October 22, 1984. 
80Never use the SESAME body iteration option with the ramp treatment. The results are often wrong. 
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If the desired initial pressure is 0P  and the desired initial density is 0 , then the EOS can 
be written as 
 

*
0 0( , )P P E  . 

 
The problem is finding the value of internal energy *E that satisfies this relation. The 
algorithm for finding *E  starts with the Newton-Raphson method.81 The method is often 
written as 

 1

( )

( )
n

n n
n

f x
x x

f x  


 1, 2,3,..., .n max iteration  . 

 
To apply this method to our problem, we first start with an approximation for the 
derivative: 

 0

0

P PP

E E E

  
   

 . 

 
The EOSPAC derivatives are with respect to the logarithm of density and energy, so 
 

log

P P
E

E E 

    
       

 . 

 
The equation now can be cast in the Newton-Raphson form 

  1 0( ) / /n n nE E P P P E
        and  

 

  1

1 01 ( ) / logn n nE E P P P E





        1, 2,3,..., .n max iteration  . 

 
The iteration process completes when the pressure is within an acceptable range of 0P . 
The convergence criterion used in PAGOSA is 

 01 nP P tolerance   . 

 
Occasionally, the resulting initial internal energy has a small negative value. Some of the 
SESAME tables have “poor” data in particular regions or the interpolation scheme is not 
sufficient for the data provided. The user is always responsible for checking the results of 
the PAGOSA-generated initial conditions. 
                                                 
81William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes in 

Fortran: The Art of Scientific Computing (Cambridge University Press, New York, New York, 1986), 
pp. 254–259. 
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6.8 Exponential EOS 

The exponential EOS is unique in PAGOSA in that it specifies a pressure as a function of 
time. Mathematically, the form is 
 
 0( ) tP t P e  ,      Exponential EOS 

 
where 0P  is the pressure at 0t   and   is the decay constant (with units of time-1). 
 
This analytic form of the EOS provides a simple time-dependent pressure that can be 
used in certain test problems for validation and verification.82 

6.9 Becker-Kistiakowsky-Wilson High-Explosive (BKW-HE) EOS 

The BKW-HE EOS combines the solid Grüneisen form and a BKW gaseous form to 
model a shock-initiated HE. This form is usually used to model a shock-initiated 
explosive as it transitions from an undetonated solid to a fully burned detonation product. 
The discussion follows the one given in Mader.83 
 
The EOS computes the pressure, internal energy, specific volume, temperature, and burn 
fraction for solids, gases, and mixtures of the two. The following subscripts are used in 
this discussion: 
 
 g gaseous component, 
 H Hugoniot, 
 i isentrope, and 
 S solid component. 

6.9.1 Solid Components 
The solid, undetonated HE begins with a solid Mie-Grüneisen EOS with a Walsh-
Christian temperature84 fit to a fourth-degree polynomial. The solid component uses the 
Grüneisen form described above: 
 
 0s pU c s U   , 

 
 

2
0 0

0 2

0 0

( )

( )
s

H

s

c V V
P P

V s V V


 

 
 , 

 1
0 02 ( ) ( )H H sE P P V V    , and 

                                                 
82Wayne Weseloh, “The Response of a Spherical Shell to an Impulsive Pressure,” Los Alamos National 

Laboratory report LA-UR-04-1683 (March 2004).  
83Charles Mader, Numerical Modeling of Explosives and Propellants, Second Edition (CRC Press, Boca 

Raton, Florida, 1998), pp. 308–311. Mader calls this his Hell Of a Mess (HOM) EOS. 
84John Walsh and Russell Christian, “Equation of State for Metals from Shock Wave Measurements,” 

Physical Review, Volume 97, pp. 1544–1556 (1955). 
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 ( )S H S H
S

P P E E
V


    , 

where   

0 1 0( / )SV V     , 

 2 3 4( ) ( ) ( ) ( )e H e S e S e S e Slog T F G log V H log V I log V J log V      , and 

23890
( )

( )S H S H
V

T T E E
C solid

    . 

 
The constant in the last equation is a conversion factor involving the mechanical 
equivalent of heat. The units of heat capacity Cv are (cal g-1 deg-1), and the units of 
internal energy are (Mbar cm3 g-1).  
  
Constants for various explosives are given in Mader’s book85 and the accompanying data 
CD-ROM.  

6.9.2 Gaseous Components 
The detonation products are computed using the BKW EOS.85 
 
 2 3 4( ) ( ) ( ) ( )e i e g e g e g e glog P A B log V C log V D log V E log V      , 

 2 3 4( ) ( ) ( ) ( ) ( )e i e i e i e i e ilog E Z K L log P M log P N log P O log P       , 

 2 3 4( ) ( ) ( ) ( )e i e g e g e g e glog T Q R log V S log V T log V U log V      , 

 1 2 32 ( ) 3 ( ) 4 ( )e g e g e gR S log V T log V U log V       , 

1
( )g i g i

g

P P E E
V

    , and 

'

23890
( )

( )g i g i
V

T T E E
C gas

    . 

 
The parameter Z  is a constant used to change the gas standard state to be consistent with 
the solid explosive standard state (which in PAGOSA requires the value 0Z  ).  
 
The final case is when a material is a combination of the solid and gaseous states. The 
burn fraction Bf  controls the mixture. For mixed components, we have 0 1Bf  . 

6.9.3 Mixed Components 
The specific volumes and internal energies are partitioned as a linear combination of the 
solid and gaseous components. The “burning” cells are assumed to be in pressure and 
temperature equilibrium:  
                                                 
85Charles Mader, Numerical Modeling of Explosives and Propellants, Second Edition (CRC Press, Boca 

Raton, 1998), pp. 377–408 (Appendix E). 
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(1 )g SV Bf V Bf V    , 

(1 )g SE Bf E Bf E    , 

g SP P P   , and 

g ST T T   . 

 
Substituting these equations into the ones above results in an equation representing the 
temperature difference between the solid and gas. The Secant Method86 is used to solve 
the resulting nonlinear algebraic equation. Limits are set at every cycle of the iteration to 
prevent the solution from becoming unbounded or unphysical. Convergence is achieved 
when the temperature difference between the solid and gaseous components is less than 
tdel (usually ~10 K). 
 
The solid component BKW-HE parameters are 
 
 0c  intercept of the Us/Up line, 

 s  slope of the Us/Up line, 
 0  the first Grüneisen ratio, 

1  the second Grüneisen ratio, 

 0P  initial pressure, 

 maxd  maximum allowable density (solid), 

 F  polynomial temperature coefficient, 
 G  polynomial temperature coefficient, 
 H  polynomial temperature coefficient, 
 I  polynomial temperature coefficient, 
 J  polynomial temperature coefficient, 
 VC  heat capacity (solid), and 

   linear coefficient of thermal expansion. 
 

                                                 
86William H. Press, Brian P. Flannery, Saul T. Teukolsky, and William T. Vetterling, Numerical Recipes in 

Fortran: The Art of Scientific Computing (Cambridge University Press, New York, New York, 1986), 
pp. 248–251. 
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The gaseous state parameters are 
 
 A  HOM polynomial coefficient for the isentropic pressure, 
 B  HOM polynomial coefficient for the isentropic pressure, 
 C  HOM polynomial coefficient for the isentropic pressure, 
 D  HOM polynomial coefficient for the isentropic pressure, 
 E  HOM polynomial coefficient for the isentropic pressure, 
 K  HOM polynomial coefficient for the isentropic internal energy, 
 L  HOM polynomial coefficient for the isentropic internal energy, 
 M  HOM polynomial coefficient for the isentropic internal energy, 
 N  HOM polynomial coefficient for the isentropic internal energy, 
 O  HOM polynomial coefficient for the isentropic internal energy, 
 Q  HOM polynomial coefficient for the isentropic temperature, 
 R  HOM polynomial coefficient for the isentropic temperature, 
 S  HOM polynomial coefficient for the isentropic temperature, 
 T  HOM polynomial coefficient for the isentropic temperature, 
 U  HOM polynomial coefficient for the isentropic temperature, 
 '

VC  heat capacity (gas), 

 Z  a constant used to offset (shift) the gas standard state ( 0Z  ), 
 max  maximum allowable density (gas), and 

 min  minimum allowable density (gas). 

 
The mixed state uses both the solid and gaseous parameters and the following conver-
gence criteria: 
 

maxit maximum number of iterations for the mixed component solver, and 
tdel temperature difference convergence value. 
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6.10 Pmin 

It is often necessary to limit the pressures resulting from the EOS evaluation. Regions of 
the EOS are suppressed for many reasons, which fall into three major categories. 
 
The first category is demonstrated in Figure 6.2. The plot illustrates a van der Waals loop 
in the EOS at room temperature. Problems arise when the material density falls below 
some critical value. Material sound speeds become unphysical.87 A value of Pmin is 
chosen to suppress the offending portion of the EOS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2. Example of the use of Pmin in an EOS with a van der Waals loop. 

A second way that Pmin often is used is as a simple-minded spall model. When the 
material pressure drops below Pmin, the pressure is held at Pmin, regardless of the 
density and internal energy. This application of Pmin is an awkward attempt to 
approximate the physics of the material in a state exceeding its dynamic tensile strength. 
No change is made to the stress deviators S while the material is this state.88 
 
The third way that Pmin is used in PAGOSA is as a floor or cutoff to the EOS. For 
example, if it is desired that a material never go into tension during the simulation, then 
setting Pmin to a value of zero will allow the material to experience only compression. 

                                                 
87The sound speed is related to the slope of the adiabat at a given point. 
88Every hydrocode implements Pmin in a different and unique manner. Reducing complicated physics to a 

single parameter is at best a poor scheme. 
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CHAPTER 7 
 

Sound Speed 
 

There is more to life than increasing its speed. 
 

-Mohatma Gandhi (1869–1948) 
   
 
 
 

 

 

 



Chapter 7 Sound Speed 

78 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
  



Chapter 7 Sound Speed 

79 
 

7 SOUND SPEED 

When a material is perturbed, the net result is a wave propagating away from the 
disturbed region into the undisturbed region. The speed at which the wave travels in a 
given medium under specified conditions is known as the speed of sound. The speed of 
sound does not explicitly appear in the hydrodynamics equations. However, it is used to 
calculate the Courant timestep (see Chapter 9). It also can be used to check the 
thermodynamics properties of materials in a cell. 
 
The isentropic sound speed is defined as89,90 

 

2

S

P
c


    

 (7.1) 

 
at constant entropy S. This form is not convenient for computation, so it is necessary to 
recast the expression in terms of partial derivatives at constant density and constant 
internal energy.  
 
The pressure is a function of density and internal energy 
 

( , )P P E    . (7.2) 
 
The differential is 
 

E

P P
dP d dE

E 




          
   . (7.3) 

 
The pressure also can be written as a function of density and entropy 

 
( , )P P S    . (7.4) 

 
The differential is 
 

S

P P
dP d dS

S 




          
   . (7.5) 

 

                                                 
89L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Addison-Wesley Publishing Company 

Inc. Reading Massachusetts, 1959), p. 246. 
90Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic 

Phenomena (Dover Publications Inc. Mineola, New York, 2002), p. 7. 
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For an isentropic process, these two forms reduce to 
 

E S

P P P
d dE d

E 

 
 

                 
   . (7.6) 

 
The internal energy is a function of density and entropy 
 

( , )E E S    . (7.7) 
 
The differential is 
 

S

E E
dE d dS

S 




          
   . (7.8) 

 
Combining Eqs. (7.6) and (7.8) yields 
 

E S S

P P E P

E   
                         

   . (7.9) 

 
Thus, given the definition of sound speed [Eq. (7.1)], we have 
 

2

S E S

P P P E
c

E   
                           

   . (7.10) 

 
Using the first law of thermodynamics, for a single component system with one 
reversible work mode, we have 
 

2

dE Q W

T d S p dV

P
T d S d

 




 
 

 

   . (7.11) 

 
The coefficient of the second differential (density) now can be identified with the 
corresponding differential in Eq. (7.8). If we substitute into Eq. (7.10), the sound speed is 
computed for each material as 
 

2
2

E

P P P
c

E  
            

   . (7.12) 
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The sound speed is used in various other parts of the computation cycle. For example, the 
sound speed is used to establish the proper timestep for each computational step.91 

7.1 Ideal Gas EOS Sound Speed 

For the ideal gas equation of state (EOS), the pressure and sound speed are simply 
 

( 1)P E      and     
 

2
2

2
( 1) ( 1)

( 1)

E

P P P
c

E

P
E

P
E

 

  


  


            

   

  

   . (7.13) 

7.2 Void EOS Sound Speed 

A void material has no sound speed, so the value is deliberately set to zero: 
 

0P     , and  
 

2 0c     . (7.14) 

7.3 Polynomial EOS Sound Speed 

The polynomial EOS is written as 
 

* 2 3 * 2 3
0 1 2 3 0 1 2 3( )P a a a a E b b b b                , 

 
where 
 

0

1



     . 

 

                                                 
91See Chapter 9 for more details. 
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The partial derivatives for the sound speed calculation are 
 

* 2 * 2
1 2 3 1 2 3

0 0

* 2 3
0 1 2 32 2

1
2 3 2 3

E E E

P P

E
a a a b b b

P P P
b b b b

E 


  

   
 

  
 

                   

           

          

 

 
such that the sound speed is 
 

2 * 2
1 2 3

0

* 2
1 2 3

0

* 2 3
0 1 2 32

1
2 3

2 3

c a a a

E
b b b

P
b b b b

 


 


  


    

    

     

   . (7.15) 

7.4 Modified Osborne (or Quadratic) EOS Sound Speed 

The Osborne EOS is written as 
 

* 2 * 2 * 2 2
1 2 0 1 2 0 1 2

0

( ) ( )a a b b b c c c
P

       
 

      



   . 

 
The partial derivatives for the sound speed calculation are 
 

   

 
 

* * 2 *
1 2 1 2 1 2

0 0

* 2 * 2
0 1 2 0 1 2

2 2
0

2 2 2 1

2( )

E E E

P P

a a b b c c

b b b c c c PP P P

E 


  

    

  

    

   

                   

     
 
  

          

   . 
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Accordingly, 
 

   

 
 

* * 2 *
1 2 1 2 1 22

0

* 2 * 2
0 1 2 0 1 2

2
0

2 2 2 1

2( )

a a b b c c
c

b b b c c c PP

    

  

    

  

     
 
  

     




   . (7.16) 

7.5 Jones-Wilkins-Lee (or JWL) EOS Sound Speed 

The JWL EOS, 
 

1 0 2 0/ /

1 0 2 0

1 1R RP A e B e E
R R

        
 

    
       

   
   , 

 
is similarly evaluated in Eq. (7.12). The corresponding terms are 
 

1 0 1 0

2 0 2 0

/ /1 0
2

1 0 1 0

/ /2 0
2

2 0 2 0

1
1

1
1

R R

E

R R

ARP A
e e
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e e E
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   

   

  
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The above sound speed is for the detonation products of the explosive. Before and during 
the detonation, the pressure in the undetonated explosive is zero and the sound speed is 
set as follows: 
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where D is the detonation velocity and Bf is the burn fraction. 

7.6 Grüneisen (or Us-Up) EOS Sound Speed 

The Grüneisen EOS is 
 

( / ) ( )H HP P V E E       . 

 
Differentiation according to Eq. (7.12) is provided with added complexity, where  
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where the specific volume is defined as 
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Thus, 
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7.7 SESAME EOS Sound Speed 

The EOS package (EOSPAC) utility software package92 extracts the pressure from the 
Los Alamos National Laboratory (LANL) SESAME database. The EOSPAC software 
also supplies the partial derivatives of pressure with respect to density and internal 
energy. The sound speed is computed directly from these numerical derivatives.  
 
The EOSPAC derivatives are with respect to the logarithm of density and energy, so93 
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   , 

 
and the appropriate substitutions then are made into Eq. (7.12). The EOSPAC software 
allows the tabular data to be interpolated in various ways [e.g., biquadratic (six-point) 
interpolation]. The choice of interpolation method will influence the results of the partial 
derivatives and therefore the sound speed. 
 
An additional point, not referred to earlier, concerns SESAME materials that melt during 
the simulation. Two SESAME tables can be loaded by PAGOSA—one for the unmelted 
state and one for the melted state. Certainly, the sound speeds are very different for these 
two states of the material. However, not every SESAME material has a corresponding 
SESAME melt table. Compromises and engineering approximations immediately become 

                                                 
92David A. Pimentel, “EOSPAC 5 User Manual,” Los Alamos National Laboratory report LA-UR-03-4510, 

Version 5.35, Revision 0 (August 2003). 
93The logarithms are natural logarithms (logarithms to the base e). 
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significant considerations. It is always important to understand and investigate the 
assumptions and limitations in any EOS, including the SESAME EOS. 

7.8 Exponential EOS Sound Speed 

The exponential EOS is 
 

0( ) tP t P e    . 

 
In this case, the pressure is not a function of either density or internal energy, so 
 

2 0c     . (7.20) 
 
The exponential EOS is intended to be a pressure (normal stress boundary condition) for 
particular simulations. As a consequence, the thermodynamics of this material should 
play little or no role in the simulation.  

7.9 PAGOSA Sound Speed 

The internal sound speed computed by PAGOSA is altered in an attempt to find the 
largest possible “wave” velocity. The goal is to eventually compute a stable timestep for 
the simulation. The total sound speed, 
 

2 2 4 2

3EOS

G Q
c c

 
  


   , (7.21) 

 
is composed of three parts. The first term is the sound speed corresponding to the EOS 

( , )P P E , the second term converts the sound speed to a longitudinal elastic wave 
speed for elastic-plastic materials, and the third term ensures the stability in the presence 
of shocks (Q terms) . 
 
The diagnostic information in PAGOSA returns only the isentropic sound speed. 
However, it is important to understand that internal to PAGOSA, the sound speed has 
additional terms. It is hoped that in the future, these terms can be computed individually 
and their influence on the timestep can be evaluated individually. 
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CHAPTER 8 
 

Artificial Viscosity 
 
The equations of hydrodynamics are modified by the inclusion of additional terms which 
greatly simplify the procedures needed for stepwise numerical solution of the equations 

in problems involving shocks. 
 

-J. von Neumann and R.D. Richtmyer (1950) 
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8 ARTIFICIAL VISCOSITY 

The mathematical basis for all PAGOSA algorithms is the assumption that we are dealing 
with a continuum. This assumption precludes the presence of shock waves because, in 
this formalism, shocks are mathematical discontinuities. Although it is possible to devise 
mathematical methods that create internal floating boundaries connecting regions of 
continuous flow, the complexity for three-dimensional (3D) flows becomes numerically 
intractable. To complicate the matter further, shocks often interact in complicated ways. 
 
Typical shock widths are very narrow and require extremely small cell dimensions to 
resolve properly. The computer memory and time requirements are prohibitive. 
 
A solution to this dilemma was discovered by von Neumann and Richtmyer in 1950. 
They introduced the concept of an artificial viscous pressure  (often imprecisely called 
the artificial viscosity) that, when added to the pressure, had the effect of smearing out 
the shock wave over several cells, thus converting the discontinuity to a steep gradient. 
The form of this artificial viscosity implemented in PAGOSA is discussed next. The 
artificial viscosity is added to convert the kinetic energy into internal energy within the 
shock. 
 
For shock wave calculations, an artificial viscosity is necessary in the difference 
equations to represent the shock discontinuities properly. The classical quadratic artificial 
viscosity, 2Q , is computed as94  
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2 2
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C  L

if 00
Q 

    
    

uu

u
    , (8.1) 

 
where C2 is a constant (~2.0 for many Eulerian hydrodynamic codes), L is a length 
appropriate to the cell in which the artificial viscosity is calculated, and   is the cell 
average density. 
 
The linear artificial viscosity is95 
 

1 1

if 0
C L c

0 if 0
Q 

   
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u u

u
     , (8.2) 

 

                                                 
94J. von Neumann and R. D. Richtmyer, “A Method for the Numerical Calculation of Hydrodynamic 

Shocks,” Journal of Applied Physics, Volume 21, pp. 232–237 (1950). 
95R. Landshoff, “A Numerical Method for Treating Fluid Flow in the Presence of Shocks,” Los Alamos 

Scientific Laboratory report LA-1930 (1955). 
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where C1 is a constant and c  is the cell-average sound speed. The linear artificial 
viscosity is used to damp out oscillations behind the shock waves.96 Both coefficients (C1 
and C2) and the length scale L are user selectable. 
 
These equations incorporate a suggestion by Rosenbluth97 that the artificial viscosity 
should have a value of zero when the fluid is undergoing an expansion (the divergence of 
the velocity field is positive). 
 
The total artificial viscosity,Q , is 
 

21 QQQ     . (8.3) 
 
The artificial viscosity acts to spread the shock over a few cells in such a way that the 
variables vary continuously through the region of the shock and satisfy the Rankine-
Hugoniot conservation relations. The shock will be spread over several zones, regardless 
of the cell size. A few cells away from the shock, the artificial viscosity is zero. 
 
The effect of artificial viscosity is very much cell size dependent. Simulations at very fine 
mesh resolutions may not need any artificial viscosity. Further, in simulations where 
extreme gradients do not exist, the artificial viscosity may need to be suppressed entirely. 
The excessive use of artificial viscosity often damps out the solution. It is said that 
experience is the key to success.  
 
Shock artificial viscosities introduce problems and errors of their own. In strong shocks, 
“wall heating” and “shock-less heating” can occur, leading to errors in the internal energy 
surrounding the shock.98 Errors in internal energy lead to errors in density and the shock 
speed. Many of these effects are seen in the so-called Noh problem.99 The densities at 
symmetry boundaries are usually severely reduced, and the internal energies are 
significantly overpredicted. All of these anomalies are sensitive to mesh resolution. 
 
Treating the artificial viscosity as a pressure term in the momentum and energy finite-
difference equations allows the work done by the viscosity to be identified with the 
thermodynamic irreversibility of the shock. When we compare the energy equation with 
the first law of thermodynamics: 
 

                                                 
96The coefficients used in Lagrangian hydrodynamics codes are different from the ones listed above. 
97R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems, second edition 

(Interscience Publishers, New York, New York, 1967), p. 313, footnote 11. 
98W.F. Noh, “Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat 

Flux,” Lawrence Livermore National Laboratory report UCRL-53669 (1985). 
99W.F. Noh, “Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat 

Flux,” Journal of Computational Physics, Volume 72, pp. 78–120 (1987).   
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( )dE P Q dV

TdS d E P dV

  
 

   and 

 
TdS Q dV      . 

