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On the Mixing Time of Geographical Threshold Graphs

Andrew Beveridge! and Milan Bradonji¢?

! Department of Mathematics and Computer Science, Macalester College,
Saint Paul, MN 55105, USA, abeveridlmacalester.edu
% Theoretical Division, and Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA, milan@lanl.gov

Abstract In this paper, we study the mixing time of random graphs generated
by the geographical threshold graph (GTG) model, a generalization of random
geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space,
and edges are assigned according to a threshold function involving the distance
between nodes as well as randomly chosen node weights. The motivation for ana-
lyzing this model is that many real networks (e.g., wireless networks, the Internet,
etc.) need to be studied by using a “richer” stochastic model (which in this case
includes both a distance between nodes and weights on the nodes). We specifi-
cally study the mixing times of random walks on 2-dimensional GTGs near the
connectivity threshold. We provide a set of criteria on the distribution of vertex
weights that guarantees that the mixing time is ©(n log n).

Key words: geographical threshold graph, mixing time, cover time.

1 Introduction

In recent years, we have witnessed the development of numerous approaches to study
the structure of large real-world technological and social networks, and to optimize pro-
cesses on these networks. Large networks, such as the Internet, World Wide Web, phone
call graphs, infections disease contacts and financial transactions, have provided new
challenges for modeling and analysis [Bon05]. As an example, Web graphs may have
billions of nodes and edges, which implies that processing and extracting information
on these large sets of data, is ‘hard’ [APRO2]. Extensive theoretical and experimental
research has been done in web-graph modeling, attempting to capture both the structure
and dynamics of the web graph [KRRT00,BA99,ACL00,BRSTO01,CFO1].

In general, a particularly fertile approach has been to consider the network as an
instance of an ensemble, arising from a suitable random generative model. Since the
seminal papers on the evolution of uniform random graph model [ER59,ER60], many
other models have been proposed to better capture the structure seen in real-world net-
works, which are systematically covered in [Dur06]. One straightforward example is the
random geometric graphs (RGG) model, where nodes are placed uniformly at random
in a Euclidean space and edges are placed between any two nodes within a thresh-
old distance. For further study of RGGs, see the monograph by Penrose [Pen03]. The
RGGs have the advantage of describing many aspects of systems such as sensor net-
works, while avoiding unnecessary detail. However, they fail to capture heterogeneity
in the network.
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Geographical threshold graphs (GTGs) are a generalization of RGGs. Heterogeneity
in the network is provided via a richer stochastic model that nevertheless preserves
much of the simplicity of the RGG model. GTGs assign to nodes both a location and
a weight, which may represent a quantity such as transmission power in a wireless
network or influence in a social network. Edges are placed between two nodes if a
symmetric function of their weights and the distance between them exceeds a certain
threshold [BKO7].

Structural properties of GTGs, such as connectivity, clustering coefficient, degree
distribution, diameter, existence and absence of the giant component, chromatic number
have been recently analyzed [BHP09,BHP07,BMP09]. These properties are not merely
of theoretical importance, but also play an important role in applications. In commu-
nication networks, connectivity implies the ability to reach all parts of the network. In
packet routing, diameter gives the minimal number of hops needed for transmission
between two arbitrary nodes. In the case of epidemics, the existence or absence of the
giant component controls whether the epidemic spreads or is contained. When treating
the vertex colors as the different radio channels or frequencies, the chromatic number
gives the minimal number of channels needed so that neighboring radios do not interfere
with each other.

Random walks (or more formally, Markov chains) on large networks have many
applications. For example, random walks model the spread of disease or the dispersion
of information [BGPS06]. The mixing time of a random walk is the expected number of
random steps that are required to guarantee that the current distribution is close to the
stationary distribution. Mixing times are an essential tool in both theory and practice:
for example, see the recent survey of Diaconis [Dia09] on Markov chain Monte Carlo
methods.

The mixing time for RGG at the connectivity threshold has been determined. For the
2-dimensional RGG, Avin and Ercal [AEO7] showed that this mixing time is @(n log n).
More recently, Cooper and Frieze [CF09] proved the analogous result for d > 3 and
actually determine the asymptotically correct constant. In this paper, we study the mix-
ing times of random walks on 2-dimensional GTGs near the connectivity threshold. We
provide a set of criteria on the distribution of vertex weights that guarantees that the
mixing time is @{n logn).

2 Model

The GTG model is constructed from of a set of n nodes placed independently in R¢
according to a Poisson point-wise process. A non-negative weight w;, taken randomly
and independently from a probability distribution function f(w) : Ry — Ry, is as-
signed to each node v; fori € {1,2,...,n}.Let F(z) = foz f(w)dw be the cumulative
density function. For two nodes 7 and j at distance r, the edge (¢, 7) exists if and only
if the following connectivity relation is satisfied:

G{w;, w;)h(r) = 8, , (n

where €, is a given threshold parameter that depends on the size of the network. The
function h(r) is assumed to be decreasing in 7. We use h(r) = r~, for some positive
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o, which is typical for e.g., the path-loss model in wireless networks [BK07]. The in-
teraction strength between nodes G(w;, w;) is usually taken to be symmetric and either
multiplicatively or additively separable, i.e., in the form of G(w;,w;) = g(w;)g(w;)
or Glwq, wy) = g(w;) + g(wy).

Some basic results have already been shown. For the case of uniformly distributed
nodes over a unit space it has been shown [MMKO05,BK07] that the expected degree of
a node with weight w is

Bk = ms [ f@O B GG s @

where h™! is the inverse of h. The degree distribution has been studied for specific
weight distribution functions f(w) [MMKOS5]. In both the multiplicative and additive
case of G(w,w’), questions of diameter, connectivity, and topology control have been
addressed [BKO7].

Here we restrict ourselves to the case of g(w) = w, @ = 2, and nodes distributed
uniformly over a two-dimensional space. For analytical simplicity we take the space
to be a unit torus. We concentrate on the analysis of the additive model, i.e., when the
connectivity relation for two nodes ¢ and 7 is given by

Lt sy, &)

5

3 Bounds on the maximal weight and on the degrees of the nodes
in GTG

In Subsection 3.1 we firstly state the upper and lower bounds on the maximal weight in
GTG. Then, in Subsection 3.2, we proceed by deriving the upper and lower bounds on
the degrees of the nodes in GTG.

3.1 Bounds on the maximal weight

In this subsection we bound the maximal weight of the nodes in the graph. The maximal
weight satisfies Primax W < z] = F(z)", since the weights are distributed indepen-
dently, where F'(z) = Pr[W < z] denotes the cumulative density function of the weight
distribution.

In the special case of the exponential weight distribution f(z) = e~* we have:
F(z) =1—e¢% and Primax W < z] = (1 — e~ *)™. Let us choose 2 = clogn, then
it follows

Primax W > clogn] = 1 — (1 — e~¢lo8™)"

1 \n
-0 4)
ne

~7’11_C

—1—ce€
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The last expression tends to: 1 — 1/¢,0,1, for ¢ = 1,¢ > 1,¢ < 1, respectively.
Thus, for any € > 0, we have Prmax W > (1 + €)logn] = o(1) and Primax W <
(1 —€)logn] = o(1). That is, for any € > 0, Primax W € (1 £+ ¢€) logn] — 1.

Now we consider a general density function f(w). The goal is to bound max WV,
that is, to find threshold weights w; and w;, such that Primax W < wji] = o(1) and
Primax W > wy’] = o(1). Let us define the function p(z) := —log(1 — F(x)