 
The entropy increase dS  is being generated by the artificial viscosity.  
 
The entropy is not computed in PAGOSA; however, it is a useful conceptual explanation 
of the physical and numerical processes involved in the solution of the Navier-Stokes 
equations.  
 
An interesting problem is in the choice of the length parameter L. The Wilkin’s form100 
of the artificial viscosity, the default for PAGOSA, uses a length calculated across the 
cell in the direction of the maximum pressure gradient. The length scale adapts in each 
zone, depending on the local pressure gradients. 
 
On the other hand, in 2D problems, the length scale could be computed in several 
different ways. The appropriate length scale might be the diagonal distance across the 
cell. The length scale computation is selected by the user. 
 
In 1D problems, only x  would be an appropriate length scale choice. 
 
For an ideal shock, the pressure is a square wave. When the artificial viscosity is 
computed and added to the pressure, the result is shown in Figure 8.1. The shock is 
spread out over several cells, and the artificial viscosity is a fraction of the amplitude of 
the pressure in the region of the shock and is nonexistent away from the shock. 
 
 

 
Figure 8.1. A typical pressure and artificial viscosity in the region of a shock. 

                                                 
100M.L. Wilkins, “Use of Artificial Viscosity in Multidimensional Fluid Dynamic Calculations,” Journal of 

Computational Physics, Volume 36, pp. 281–303 (1980). 
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CHAPTER 9 
 

Computing a Timestep 
 

I am not discouraged, because every wrong attempt discarded is another step forward. 
 

-Thomas A. Edison (1847–1931) 
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9 COMPUTING A TIMESTEP 

The timestep in any simulation must be smaller than that given by the Courant-
Friedrichs-Lewy (CFL) condition.101 This condition is necessary for the stability of the 
numerical solution of the partial differential equations. Physically, the timestep 
restriction102 prevents information from moving beyond a cell in a single step.   
 
A timestep for each component of the velocity is computed as follows. 
 

 U mint safeu x U       , (9.1) 

 V mint safeu y V       , (9.2) 

 W mint safeu z W       , (9.3) 

 UC min [| | ]t safec x cU        , (9.4) 

 VC min [| | ]t safec y cV        , and (9.5) 

 WC min [| | ]t safec z cW        , (9.6) 

 
where safeu and safec are safety factors (between 0 and 1) used to reduce the timestep 
further and ensure numerical stability. The velocity components , , and U V W   are 
evaluated at the cell centers.103 The location of the controlling timestep is also computed 
and displayed for each cycle of the integration. This information is useful in 
understanding what is controlling the timestep and where that control is specifically 
located. Occasionally, a material can move into an equation-of-state (EOS) regime where 
the calculated sound speed can be quite large. If the sound speed is large enough, it will 
control the simulation with very small timesteps. In these cases, knowing the location and 
state of the material can aid the user in setting appropriate density and pressure cutoffs. 
The question reduces to knowing if the timestep control falls within a region of interest. 
 
In addition, the divergence also has an associated timestep given by 
 

 DIV min 1t safed    u    . (9.7) 

 
The safety factor safed is related to the amount that the cell can expand (or contract) 
during the Lagrangian phase. This timestep condition helps keep distortions small during 
a single timestep. 

                                                 
101R. Courant, K. Friedrichs, and H. Lewy, “Über die Partiellen Differenzengleichungen der 

Mathematischen Physik,” Mathematische Annalen, Volume 100, Number 1, pp. 32–74 (1928). An 
English language translation of the original German paper appears in “On the Partial Difference 
Equations of Mathematical Physics,” IBM Journal, pp. 215–234 (March 1967). 

102R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems, second edition 
(reprinted) (Krieger Publishing Company, Malabar, Florida, 1994), pp. 9–16, 45–48, and 83–90. 

103Ensuring that the sound speed and velocities are spatially centered in the same manner. 
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In simulations involving the detonation of explosives with the programmed burn 
algorithm, the timestep is limited so that the detonation wave traverses a cell in a few 
steps (approximately four by default104). In the timestep computation, to ensure the 
stability during the high-explosive burn, a value of three times the detonation velocity is 
used in place of the sound speed for cells containing undetonated or partially detonated 
explosive. This restriction allows the pressure in the cell to build slowly as the energy is 
deposited into the cell:  
 

 
D

min , ,

3 D

x y z
t safec

  
     , (9.8) 

 
where D  is the detonation velocity of the explosive. 
 
The calculation timestep is the minimum of all the various controls, as shown in 
Table 9.1: 
 

U V W UC VC WC DIV D MAXmin ( , , , , , , , , )t t t t t t t t t t              , (9.9) 

 
where MAXt  is a user-specified maximum timestep for the simulation.  
 
The timesteps can be adjusted in other ways. The timestep can grow under certain 
circumstances and is allowed to grow by a small factor for each new step. Typically this 
increase is 5% to 10% in step size from cycle to cycle. 
 
However, the timestep can shrink dramatically at any point in the simulation. For 
example, if a detonation begins or if two shocks collide, then the timestep will adjust to 
reflect the new physics in the simulation. The timestep will be computed subject to the 
restrictions described above and subject to the minimum and maximum timestep values. 
 
The timestep is also limited by minimum value. If the value of the timestep drops below a 
specified minimum value ( MINt ), then the simulation is stopped. This situation can 
occur when a calculation has difficulty with an EOS with unrealistic densities or internal 
energies. If the timestep becomes too small, it is usually indicative of some problem in 
the simulation. 
 
In certain simulations, when an exact final simulation time is wanted, the timestep is 
adjusted for the last integration step. If the normally computed timestep would overshoot 
the desired time, a fraction of the timestep is used. This option is useful when simulations 
are to be compared with experiments, for example. 
 

                                                 
104The default user parameter is safec = ¾, so the detonation requires a minimum of four steps to traverse a 

cell. 
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Table 9.1. The Timestep Controls in PAGOSA Hydrodynamics (the Controls Include the 
Standard CFL Stability Restrictions, as Well as Controls Set at the User’s 
Discretion)  

 

CODE CONTROL EQUATION 

Div DIVt  (9.7) 

Fin nt  ( finalt t ) 

G - t growth t    

I 0t  Initial timestep 

Max MAXt  User selectable 

Min MINt  User selectable 

U Ut  (9.1) 

V Vt  (9.2) 

W Wt  (9.3) 

U+c UCt  (9.4) 

V+c VCt  (9.5) 

W+c WCt  (9.6) 

 
 
The initial timestep, 0t , is either set by the user or computed by trial and error from the 
initial conditions. The user is encouraged to compute the initial timestep manually. 
Appendix F provides a few important ideas for computing an initial timestep ( 0t ). 
 
In cases where the timestep is too large for the Lagrangian or advection phases,105 the 
PAGOSA algorithm “backs up” to the last simulation time and attempts a smaller 
timestep. This backup capability is an important feature in PAGOSA and provides a 
robust method of continuing a simulation when the CFL conditions vary significantly 
over the course of the complete simulation. 
 
The safety factors, growth factors, minimum timesteps, and maximum timesteps all have 
default values in PAGOSA. These factors have been fine tuned and adjusted over many 
years for typical problems of interest. 
 
 

                                                 
105For example, if the Lagrangian-phase volume consumes the entire Eulerian cell volume. Another 

common occurrence is when the Lagrangian-phase volume is negative. 
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CHAPTER 10 
 

Initial Conditions 
 

These mysteries are heightened when we reflect how surprising it is that the laws of 
nature and the initial conditions of the universe should allow for the existence of beings 

who could observe it. 
 

-Steven Weinberg, Scientific American (October 1994) 
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10 INITIAL CONDITIONS 

The solution of the partial differential equations presented in Chapter 1 requires a set of 
initial conditions for the fundamental variables at the beginning of the simulation ( 0t t ). 
 
For every material and every cell, the following initial conditions are needed: 
 

 

0

0

0

0

0

( ; , , )         initial density,

( ; , , )        initial volume fraction,

( ; , , )      initial x velocity,

( ; , , )       initial y velocity,

( ; , , )        initial z velocity,

t t x y z

t t x y z

U t t x y z

V t t x y z

W t t x y z














0

and

( ; , , )        initial internal energyE t t x y z

  

 
The pressures can be derived from the densities and internal energies. Similarly, the cell 
masses can be derived from the densities, volume fractions, and cell sizes. 
 
On the other hand, the stress deviators are initially zero. 
 

 

0

0

0

0

0

0

( ; , , ) = 0

( ; , , ) = 0

( ; , , ) = 0

( ; , , ) = 0

( ; , , ) = 0

( ; , , ) = 0 .

xx

xy

xz

yy

yz

zz

S t t x y z

S t t x y z

S t t x y z

S t t x y z

S t t x y z

S t t x y z












    

 
There are no initial material stresses; this fact may be incompatible with the other initial 
conditions specified by the user. It is important to ensure that all initial conditions are 
consistent and compatible. 
 
In the case of programmed burn explosives, the vertex-centered burn times are required 
initial conditions. The “simple” programmed burn algorithms are detailed in Chapter 12. 
The general three-dimensional programmed burn algorithm106 allows for more 
complicated geometries, shadow regions, and multiple high-explosive materials. 
 
 ( , , )         programmed burn times (vertex centered)Bt x y z    . 

                                                 
106Tom Bennion, Sean Clancy, and Wayne Weseloh (editors), “The PAGOSA 3D Programmed Burn 

Algorithm,” Los Alamos National Laboratory report LA-UR-09-04016, Revision 1 (May 2009). 
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CHAPTER 11 
 

Boundary Conditions 
 

The cube which you will generate will be bounded by six sides, 
that is to say, six of your insides. 

 
-Edwin A. Abbott, Flatland (1884) 
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11 BOUNDARY CONDITIONS 

Boundaries on which the boundary conditions are set form the exterior surface of the 
Eulerian computational domain. The two types of boundary conditions available in 
PAGOSA are reflective (symmetry) and transmissive.  

11.1 Reflective Boundary Conditions 

The reflective boundary conditions, sometimes called the symmetry boundary conditions, 
represent a boundary of the Eulerian mesh where the interior is a mirror image of the 
other side. No motion is possible normal to the boundary; only motion tangential to the 
boundary is allowed. In the current implementation of PAGOSA, materials contacting a 
reflective (symmetry) boundary cannot subsequently pull away from it. 
 
At a reflective (symmetry) boundary, the ghost cells are the mirror image of their “real” 
neighbors. For example, on the xmin boundary surface, the boundary conditions would be 
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The general prescription is shown in 
Figure 11.1. The cell-centered portion of 
the ghost cells is simply copied from the 
adjacent Eulerian cells. However, the 
velocities at handled differently. The 
normal component of the velocity is zero 
at the reflective (symmetry) boundary, 
whereas the tangential component is 
computed in the same manner as every 
“interior” cell.  

Figure 11.1. The reflective (symmetry) 
boundary conditions. 
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The above situation is complicated at the intersection of two or three reflecting 
boundaries. The row of ghost cells must be set appropriately in these cases. 

11.2 Transmissive Boundary Conditions 

The transmissive boundary conditions allow material to flow out of the computational 
domain by absorbing all incident waves without generating any signals back into the 
Eulerian mesh that might perturb the solution. Achieving this boundary condition is very 
difficult, and implementations are generally poor in most Eulerian hydrocodes.  
 
The transmissive boundary conditions (see example in Figure 11.2) provide a way to 
anticipate the flow behavior at the very limit of the computational domain. The flow 
properties at the boundary must derive from the knowledge of the flow inside the 
computational domain, coupled with some approximations of the outside flow:
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Some small amount of information is 
reflected off of the transmissive 
boundary back into the simulation. It is 
always important to choose the position 
of a transmissive boundary so that it has 
only a minimal effect on the results of 
the simulation.  

Figure 11.2. The transmissive boundary.
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11.3 Other Boundary Conditions 

Other types of boundary conditions are possible and under consideration: 
 

 inflow, 
 periodic, and 
 pinned, no slip, or no velocity. 
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CHAPTER 12 
 

Programmed Burn 
 

Double, double toil and trouble, fire burn, and caldron bubble.  
 

-William Shakespeare, Macbeth (1603–1607) 
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12 PROGRAMMED BURN 

The programmed burn technique107 is used in PAGOSA to simulate the detonation of 
explosives when the properties of that particular explosive are well known and its 
behavior is not the focus of the study. The basic assumption is that the detonation wave 
front travels in all directions at the Chapman-Jouget detonation108 velocity. The position 
of the detonation front is predicted based on the initial configuration of the explosive.  
 
The detonation burn times, Bt, are defined at the cell vertices. For simulations using the 
programmed burn technique, the burn times are computed as part of the initial conditions. 
The burn times are computed from a user-selected detonator type and the explosive 
detonation velocity D. For vertices in no way connected to the explosive, the burn times 
are set to a large value, btlim. For cells that contain any explosive, the burn time is 
computed for every vertex. The propagation of the detonation is modeled by a simple 
line-of-sight approximation to a complicated Huygen’s construction. The detonation 
wave is regarded as a propagating energy deposition front in the explosive.  
 
The difference between the minimum and maximum burn times of the eight cell vertices 
is referred to as the burn interval for a cell. Mathematically, we have 
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
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   . 

 
The burn fraction, Bf, is used in the Jones-Wilkins-Lee (JWL) equation of state (EOS) 
(Section 6.5) to allow a gradual deposition of pressure/energy into a cell. The energy 
starts to deposit proportionally from the time when the detonation front first arrives at the 
cell. This energy deposition, combined with the EOS of the explosive material, produces 
a finite pressure in the cell, which then begins to affect other portions of the problem. 
Detonation points normally occur on the surface of explosive regions. The available 
simple (i.e., line-of-sight) detonator types are Point, Line, Plane, Cylinder, Sphere, and 
Ring. These types are described in the following sections. 
 

                                                 
107Programmed burn is not the only technique for handling explosives in PAGOSA. Several reactive burn 

models are available for a more detailed study of explosive behavior. 
108J.A. Zukas and W.P. Walters, Explosive Effects and Applications (Springer-Verlag Inc., New York, New 

York, 1998), pp. 116–121, 127. 
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12.1 Simple Point 

If the initiation point of detonation is at ( , , )d d dx y z , then the arrival time of the 
detonation front to the cell vertex (i,j,k) is given by 
 
 , , R /i j k dBt t D     and (12.1) 

 

 2 2 2
, , , , , ,R ( ) ( ) ( )i j k d i j k d i j k dx x y y z z         , 

 
where each detonation point has a detonation time, dt , and the explosive has a detonation 
velocity D. The detonation will sweep out from the point spherically and cover the entire 
mesh containing explosive.109 

12.2 Simple Line 

If the initiation surface is a line and the line is aligned along one of the Cartesian axes, 
then the arrival time of the detonation front to the cell vertex (i,j,k) is given by 
 
 , , R /i j k dBt t D     and (12.2) 

 
 R  perpendicular distance from the vertex to the line, 
 
where each detonation point has a detonation time, dt , and the explosive has a detonation 
velocity D. 

12.3 Simple Plane 

If the initiation surface is a plane and the plane110 is located at ([ : ], ,[ : ])dy    , 
then the arrival time of the detonation front to the cell vertex (i,j,k) is given by 
 
 , , R /i j k dBt t D     and (12.3) 

 

 , ,R i j k dy y     , 

 
where each detonation point has a detonation time, dt , and the explosive has a detonation 
velocity D. In general, both sides of the plane will have detonation times. The detonation 
waves themselves will be planes parallel to the detonation plane. 

                                                 
109Any cell that has a non-zero volume fraction for the explosive material has eight vertex burn times. 
110This is an example for the XZ plane. The other two cases are also available. 
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12.4 Simple Cylinder 

If the initiation surface is a cylinder and the cylinder axis is aligned along one of the 
Cartesian axes, then the arrival time of the detonation front to the cell vertex (i,j,k) is 
given by 
 
 , , R /i j k dBt t D     and (12.4) 

 
 R   radial distance from the vertex to the cylindrical surface, 
 
where each detonation point has a detonation time, dt , and the explosive has a detonation 
velocity D. In general, both sides of the cylindrical surface will have detonation times. 
The detonation waves themselves will be cylinders concentric to the cylindrical 
detonation surface. 

12.5 Simple Sphere 

If the initiation surface is a sphere, then the arrival time of the detonation front to the cell 
vertex (i,j,k) is given by 
 
 , , R /i j k dBt t D     and (12.5) 

 
 R   radial distance from the vertex to the spherical surface, 
 
where each detonation point has a detonation time, dt , and the explosive has a detonation 
velocity D. In general, both sides of the spherical surface will have detonation times. The 
center coordinates and radius of the detonation surface must be specified by the user. The 
detonation waves themselves will be spheres concentric to the spherical detonation 
surface. 

12.6 Simple Ring 

If the initiation surface is a ring, then the arrival time of the detonation front to the cell 
vertex (i,j,k) is given by 
 
 , , R /i j k dBt t D     and (12.6) 

 
 R   minimum distance from the vertex to the ring surface, 
 
where each detonation point has a detonation time, dt , and the explosive has a detonation 
velocity D. If the inner radius of the ring detonator is zero, then the surface is a circle. In 
addition, if the outer radius is larger than the computational mesh, this case reduces to a 
simple plane detonator. 
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12.7 Limitations of Simple Detonators 

In some cases, the line-of-sight approach is a poor approximation to the physics in the 
simulation. Situations exist where portions of the material are not within the line of sight. 
These shadow regions can be important in a simulation. In these cases, other detonation 
methods should be used. 
 
Consider the complicated explosive geometry in Figure 12.1. The detonation point, 
located on the left, has a limited line of sight to most of the explosive material. The 
demarcation between the line-of-sight regions and the shadow regions is shown by the 
red dotted lines. The distance calculations for the lines   and   will clearly be in error. 
A contour plot of the burn times is one of the best methods of checking the computation. 

 
Figure 12.1. An explosive is to be detonated at the point shown. The lines  and  point to 

regions that are directly within the line of sight of the detonator. The lines   and   
point to the shadow regions. The distance calculation assumptions are violated 
because the line-of-sight path crosses another material. 

The programmed burn methodology is most often used in conjunction with the JWL EOS 
(Section 6.5). The combination ignores many physical properties that could be important 
in a simulation. For example, the detonation front contains a reaction zone111 of a finite 
width. In the simple model of detonation, we treat the reaction zone as if it had zero 
width. The detonation velocity varies as a function of the local shock curvature.112,113 

 
The detonation velocity D in the line-of-sight programmed burn method is a constant. 
 

                                                 
111P.W. Cooper, Explosives Engineering, (Wiley-VCH, New York, New York, 1996), pp. 275–298. 
112J.B. Bdzil, D.S. Stewart, and T.L. Jackson, “Program Burn Algorithms Based on Detonation Shock 

Dynamics: Discrete Approximations of Detonation Flows with Discontinuous Front Models,” Journal 
of Computational Physics, Volume 174, pp. 870–902 (2001). 

113D.E. Lambert, D.S. Scott, S. Yoo, and B.D. Wescott, “Experimental Validation of Detonation Shock 
Dynamics in Condensed Explosives,” Journal of Fluid Mechanics, volume 546, pp. 227–253 (2006). 
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The programmed burn algorithm is a geometric construction approximating many 
complicated nonlinear processes. This algorithm can be a very good approximation to 
reality if the questions driving the simulation are not about details of the high-explosive 
detonation.114 
 
One way of avoiding the difficulties with shadow regions is for the user to construct a 
series of connected regions, each with a single individual detonator. In the case shown in 
Figure 12.2, the explosive has been divided into four regions. The first region, A, is the 
line-of-sight region. The original detonation point is now designated as detonator 1 and 
corresponds to region A. Regions B, C and D are shadow regions. 
 

 
Figure 12.2. An explosive, shown in the previous figure, is to be detonated with four distinct 

detonation points. Region A is the line-of-sight region, which will be detonated with 
detonator 1 (the original detonator). Region B is a shadow region, detonated by 
detonator 2. Region C is the second shadow region, detonated by detonator 3. The 
remaining explosive material, D, will be detonated by detonator 4. The four regions 
A, B, C, and D have the same material properties. 

The detonation times for the four detonation points are 

 1 dt t  material A, 
 2 1 12 /t t R D   material B,  
 3 1 13 /t t R D     material C, and 
 4 3 34 /t t R D     material D, 
 
where ikR is defined as the minimum distance between points i and k. Each region would 
need to have a unique material number for this method to work properly. 

12.8 Other Detonation Models 

Several other options exist in PAGOSA for the release of energy from an explosive, 
including reactive burn models (CJ Volume, DynaBurn, Forest Fire, and Multi-Shock 
                                                 
114Tom Bennion, Sean Clancy, and Wayne Weseloh (editors), “The PAGOSA 3D Programmed Burn 

Algorithm,” Los Alamos National Laboratory report LA-UR-09-04016, Revision 1 (May 2009). 
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Forest Fire). The description of these models is beyond the scope of this work and 
therefore is not discussed here. 
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CHAPTER 13 
 

Divergence Options 
 

One cannot escape the feeling that these mathematical formulas have an independent 
existence and an intelligence of their own, that they are wiser than we are, wiser even 

than their discoverers. 
 

-Heinrich Hertz (1857–1894) 
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13 DIVERGENCE OPTIONS 

The implementation of material models in PAGOSA is made somewhat difficult because 
of the use of a single velocity field for all materials. Under certain circumstances, mixed 
cell components can behave nonphysically if they possess very different compressibilities 
or shear moduli. Various divergence models have been developed to handle these 
situations. 
 
To understand why divergence is central to this issue, consider the Lagrangian equation 
[Eq. 4.11)] developed in Chapter 4: 
 

 0
t

 
  


u    . 

 
Rewriting Eq. (4.15) with the reference density explicitly included, we find 
 

 1
0 0( / ) ( / )

t
    

   


u    . (13.1) 

 
If the compression and the rate of compression are increasing, then the divergence is 
negative.  

13.1 Uniform 

All materials in a mixed cell are uniformly compressed (or expanded) at the same rate 
using the same value of divergence. No distinction is made between gases, liquids, 
metals, or voids within a single Eulerian cell. The differences in compressibility between 
materials are ignored, and all materials are treated with the same value. 
 
Consider the right-hand side of Eq. (13.1). Using this uniform compression model, all 
materials in a mixed cell would be subject to the same divergence. 

13.2 Void Closure 

Void closure is a phenomenon that occurs when a void material is sandwiched between 
two nonvoid materials. For the uniform case described above, all the materials in mixed 
cells under compression will be squeezed in proportion to their material volume fraction. 
This squeezing leads to over-compression of the nonvoid materials, which is clearly 
nonphysical. In reality, the voids would be squeezed out before any compression of the 
materials occurred. In practice, the void closure model in PAGOSA allows the void to be 
squeezed out between two objects that are colliding. Without the model, a small amount 
of void would remain forever sandwiched between the two objects. 
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The details of the void closure model are as follows.115 During both the predictor and 
corrector steps of the Lagrangian phase in PAGOSA, the velocity divergence is examined 
in each mixed cell. If the divergence is negative (i.e., the cell is contracting), the cell is 
inspected for the presence of void materials. If void material is found, then the minimum 
and maximum priorities of all materials present in the surrounding 26 neighboring cells 
are determined. If the priority of the void to be closed is between the minimum and 
maximum priorities of the neighboring cells, then that void will be contracted 
preferentially. That is, the void will take up any contraction of the cell before any other 
materials are allowed to compress. If the volume of the void is insufficient to use the 
contraction entirely, then the other materials in the cell will share the remaining 
contraction according to their individual volume fractions. If the priority of a closeable 
void does not occur between the minimum and maximum priorities of the neighboring 
nonvoid materials, it may still be allowed to close if no neighboring cells are pure void 
cells. 
 
In PAGOSA, when a void is preferentially contracted in a mixed cell, the contributions to 
the energy change from the nonvoid materials are multiplied by a scalar factor. 
Figure 13.1 shows a diagram of the derivation of this factor for a mixed cell containing 
one solid material and a void.  
 
At the start of the Lagrangian phase, we have 
 
 0

mat  = the volume fraction of the material and 

 0
void  = the volume fraction of the void.  

 
After the contraction occurs during the predictor portion of the Lagrangian phase, we 
have 
 
 1

mat  = the volume fraction of the material and 

 1
void  = the volume fraction of the void. 

 
Figure 13.1(a) shows the partitioning of material and void in the cell before contraction. 
The whole cell will contract by V (which has a negative value) during the predictor 
portion of the Lagrangian phase. 
 
Figure 13.1(b) illustrates the case where the contraction is apportioned between material 
and void according to their individual volume fractions. In this case, the volume change 
of the solid material after the predictor phase is given by 
 

                                                 
115K.S. Holian [Los Alamos National Laboratory (LANL)], D.J. Cagliostro (LANL), T.F. Adams (LANL), 

and B. Parker [Atomic Weapons Research Establishment (AWRE), United Kingdom], private 
communication, November 9, 1990. 
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 /
0

w o mat
matV V      . (13.2) 

 
Figure 13.1(c) illustrates the case in which void closure occurs, and the void contracts 
before the solid material is allowed to contract. In this case, the volume change of the 
material is given by 
 
 1 0( )w mat mat

matV V V V         . (13.3) 
 
The factor that multiplies the contribution to the energy change by the contraction of the 
material then is the change in volume of the material with void closure divided by the 
change in volume of the material without void closure, as 
 

 1 0

0

( )mat mat

mat

V V V
f

V

 


  



   . (13.4) 

 
The densities of the nonvoid material components of the mixed cell are clearly modified 
by this preferential contraction of the void.  

 
Figure 13.1. Schematic showing two different methods of contracting void in a mixed cell. At the 

beginning of the Lagrangian phase (a), the mixed cell contains solid material and 
void. If the contraction is apportioned between solid and void according to volume 
fractions, then the solid is preferentially compressed (b). If the void contracts before 
the solid is allowed to contract, then the result is (c). 
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13.3 Pressure Relaxation 116 

The pressure relaxation algorithm is designed to reduce, but not eliminate, pressure 
differences among materials in a mixed cell. It is more general than the void-closure 
algorithm but is still expected to produce good results for a void closure. 
 
A relaxation method was chosen over an equilibrium method for two reasons. The waves 
that reduce pressure differences within the zone have finite speeds that may be too small 
to produce equilibrium within the timestep, and forced equilibrium can result in 
unphysical behavior. Consider the simple problem of gas expanding into a void.117 
Forcing equilibrium during the Lagrangian phase would put all of the cell volume change 
into the gas and result in the gas moving through the mesh at the rate of one cell per 
timestep.  
 
Consider a material-dependent compression that consists of the usual uniform 
compression followed by a relaxation of the material pressure ( )m P  toward a common 
cell pressure eqP  with a material-dependent time constant ( )m  .  

 
The resulting Lagrangian equation for a material pressure ( )m P  is 
 

 
( )( )

( ) ( ) 2 ( ) ( ) ( ) 2
( )

mm
eqm m m m m

m

P PD P
c c

Dt
 




       u u    . (13.5) 

 
Subtracting the effect of uniform compression produces a Lagrangian equation for the 
material volume fraction as 
 

 
( )( )

( )
( ) ( ) ( ) 2 ( )

1
mm

eqm
m m m m

P PD

Dt c


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
     u u    . (13.6) 

 
Requiring the sum of the changes in volume fraction to be zero for the cell gives 
 

 
( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) 2 ( )/
m m m

eq m m m m m m
m m

P
P

c c

 
   

   
    
   
     . (13.7) 

 
The form of the relaxation algorithm is determined by the choice of the time constant 
( )m  . Some possible choices are ( )m t   , which produces the “equilibrium” form of the 
algorithm, and ( ) ( ) ( )/m m mL c  , which produces the Riemann-like form of the 
algorithm. In the Riemann-like form, L is a measure of the cell thickness and ( )m   is the 

                                                 
116This section was adapted from the writings of James W. Painter, Los Alamos National Laboratory 

(1994). 
117Wayne Weseloh, “PAGOSA Sample Problems,” Los Alamos National Laboratory report LA-UR-05-

6514 (August 2005), pp. 5–12 (Blowoff). 
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estimated time for the wave to traverse material (m) and change the material pressure 
from ( )m P  to eqP . 

In the equilibrium form, eqP  takes on the well-known form 

 

 
( ) ( ) ( )

( ) ( ) 2 ( ) ( ) 2/
m m m

eq m m m m
m m

P
P

c c

 
 

   
    
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   (13.8) 

 
and the volume fraction equation becomes 
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( ) ( ) ( ) 2

1
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m m m

P PD
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



   . (13.9) 

 
When the left-hand side of Eq. (13.9) is differenced, t  cancels from the equation. To 
first approximation, the changes in volume fractions will tend to equilibrate the material 
pressures within a timestep t .  
 
In the Riemann-like form, eqP  takes on the form 

 

 
( )

( ) ( ) ( ) ( )

1/
m

eq m m m m
m m

P
P

c c 
   

    
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     , (13.10) 

 
and the volume fraction equation becomes 
 

 
( )( )

( ) ( )

mm
eq

m m

P PD

Dt c L





    . (13.11) 

 
For a two-material cell, this form is similar to the methods developed by David 
Youngs118 and Ransom and Hicks.119  
 
For PAGOSA, a variation of the Riemann-like method was chosen. Modifications were 
required to handle some of the difficulties with the basic method, such as ( )m t   and a 
potential instability associated with the artificial pressure Q . 
 

                                                 
118David L. Youngs (AWRE, United Kingdom), private communication, January 15, 1992. 
119V.H. Ransom and D.L. Hicks, “Hyperbolic Two-Pressure Models for Two-Phase Flow,” Journal of 

Computational Physics, Volume 53, pp. 124–151 (1984). 



Chapter 13 Divergence Options 

124 
 

The differenced equation for ( )m  , 
 

 
( )

( ) * ( )
( ) ( ) 2 ( )

1
m

eqm m
m m m

P P t

c

 
 

 
   

 
   , (13.12) 

 
requires a stability and accuracy condition on the integration timestep t , where t t   . 

t  must be ( )m   to prevent overshoots of eqP , and it must be small enough to produce a 
good approximation to the exponential correction of  . If t t   , relaxation subcycling 
is required. For stability, the definition of ( )m   is replaced with 
( ) ( )max[ / ,1.1 / (1 )]m mL c t f    , where max( , )f safeu safec is a safety factor between 
0 and 1. This definition guarantees that ( )mt  . For accuracy and stability, the 
fractional change in ( )m   for any single material in a cell is allowed to be no larger than 
the maximum allowable fractional change in the cell volume. 
 
For the case ( )m

eqP P , the singularity at ( ) 0m c   is mitigated by replacing ( )m c  with 
( ) ( )m m

pc U , where ( )m
pU  is estimated from 
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   . (13.13) 

 
Equation (13.13) is obtained by applying a linear -s pU U  approximation120 with 1s   to 
a two-material, one-dimensional planar boundary. 
 
When ( ) *m   has been evaluated, the density and internal energy are updated according to 
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120See Chapter 6.6, Grüneisen EOS. 
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In the above equations, the subscript 0 indicates a value at the beginning of the 
hydrodynamic timestep. ( ) *m   and ( )m   are the values of the volume fraction for 
successive relaxation subcycles. The last term in Eq. (13.15) is required to partially 
correct the defect in the relaxation process related to the artificial pressure Q. Without it, 
the relaxation process tends to overexpand materials significantly to compensate for the 
introduction of internal energy by Q. The current limits on F  are imposed for stability 
and may be relaxed in the future. The introduction of the last term in Eq. (13.15) requires 
that the cell-averaged Q in the momentum equation be replaced with 
 

 ( ) * ( ) ( )
0

m m m

m

Q
F  

     . (13.17) 

 
The approach described above works reasonably well if material strength effects are 
insignificant compared with the basic hydrodynamics. However, if strength effects are 
significant, the algorithm must be properly adjusted to avoid anomalous results. In 
particular, instead of relaxing just the pressure ( )m P  toward equilibrium, it is necessary to 
relax ( ) ( )m mP n S n  , where ( )m S  is the material-dependent, deviatoric stress tensor and 
n is the average unit interface normal vector for the mixed cell. The algorithm obtains the 
average value for n by volume averaging the individual surface normals obtained by 
interface reconstruction in the mixed cell.121 
 
We therefore make the replacements 
 
 ( ) ( ) ( )m m mP P n S n   (13.18) 
 
and 
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where ( )m G  is the material-dependent shear modulus. In addition, the zone strain-rate 

tensor e  used to update ( )m S  is replaced with the material-dependent, strain-rate tensor 
( )m e , which is approximated by 
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121Chapter 4.5.1 and Appendix C. 
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CHAPTER 14 
 

Strength 
 

People do not lack strength, they lack will. 
 

-Victor Hugo (1802–1885) 
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14 STRENGTH 

This chapter is concerned with materials that can support a shear without continuous 
deformation. These elastic (and plastic) materials are different from the hydrodynamic 
materials studied up to this point.122 The stress deviators S will be fully described. 
 
Consider the stress-vs-strain curve of a typical solid material. During the first portion of 
the curve (up to a strain of less than ~1%), the stress and strain are proportional. This 
proportionality holds until point a in Figure 14.1, the proportional limit, is reached. We 
know that stress and strain are proportional because this segment of the line is straight. 
Hooke’s Law, named after physicist Robert Hooke (1635–1703), is applicable in the 
region in which stress and strain are proportional. 
 
Every material has a unique elastic modulus value (the slope of the line segment 0a in 
Figure 14.1). That is, the stress required to produce a given strain depends on the nature 
of the material under stress. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14.1. The elastic-plastic behavior of a typical ductile material (e.g., copper). Point a is the 

proportional limit, point b is the yield point, point c is a state in the plastic regime, 
point d is the ultimate tensile strength of the material, and point e is the fracture 
point. 

From points a to b on the figure, stress and strain are not proportional; nevertheless, if the 
stress is removed at any point between 0 and b, the curve will be retraced in the opposite 
direction and the material will return to its original shape and length. In other words, the 

                                                 
122R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics: Commemorative Issue, 

Three Volume Set (Addison Wesley, Reading, Massachusetts, 1989). See Volume II, Chapters 38 and 
39 on elasticity. 
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material will snap back into shape in a reverse order to the way it snapped out of shape to 
begin with. In region 0b, then, the material is said to be elastic or to exhibit elastic 
behavior and point b is called the yield point or elastic limit. 
 
If the material is stressed further, the strain increases rapidly; but when the stress is 
removed at some point beyond b, say c, the material does not come back to its original 
shape but returns along a different path to a different point, shown along the dashed line 
in Figure 14.1. The length of the material at zero stress is now greater than the original 
length, and the material is said to have a permanent deformation. 
 
A further increase of stress beyond c produces a large increase in strain until point e is 
reached, at which point fracture takes place. Between points c and e, the stress increases 
until point d, the maximum or ultimate tensile strength of the material. From points b to 
e, the metal is said to undergo plastic deformation. If large plastic deformation takes 
place between the elastic limit and the fracture point, the metal is said to be ductile. 
However, if fracture occurs soon after the elastic limit is passed, the metal is said to be 
brittle. 
 
In PAGOSA, the stress strain curve is idealized, as shown in Figure 14.2. Point a is the 
yield point of the material. From points a to b on the figure, the material is in the plastic 
regime. At some point b, the loading stops and the material releases elastically. After the 
material has unloaded elastically (point c), the material can still unload plastically until it 
reaches an equilibrium state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.2. The elastic-plastic behavior of a PAGOSA material with strength. 

In the figure, the elastic release is a reversible process. The elastic release is essentially 
parallel to the initial elastic loading. The plastic regime shows a positive slope, which 
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represents work hardening in the material during plastic deformation. The empirical 
formula used to model this process is described in Section 14.4.9.  
 

 

14.1 Cauchy Stress Tensor 

A second-order tensor, the Cauchy stress tensor, completely describes the state of stress 
of a material body. In previous chapters, the stress tensor had been decomposed into its 
spherical and deviatoric parts:123 
 
 ij ij ijP S       . (14.1) 

 
The Cauchy stress tensor is symmetric in its indices. If the stress deviator 0ijS  , then 
the stress has the form ij ijP   . This form is called a pure hydrostatic state of stress, 
and P is the hydrostatic pressure.  The negative sign arises because, by convention, we 
regard pressure, which causes compression, as positive, but we define compressive stress 
as negative. 
 
The stress deviator S in PAGOSA is associated with materials with a shear modulus G. 
The constitutive relations are given in Chapter 1, Eqs. (1.3a)–(1.3f). These constitutive 
relations connect the stress deviator and the material strain rates. The strain rates act 
differently, depending on the state of the material: elastic regime or plastic regime. The 
next section describes the decomposition of the strains into their elastic and plastic parts. 
 
Unlike finite elasticity, this model of elastic response does not carry the initial unstressed 
state as a reference state and thus is more suited to elastic-plastic modeling, where the 
plastic deformation continuously changes the zero-stress reference state. 

14.2 Strain Rate Splitting 

To separate the elastic and plastic flow behavior, the total linear strain is assumed to be 
linearly separable into an elastic component and a plastic component: 
 

e p
ij ij ije e e     . (14.2) 

 
It is found experimentally that, to a good approximation, the purely plastic component of 
the deformation of most materials124 under hydrostatic loading should involve no volume 

                                                 
123It is a physically convenient decomposition for materials that exhibit plastic incompressibility. See P.J. 

Maudlin, “Constitutive Behavior of Model FCC, BCC, and HCP Metals: Experiments, Modeling and 
Validation,” Los Alamos National Laboratory report LA-UR-98-4891 (January 1999). 

Up to this point, the stress tensor and tensor notation have been 
avoided. However, to progress forward, explicit use of the Cauchy 
stress tensor and tensor notation is necessary and essential. 
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change (dilatation). In other words, the plastic state of the material is incompressible. 
Therefore, 
 
 0p p p p

kk xx yy zze e e e       ,  (14.3) 

 
which expresses the property for the plastic strain. It follows that the divergence is 
 
 e p e

kk kk kk kke e e e    u        . (14.4) 

 
For plastic behavior, the elastic component e

ije  does not vanish in general. It is assumed 
that any changes in the stress state in the plastic regime are an elastic response to the 
elastic strain rates. 
 
The details of the elastic-plastic response flow follow the Prandtl-Reuss treatment for 
fully compact ductile metals as presented in Freudenthal and Geiringer.125 The second 
assumption in the Prandtl-Reuss treatment is that the plastic strain is proportional to the 
current stress deviator: 
 
 p

ij ije S  0     , (14.5) 

 
where   is the proportionality function between the plastic strain and the elastic-plastic 
response flow rule. 
 
The changes in the deviatoric stress tensor are given by 
 
 2 ( )p

ij ij ijS G e e       . (14.6) 

 
A derivation of this constitutive relation is given in Appendix A.  
 
In PAGOSA the elastic response of the material is decoupled from its thermodynamics. 
Thus, for the elastic regime in the absence of shocks, the material response should be 
isentropic. In particular, the isentropic part of the response should follow an adiabat of 
the equation of state  (EOS). 
 
The basic elastic-plastic algorithm is shown in Table 14.1. 
 

                                                                                                                                                 
124J.J. Gilman, Micromechanics of Flow in Solids (McGraw-Hill, New York, New York, 1969). 
125A.M. Freudenthal and M. W. Geiringer, “The Mathematical Theories of the Inelastic Continuum,” in 

Handbuch der Phsyik (Springer-Verlag, New York, New York), Volume VI (1958).  
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Table 14.1. The PAGOSA Elastic-Plastic Algorithm at a Glance 
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  linear strain rate tensor 
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3ij ij ij kke e      linear deviatoric strain rate tensor 
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 linear spin (or rotation) tensor 

 

 4) Y  and G  flow-stress and shear modulus 
 

 5) old old
ij im mj im mjR S S     rotation term 

 

 6) * 2old
ij ij ij ijS S G t R t      elastic prediction (trial stress) 
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* *

2

3
( ) 1

2
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ij ijS S
f plastic for f

Y

f elastic for f


 


  

 radial return correction 

 

 8) fSS ij
new
ij /*   new stress deviator 

 

 9) 1
2 [ ( ) ( ) ]old new old new

ij im mj mj im im mjR S S S S             rotation update   
 

10)  1

2
p new old

ij ij ij ij ije t S S R t
G

        linear plastic strain tensor 

 

11) 2
3

p p p
eq ij ije e e   change in equivalent plastic strain 

 

12) 2
3 ij ij      deviatoric strain rate 

 

13) p old p
ij ijW S e    change in plastic work 

 

14) p
eq

p
old

p
new eee   equivalent plastic strain 

 

15) /p
oldnew WEE   specific internal energy 
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14.3 Yield Criterion 

The plastic behavior of a metal is a reflection of modifications of the internal material 
structure. At the macroscopic level, this behavior produces a material flow. This flow 
results in permanent local deformations and energy dissipation, which contributes to the 
local specific internal energy of the material.  
 
The basic assumption is that there exists a scalar function of stress and strain, ( , )F σ ε , 
that characterizes the elastic and plastic states of the material.126 When the scalar function 
is negative, the state is elastic. When the scalar function is zero, the state is plastic; that 
is, when ( , ) 0F σ ε  is reached, plastic deformations will develop. The case for which the 
scalar function is positive is physically unreachable. Any tendency in the state variables 
toward a positive scalar value is compensated by the plastic deformation such that the 
zero scalar function value is maintained. The scalar value of zero is called the “yield 
criterion.”  
 
For isotropic materials, the yield criterion should be independent of the coordinate 
system. In PAGOSA, this yield criterion is a function of the stress deviator invariants. In 
particular, the second invariant is chosen.127 
 
It is customary to relate the yield criterion to the yield stress 0Y  for the material in a 
simple tension test. In the one-dimensional uniaxial stress configuration (simple tension), 
yield occurs when 
 
 0xx Y   and all other components 0ij      

 
so that 
 
 1

03P Y     , 

 
the stress deviators are 
 
 2 1 1

0 0 03 3 3, ,xx yy zzS Y S Y S Y        , 

 
and all the other stress deviators are zero.  
 
The second invariant of the stress deviator tensor is related to the yield criterion by the 
classic von Mises yield criterion128 

                                                 
126The functional form of ( , )F σ ε  is termed the yield surface. 
127See Eq. (1.4) in Chapter 1 for the three tensor invariants. 
128Richard von Mises, “Mechanik der Festen Korper im Plastisch Deformablen Zustand,” Göttingen 

Nachrichten Mathematische Physik., Volume 1, pp. 582–592 (1913). 
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2 2 2 2 2 21

2 2

2 2 2 21 4 1 1 1
0 0 0 02 9 9 9 3

( )

( ) 0 0 0

xx yy zz xy xz yzJ S S S S S S

Y Y Y Y

     

      
   .  

 
This equation is the relation between the second deviatoric stress invariant and the yield 
stress: the classical von Mises yield criterion. This form is generalized in PAGOSA by 
replacing 0Y by the yield function 
 
 21 1

1 22 2 3 [ ( , ,...) ]ij jiJ S S Y       . (14.7) 

 
The forms of the yield function Y available in PAGOSA are given in Sections 14.4.1 to 
14.4.7. The arbitrary arguments n  are the dependencies of the yield function. 
 
The yield limiting algorithm in PAGOSA can be understood best in a nine-dimensional 
stress deviator space.129 In this space, a stress deviator is represented by a vector S , 
where its elements are the tensor components of S . The Euclidian norm of the vector S  
is given as 
  
 1 1

2 2 2ij ijJ S S  S    . (14.8) 

 
The classical von Mises yield criterion is 
  

 3
2 ij ijY S S    , (14.9) 

 
which represents a hyper-sphere with a radius of 2 / 3 Y , where the specific value 
depends on the current state variables influencing the yield function Y. States inside the 
hyper-sphere are elastic, and states on the surface of the hyper-sphere are plastic: 
 

 Elastic : 2
3 YS    and (14.10a) 

 

 Plastic: 2
3 YS    . (14.10b) 

 
If components of the S  vector are referred to the material (co-rotational) frame, the strain 
rate deviator e  can be represented in this space by a vector 2G e , where the elements are 
scaled by 2G , whereG  is the current shear modulus.  
 
The elastic-plastic distortions are shown in Figures 14.3 and 14.4. 
 
 
 
                                                 
129The style and mathematical structure of this exposition is primarily credited to Ian N. Gray, Atomic 

Weapons Research Establishment (AWRE), Aldermaston, Berkshire, UK. 
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Suppose the stress deviator vector at time t  is 0S and the vector at time t t   is 1S . The 
yield criterion are shown as 
 

 
Figure 14.3. The two possible final states for a single timestep t . In the case where the 

transition to a final state is elastic, the strain rate deviator is all elastic. On the other 
hand, if the transition is to a final plastic state, the strain rate deviator splits into two 
parts: elastic and plastic. The plastic contribution must lie on the yield surface. The 
elastic part cannot exceed the yield surface under these circumstances. The vector 

*S  is called the elastic predictor and has the value of the stress deviator if the total 
strain rate deviator was all elastic. The conditions do not uniquely determine 1S  
when the final state is plastic. The condition used in PAGOSA that provides a 
unique solution is given by the mathematical expression 

1p
ij ije t S  . 

 
Figure 14.4. The vector components of an elastic-plastic state. 
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Now with the above condition, the values of 1S  and p
ije can be determined by (not 

including the rotation terms) 
 
 ( I )  Elastic Prediction 
 
  * 0 2G t  S S ε    , (14.11) 
 
 
 ( II )  Yield Limiting 
 

  

** 2
3

1

* *2 23 3
/

Y

Y Y


 



SS
S

S S
   , and (14.12) 

 
 ( III ) Strain Rate Deviator Splitting 
 

  
1 0( )

2
p

G t


 


S S

e ε     . (14.13) 

 
The above algorithm provides a first-order (backward) difference approximation to 1S  
and pe . It also has the virtue of automatically handling the elastic-plastic transitions, as 
shown in Figures 14.3 and 14.4. 
 
The stress deviator is updated so that the elastic predictor contains the rotation correction 
terms 
 
 * 0 2 ( )ij ij ij ik kj ik kjS S G t S S t           , (14.14) 

 
where all variables are appropriately time centered.  
 
The plastic strain is computed as 
 

 
1 0( ) ( )

2 2
ij ij ik kj ik kjp

ij ij

S S S S
e

G t G


   
  


   . (14.15) 

 
Remember that in general, G and Y are functions of density, pressure, and internal 
energy.  The specific forms are described in Section 14.4.1 through 14.4.7. 
 
The velocity field at the start of a timestep (time nt ) is used to evaluate the divergence, 

ike , mn . Using these values, a forward differencing of the stress deviator equations, 
together with the yield-limiting algorithm, gives a first-order prediction of the stress 
deviator at a half timestep 1/2nt  ( 1

2
nt t  ). For multi-material cells, the cell strain rate is 
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applied to each material component separately, regardless of its compressibility,130 and 
no attempt is made to force any equilibrium between the various components. Using the 
velocity divergence to update the specific volume (and density) and forward differencing 
the internal energy equation, using plastic strain rates from the yield-limiting algorithm, 
allows a first-order EOS prediction of pressure at time 1/2nt  ( 1

2
nt t  ). Again, a uniform 

cell value of velocity divergence is applied to components of multi-material cells. 
 
Straightforward spatial differencing of pressures and stress deviators at 1/2nt  ( 1

2
nt t  ) 

allows the acceleration equations to give a second-order update of the velocity field from 
time nt  to t t  . 
 
From the velocity fields at times nt  and nt t  , the divergence, ike , and mn are 
evaluated at the half timestep 1/2nt  ( 1

2
nt t  ) and used in a second-order differencing of 

the stress deviator and energy equations to update the remaining quantities at time 
nt t  . See Chapter 5 on Integration for more details. 

 
The Lagrangian phase passes cell velocities at half timesteps to the advection phases. To 
avoid problems in consistency with the yield surface following advection, the last 
Lagrangian step passes its elastic prediction (not yield-limited) value of the stress 
deviator to the advection phases. The post-advection deviators are considered to be 
elastic predictions and are yield limited according to the post-advection values of plastic 
strain, pressure, and internal energy. 
 
 
 

                                                 
130As in the case of the “uniform” divergence option (Chapter 13.1). 
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14.4 Flow-Stress Models 

The flow-stress models give specific functional forms to the shear and yield moduli.   
 
In situations where very high hydrodynamic pressures or large strains are created, the 
constitutive relations may generate unrealistically large values for G and Y. To avoid this 
problem, the user can supply a maximum permitted shear modulus maxG and a maximum 
permitted yield modulus maxY . In PAGOSA these limits are implemented as 

 maxmin ( , )G G G    and (14.16) 

 
 maxmin ( , )Y Y Y    . (14.17) 

 
If the yield modulus is set to a large value, then the material behavior is completely 
elastic and no plastic deformation occurs. This flow-stress model can be useful in some 
test problems and cases where the deformation is expected to be purely elastic. 

14.4.1 Elastic Perfectly Plastic 
The elastic-perfectly plastic model is an idealized material and the easiest to understand. 
The shear and yield moduli are simply constants. The shear and yield moduli are 
 
 0G G  , and 0Y Y    . (14.18) 

 
In this case, the plastic regime, shown in Figure 14.5, is a horizontal line. The stress in 
the plastic regime would be independent of the strain. The effects of thermal softening 
and work hardening are absent from this model. 
 
The class of elastic-perfectly plastic materials is an idealization to keep the constitutive 
equations simple. The idealization is reasonable for materials that do not show significant 
work hardening. The adequacy of this idealization depends on the purpose and 
requirement of the specific application.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.5. An elastic-perfectly plastic material. 
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14.4.2 Modified Steinberg-Cochran-Guinan 
The Modified Steinberg-Cochran-Guinan model131 is applicable for high-strain-rate 
materials (usually metals). The shear modulus and yield strength are functions of 
equivalent plastic strain, pressure, and internal energy.  
 
The shear modulus is 
 
 '

0 cor meltG G P F    , (14.19) 

 

 
1

3' '
01 ( / )corP P    , and (14.20) 

 

 /( )

0
m

m
melt E E E

m

E E
F

E Ee  


  

   . (14.21) 

 
Equation (14.20) is a pressure correction term, and Eq. (14.21) is a thermal softening 
term. The yield strength is given by 
 

 0 01 ( )p p
cor meltY Y e e P F


     ,   and (14.22) 

 

 
1

3
01 ( / )corP P    . (14.23) 

 
The pressure correction terms are different for shear and yield; however, the thermal 
softening term is the same for Eqs. (14.19) and (14.22). The time-integrated equivalent 
plastic strain is denoted pe .  
 
This model requires seven user-supplied inputs: '

0, , , , , ,  and P
me E     . 

 
A single melt energy mE is specified for the material. If the internal energy is greater than 
this value, then both G and Y are set to a value of zero. The thermal softening is discussed 
in Section 14.4.8. 

                                                 
131D.J. Steinberg, S.G. Cochran, and M.W. Guinan, “A Constitutive Model for Metals Applicable at High-

Strain Rate,” Journal of Applied Physics, Volume 51, Issue 3, pp. 1498–1504 (1980). 
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14.4.3 Steinberg-Cochran-Guinan 
The Steinberg-Cochran-Guinan model is a full-temperature version of the Modified 
Steinberg-Cochran-Guinan model. The material temperatures ( ) are obtained from the 
SESAME database via the EOSPAC library (see Chapter 6, Section 6.7). The shear 
modulus is 
 
 ' '

0 ( )cor meltG G P F     , (14.24) 

 

 
1

3' '
01 ( / )corP P       , and (14.25) 

 
 ' ' ( )melt T roomF        . (14.26) 

 
The yield strength is given by 

 0 01 ( ) ( )p p
cor meltY Y e e P F


         , (14.27) 

 

 
1

3
01 ( / )corP P       , and (14.28) 

 
 ( )melt T roomF        . (14.29) 

 
The pressure and thermal softening terms are different for the shear and yield equations. 
The time-integrated equivalent plastic strain is denoted P . It is computed simply as 

 2
3

0

t
p p p

ik ike e e dt       .  (14.30) 

   
This model requires nine user-supplied inputs: ' '

0, , , , , , , , and p
T T room melte        . 

 
The pressure correction terms [Eqs. (14.24) and (14.27)] are set to a value of one in the 
case where 0P   (i.e., tension). In the case where the material temperature exceeds the 
melt temperature ( melt  ), both G and Y are set to a value of zero. 
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14.4.4 Johnson-Cook (JC)  
The Johnson-Cook (JC) model132 is an empirical flow-stress model. The shear modulus 
and yield strength are functions of equivalent plastic strain, pressure, and internal energy.  
 
The shear modulus is 
 

 *
0 [1 max (0, ) ]m

corG G P T   and (14.31) 

 
 1corP P      . (14.32) 

 
The yield strength is given by 
 
 * *

0( ) (1 log )[1 max (0, ) ]m
p e pY Y Be C e T       , (14.33) 

 
where the homologous temperature *T is given by 
 

 * room

melt roo

mel

m

tE E
T

E E





 (14.34) 

 
and the dimensionless plastic strain rate is  
 
 *

0/e e e   , and -1
0 1.0 se     . (14.35) 

 
This model requires seven user-supplied inputs: , , , , , , and melt roomB C n m E E   . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
132G.R. Johnson and W.H. Cook, “A Constitutive Model and Data for Metals Subjected to Large Strains, 

High Strain Rates, and High Temperatures,” Proceedings of Seventh International Symposium on 
Ballistics, The Hague, The Netherlands, pp. 541–548 (April 1983). 
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14.4.5 Preston-Tonks-Wallace (PTW) 
The Preston-Tonks-Wallace (PTW) yield model is a physically based constitutive model. 
The following have been taken from several sources: a published paper by PTW133 and a 
memorandum by Zocher and Flower-Maudlin.134 
 
The shear modulus is 
 

 





 



TGG o 1  , (14.36) 

 
where Go is the initial shear modulus at 0 K and is a user-defined parameter and  is also 
a user-defined dimensionless material constant. The normalized temperature in the above 
equation is defined to be 
 

 meltTTT /


 , (14.37) 

 
where Tmelt is either a user-defined melt temperature from data or the melt temperature 
field generated by a SESAME melt model. The flow-stress (also known as yield strength 
Y) for PTW is, as a function of the stress tensor 

  2    , (14.38) 
 
or, in terms of normalized stress,  
 

 G


  2    . (14.39) 
 
The normalized stress is defined to be  
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

  

 




  
  
  

                                   

   , (14.40) 

 
where the equivalent plastic strain  is calculated from the code. The parameter W is 
defined as 

                                                 
133D.L. Preston, D.L. Tonks, and D.C. Wallace, “Model of Plastic Deformation for Extreme Loading 

Conditions,” Journal of Applied Physics, Volume 93, Issue 1, pp. 211–223 (January 2003). 
134M.A. Zocher and E.C. Flower-Maudlin, “The Implementation of Plasticity into CHAD,” Los Alamos 

National Laboratory, X-4 memorandum to L.S. Bennett, M.B. Prime, M.W. Burkett, and R. Mason 
(January 29, 1999).  
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 1 exp
s y

yo

W p
S

 



 



    
  

   . (14.41) 

 
The user-defined dimensionless parameters in the above and following equations are p, 
So, and o.  

The yield stress y



  and saturation stress s



  equations are defined at follows.  
 
The yield stress is 
 

  
2

1max ln , min ,
y

y o o oy y y erf T y S


   
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 



                    
         

  
 

  , (14.42) 

 
and the saturation stress is 
 

  max ln ,s o o oS S S erf T S


  
 

 



             
     

 


   . (14.43) 

 
The “ erf “ in the yield stress and saturation stress equations is the error function. The 
equivalent plastic strain   and equivalent plastic strain rate   are used in the above 
equations. The strain-rate scaling factor used in the equations above is defined to be 
 

 
1/3

1 4

2 3

G

M

 


   
 

    , (14.44) 

 
where M (≡1.x 10-24 A is the atomic mass of an atom. Clearly,  is the material 
mass density. This strain-rate scaling factor is the reciprocal of the time required for a 
shear wave to traverse a unit cell (atomic vibration frequency).  
 
The flow-stress  and the shear modulus G are set to zero when the temperature is greater 
than the melt temperature. The form requires both the maximum yield strength and initial 
and maximum shear modulus. A von Mises yield criterion is used that results in a “radial 
return” to the yield surface.  
 
This model requires 14 user-supplied inputs: , p, So, S∞, , , yo, y∞, y1, y2, , , Tmelt, 
and A. 
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14.4.6 Mechanical Threshold Stress (MTS) 
The mechanical threshold stress (MTS) yield model is a physically based constitutive 
model founded on dislocation mechanics.135 The accumulative flow-stress, also known as 
yield strength Y, is calculated as  
 

 
1

( / )
N

a io i
i

S    
 



      , (14.45) 

 

where a


, o, and N are user-defined parameters. Currently, three terms are used in the 

above equation. The summed product in the above equation separates the contribution 

from interaction i into a structure evolution term i


 modified with a constant-structure 

deformation Si that is mainly a function of temperature and strain rate. The index i can 

assume the values 1, 2, or 3, where they represent dislocation, interstitial atomic, and 

solute atomic terms, respectively. The athermal threshold stress a



  represents dislocation 

interactions with long-range barriers, such as boundaries, and is assumed to be constant. 

The shear modulus is 
 

  
3

2
1 1

1 hardb T

b
G b p P

e
     

   , (14.46) 

 
where b1, b2, b3, and phard are user-defined parameters. The pressure and temperature, P 
and T, are calculated from the EOS. Generally, phard has a value of 0.7 for copper and 0.0 
(zero) for most other materials.  

 

The, i


 described above is obtained from the structure evolution equation, which is a 

differential hardening law: 

 

   io
i

XF





1



   , (14.47) 

 
where the expression   is just t  , with  and   being the total strain and total strain 
rate, respectively. The equation for the dislocation rate o  varies according to the 
material.  

 

                                                 
135P.J. Maudlin, R.F. Davidson, and R.J. Henninger, “Implementation and Assessment of the Mechanical-

Threshold-Stress Model Using EPIC2 and PINON Computer Codes,” Los Alamos National Laboratory 
report LA-11895-MS (September 1990). 
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The five different possibilities are 
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 (14.48) 

 
where a1, a2, and a3, are the three user-defined parameters. The F(Xi) and Xi are defined 
as 
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and 

 
s

i
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   , (14.50) 

 
respectively. The saturation threshold stress at 0 K is 
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In this equation, so



 , so , b3, and A are user-defined parameters, and k is the Boltzmann 

constant. The last term in the above equation, a


 , is usually nonzero for copper and zero 

for all other materials. It should be noted that the relationships for o , F(Xi), so



 , and  

are material specific. A constant-structure deformation term Si, which is a function of 

temperature and strain rate, is defined to be 
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, (14.52) 

 
where b is the magnitude of Burgers Vector (the inter-atomic distance in the slip 
direction) and gi is a normalized activation energy for a given dislocation/obstacle 
interaction. 
 



Chapter 14 Strength 

147 
 

The flow-stress  and the shear modulus G are set to zero when the temperature is greater 
than the melt temperature. If the SESAME melt model is specified for the associated 
material, MTS uses the melt temperature field generated by the SESAME melt model 
instead of the user-defined Tmelt. 
 
Currently, the SESAME EOS database must be used with this yield model. The form 
requires both the maximum yield strength and the maximum shear modulus. A von Mises 
yield criterion is used, which results in a “radial return” to the yield surface. 
 
The dislocation rate equation must be chosen by specifying idmts = 1, 2, 3, 4, or 5. This 
constant specifies which dislocation rate equation o  is used in the model. 
 

This model requires 35 user-supplied inputs: b1, b2, b3, phard, od , god, oi , goi, os , gos, 

1/pd, 1/qd, 1/pi, 1/qi, 1/ps, 1/qs, a



 , d



 , i



 , s



 , b, boltz, Tmelt, Troom, Gmin, min,, A, a


 , 

o



 , a1, a2, a3, 0s , and idmts. 
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14.4.7  Kospall 
The Kospall model136 is closely related to the Steinberg-Cochran-Guinan model. The 
shear modulus contains two thermal softening terms and a pressure correction term: 
 
 ' ' '

0 ( )cor melt meltG G P F H     , (14.53) 
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3'
01 ( / )corP b P       , (14.54) 

 
 ' ( )melt roomF h       , and (14.55) 
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   . (14.56) 

 
Note that the input parameter h is taken as an absolute value to avoid confusion with 
other hydrodynamics codes using the Kospall model. 
 
Similarly, the yield modulus has two thermal softening terms: 
 

 0 1 ( )p
cor melt meltY Y e P F H


        , (14.57) 
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   . (14.60) 

 
The first thermal softening term is based on temperature, and the second is based on 
internal energy. The temperatures are found from the SESAME database for the material 
of interest. 
 
This model requires eight user-supplied inputs: , , , , , , ,  and roomb f g h q   . 

 
 
 
 
 

                                                 
136D.J. Steinberg and M.W. Guinan, “Constitutive Relations for the KOSPALL code,” Lawrence 

Livermore National Laboratory report UCID-16326 (December 1973). 
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14.4.8  Thermal Softening 
The shear and yield moduli degrade (soften) as a function of the degree of melt. The term 

 exp ( )melt
m

E
F

E E
 


  (14.61) 

 
is used in many of the flow-stress models to approximate this melt behavior. 
  
The expression provides a crude model for the diminishing strength upon melting. The 
parameter mE  specifies the specific internal energy for melting. In some strength forms, 
it is a user-specified input; in others, it is obtained from the SESAME EOS database. 
 
If mE E , then the term is evaluated. If mE E , the term and thus the yield strength are 
set to zero. The melt term has no physical significance; it is simply a convenient 
functional expression that provides a smooth transition to zero strength at melting.  
 
The thermal softening coefficient   controls the shape of the melt function. Typical 
values for   are in the range of 10-2 to 10-3 dimensionless units. A value of zero results in 
a step function, as illustrated in Figure 14.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 14.6. The thermal softening function Fmelt as a function of the specific internal energy. In 
the limit 0  , the term becomes a step function. 
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14.4.9  Work Hardening 
Work hardening, also known as strain hardening, is the strengthening of a material by 
plastic deformation. Work hardening is a consequence of plastic deformation—a 
permanent change in shape. The associated elastic deformation is reversible. Most 
materials do not exhibit only one or the other, but rather a combination of the two 
deformations. Work hardening is most common in ductile materials such as metals.  
 
If the material is work hardened, then some initial hypersurface represents the primary 

yield. Further plastic straining alters the shape of the current yield surface. For example, 

if 0Y  is the primary yield surface, then the distance to the von Mises yield surface is 

0 2 / 3Y . Suppose that the straining continues beyond 0Y  to 1Y  and that the material is 

then completely unloaded. The material now possesses a yield surface at a distance 

1 2 / 3Y . The new surface surrounds and is “concentric” with the primary yield surface. 

The implication here is that the material has been isotropically work hardened. This result 

can be represented by a yield surface, which expands with stress and strain history, 

retaining the same shape throughout. 
 
Several empirical mathematical descriptions of the work-hardening phenomenon exist. 
Holloman’s equation137 is a power law relationship between the stress and the plastic 
strain: 
 
 ( )p nA e     , (14.62) 

 
where   is the stress, A is the strength hardening coefficient, pe is the plastic strain, and 
n is the strain hardening index.138 Ludwik’s equation139 is similar but includes the yield 
stress 
 
 ( )p nY A e      . (14.63) 

 
If the material has a history of deformation, then the yield stress will be increased by a 

term, which depends on the initial plastic strain 0
pe  as 

 

0( )p p n
ijY A e e       . (14.64) 

 
 

                                                 
137J.H. Holloman and J.D. Lubahn, “Plastic Flow of Metals,” Physical Review, Volume 70, Issue 9-10, p. 

775 (October 1946). 
138A.W. Bowen and P.G. Partridge, “Limitations of the Hollomon Strain-Hardening Equation,” Journal of 

Physics D, Applied Physics, Volume 7, pp. 969–978 (1974). 
139P. Ludwik, Elemente der Technologischen Mechanik (Springer, Berlin, Germany, 1909). 



Chapter 14 Strength 

151 
 

 
The strain-hardening index can be evaluated by 
 

 
log ( )

log ( )
e

e

de d
n

de d e




     . (14.65) 

 
The index can be evaluated by examining the slope on a log-log plot of the data. 
 
Work hardening is an important feature in correctly modeling the deformation of 
materials in the plastic regime. The work-hardening term in many of the flow-stress 
models has the form 
 

 0 01 ( )p pY e e


       , (14.66) 

 
which is a generalization of Eq. (14.63). The material-specific inputs are 0, , and pe  . 
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CHAPTER 15 
 

Fracture and Damage 
 

“I lose my temper, but it's all over in a minute," said the student. "So is the hydrogen 
bomb," I replied. "But think of the damage it produces!” 

 
-Spencer Tracy (1900–1967) 
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15 FRACTURE AND DAMAGE 

The main objectives when modeling fracture/damage are to predict where the 
fracture/damage will occur (see Rinehart and Pearson140 for an introduction of fracture 
under impulsive loading). 
 
The fracture and damage models are able to describe the initiation and propagation of 
these properties. PAGOSA possesses two models for fracture and damage: (1) the 
Johnson spall model for investigating the ductile hole growth for materials under tensile 
stresses and (2) The Johnson-Cook (J-C) damage model for investigating the fracture 
characteristics of metals under impulsive loads. 
 
The J-C damage model predicts fracture from dynamic loading conditions. The 
formulation is similar in form to the flow-stress model described in Section 14.4.4. 
 
The Johnson spall model predicts the growth of porosity (distension) in a material. One 
of the simplest forms of mechanical spalling is the plate impact: two waves of 
compression are reflected on the free-surfaces of the plates; they then interact to generate 
a region of high-tension stress inside one of the plates. Voids are not created by 
PAGOSA. However, the region of spallation and its volume can be estimated. 

15.1 Johnson Spall 141 

The amount of spall with this model is described by a distention ratio . If the solid 
volume of a material (with all the pores removed) is defined as 0V  and the actual volume 
of the material (with pores) is V , then the distention ratio is defined as 
 
 0/V V   distention ratio. (15.1) 

 
In terms of porosity, we have 
 

 
1




  porosity. (15.2) 

 
The ductile void growth can be described by a model that relates the pressure P and the 
distention ratio . The equilibrium P- curve is given by 
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3 1eq e
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
 

     
   . (15.3) 

                                                 
140John S. Rinehart and John Pearson, Behavior of Metals under Impulsive Load (Dover Publications Inc., 

New York, New York, 1954), pp. 124–145. 
141J.N. Johnson, “Dynamic Fracture and Spallation in Ductile Solids,” Journal of Applied Physics, Volume 

52, Issue 4, pp. 2812–2825 (1981). 
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If the pressure is negative and below the pressure determined from the equilibrium curve 
for a given  , then voids will grow. Otherwise, the distention ratio will not be allowed to 
increase any further. It is important to note that the value of the distention ratio   must 
be greater than or equal to one. Also, for void growth to begin, the initial distention ratio 
of a material must be slightly greater than one. For example, the initial distention ratio for 
oxygen-free, high-conductivity (OFHC) copper142 has a value of 1.0003. 
 
The time evolution of the distention ratio is given by integrating the rate143 equation as 
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   , (15.5) 

 
where the constant s  has replaced 2

3 Y , P is the material pressure,   is a coefficient 
relating to the resistance to plastic flow void growth, and 0  is the initial distention ratio. 
 
The yield and shear moduli are modified to reflect the evolving porosity in the material. 
The moduli are modified above the threshold stress value of 0p  . Then 
 
 /Y Y     and (15.6) 
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   , (15.7) 

 
where   is the Poisson ratio of the fracture material. The form of the shear modulus is 
attributed to Mackenzie.144 The Johnson spall model may be used with any flow-stress 
model described in Chapter 14 (Sections 14.4.1 through 14.4.7). 
 
The Johnson spall model requires four inputs: 0 , , ,  and s    . 

 
The formulation restricts the Poisson ratio to values of 1 1

5 2  . 

 
 
 
 
 
 

                                                 
142Ibid., p. 2821. 
143Ibid., p 2817, Eq. (32). 
144J.K. Mackenzie, “The Elastic Constants of a Solid Containing Spherical Holes,” Proceeding of the 

Physical Society, Section B, Volume 63, Number 1, pp. 2–11 (January 1950). 
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15.2 Johnson-Cook Damage 145 

The damage in the cell is defined as  
 

 
0

0

t n nN

f f
nt

D dt
 
 


     , (15.8) 

 
where  is the increment of equivalent plastic strain that occurs in one integration step 
and f is the equivalent strain at fracture. Fracture occurs when 1.0D  . 
 
The general expression for the strain rate at fracture is given by Johnson and Cook146 as 
 

 
* * *

1 2 3 4 5[D D exp(D σ )] [1 D log (ε )] [1 D T ]f
e        , (15.9) 

 
where  
 
 *  the dimensionless stress ratio,  /*

m , for 1.5*  ; 

 m  the average of the normal stresses; 

   the von Mises equivalent stress; 
 *  the dimensionless strain rate, 0

* /    with 1
0 1.0 s  ; and 

 *T  the homologous temperature, )TT(/)TT(T roommeltroom
*  . 

 
The J-C damage model can be used with any flow-stress model described in Chapter 14 
(Sections 14.4.1 through 14.4.7). 
 
The J-C damage model requires 10 material inputs: 1 2 3 4 5D , D , D , D , D ,  

room melt fail min levele , e , p , , and damagef . 

 

The spall stress failp is an experimentally determined value for this model. The strain 

makes a transition ( min
f ) from Eq. (15.9) to a linear expression before spalling occurs.147 

The damage threshold ( level damage ) is the value of D at the onset of damage (usually set 

to a value of 1.0, as stated above). 
 
 
 
 
 

                                                 
145G.R. Johnson and W.H. Cook, “Fracture Characteristics of Three Metals Subjected to Various Strain 

Rates, Temperatures, and Pressures,” Engineering Fracture Mechanics, Volume 21, Number 1, pp. 31–
48 (1985). 

146Ibid., p. 40, Eq. (3). 
147Ibid., p. 46, Figure 15. 
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CHAPTER 16 
 

Crush Model 
 

Obstacles cannot crush me. Every obstacle yields to stern resolve. 
     

-Leonardo da Vinci (1452–1519) 
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16 CRUSH  

The P-α crush model is based on the published version in the CTH Eulerian code used at 
Sandia National Laboratories.148 The model originally was proposed by Hermann149 as a 
simple way to describe the compaction of pores in a material.  
 
The model uses a distention ratio variable, defined as 
 
 /s      , (16.1) 

 
where s is the density of the solid material and  is the macroscopic material density. 
The equation of state (EOS) of the porous material is determined from the EOS of the 
regular solid material as  
 

 P(, E,) 
1


Ps(s, E) 

1


Ps(, E )    . (16.2) 

 
The 1/factor ensures thermodynamic consistency for the EOS. This improvement in the 
crushing model was originally suggested by Carroll and Holt.150 The crushing behavior 
(that is, the evolution of the distention ratio in time) is dependent on the pressure.   
 
It is assumed that the material starts out at an initial distention ratio 0: 
 
 0 0 0/s      , (16.3) 

 
where s0 is the reference density of the solid matrix and 0 is the initial density of the 
porous material. An initial elastic region exists up to a pressure Pe, in which if the 
pressure is relieved, the distention ratio will return to its initial value. 
 
The actual compaction region starts at the pressure Pe, and all voids are crushed out (that 
is numerically,  = 1) when the pressure reaches Ps. The maximum allowed distention 
ratio for a given value of pressure between those two pressures is given by 
 

 

2

max ( ) 1 ( 1) s
e

s e

P P
P

P P
 

 
     

 for Pe < P < Ps   . (16.4) 

 

                                                 
148G.I. Kerley, CTH Equation of State Package: Porosity and Reactive Burn Models, Sandia National 

Laboratories report SAND92-0553 (April 1992). 
149W. Hermann, “Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials,” Journal 

of Applied Physics, Volume 40, pp. 2490–2499 (1969).  
150M.M. Carroll and A.C. Holt, “Static and Dynamic Pore-Collapse Relations for Ductile Porous 

Materials,” Journal of Applied Physics, Volume 43, pp. 1626–1636 (1972). 
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Crushing as a function of time follows the pressure history according to 
 

 P

d d d P
P

dt d P dt

         . (16.5) 

 
As the material compacts, if the pressure is suddenly decreased at any point, the material 
will behave elastically (reversibly) until the pressure again increases to the maximum 
pressure for a given distention ratio. Release and recompression behaviors are reversible 
until all pores are crushed out. (The term “reversible” in this case has nothing to do with 
the strength model; it is only relevant to the behavior of the P- model. However, as an 
aside, a P-material may also have strength.) 
 
When material is compacting, the change in distention ratio with respect to pressure is 
given by  
 

 
 

 
0max

2

( 1)( )
2 s

P

s e

P Pd P

d P P P


 

  


 for  max  and 0P     . (16.6)  

 
In the elastic region, the change in distention ratio with respect to pressure is given by 
 

 2
2

1
1P h

     
 

 for  max  and / or 0P     , (16.7) 

 
where 
 

 
0

1
1

1
e s

s

c c
h

c




 
 


   . (16.8) 

 
The sound speed for the fully dense solid is given by cs, and that for the elastic region of 
the porous material is ce. These values are input constants for the material and model in 
the code and are generally obtained from experimental data.  
 
The distention ratio parameter must be advanced in time in the Lagrangian phase of the 
code and must be advected in the advection phase. However, in the advection phase, the 
distention ratio is converted to porosity, which is then advected and subsequently 
converted into a distention ratio. The model is fairly sensitive to the timestep. In fact, an 
internal subcycling occurs to advance the distention ratio in time in the Lagrangian phase 
in smaller steps. This subcycling can be controlled by the user. However, even the overall 
timestep may need to be reduced to ensure that a simulation does not go unstable. In 
addition, to be even more conservative, the user should specify that there be only one 
Lagrangian cycle per advection step.  
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A P- model requires six material inputs: 0 , , , , ,  and e s e sP P c c     , 

 
where 
  
 0  the initial distention ratio, 

 eP  the pressure at end of the elastic region, 

 sP  the pressure at which all pores are crushed out, 

 ec  the sound speed in the elastic region, 

 sc  the sound speed of the fully dense solid, and 

   Poisson’s ratio. 
 
The shear modulus G and yield modulus Y can be modified by the distention ratio. This 
option modifies the moduli by 
  
 /Y Y     and (16.9) 

 
4 5

(1 ) 1 2
7 5

G G
 


 
    

   , (16.10) 

 
where the porosity is computed from the distention ratio [i.e., ( 1) /    ]. 

 
The SESAME EOS ramp treatment (see Section 6.7.1) cannot be used simultaneously 
with the crush model. The two forms of handling porosity are inconsistent with one 
another. 
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APPENDIX A. THE CONSTITUTIVE EQUATIONS 

We assume that the deviatoric stress rates are a linear function of the velocity 
gradients.151,152 In tensor notation,  

 k
ij ijkn

n

u
S A

x





    , and , , , , ,i j k n x y z    , (A.1) 

 

where ijknA  is an arbitrary fourth-order tensor. First decompose the gradient into its 
symmetrical and antisymmetrical parts: 
 

 1
2

k
k n k n k n k nm m

n

u
e e

x
 

   


     , (A.2) 

 

where k nm is the Levi-Civita pseudotensor.153 Assume that the ijknA  tensor is isotropic:154 

 ijkn ik jn in jk ij knA G G G            , (A.3) 
 
where , , and G G G  are scalar coefficients. The tensor ijknA  is symmetrical in the indices 
i and j because the stress deviator is symmetrical in these indices. This symmetry implies 
that G G  . The tensor is also symmetrical in the indices k and n. This symmetry results 
in the antisymmetrical portion of Eq. (A.2) vanishing155 (i.e., k nm  0 ): 
 

 2ij i j j i i j k k i j i j k kS G e G e G e G e G e               . (A.4) 
 
The stress deviator tensor is traceless, and its derivative is also traceless. Thus, 
 

 2 3 (2 3 ) 0ii ii ii iiS G e G e G G e            . (A.5) 
 

Therefore, the isotropic constitutive relation for deviatoric stress and the linearly elastic 
small strains are 

 1 1
3 32 ( ) 2 ( )ij ij ij k k ij ijS G e e G e     u       . (A.6) 

 
Equation (A.6) can be integrated in time, and the constant of integration is zero. Assume 
the physical argument that no strains implies no stress. 

                                                 
151B. de Saint-Venant, “Note à Joindre au Mémoire sur la Dynamique des Fluids,” Comptes Rendus, 

Volume 17, pp. 1240–1244 (1843), originally presented on April 14, 1834. 
152G.G. Stokes, Transactions of the Cambridge Philosophical Society, Volume 8, pp. 287 (1845) (also 

appears in the collected works G.G. Stokes, Mathematical and Physical Papers, Volume I, p. 75). 
153G. Arfken, Mathematical Methods for Physicists (Academic Press, Inc., Harcourt Brace Jovanovich 

Publishers, Orlando, Florida, 1970), p. 132. It is sometimes called the permutation symbol. 
154H. Jeffreys, Cartesian Tensors (Cambridge University Press, New York, New York, 1979), pp. 66–70. 
155It is assumed that a deviatoric stress cannot be created by a pure rotation. 
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APPENDIX B. INITIAL VOLUME FRACTION CALCULATION 

The initial volume fractions ( )m   for each material are determined by sampling each 
Eulerian cell. If a cell contains no interfaces, then the cell is called a pure cell and 
contains only a single material. The volume fractions are zero for all materials, except for 
one that has a value of unity. Most of the cells in an Eulerian simulation are pure. 
 
If a cell contains more than one material, then that cell is selected for further sampling. 
This first sampling pass seeks to identify the multi-material (mixed) cells and is the 
coarse particle sampling. A second pass of sampling actually determines the numerical 
approximation for the value of the volume fractions for each material in the mixed cells 
and is the fine-particle sampling. 
 
Consider the example of a multi-material cell shown in Figure B.1. If a 4 × 4 array of 
sampling particles is distributed156 in the cell, then the first sampling pass would identify 
the cell as mixed. The second pass, using the same sampling density, would conclude that 
the material volume fractions are 
 

( 1) 6
16

material   ,  ( 2) 8
16

material   ,  and  ( 3) 2
16

material      .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.1. Volume fractions of a mixed cell containing three materials (four interfaces). 

                                                 
156In the original version of PAGOSA (circa 1992), the sampling particles were distributed randomly.  

However, it was found that symmetries were broken by using this method. A symmetric body would 
have more mass on one side of the symmetry plane than the other. 
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A different sampling density would result in different initial volume fractions. The user is 
responsible for deciding the cell size, coarse- and fine-sampling densities, and what 
features are important to capture in the initial geometry of the simulation. 
 
Each material in the cell possesses an interface. For example, in Figure B.1, the first 
material has an interface represented by the blue line. The second material has two 
interfaces: the green line and the blue curve. The third material has a single interface 
represented by the green curve. In total, four interfaces are shown in Figure B.1. 
 
The curved surfaces of the input body definitions will be represented by planes in each 
cell. Each material interface in a cell is represented by a plane (see Appendix C). 
Therefore, a part of the geometry information is lost in the surface reconstruction 
algorithm. Small features less than a cell thick can be represented using this technique. 
However, some pathological cases are of note. 
 
Consider the case shown in Figure B.2, with four materials. In this case, one of the 
materials has an orientation and a thickness that escape detection by our sampling 
process. The cell would be identified as mixed during the coarse-particle sampling. How-
ever, only three of the four materials would be identified, which requires that the 
sampling density be chosen with some care and a detailed knowledge of the parts in the 
simulation.157 The volume fractions for this sampling density are 

 
 
 
 
 
 
 
( 1) 10

16

( 2) 2
16

( 3)

( 4) 4
16

0
16 0

material

material

material

material


















   . 

 
 

 
 

 

 
Figure B.2. A pathological case where some materials can go missing from a cell. 

                                                 
157The total mass could be numerically correct. However, the mass distribution could be wrong. 
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The thin layer of material (material 3) is missing, and the volume fraction for material 4 
is also incorrect. 
 
Doubling the fine-particle density (8 × 8 instead of 4 × 4) would capture part of the 
missing material and result in a better balance between the representations of materials 3 
and 4. Clearly, a tradeoff between computation and simulation fidelity is evident. A 
higher density of sampling particles means a longer computation. Eventually, the user is 
faced with the situation of diminishing returns. The extra accuracy is not worth the 
computational effort. 
 
This Monte Carlo technique is used to compute the initial volume fraction for a 
simulation. As the simulation proceeds, the volume fractions for each cell are recomputed 
based on the advection volumes (see Chapter 4 and Appendix E for details about the 
advection algorithm). 
 
Finally, a numerical example of the particle sampling technique is shown in Figures B.3 
and B.4. An offset circle is placed in a uniform 4 × 4 Eulerian mesh. The exact volume 
fractions and ideal interfaces are shown in Figure B.3.  
 

 
 

Figure B.3. Exact volume fractions and ideal 
interfaces. The ideal values for 
the volume fractions are 0.0% , 

1 1 1
12 4 43 31.51467 %    , 

1 1
3 2 3 1 91.322295 %    , and 

100.0%  

 
 
 

Figure B.4. Reconstructed interfaces and 
volume fractions based on the 
PAGOSA initial volume fraction 
algorithm with a small sampling 
density. 
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APPENDIX C. YOUNGS INTERFACE RECONSTRUCTION 

The following is based on publication LA-UR-07-2274.158 The complete derivation is 
presented in that document.  

C.1 Analytic Geometry 

Consider the equation of a plane in Cartesian 3 space: 
 

1 2 3 0x y z          . (C.1) 

 
Define the following quantities: 
 

direction vector  1 2 3( , , )     , and 

distance parameter      . 
 
The sense of and the sign of  are not defined by the equation. For example, we could 
say that 
 

1 2 3 ( ) 0x y z            , 

 
so that the direction of   and the sign of   are reversed. 

 
The direction cosines of the normal to the plane are 
 

31 2

2 2 2 2 2 2 2 2 2
1 2 3 1 2 3 1 2 3

, ,
 

             
   , (C.2) 

 
and the distance from the coordinates’ “origin” to the plane is 
 

2 2 2
1 2 3


   

   .  (C.3) 

 
Equation (C.1) divides all space into two regions. The direction vector points into the 
region “in front of the plane” and away from the region “in back of the plane.” Given a 
point 0 0 0 0( , , )x x y z , then 
 

                                                 
158Chuck Zemach, “Notes on Calculation of the Volume of a Stretched Cube behind a Truncating Volume,” 

Wayne Weseloh, editor, Los Alamos National Laboratory report LA-UR-07-2274 (March 1, 2007). 
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 0x  lies behind the plane if   1 0 2 0 3 0 0x y z          and 

 0x  lies in front of the plane if  1 0 2 0 3 0 0x y z          . 

 
Suppose that 0 0 0 0( , , )x x y z  is a point and ( , )   is a plane. Define a right tetrahedron 
with vertices 0 , , ,X Y ZP P P P  as follows (see Figure C.1): 
 

 Set 0 0 0 0( , , )P x y z . 

 Draw lines through 0P  parallel to the x, y, and z axes. 

 Define ZP   intersection of the z line with the plane. 

 
If ( , , )ZP x y z , then 0x x , 0y y , and 1 0 2 0 3 0x y z       , so 

   

1 0 2 0 3[ ] /z x y       

 
and 

0 0 1 0 2 0 3( , ,[ ] / )ZP x y x y         . 

 

 
Figure C.1. Tetrahedron bounded by the ( , )   plane. 

Similarly, ,X YP P  are the intersections of the x line and y lines into the plane, 
respectively, and 
 

2 0 3 0 1 0 0([ ] / , , )XP y z y z         and 

0 1 0 3 0 2 0( ,[ ] / , )YP x x z z         . 

 
Define  
 

0 0T  , if 0x is in front of the plane, 
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0T  volume of the tetrahedron if 0x is in back of the plane. 

 
Then for 0x  in back of the plane, the volume of the tetrahedron is159 

 

0 0 0 0

1

3! X Y ZT P P P P P P      , or  

 
3

1 0 2 0 3 0
0

1 2 3

( )

6

x y z
T

   
  

  
    . (C.4) 

 
 

In this definition, 
 

 0T  is always 0 . 

 0T    if any one of 1 2 3, , 0    , which corresponds to the ( , )   plane being 
parallel to one or more of the x, y, and z axes. 

 1 2 3, , ,     can have any sign, but 1 2 3 0    . 

 The expression for 0T is unchanged under a (positive) 

scaling 2
i i   , 2   . 

 
C.2 Distance Parameter ρ 

Consider a volume fraction v  containing the origin and satisfying the relation 
 
 1

20 v     . 

  
The case where 1

2 v 1   is obtained by symmetry (discussed below). The plane is 
described by the direction cosines 1 2 3( , , )   , which satisfy  
 

1 2 30       and  2 2 2
1 2 3 1        . 

 
The equation for the plane is 1 2 3x y z       and has five different solutions for 

( , v)  , which correspond to the five ways of slicing a cube with a plane. 
 
The variable mask is logically true when a particular following case applies.

                                                 
159L.E. Dickson, “Note on the Volume of a Tetrahedron in Terms of the Coordinates of the Vertices,” The 

American Mathematical Monthly, Volume 14, Number 6/7 (June–July, 1907), pp. 117–118. 
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Case 1. Triangular Section 
 
Mask: 10< v v , where 2

1 1 2 3v / 6     with  2 0  . 

 
Solution:    1/3

1 2 36 v                                         (C.5) 

 
If 1 0  , then v = 0 .  

 
 
 

Case 2.  Quadrilateral Section, Type A 
 
Mask: 1 2v < v v , where  

 
2

2 1 2 2 1 2 3v 3 ( ) / 6            with  2 0  . 

 

Solution: 21 1
1 2 3 12 38 v                              (C.6) 

 
There is no solution if 2 0  . And 1 0  is acceptable.  

 
Case 3. Pentagonal Section  

 
Mask: 2 3v < v v  if   1 2 3       ( 1 0  )

 2 4v < v v  if   1 2 3       . 

 
In this last mask, if 1 0  , then 2 4v v , where 

 
3 3 3
3 3 1 3 2

3
1 2 3

( ) ( )
v

6

    
  

   
    , and  

4 1 2 3v ( ) / 2     . 

 

Solution:   1 2 1 22 2 cos ( 2 ) / 3             , and (C.7) 

 

  1 1 2 3

1 2

3( 2 v )
cos

4 2

  
 


  

  
  

   . 
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Case 4. Hexagonal Section 
 

Mask: 1
3 2v < v  if   1 2 3       ( 1 0  )   . 

 

Solution:  2 1
0 0 22 cos ( 2 ) / 3           , and 

 
1 1

0 1 2 32 2( ) (v )            , and               (C.8) 

 

1 1 2 3
2 3/ 21
0 2

3 (1 2 v )
cos

4( )

  


  
   

   . 

 
Case 5. Quadrilateral Section, Type B 

 
Mask: 1

4 2v < v  if   1 2 3       .  

 
Both 1 0  and 2 0  are acceptable. 

 
Solution: 1

3 1 22v ( )         .            (C.9) 

 
 
 

C.3 ρ Symmetry 

For the case of 1
2 < v 1 , the solution is obtained by 

 

max( v ) (1 v )        , (C.10) 

 
where 
 

max 1 2 3         . 

C.4 Volume v  

Given a vector  normal to a plane passing through a unit cube and which need not be 
normalized but which satisfies  
 

1 2 30         , 

 
and given  , where / | |   is the distance from the origin to the plane and which 
satisfies 
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 1
max20<      , 

 
where  
 

max 1 2 3         , 

 
the case of 1

max max2 <   is obtained by symmetry (discussed below). 

 
The volume fraction behind the plane that contains the origin has five different solutions 
corresponding to the five ways of a plane slicing a cube. 
 
Case 1. Triangular Section 

 
Mask: 10<   ,   , 

 
where  
 
     1 0  . 

Solution: 
3

1 2 3

v ( )
6


  

    .                                  (C.11) 

 
Case 2.  Quadrilateral Section, Type A 

 
Mask: 1 2<   ,   , 

 
where  
 
     2 0   

 

Solution: 
2 2

1 1

2 3

(3 3 )
v ( )

6

   
 

 
                       (C.12) 

 
Case 3. Pentagonal Section  

 
Mask: 2 1 2 3< min( , )         with  1 0   .  

  

Solution: 
3 3 3

1 2

1 2 3

( ) ( )
v ( )

6

    
  

   
           (C.13) 
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Case 4. Hexagonal Section 
 

Mask: 1
3 max2<     ,   1 2 3    ,  and 1 0     . 

 
Solution: 

3 3 3 3
1 2 3

1 2 3

( ) ( ) ( )
v ( )

6

      
  

     
          (C.14) 

 
 
 

 
 

Case 5. Quadrilateral Section, Type B 
 
Mask: 1

1 2 max2<        with   1 2 3       .  

 

Solution:  1 2

3

2 ( )
v ( )

2

  


 
                             (C.15) 

 
 
 

 

C.5 v Symmetry 

For the case of 1
max max2 <   , the solution is obtained by 

 

maxv ( ) 1 v ( )        , (C.16) 

 
where  
 

max 1 2 3      . 
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APPENDIX D. LAGRANGIAN-PHASE EQUATION 

Consider the expansion of a fluid. Let V  be the volume of the fluid element, bounded by 
a surface S . Let S move with the fluid so that it always contains the same particles (i.e., a 
Lagrangian surface). Let u  be the velocity. Then ˆu n  is the component of the velocity 
along the outward normal vector n̂ . As the fluid moves, a point on the surface is 
displaced.  
 
The Lagrangian equation for mass continuity160 is given by 

0
t

 
   


u    .  

 
The mass within the bounded surface S  is m . The mass density of the material within the 
surface S is simply 
 

/m Vol     . 
 
Substituting the expression for density into the continuity equation, we find that 
 

1
0

Vol

Vol t


  


u    . (D.1) 

 
This expression in a finite difference form is 
 

1
2

11
( )

n n
n

n

Vol Vol

Vol t




  


u    , or (D.2) 

 
 

1 [1 ( ) ]n nVol Vol t    u       , (D.3) 
 
where the superscripts refer to the (n) and (n+1) timesteps. The cell may contain multiple 
materials, each with their own individual volumes. The Lagrangian volume is the sum of 
all those individual volumes. The entire cell volume evolves subject to the expression in 
Eq. (D.3).  
 
An alternate way of understanding Eq. (D.3) is by a first-principles derivation.  
 
Consider the expansion of a fluid element. Let V be the volume of the fluid bounded by a 
surface S. Let S move with the fluid so that it always contains the same material. Let iu  

                                                 
160 See Eq. (4.11) in Chapter 4 (Operator Splitting). 
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be the local fluid velocity. Then ˆ
i iu n  u n  is the component of velocity in the direction 

of the outward normal. As the fluid moves, a fluid element on the surface is displaced, as 
shown in Figure D.1. The normal displacement in an infinitesimal time dt is i iu n dt . 
Thus, the volume of the thin shell between the surface S at time t and the surface formed 
later at time t + dt is 
 

2Volume i idt u n d x      . (D.4) 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure D.1. Lagrangian expansion of a fluid. 

However, this volume is an increase in the volume V, and so we have 
 

2 2 3ˆ
i i

Vol
u n d x d x d x

t


     

   u n u  (D.5) 

 
by Green’s theorem. Partition the volume Vol, and consider a sequence of volumes, all 
enclosing point P. Let the volumes shrink to point P. Then we have 
 

3

0 0

1 1
lim lim

Vol Vol

Vol
d x

Vol t Vol 


    

  u u  (D.6) 

 
evaluated at point P, exactly as was previously found in Eq. (D.1). The divergence of the 
velocity at point P is the expansion of the fluid at point P. 
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APPENDIX E. FIRST-, SECOND-, AND THIRD-ORDER ADVECTION 

 

Figure E.1. Cell advection diagram. 

Consider the x-advection-phase 
conservation of mass equation. 
The one-dimensional equation is 
 

0U
t x

  
 

 
   .                    (E.1) 

 

If we assume that the velocity U  
is a constant, the finite difference 
form can be written as  
 

1 1
2 2

1
1

0
n n n n

i ii i
U

t x

   
  

 
 

 , 

 
where the i  densities are evaluated at the cell boundaries, as shown in Figure E.1. 
Solving for the density at the new time, we have 
 

1 1 1
2 2 2

1
1 1( ) ( )n n n n n n n

i i i ii i i

t
U

x
       

   


     


 

t
U

x
 



   . (E.2) 

 

The problem is to find the cell boundary densities   in terms of the surrounding cell-
centered densities. The mass flow through the cell boundary located at index i is equal to 

i iU A t  , where iA  is the cell boundary surface area. 
 
First we choose a nondimensional spatial variable161 
 

xxxi  /)(    . (E.3) 
 

The velocity at 0  is assumed to be positive.162 The time indices will be dropped for 
the remaining portion of the derivation.  
 
The density is assumed to be a polynomial function163 of the dimensionless spatial 
variable (i.e., 2a b c     ). The increasing orders of advection correspond to the 
increasing degrees of the density polynomial. Note that the degree of the polynomial does 
not necessarily correspond to a formal order of accuracy. 

                                                 
161For simplicity, assume a constant cell size. Variable zoning requires slight modifications to the 

equations.  
162This is only one case of the trichotomy. A negative velocity represents another case and is not derived 

here. The zero velocity case is trivial. 
163Richard L. Bowers and James R. Wilson, Numerical Modeling in Applied Physics and Astrophysics 

(Jones and Bartlett Publishers, Boston, Massachusetts, 1991), pp. 238–243 and Appendix C. 
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E.1 First-Order Advection 

The density is assumed to be a constant function over the range [0,1]   as 
 

a    . (E.4) 
 
The average density of the advection volume ( [0, ]   ) is assumed to be the density at 
the cell boundary. The cell boundary average density is 
 

adi  






0

1
   . (E.5) 

 
The cell centered density is 
 

1
2

1

0
i

d a        . (E.6) 

 
The coefficient a is thus known. First-order advection, also called upwind advection or 
the donor cell method, is164  
 

 
1
2

i i
    First Order   .  (E.7) 

 
 

Upwind differencing is simple but known to be diffusive. The first-order method often 
gives poor results. 

E.2 Second-Order Advection 

In this case, the density is assumed to be a linear function over the range [ 1,1]   . The 
polynomial is 
 

 ba     . (E.8) 
 
The average density of the advection volume is assumed to be the density at the cell 
boundary. The advection density is assumed to be constant in the range [0, ]  . The 
cell boundary average density is 
 

1
2

0

1
i d a b



   


      . (E.9) 

                                                 
164Bram van Leer, “Upwind and High-Resolution Methods for Compressible Flow: From Donor Cell to 

Residual-Distribution Schemes,” Communications in Computational Physics, Volume 1, Number 2 pp. 
192–206 (April 2006). 
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The cell-centered densities are  
 

1
2

1
2

0
1
2

1

1
1
2

0

  , and
i

i

d a b

d a b

  

  






  

  




   .  (E.10) 

 
The coefficients a and b are easily evaluated. They are  
 

1 1
2 2

1 1
2 2

1
2 ( )  , and

i i

i i

a

b

 

 
 

 

 

 
   .  (E.11) 

 
The cell boundary density is 
 

1 1 1 1
2 2 2 2

1 1
2 2( ) ( )i i i i i

               , 

 
which can be written as 
 

 
1 1 1
2 2 2

1
2 (1 ) ( )i i i i

           Second Order. (E.12) 

 
 

Equation (E.12) is second-order advection. This method is less diffusive than the first-
order method, but nonphysical oscillations and negative densities often occur. 
 
It is interesting to note that in the limit as 0  , the second-order method results in the 
cell boundary average density being just the average of the densities on either side of the 
boundary. 
 

E.3  Third-Order Advection 

In this case, the density is assumed to be of the form of a quadratic function over the 
range of [ 1, 2]   . The polynomial is 
 

2a b c        . (E.13) 
 
The cell boundary average density is 
 

2
3
1

2
1

0

1 





cbadi      . (E.14) 

 
The cell-centered densities are 
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1
2

1
2

3
2

0
1 1
2 3

1

1
1 1
2 3

0

2
3 7
2 3

1

  ,

 , and

  .

i

i

i

d a b c

d a b c

d a b c

  

  

  








   

   

   







 (E.15) 

 
We have three simultaneous equations with three unknowns. In matrix form, we have 
 

1/2

1
1/26

3/2

6 3 2

6 3 2

6 9 14

i

i

i

a

b

c











     
          
              .  (E.16) 

 
The solution of this 3 × 3 matrix equation is 

 

1/2

1
1/26

3/2

2 5 1

6 6 0

3 6 3

i

i

i

a

b

c











     
           
              , (E.17)  

 
or 
 

1 1 1 3
2 2 2 2

1
6 (2 )

i i i i
a              ,  

1 1
2 2i i

b                                   , and 

1 1 3
2 2 2

1
2 ( 2 )

i i i
c           . 

 
The cell boundary density is 
 

1 1 1 3 1 1 1 1 3
2 2 2 2 2 2 22 2

1 1 1 1 3
2 2 2 2 2

1 1 1 1 3
2 2 2 2 2

21 1 1
6 2 6

2 21 1 1 1 1
3 2 6 6 6

1 1 1
2 3 3

(2 ) ( ) ( 2 )

( ) ( ) ( ) ( )

(1 )[ (2 ) ( ) (1 ) ( ) ]

i i i i i i i ii i

i i i i i

i i i i i

           

       

       

       

    

    

        

       

       

. (E.18) 

 
The third-order method yields a cell boundary density of 
 
 

1 1 1 1 3
2 2 2 2 2

1
6 (1 )[ (2 ) ( ) (1 ) ( ) ]i i i i i i

                     Third Order . 
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The third-order method is less diffusive than the second-order method but still exhibits 
some minor problems with negative densities and nonphysical oscillations. These 
problems can be eliminated by using the gradient limiters discussed next. 
 
The methodology presented here presumably can be extended indefinitely. However, the 
higher-order advection schemes require increasingly more complexity and more distant 
cell information.  
 
For all the possible advection methods discussed, the density at the cell boundary can be 
written following the style of Youngs:165 
 

1
2

1
2 (1 )i ii

x D         ,  (E.19) 

 
where /iD x    has the role of the density gradient. This formalism provides a 
concise way of understanding the various methods. The gradients are 
 

First Order:  0iD     ,  (E.20a) 

Second Order:  
1 1
2 2i i

iD
x

  



   , and (E.20b) 

Third Order: 
1 31 1
22 2 2

(2 ) (1 )

3 3
ii i i

iD
x x

       
 

 
   .  (E.20c) 

 
The higher-order methods require more information to construct an approximation to the 
density gradient at the cell boundary.  
 
A physical interpretation of the above equations can be gained by considering a simple 
example. A material of uniform density is moving with a positive velocity through the 1D 
Eulerian mesh. In this case, all the gradients are zero. First, second, and third orders give 
the same answer—simple downwind advection (donor cell advection). However, this 
advection is only first order! First-order advection gives the correct answer in this simple 
example. The cell boundary densities are the same as the cell-centered densities. 
 
Next consider a square pulse with a uniform density moving with a positive velocity in a 
1D Eulerian mesh. The top of the pulse exhibits the same behavior as described in the 
previous example. Locally, the density gradients are all zero. Again, the result is first-
order advection. The gradients will be nonzero only near the edge of the pulse. The finite 
difference gradients can capture the infinite slope at the edge of the pulse only partially. 

                                                 
165David L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortions,” Numerical 

Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors (Academic Press, London England, 
1982), pp. 273–285. 
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The square pulse will smooth out over many advection steps. The higher-order advection 
methods become important when the density gradients are large. The numerical advection 
of a square pulse is shown at the end of this appendix. 

E.4  Gradient Limiters and Monotonicity166,167 

The choice of advection order depends on the local density gradients. The third-order 
method is clearly the best choice in most situations. In fact, it is the default advection 
method used in PAGOSA. However, the third-order method is occasionally nonphysical. 
  
 

 

 

 

 

 

 

 

 

Figure E.2. Upwind, downwind, and third-order gradients. 

The nonphysical behaviors can be eliminated by choosing iD such that 168 

1 1 1 3
2 2 2 2

1 1 1 3
2 2 2 2

, ,2 2min (

2 1
) /

3 3

i i i ii

i i i i

D

x

   

    

   

   

 

    
   . (E.21) 

 
The result is that in some cases the density gradient can be first, second, or third order, 
depending on the exact local density distribution. Figure E.2 shows this option 

                                                 
166Bram van Leer, “Towards the Ultimate Conservative Difference Scheme IV. A New Approach to 

Numerical Convection,” Journal of Computational Physics, Volume 23, pp. 276–299 (March 1977). 
167Bram van Leer, “Towards the Ultimate Conservative Difference Scheme V. A Second-Order Sequel to 

Godunov’s Method,” Journal of Computational Physics, Volume 32, pp. 101–136 (July 1979). 
168 David L. Youngs, “Time-Dependent Multi-Material Flow with Large Fluid Distortions,” Numerical 

Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, editors (Academic Press, London England, 
1982), pp. 277-285. 
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graphically.169 It is a powerful and convenient way of understanding the various limiters 
and monotonicity conditions that are needed to realize fully the third-order advection  
method. 
 
It is important to note that the gradients are limited and not the densities themselves. This 
gradient limiting ensures that the conservation law is not violated. 
 
In general, the van Leer limiter allows for the largest possible gradient without 
oscillations and therefore the least amount of diffusion. This choice of nonlinear cutoff of 
the density gradient also ensures that the new density gradient (at the next timestep, 

1n  ) will have the following property: 

1 1 1 1 1
2 2 2 2 2

1min ( , ) max ( , )n n n n n
i i i i i

    
         . (E.22) 

 

This condition guarantees that when a monotonic initial value distribution is advected, 
the resulting distribution is also monotonic.170 
 
In highly discontinuous flows, the value of iD  is modified to prevent undershoots and 
overshoots. A multiplicative factor is constructed such that, as shown in Figure E.3, 
 

1 1 1 3
2 2 2 2

1 1
2 2

1 1 1 3
2 2 2 2

( ) ( ) 00
( )

( ) ( ) 01

i i i i

i i
i i i i

S sign
   

 
   

   

 
   

  
     

   . (E.23) 

 
If the upwind and downwind gradients differ in sign, the factor S  is set to zero. 

 
Figure E.3. The Youngs/van Leer gradient limiter. When (a), the gradients are monotonic, or 

when (b), the gradients indicate that the density has reached a local maximum 
(minimum). 

                                                 
169 Sean Clancy, Los Alamos National Laboratory, personal communication (June 5, 2008). 
170Randall J. LeVeque, Numerical Methods for Conservation Laws, Second Edition (Birkhäuser Verlag, 

New York, New York, 1992), pp. 183–187. 

(a) (b) 
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The sign factor for the value of S  establishes the local sign of the gradient. The Youngs/ 
van Leer gradient limiter suppresses negative densities or reduces the density gradient to 
zero if an extremum is reached or if the slope does not agree with the trend in density 
averages. 
 
An example of the effect of the gradient limiter is shown in the last section of this 
appendix. The negative densities and other nonphysical behaviors readily apparent in the 
third-order method are suppressed using the Youngs/van Leer gradient limiter. 

E.5 PAGOSA Advection 

All of these pieces are brought together in PAGOSA. Start with the following definitions: 
 

1
2

n
i

Don     donor cell, 

1 3
2 2

n n
i i

Upw      upwind gradient, and 

1 1
2 2

n n
i i

Dnw      downwind gradient, 

 
and we define the following coefficients 

1 1
2 2

1 1
2 2

1

2

3 1

4 1

/

/

(1 ) /6

(2 ) / 6

n n
i i

i i

Vol Vol

m m

 

 

 
 

 

 





 
 

   . 

 
The value  , defined in Eq. (E.2), sometimes called the Courant number, can be related 
to the fractional advection volume. The Courant number is less than unity because the 
advection volume must be less than the original cell volume. The Courant number, at 
index i, is  
 

1
2

1
2

1

advection volume

cell volume
ii i

i i
i i

VolU t At
U

x x A Vol


 




    

 
   . 

 
The cell boundary density, with all factors included, is  
 

1 3 4(1 ) min( , , )i Don S Upw Dnw Upw Dnw          . 

 
The interface (cell boundary) mass flux is 
 
 1

2
i ii

m Vol      . 
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The updated cell mass is  

1 1
2 2

1
1

n n
i ii i

mass mass m m 
       . 

 
The new cell mass is the old cell mass plus the mass entering from the left boundary 
minus the mass leaving through the right boundary. Remember that we have assumed that 

0iU  ; therefore, in every cell we have mass entering from the left and leaving to the 
right. 
 
The updated cell density is171 
 

1 1 1 1 1
2 2 2 2 2

1 1 / ( )n n n n n
i i i i i

mass Vol Vol Vol   
          . 

 
The new cell density is the new cell mass divided by the new associated cell volume.  
 
Next, the specific internal energy is advected. The process is basically the same as that 
described above, with a few exceptions. The specific internal energy is advected by mass 
and not by volume, as was done previously.172 Start with the following definitions: 
 

1
2

n
i

Don E    donor cell, 

1 3
2 2

n n
i i

Upw E E    upwind gradient, and 

1 1
2 2

n n
i i

Dnw E E    downwind gradient. 

 
The cell boundary specific internal energy is 
 

2 3 4(1 ) min( , , )iE Don S Upw Dnw Upw Dnw         , 

 
where S  has the same form as before, except that specific internal energy functionally 
replaces density in that equation [Eq. (E.23)]. 
 
The updated cell specific internal energy is 

1 1 1 1 1
2 2 2 2 2

1 1
1 1( ) /n n n n n

i i i ii i i i i
E E Vol m E m E mass   

           . 

 
This equation completes the advection-phase of the basic hydrodynamic variables. 
 
 

                                                 
171 The temporal indices (n) and (n+1) refer to before and after the advection sweep. 
172Roger B. DeBar, “Fundamentals of the KRAKEN Code,” Lawrence Livermore Laboratory report UCIR-

760, pp. 13–14 (March 1974). 
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Each of the finite difference equations has stability173 and convergence considerations, 
dissipation,174 dispersion,175 and phase errors.176 These analyses and considerations are 
beyond the scope of this work. Please consult the literature.  
 
The cell-centered quantities (e.g., strain rates, stress deviators, and elastic distortional 
energy) are advected by mass in the same way that the specific internal energy is 
advected. To prevent small values from being advected through the Eulerian mesh, 
various cutoffs are imposed on the advection algorithm. If the advection volume is too 
small, then it is set to zero.  
 
The final section of this appendix gives a numerical example of advecting a square pulse. 

                                                 
173Robert D. Richtmeyer and K.W. Morton, Difference Methods for Initial Value Problems, Second Edition 

(Interscience Publishers, Malden, Massachusetts, 1967), pp. 320–330. 
174Dale R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (Springer-

Verlag, New York, New York, 1999), pp. 72–86. 
175Lawrence L. Tackas, “A Two-Step Scheme for the Advection Equation with Minimized Dissipation and 

Dispersion Errors,” Monthly Weather Review, Volume 113, pp. 1050–1065 (June 1985). 
176W.P. Crowley, “Numerical Advection Experiments,” Monthly Weather Review, Volume 96, pp. 1–11 

(January 1968). 
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E.6 Advection Example: Advection of a Square Pulse 
 
An example of the advection of a square pulse is provided in Figure E.4. 

Figure E.4. Advection of a square pulse. 

The results of a test problem using the advection equations are shown in Figure E.4. A 
square pulse with a uniform constant velocity is propagated through 300 cells. The exact 
solution is shown in black in each case. The initial square pulse is 20 cells wide, with a 
density of unity. The Courant number 0.100  . 
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APPENDIX F. INITIAL TIMESTEP CALCULATION 

The timestep used for each cycle must be less than the maximum stable timestep for each 
cell in the simulation. The initial timestep can be specified by the user for the simulation 
and must satisfy the following conditions:  
 

 0 min , ,
max( ) max( ) max( )

x y z
t

U c V c W c

   
       

   . (F.1) 

 
Two equations that are useful for estimating the initial timestep are the equations for the 
sound speed of an elastic solid: 
 

 1c



    , equivoluminal wave propagation speed and (F.2) 

 

 
4
3

2

G
c





    , irrotational (shear) wave propagation speed   , (F.3) 

 
where is the bulk modulus, G is the shear modulus, and  is the mass density. In the 
case of solid materials, the initial timestep can often be computed by 
 

 
 

 
0

1 2

min , ,

max ,

x y z
t

c c

  
     . (F.4) 

 
When the simulation involves HE, the sound speed for the undetonated explosive is set to 
3D, where D is the explosive detonation velocity. The timestep for the explosive is then 
given by 
 

 
 0 min , ,

3

x y z
t safec

D

  
     , (F.5) 

 
where safec is the Courant safety factor described in Chapter 9. 
 
The initial condition should be chosen by the user to be much smaller than any of the 
above criteria. The timestep should “creep up” to a stable timestep determined from the 
most restrictive criterion.   
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APPENDIX G. MULTI-MATERIAL INTERFACE RECONSTRUCTION FOR 
ADVECTION 177 

G.1 Reconstruction 

For each sweep of the advection phase, it is necessary to compute the volume fractions 
that will be advected in that sweep. The advection volume may contain several materials, 
as shown in Figure G.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure G.1. The advection volume (shown in yellow) contains three materials to be advected. 

The flux direction in this case is negative. 

The main object of this process is to find the advection volume for each material in a cell 
given the advection volume and the volume fraction of each material in the donor cell 
and its 26 neighbors. The notation for this appendix is  
 
 v  = donor cell volume, 

v  = advection volume, 
vm  = advection volume for the material (m), 

   = v / v  advection volume fraction,  

 vm  = donor cell volume fraction of material (m), 

v
m

 = total volume fraction up to the mth interface, 

v p m
 = portion of v

m
 contained in the advection volume, 

 mμ  = vector normal to the mth interface, pointing out of the volume v
m

, and 

v
m

  = v vp m
  total advection volume up to the mth interface.  

                                                 
177Rick Smith, Los Alamos National Laboratory, personal communication, March 15, 1991. 
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The procedure for calculating the individual material advection volumes is to 
 

 calculate     , 
 initialize all v 0

m
    , 

 sum over the number of materials (m) (except for the last material): 
o increment the sum and obtain v

m
   , 

o calculate mμ  from the gradients of v
m

 (26 neighbors + donor)   , 

o calculate v p m
 (depends on  , mμ , and v

m
)   , 

o calculate 
1

v v v vm p mm 
        , and 

o determine a new value of v v vpm m
      . 

 end of material loop (m)   , and 
 calculate the last material ( ) ( ) 1

v v vlast m last m 
        . 

 
For the v 0   cases (i.e., flux through the right face of the cell), we must ensure that the 
donor cell quantities (in the cell to the left) are used. Also, it is necessary to replace 

1    and substitute the advection volume fraction with its complement. 

G.2 Volume Fraction Identifier 

The idea is to compute the volume fraction of the advected portion of a material on one 
side of a plane that passes through the Eulerian cell, as shown in figure G.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure G.2. A cross section of an Eulerian cell showing a material interface with a direction 

vector µ, a volume fraction to be advected ε (relative to the full cell volume Vol), and 
the volume fraction of the advected portion of the material Vp. 
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In this case we know the volume of the cell (Vol), the volume fraction of the materials 
behind the plane (<v>), and the direction vector associated with the interface (µ) and 
which points out of the material that lies “behind” the plane.178 The volume fraction of 
the advected portion of the material is what is to be computed (<vp>) and is defined 
relative to the full cell volume.  
 
In the derivation, if we assume that the flux direction is for the positive flux, the solution 
can be obtained by treating the nonadvected portion as the advection volume (see 
Figures G.2 and G.3).  
 
The coordinate system used here has X0 at the origin (where X0 is the vertex with the 
same indices as the cell). In this derivation, it is assumed that the flux direction is 
negative (through the face containing X0). 
 
For the case of positive flux, the solution can be obtained by treating the nonadvected 
portion as the advection volume, as shown in Figure G.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure G.3. The case of positive flux is simply the complement of the previous case shown in 

Figure G.2. 

 
If we denote the solution for positive and negative flux as ( )

pV   and ( )
pV  , respectively, 

then ( )
pV   is given in terms of ( )

pV   by 

 
 ( ) ( )

p pV ( ) V (1 )Vol       , (G.1) 

 
where Vol is the full cell volume. 

                                                 
178The direction vector for the interface is computed by a simple finite difference formula using the volume 

fractions of the surrounding 26 cells. 
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The algorithm for the solution of ( )

pV   is obtained in two steps (see Figure G.4): 

 
Step 1.  Find the equation of the plane d μ x   . 
Step 2.  Transform the advection volume into a unit cube, and using the 
 equation for the plane in the transformed frame, find the volume fraction 
 V  of the material within this cube that is behind the plane (see 
 Appendix C for details). The solution for pV  is then given by 

 pV V  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure G.4. If we are given the volume behind the plane (v) and the unit normal µ, the algorithm 

will find the distance parameter d. 

We begin with the detailed procedures for Step 1. 
 
Step 1. Find the equation of the plane d μ x  in the coordinate frame x , with 0x  at 

the origin. 
 
Let mx be the coordinate of the vertex toward which μ  most closely points (i.e., kμ x  is 
a minimum for the vertex k m ). Now translate to a frame x  with mx  at the origin as 
 
 m  x x x    , (G.2) 

 
 md d  μ x    , and (G.3) 
 
 1

1 1 2 2 3 32 ( ) ( ) ( )m md                μ x    . (G.4) 
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Now normalize μ  to unity - a unit normal vector. Then 
 
 ˆ  μ x    , (G.5) 
 
 ( ) /md d   μ    , and (G.6) 
 
 ˆ /μ μ μ    . (G.7) 
 
By symmetry, the solution ( , )V μ  will not change if we replace 
 
 1 2 3ˆ ˆ ˆ ˆ( , , )   μ c     (G.8) 
 
and reorder the components of c such that 
 
 1 2 30 c c c      . (G.9) 
 
The solution then is ˆ( , ) ( , )V V μ c , which is derived in Appendix C and report LA-
UR-07-2274179.  
 
The solution is then 
 
 md d μ    . (G.10) 
 
Note that /d μ  is the distance from the origin 0x to the plane. If 0d  , then 0x is behind 
the plane and thus inside the material; however, if 0d  , we have the situation where 

0x is in front of the plane and outside the material. The algorithm proceeds with Step 2. 
 
Step 2. Next, transform to a coordinate system x  in which the advection volume is 

stretched to a unit cube (see Figure G.5): 
 
 1 2 3( / , , )x x xx    and (G.11) 

  
 2 3( , , )x xg    . (G.12) 
 
Now translate these equations to a new frame x  with mx at the origin, where mx is the 
vertex in the new unit cube representing the advection volume toward which g  most 
closely points (i.e., kg x  is a minimum for the vertex k m ): 

                                                 
179Chuck Zemach and Wayne Weseloh (editor), “Notes on Calculation of the Volume of a Stretched Cube 

behind a Truncating Volume,” Los Alamos National Laboratory report LA-UR-07-2274 (March 1, 
2007). 
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Figure G.5. The advection volume in the new coordinate system stretched to a unit cube. 

 m  x x x    , (G.13) 

 
 md d     g x    , and (G.14) 

 

 1
1 1 2 2 3 32 ( ) ( ) ( )m md g g g g g g          g x    . (G.15) 

 
Now we need to determine the fraction v  of the advection volume that lies behind the 
plane. By symmetry, the solution v ( , )g   will not change if we permute the components 
of  
 
 1 2 30 g g g      . (G.16) 

 
We can again use the results in Appendix C, which derive v( , )g  . The solution for pv  is 

then finally given by 
 
 pV V ( , )   g    and (G.17) 

 

 1
1 12 (1 )md d g g           g    . (G.18) 

 
Note that if 0  , then the plane lies entirely outside the advection volume and pV 0 . 

Conversely, if max   , then V 1   and pV  . 

 
This algorithm is applied over all materials in the mixed cell, as described in Figure 4.3 
and the associated text. A flowchart of that algorithm is shown at the beginning of this 
appendix. 
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APPENDIX H. THE CAUCHY-STOKES DECOMPOSITION THEOREM 

The decomposition theorem developed by Cauchy180 and Stokes181 states that 
 

An arbitrary instantaneous state of a fluid particle moving along its path 
may be resolved at each position ( , )ix P t  as a superposition of (1) a 
translation, (2) a rigid rotation, (3) a dilatation along three mutually 
perpendicular axes, and (4) a shear motion. 

 
Consider a velocity field ( , )i ku x t  of a moving fluid particle in a neighborhood of its 

position kx  at a time t . When the velocity field is continuous and differentiable, a Taylor 

expansion of the velocity function near a point P exists and takes the form 
 

( , ) ( , ) ( )i
i k i k

j

u
u x t u P t x P

x


   


 .  (H.1) 

 
The gradient can be decomposed into its symmetrical and antisymmetrical parts as 
 

1
2

i
ij ij ij ij m m

j

u
e e

x
 

   


     ,  (H.2) 

 
where the symmetrical tensor e  is called the strain rate tensor, the antisymmetrical tensor 
  is called the vorticity tensor, and   is the axial vector associated with the vorticity 
tensor. The permutation symbol i j m is the Levi-Civita pseudotensor,182 where 

 
1
2( , ) ( , )i k i ij j ij m j mu x t u P t e x x      .  (H.3) 

 
The second term can be written as 
 

1
2( )i j j ij j k

k

e x e x x
x


 


   .  (H.4) 

 

                                                 
180D’Augustin Cauchy, “Mémoire sur les Dilatations, les Condensations et les Rotations Produites par un 

Changement de Forme dans un Système de Points Matériels,” in Oeuvres Complètes D’Augustin 
Cauchy (Series 2) (Gauthier-Villars et Fils, Imprimeurs-Libraires du Bureau des Longitudes, de L’école 
Polytechnique, Paris, 1841), Volume 12, pp. 343–367. 

181George Gabriel Stokes, “On the Theories of Internal Friction of Fluids in Motion, and of the Equilibrium 
and Motion of Elastic Solids,” in Mathematical and Physical Papers (Cambridge University Press, 
London, 1845), Volume I, pp. 75–129 (1845).  

182G. Arfken, Mathematical Methods for Physicists (Academic Press, Inc., Harcourt Brace Jovanovich 
Publishers, London, England, 1970), p. 132. It is sometimes called the permutation symbol. 
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This term represents a velocity field normal at each point to the quadratic surface 

i j j ke x x constant , which contains the point P. Because the symmetric tensor possesses 
three mutually perpendicular eigenvectors, the eigenvalues of the deformation tensor e  
measure the rates of extension per unit length of the fluid particle at ( , )kx P t  in the 
directions of the eigenvectors, which can always be taken as the three basis vectors of the 
velocity field. 
 
Therefore, Eq. (H.1) becomes 
 

21
( , ) ( , ) ( ) ( / 2) ( )

2i k i ij j k ij m j m
k

u x t u P t e x x x O x
x

 
   


    .  (H.5) 

 

Thus, the first term represents a translation. Simple integration of the velocity field gives 
the three translations. The second term determines the distortion of the fluid element. The 
distortion consists of a dilatation (the diagonal terms of the tensor ike ) and a 
superposition of shear motions (the off-diagonal terms of the tensor ike ). The vorticity 
tensor (or vorticity vector) determines the rigid rotation of a fluid particle that keeps its 
volume and shape the same. The rotation axis is defined by the direction of the vorticity 
vector and an angular velocity of / 2m . 
 
This result is profound. Each piece of the deformation can be computed independently, 
and the results can be combined by linear superposition.  
 
Consider the motion of a small mass of an arbitrary shape, such as a cube. The motion of 
the cube may be divided into two types: a rigid body motion and a deformation motion. 
The rigid body motion may be divided further into a translation and a rotation. As the 
mass undergoes its rigid body motion, it can also deform. The deformation of the mass 
can be completely specified by describing the dilatation (volumetric expansion or 
contraction) and the shear strains of the mass, as shown in Figure H.1. 

H.1 Translation 

The translation is given by integrating the velocity vector u , which is closely related to 
the advection (remap) phase. 

H.2 Rotation 

The rotation rate is the angular velocity vector ω and is related to the vorticity183 tensor 
Ω . Rotation may or may not occur in a particular flow/deformation. A flow where the 
vorticity is zero is known as irrotational flow.  
 

                                                 
183See Eq. (1.8). 
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Figure H.1. The types of motion that, when superimposed, completely describes the kinematics 

of a small elemental mass. The cubical shape is arbitrary. 

H.3 Dilatation 

The dilatation represents the contraction or expansion of an elemental mass. The rate of 
dilatation is related to the velocity divergence.184 The numerical value of the dilatation is 
independent of the coordinate system because it is the first invariant of the strain rate 
tensor [Eq. (1.5)]. 

H.4 Shear Deformation 

A shear strain deformation is a strain that acts parallel to the surface of the material upon 
which it is acting. Thus, in our cubic example, the 90° angles between faces diverge from 
that value. The strain rate tensor [Eq. (1.5)] gives the rate at which the sides close toward 
each other. 
 

                                                 
184See Eqs. (1.6) and (1.7). 
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APPENDIX I. STRESS ROTATION 

An important concept in the formulation of constitutive theories in deformations is that of 
frame indifference, or objectivity.185 The basic idea is that the constitutive relation 
between stress and strain should be unaffected by any rigid body rotations the material 
may undergoing at a particular instant of time. Mathematically we describe this situation 
by defining an alternative reference frame that is rotating and translating with respect to 
the original Eulerian coordinate system. For the constitutive relations to be meaningful, 
the tensor quantities we use (stress, stress rate, strain, and strain rate) should transform 
according to the laws of tensor calculus. If a given quantity does this transformation, we 
say it is material frame indifferent; if it does not, we say it is not properly invariant or not 
objective. The deviatoric stress in the Eulerian (laboratory) frame is S* and is denoted S 
in the material (rotated) frame of reference.186 
 
The deviatoric stress tensor transforms as187 

*
ij ik km mjS Q S Q    ,  (I.1) 

 
where Q is a proper orthogonal (rotation) tensor that transforms the tensor S. Because Q  
is an orthogonal tensor, the transpose is the inverse. Thus, 
 

ij jk ikQ Q     .  (I.2) 

 
If we take the time derivative of the above equation, 
 

ij jk ij jkQ Q Q Q  0      ij jk ij jkQ Q Q Q      .  (I.3) 

 
Then we right-and-left multiply both sides of Eq. (I.1) by orthogonal tensors. Thus, 
 

*
ij ik km mjS Q S Q    .  (I.4) 

 
The time derivative of the deviatoric stress tensor, Eq. (I.1), produces 
 

*
ij ik km mj ik km mj ik km mjS Q S Q Q S Q Q S Q         .  (I.5) 

 

                                                 
185 J.K. Dienes, “Analysis of Rotation and Stress Rate in Deforming Bodies,” Acta Mechanica, Volume 32, 
Issue 4,  pp. 217-232 (1979). 
186G.A. Holzapfel, Nonlinear Solid Mechanics (John Wiley and Sons, Weinheim, Germany), pp. 192–196 

(2001). 
187J.L. Synge and A. Schild, Tensor Calculus (Dover Publications Inc., Mineola, New York), p. 13 (1978). 
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If we substitute Eq. (I.4) into the above equation, 
 

* * *( ) ( )ij ik kn nl lm mj ik km mj ik kn nl lm mjS Q Q S Q Q Q S Q Q Q S Q Q         ,    
* **

ik kn nl lj ik km mj in nl lm mjij Q Q S Q S QS S Q Q          , and     
* **

ik kn nj iki km mj il lj m mjQ Q S Q S Q S Q QS          .  (I.6) 

 
If we apply Eq. (I.3), 
 

* * *
ij ik kn nj ik kn nj ik kn njS Q Q S Q S Q S Q Q         .  (I.7) 

 
If we introduce a new variable,  

 ij ik kjW Q Q     . (I.8) 

 
We will find that this rotation is actually related to the vorticity tensor, but for now it is 
simply a mathematical convenience. Equation (I.7) is now written as 

 
* * *
ij ik kn nj in nj ik kjS Q S Q W S S W       .  (I.9) 

 

 
 

Equation (I.9) is known as the Jaumann derivative,188 or the Jaumann-Zaremba rate.189 
These objective rates are simply an application of the Lie derivative.190 What is not 
generally known or conceded is that Zaremba essentially introduced what is now known 
as the Jaumann derivative [but commonly referred to as the corotational (sometimes 
spelled “co-rotational”) derivative]. The rotational portion of Eq. (I.9) is computed 
separately as 
 

* *
ij ik kj ik kjR W S S W     .  (I.10) 

 

                                                 
188G. Jaumann, “Geschlossenes System Physikalischer und Chemischer Diffcrentialgesefze,” 

Sitzungsberichte Akademie Wissenschaften Wien, IIa, p. 120 (1911). 
189S. Zaremba, “Sur une Forme Perfectionnée de la théorie de la Relaxation,” Bulletin International de 

l’Academie des Sciences de Cracovie, pp. 592–614 (1903). 
190J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall, Inc., 

Englewood Cliffs, New Jersey, 1983), pp. 99–102 (box 6.1). 
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Next consider a line segment in the rotated configuration dx* referenced to the fixed 
Eulerian configuration dX. This vector follows the standard transformation for 
infinitesimal rotations191 as 
 

*
i ij jd x Q d X    .  (I.11) 

 
 

Left multiply the (transpose/inverse) rotation as 
 

*
ki i ki ij j kj j kQ d x Q Q d X d X d X      .  (I.12) 

 
Taking the time derivative of Eq. (I.11) yields192 
 
 *

i i ij j ij jk kd x du Q d X Q Q d x       .  (I.13) 

 
The time derivative of position is the velocity vector u. Thus, we have 
 

 i
ij jk

k

u
Q Q

x





    ,  (I.14) 

 
However, we have previously decomposed the gradients of velocity as the sum of a 
symmetric tensor and an antisymmetric tensor193 as 
 

i
ik ik

k

u
e

x


 


    .  (I.15) 

 
Because Eqs. (I.14) and (I.15) are equivalent, 
 

ik ij jk ik ikW Q Q e       .  (I.16) 

 
Substituting the above equation into Eq. (I.10) produces 
 

* *

* *

* * * *

* *

( ) ( )

( )

ij ik kj ik kj

ik ik kj ik kj kj

ik kj ik kj ik kj ik kj

ik kj ik kj

ij

ij

ij

R W S S W

e S S e

S S e S S e

S

R

R

SR

 

   

    

   

 

 
   .  (I.17) 

 

                                                 
191For finite rotations, the derivation is much more complicated and results in many additional terms. 
192Because the Eulerian reference frame is independent of time, mathematically, 

jd X  0    . 
193See Chapter 1, Governing Equations, for the definitions. 
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The strain rate tensor e and the deviatoric stress tensor S are both symmetric in their 
indices; therefore, the term in the parentheses is zero.  
 
The rigid body rotation must be subtracted out of the deviatoric stress tensor before we 
can compute the deformation of the material in the cell. The velocity field applies to all 
materials in a cell; therefore, the rotation also applies to all materials in a given cell. 
 
The complete rotation terms194 in Eq. (I.10) are  
  

2 2 ,

2 2 ,

( ) ,

(2 ) ,  an

0 0

0 d

( ) .0 2

xx xy xy xz xz

yy xy xy yz yz

xy xy xx yy xz yz yz xz

xz xz xx yy xy yz yz xy

yz yz xx yy xy xz xz xy

R S S

R S S

R S S S S

R S S S S

R S S S S

    

   

    

    

 



  

   (I.18) 

 
These rotation terms are used in PAGOSA. 
 
 

                                                 
194The

zzR  is not needed because
zzS  is not directly computed. Remember that S is traceless: 

( )zz xx yyS S S   . 
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APPENDIX J. DIAGNOSTICS 
 

The diagnostics in PAGOSA allow the user to confirm the conservation laws for mass 
and energy. The following sections detail the calculation of the various diagnostics 
available. 

J.1 Volume 

The total volume of material (m) in the simulation is 
 
 1 1 1 1 1 1

2 2 2 2 2 2

( ) ( )
, , , ,

Volume  m m
i j k i j k

cells

Vol           , (J.1) 

  
where Vol is the Eulerian cell volume. The summation is over every cell in the Eulerian 
mesh, excluding the ghost cells. 

J.2 Mass  

The total mass of material (m) in the simulation is 
 
 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

( ) ( ) ( )
, , , , , ,

Mass  m m m
i j k i j k i j k

cells

Vol              . (J.2) 

  
As before, the summation is over the entire Eulerian mesh. 

J.3 Internal Energy 

The internal energy of material (m) in the simulation is 
 
 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

( ) ( ) ( ) ( )
, , , , , , , ,

IE  m m m m
i j k i j k i j k i j k

cells

E Vol                 . (J.3) 

 
As before, the summation is over the entire Eulerian mesh.  

J.4 Kinetic Energy 

The kinetic energy poses a problem in computation. The mass is a cell-centered variable, 
whereas the velocities are vertex centered. In PAGOSA, the square of the velocities is 
averaged at the cell centers. First, the value of u u  is computed for each vertex. Next, 
the cell-centered velocity is obtained by arithmetically averaging the eight vertex 
quantities. This average magnitude is used to compute the kinetic energy. The kinetic 
energy of material (m) in the simulation is 
 

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

( ) ( ) ( ) 2 2 21
2 , , , , , , , ,

KE  m m m
i j k i j k i j k i j k

cells

Vol U V W            
    (J.4) 

 
over the entire Eulerian mesh. 
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J.5 Elastic Distortional Energy 195 

The elastic distortional energy is the energy in the material due to elastic distortions. The 
elastic distortional energy eW is computed from the rate equation 
 
 2 ( )e e e e e e e

xx xx yy yy zz zz xy xy xz xz yz yzW S e S e S e S e S e S e                . (J.5) 

 
The elastic energy can be recovered in the form of kinetic energy. Think of a spring 
storing and releasing energy. This energy is computed for each material in the simulation 
that possesses a deviatoric stress. 

J.6 Plastic Work 

The plastic work is the energy in the material due to plastic distortions. The plastic work 
pW is computed from the rate equation 

 
 2 ( )p p p p p p p

xx xx yy yy zz zz xy xy xz xz yz yzW S e S e S e S e S e S e                . (J.6) 

 
The plastic work is part of the internal energy of the material and is computed separately 
for the convenience of the user. The plastic work represents an irreversible process.  

J.7 Mass Melted  

Only materials with a flow-stress model have a melt mass computed. First, determine that 
the material exceeds the melt energy or temperature. The melt factor for material (m) is 
computed as 
 

 
( ) ( )

( ) 1  or 

0

m m
m melt meltE E

f
otherwise

  
 


   . (J.7) 

 
Then  
 
 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

( ) ( ) ( ) ( )
, , , , , , , ,

Mass(melt)  m m m m
i j k i j k i j k i j k

cells

f Vol                 . (J.8) 

 
The total mass was melted for material (m). If the factor f has a value of one everywhere, 
then the entire mass is melted and reduces to Eq. (J.2). The diagnostic holds for a 
particular moment in time. The mass can melt, freeze, and melt again during the course of 
the simulation. 

                                                 
195In PAGOSA the elastic distortional energy is computed separately and is not included in the total internal 

energy. This point has been and continues to be controversial in hydrocode forums. 
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J.8 Mass Burned 

Only materials with a detonation model have a burn mass computed. The burn fraction196 
Bf ranges from zero to one, as 
 
 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

( ) ( ) ( ) ( )
, , , , , , , ,

Mass(burn)  m m m m
i j k i j k i j k i j k

cells

Bf Vol                 . (J.9) 

 
The total mass was burned (detonated) for material (m). If the factor Bf has a value of one 
everywhere, then the entire mass is burned and reduces to Eq. (J.2) 

J.9 Mixed-Cell Statistics 

In normal circumstances, only a small percentage of the cells in a simulation is mixed. 
The vast majority of cells contain a single material (pure cells). The mixed-cell statistics 
can be useful to the user in several ways. First, the statistics reveal the cell with the 
maximum number of materials. For example, if the maximum is two, then at least one 
cell in the simulation contains two materials that share an interface. As this number 
increases, the ability for the algorithm to represent the geometry accurately is severely 
compromised. However, if this cell inhabits an unimportant region of the simulation, then 
the statistic may be safely ignored. The volume fraction determines the type: 
 
 Mixed cells 0 1     . 
 Pure cells 0 1     . 

J.10 Minimum and Maximum Statistics 

For each of the important simulation variables, the minimum and maximum values for 
pure and mixed cells are tabulated. These statistics can be useful in determining the 
extreme states of the materials in question. For example, an unphysical sound speed or 
temperature may indicate that the equation of state is in a dubious regime.  

  
  
 
 

                                                 
196See Chapter 12 for the definition of a burn fraction. 



Appendix J Diagnostics 

214 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



Appendix K Momentum Advection 

215 
 

APPENDIX K. MOMENTUM UPDATE 
 
The stress deviators contribute to the velocity fields, as can be seen readily in Eqs. (1.2a), 
(1.2b), and (1.2c). The individual stress deviators contribute to the momentum in much 
the same way as the pressure. The x component of the Navier-Stokes equation (Eq. 1.2a) 
is 
 

 
1 1 xyxx xz

SS SU P

t x x y z 
   

          
   . (K.1) 

 
The complication arises when we address the question of mixed cells. A mixed cell 
contains materials of various densities, pressures, and stress deviators. Let us denote the 
density of material (m) by ( )m  , the pressure of material (m) by ( )m P , etc. 
 
The equation for a particular material in a single Eulerian cell now can be written as 
 

 
( )( ) ( )( )

( )
mm mm

xym xx xz
SS SU P

t x x y z


   
     

      
   . (K.2) 

 
Notice that the velocity U does not have a material index. The velocity field applies to all 
materials in a cell.197 Next, multiply both sides of the equation by the cell volume and the 
material volume fraction. Then 
 

 

( )
( ) ( ) ( )

( )( ) ( )
( )

m
m m m

mm m
xym xx xz

U P
Vol Vol

t x

SS S
Vol

x y z

  



 
 

 

  
   

    

   . (K.3) 

 
When we sum over all materials in the momentum control volume and the  

 ( ) ( )m m

m

Mass Vol      , (K.4) 

then Eq. (K.3) becomes 
 

 
xyxx xz

SS SU P
Mass

t x x y z

   
     

      

 
   , (K.5) 

 
where the titles refer to the cell-averaged quantities.  

                                                 
197In theory, a velocity field could exist for each material in a cell. 
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The partial derivatives are constructed in the same manner as described in Chapter 2. 
However, the momentum control volume covers the eight cells that surround the vertex. 
The differencing and integration are done in the same way as the other variables 
described in Chapters 4 and 5. 
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APPENDIX L.  PIN PACKAGE 

The pin diagnostic is used to record arrival times at a particular point in space. The 
diagnostic is positioned near a material surface, and electrical connections carry the 
timing signal to a recording device. The pin package in PAGOSA allows the user to 
emulate this experimental diagnostic tool. 
 
Consider a point in space inside the Eulerian mesh, as shown in Figure L.1. The pin is 
located at 

 
 ( , , )p p px y zx    .  (L.1) 

 
As the simulation proceeds, the material surface of interest will move into the Eulerian 
cell containing the point x. The perpendicular distance of a point x to the material plane is 
given by 
 

 1 2 3

2 2 2
1 2 3

p p px y z
d

   

  

  


 
  , (L.2) 

 
where   is the distance parameter associated with the material plane. The material 
surface is characterized by a direction vector, as described in Appendix C. With each new 
timestep, a new distance is computed and stored for later use. Typically, the material 
passes through the cell in a few timesteps, as shown in Figure L.2. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure L.1. The material surface, shown as a yellow triangle, is represented as a plane 
possessing a unique direction vector 1 2 3, ,( )   that points to the pin location 
(shown as a blue dot). If the point x lies in front of the plane, the distances are 
positive. If the point x lies behind the plane, the distances are negative. 
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The optimal situation is when four distance data points are recorded—two with positive 
distances and two with negative distances. Lagrange interpolation198 is used to find the 
zero crossing time, which occurs when the pin is on the material surface. 
 
 
 
 
 

 

 

 
 
 
Figure L.2. A typical pin distance vs simulation time plot that points to the pin location (shown as 

a blue dot). If the point x lies in front of the plane, the distances are positive. If the 
point x lies behind the plane, the distances are negative. 

Pathological situations can results in fewer than four data pints being available. The 
crossing algorithm in PAGOSA changes, depending on the number of distance data 
points available from the simulation. The individual cases are detailed below. 

L.1 Four Points 

When four data points are available for computing a pin-crossing time, the Lagrange 
interpolation formula is 
 

 

1 2 3 4 2 1 3 4

2 1 3 1 4 1 1 2 3 2 4 2

3 1 2 4 4 1 2 3

1 3 2 3 4 3 1 4 2 4 3 4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

cross

t d d d t d d d
t

d d d d d d d d d d d d

t d d d t d d d

d d d d d d d d d d d d

 
     

 
     

   . (L.3) 

 
Appropriate checks are made to ensure that the denominators are not too small and that 
the crossing time is within the proper range. These checks prevent extrapolation outside 
the physical range of interest. 

                                                 
198William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery, Numerical Recipes in 

Fortran The Art of Scientific Computing, second edition (Cambridge University Press, New York, New 
York, 1992), pp. 102–104. 
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L.2 Three Points 

Three data points allows for a second-order Lagrange interpolation to be used. The 
crossing time is then 

 1 2 3 2 1 3 3 1 2

2 1 3 1 1 2 3 2 1 3 2 3( ) ( ) ( ) ( ) ( ) ( )cross

t d d t d d t d d
t

d d d d d d d d d d d d
  

     
   . (L.4) 

 
Appropriate checks are made to ensure that the denominators are not too small and that 
the crossing time is within the proper range. These checks prevent extrapolation outside 
the physical range of interest. 

L.3 Two Points 

When only two data points are available for a pin diagnostic, we resort to linear 
interpolation to find the crossing time as  
 

 2 1 1 2 2 1( ) / ( )crosst d t d t d d      . (L.5) 
 

Appropriate checks are made to ensure that the denominator is not too small and that the 
crossing time is within the proper range. These checks prevent extrapolation outside the 
physical range of interest. 

L.4 One Point 

On rare occasions, the material flow is so complicated that only one distance point is 
available for computing the pin-crossing time. The crossing time is estimated by linear 
interpolation based on the maximum velocity allowed by the Courant timestep safety 
factor safeu199 as 
 

 1 1( / )crosst t t d safeu     , (L.6) 
 
where t is the current simulation time. 

L.5 Zero Points 

This pathological case is used when the material interface jumps over the cell containing 
the pin diagnostic without ever being in the cell at any time. The pin-crossing time is 
approximated by taking the average of the simulation times surrounding the event as 
 
 1

1 22 ( )crosst t t     , (L.7) 
 
where 1t and 2t are current and previous simulation times, respectively. 

                                                 
199 See Chapter 9. 
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APPENDIX M. TRACERS 

The tracer particle is an important diagnostic tool in PAGOSA. Massless tracer particles 
are placed in the computational domain, and information at the particle location is 
recorded for the benefit of the user.  
 
Two types of tracer particles are available—Eulerian and Lagrangian. The Eulerian tracer 
particle is fixed in space at its original coordinates. However, the Lagrangian tracer 
moves with the material following the velocity field. Each tracer type has its own unique 
uses and capabilities. 
 
For example, if the simulation is given of an experiment that has a probe (sensor) fixed at 
a particular location, the Eulerian tracer particle is the most appropriate choice to use for 
modeling this probe. In the Taylor Anvil sample problem,200 the shape and deformation 
of the projectile is one of the desired measurements. Placing Lagrangian tracer particles 
on the surface of the projectile allows the diagnostic to move with the material surface. 
Many other uses for the tracer diagnostic easily can be imagined. 

M.1 Interpolation 

The tracer particle begins its life at a point in space within the computational domain and 
in a single Eulerian cell, as shown in Figure M.1. The velocities are defined at cell 
vertices (Chapter 2), and some interpolation is necessary to estimate the velocity at the 
particle coordinates (x,y,z). A tri-linear interpolation formula is used to find the velocity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure M.1. A tracer particle at (x,y,z) in an Eulerian cell. 

                                                 
200Wayne Weseloh, “PAGOSA Sample Problems,” Los Alamos National Laboratory report LA-UR-05-

6514 (August 2005). 
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at the tracer location. For the U velocity, the interpolation appears as 

 0 1 2 3 4 5 6 7( , , )U x y z a a x a y a z a x y a xz a yz a x yz           , (M.1) 

 
where the coefficients 0 7a a  are derived from the eight known velocities at the cell 
vertices. The other components of velocity are found in the same way. 
 
Once the velocity field is constructed at the point of interest, the Lagrangian tracer 
particles can be moved by integrating the equations of motion for these massless 
particles. 

M.2 Integration 

The integration applies only to the Lagrangian tracers because the Eulerian tracers are 
fixed in space and report the changes in quantities as materials sweep past them. 
 
The integration scheme follows the same predictor-corrector methodology presented in 
Chapter 5. The positions of the Lagrangian tracers after one timestep are 
 

 1/2 / 2n n n t   x x u  predictor   and (M.2) 
 
 1 1/2n n n t   x x u  corrector   . (M.3) 
 
Because the interpolation point wanders from cell to cell, the interpolated function values 
change continuously. However, the gradients (velocities and accelerations) of the 
interpolated function change discontinuously at the boundaries of each cell. 
 
The integration uses the velocity field generated by the Lagrangian-phase integration 
described in Sections 5.1, 5.2, and 5.3. In theory, it is possible to use the velocity field 
from the advection-phase solution (Section 4.6.1) instead of the Lagrangian-phase 
solution; some other hydrocodes have this option. PAGOSA uses only the Lagrangian-
phase velocities. 
 
At the new tracer position, a new interpolation is used to construct the appropriate 
velocity field and prepare for the next integration step. This process is repeated for the 
duration of the simulation. Lagrangian tracer particles can fly off the mesh during an 
integration step. These particles are then lost to the simulation—no further information 
can be recorded for these particles. 
 
The same tri-linear interpolation is used for all variables of interest associated with the 
tracer particle. For variables located at cell vertices (e.g., U, W, and Bt), the interpolation 



Appendix M Tracers 

223 
 

coefficients are obtained from the local vertices of the cell containing the tracer particle. 
For variables located at cell centers (e.g., P, Q, and Bf), the interpolation coefficients are 
obtained from the cell centers of the vertex volume containing the tracer particle.  

M.3 Comments 

The concept of a continuous variable field is useful in constructing a tracer particle 
diagnostic. However, previously (Chapter 3.0) we assumed that the gradients were 
uniform over the cell volume. No functional form was assumed for the fundamental 
variables. The tracer diagnostic operates under slightly different assumptions than did the 
fundamental hydrodynamics.  
 
This concept illustrates an important point. The tracer diagnostic is only a diagnostic tool. 
For example, a Lagrangian tracer particle placed on a material interface will not exactly 
follow the movements of that interface. The particle may be in a different cell from the 
interface. Or the particle may lead or lag the movement of the interface. The interface 
reconstruction (see Section 4.5.1, Appendix C, and Appendix G) is based on a set of 
algorithms that is different from the algorithms presented in this appendix. 
 
Note that when the material volume fractions in a multi-material cell are adjusted during 
the Lagrangian phase, a change is implied in the distribution of velocity field in the cell. 
The movement of the Lagrangian tracer particle depends critically on the sub-cell 
velocity distribution and needs to be adjusted if the pressure relaxation or void closure 
divergence options are invoked (Chapter 13). No adjustments are necessary with the 
uniform divergence option. 
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acceleration, 38, 54, 138, 222 
adiabatic, 62, 65, 132 
advection 

definition, 42 
example, 193 
first order, 184, 187 
gradient limiters, 188 
internal energy, 47 
mass, 33, 34, 35 
momentum, 33, 34, 35, 45 
monotonic, 189 
phase, 35, 42 
pseudocode, 190 
second order, 184 
square pulse, 193 
third order, 185 
van Leer limiter, 189 

aether, 14 
angular momentum, 12 
artificial viscosity, 38, 86, 123, 125, 223 

linear, 89 
quadratic, 89 
von Neumann, 89 

boundary conditions 
reflective, 105 
transmissive, 106 

bulk modulus, 13, 62, 68, 195 
Cartesian, 28, 34, 173 
Cauchy stress tensor, 131 
Cauchy-Stokes decomposition theorem 

derivation, 203 
dilatation, 205 
rotation, 204 
shear, 205 
translation, 204 

cell 
area, 17 
boundary, 183 
size, 17 
vertex, 17, 18 
volume, 17 

CFL condition, 97 
Chapman-Jouget, 65, 111 
cold curve, 68 

compression, 13, 37, 56, 61, 62, 63, 66, 
75, 119, 122, 131, 155 

computational grid, 14, 22, 113 
conservation law, 7, 11, 33, 34, 35, 47, 

56, 189, 211 
angular momentum, 12 
energy, 14 
internal energy, 14 
linear momentum, 11 
mass, 11 

constitutive equation, 167 
constitutive relation, 12, 56, 131, 132, 

139, 167, 207 
coordinates 

Eulerian, 17 
corrector, 52, 53, 55, 222 
Courant condition, 4, 95, 97 
Courant number, 43, 44, 190, 193 
crush, 8, 12, 53, 68, 161, 163 
damage, 8, 12, 155, 157 
deformation motion, 204 
density 

mass, 33, 34, 35 
detonation, 64, 213 
dilatation, 13, 132, 204, 205 
direction vector, 39, 173, 198, 199, 217 
distance parameter, 173, 200, 217 
divergence theorem, 27 
donor cell, 44, 184, 187, 190, 191, 197, 

198 
downwind, 46, 189, 190 
dual mesh, 21 
elastic 

energy, 212 
release, 162 
work, 212 

elastic distortional energy, 14, 56, 192, 
212 

elastic perfectly plastic, 139 
elastic regime, 131, 132 
energy 

conservation, 34, 35 
elastic distortional energy, 212 
internal, 211 
kinetic, 211 
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plastic work, 212 
specific internal energy, 14 

energy shift, 67, 68 
entropy, 38, 79, 80, 91 
EOS 

see equation of state, 11 
EOSPAC, 67, 69, 70, 85, 141 
equation of state, 11, 14, 57, 61, 111, 

132, 161, 213 
BKW-HE, 71, 73 
exponential, 71 
gas, 61 
Grüneisen, 65 
ideal gas, 61 
JWL, 64, 65, 83, 111, 114 
modified Osborne, 63 
Osborne, 63 
polynomial, 62 
SESAME, 67, 68, 69, 70, 85, 141, 

143, 147, 148, 149, 163 
tabular, 67, 69 
Us-Up, 65 
void, 62, 119 

Euler equations, 33 
Eulerian 

cell, 17, 183 
cell area, 17 
cell size, 17 
cell vertex, 17 
cell volume, 17 
grid, 17, 22 

Eulerian phase, 35, 36, 37, 42, 45, 47, 57 
evolution equation 

internal energy, 33, 34, 35, 47, 48, 
191 

mass, 33, 34, 35 
momentum, 33, 34, 35, 215 

expansion, 61, 66 
exponential, 71, 86 
finite difference approximation, 20, 29 
finite difference equations, 20, 29, 181, 

183, 192 
advection, 183, 184, 185, 190 
Lagrangian, 181 

finite difference form, 181, 183 
finite differences 

stability, 44 
first law of thermodynamics, 80, 90 
flow-stress 

elastic perfectly plastic, 139 
Johnson-Cook, 12, 142 
Kospall, 12, 148 
mechanical threshold stress, 145 
models, 139 
modified Steinberg-Cochran-Guinan, 

140 
Preston-Tonks-Wallace, 143 
Steinberg-Cochran-Guinan, 12, 141 
thermal softening, 149 
work hardening, 150, 151 

flux, 46 
fracture, 8, 12, 53, 130, 155, 156, 157 

Johnson spall, 155 
Johnson-Cook damage, 157 

frame indifference, 207 
functions, 137, 140, 142 
ghost cells, 22, 105, 106, 211 
governing equations, 17, 20, 21, 33, 56 
gradient limiter, 188 
Grüneisen, 65, 71, 84, 124 
Grüneisen parameter, 66 
Grüneisen relation, 66 
hexagonal section, 177, 179 
high explosive, 64, 71, 111, 115 
Hooke’s Law, 129 
Hugoniot, 65 
hydrocodes, 19, 34, 106, 222 
ideal gas, 61, 81 
incompressible, 13, 132 
initial conditions, 69, 70, 97, 101, 111 
integration, 18, 45, 51, 138, 222 
interface 

hexagonal section, 177, 179 
pentagonal section, 176, 178 
quadrilateral section 

type A, 176, 178 
type B, 177, 179 

reconstruction, 41, 197 
triangular section, 176, 178 

interface reconstruction, 40, 62, 125, 
173, 223 
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internal energy, 14, 33, 34, 35, 48, 75, 
79, 80, 89, 101, 124, 134, 137, 138, 
140, 142, 149, 191, 211 

invariants, 12, 134 
irrotational, 13, 195, 204 
isotropic, 11, 134, 167 
Jaumann derivative, 208 
Johnson spall, 155 
Johnson-Cook damage, 157 
JWL EOS, 64 
Lagrangian phase, 34, 37, 39, 46, 57, 

120, 122, 138, 162, 181 
Levi-Civita pseudotensor, 167, 203 
linear momentum, 11, 46 
mass, 33, 34, 35, 211 
mass burned, 213 
mass melted, 212 
mechanical threshold stress, 145, 147 
melt temperature, 69, 141, 143, 144, 147 
mesh 

Eulerian, 14, 17, 19, 36 
mixed cells, 19, 20, 40, 56, 119, 120, 

121, 122, 125, 169, 202, 213, 215 
modified Steinberg-Cochran-Guinan, 

140, 141 
modulus 

bulk, 13, 62, 68, 195 
elastic, 129 
shear, 12, 125, 131, 132, 135, 139, 

140, 141, 142, 143, 144, 145, 147, 
148, 149, 156, 163, 195 

yield, 139, 140, 141, 142, 143, 148, 
149, 156, 163 

momentum 
conservation, 33, 34, 35 
equations, 12 

momentum control volume, 21, 22, 38, 
45, 46, 53, 54, 215, 216 

monotonic, 42, 189 
Monte-Carlo technique, 20 
MTS 

see mechanical threshold stress, 145, 
147 

multi-material, 19 
Navier-Stokes equations, 11, 91, 215 
Newton-Raphson method, 70 

Noh problem, 90 
numerical approximation, 27, 169 
operator splitting, 33, 34 

stability, 44 
PAGOSA, 3, 11, 12, 13, 14, 18, 19, 22, 

27, 33, 34, 36, 37, 40, 42, 43, 44, 46, 
56, 61, 65, 67, 69, 70, 71, 72, 75, 85, 
86, 89, 91, 97, 105, 111, 115, 119, 
120, 123, 130, 131, 132, 134, 135, 
136, 139, 155, 171, 188, 190, 210, 
211, 217, 218, 221, 222 

particle speed, 66 
pentagonal section, 176, 178 
permutation, 36, 203 
phase errors, 192 
phase transition, 67, 68 
plastic 

strain, 131, 137 
work, 212 

plastic regime, 129, 130, 131, 132, 139, 
151 

plasticity, 12 
pmin, 75 
Prandtl-Reuss treatment, 132 
predictor, 52, 53, 222 
pressure, 11, 14, 20, 56, 61, 62, 63, 64, 

65, 67, 68, 69, 70, 71, 73, 75, 79, 81, 
85, 86, 89, 91, 95, 96, 101, 111, 122, 
123, 131, 137, 138, 139, 140, 141, 
145, 148, 156, 161, 162, 215 

pressure gradient, 38, 91 
pressure relaxation, 122 
Preston-Tonks-Wallace, 143 
priority, 40, 41, 120 
programmed burn, 96, 101, 111, 114, 

115 
limitations, 114 

PTW 
see Preston-Tonks-Wallace, 143 

P-α crush model, 161 
Q 

see artificial viscosity, 38, 86, 123, 
125, 223 

quadrilateral section 
type A, 176, 178 
type B, 177, 179 
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ramp treatment, 68, 163 
Rankine-Hugoniot, 90 
reconstruction 

see interface reconstruction, 41, 197 
remap 

see Eulerian phase, 35 
safec, 95, 195 
safed, 95 
safety factors, 95, 97 
safeu, 95, 219 
sampling density, 169, 170, 171 
scaling ratio, 67 
secant method, 73 
SESAME, 67, 68, 69, 70, 85, 141, 143, 

147, 148, 149, 163 
energy shift, 67 
iteration, 69 
ramp, 68 
scaling ratio, 67 

shock speed, 66, 90 
shock waves, 89, 90 
sound speed, 62, 66, 68, 79, 80, 81, 82, 

83, 85, 86, 90, 95, 96, 162, 163, 195, 
213 
exponential, 86 
gas, 81 
Grüneisen, 84 
ideal gas, 81 
JWL, 83 
modified Osborne, 82 
Osborne, 82 
polynomial, 81 
SESAME, 85 
tabular, 85 
Us-Up, 84 
void, 81 

spatial centering 
density, 18 
internal energy, 18 
pressure, 18 
velocity, 18 

specific internal energy, 14, 42, 61, 62, 
134, 149, 191, 192 

square pulse, 187, 192, 193 
staggered grid, 18 
statistics, 213 

Steinberg-Cochran-Guinan, 141, 148 
strain, 131, 137 
strain rate, 13, 27 
Strang operator splitting, 7, 33, 34 
stress tensor, 11, 12, 125, 131, 132, 143, 

207, 210 
T junctions, 40 
tabular EOS 

see SESAME, 67 
Taylor expansion, 66, 203 
tensor 

antisymmetric, 12, 167, 203, 209 
Cauchy, 131 
spatial velocity gradient, 12 
strain rate, 13, 27 
stress tensor, 12 
symmetric, 12, 167, 203, 204, 209 
vorticity, 13 

tetrahedron, 174 
thermal softening, 139, 140, 141, 148, 

149 
Thomas-Fermi-Dirac theory, 68 
timestep, 37, 97, 195 
timestep controls 

Courant, 43, 44, 79, 95, 190, 193, 195, 
219 

detonation, 96 
divergence, 95 
initial, 195 
Lagrangian, 95, 181 

tracers, 221 
transport, 36 
triangular section, 176, 178 
uniform divergence, 223 
upwind, 42, 189, 190 
velocity divergence, 13, 120, 138, 205 
vertex, 18 
vertex mass, 39, 53 
void closure, 119 
volume, 177, 211 
volume fraction, 14, 37, 39, 40, 61, 101, 

119, 120, 121, 122, 123, 125, 169, 
170, 171, 175, 178, 197, 198, 199, 
213, 215, 223 
defintion, 19 
initial, 20, 169 
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von Mises, 6, 134, 147 
von Neumann, 89 
vorticity tensor, 203 
wall heating, 90 
work hardening, 150 
Y junctions, 40 
yield criterion, 134, 135, 136, 144, 147 

yield function, 135 
yield modulus, 139, 148, 163 
yield surface, 136, 138, 144, 147, 150 
Youngs interface reconstruction, 173 
Youngs/van Leer gradient limiter, 45, 

189, 190 
zone, 17, 19, 37, 91, 114, 122, 125 
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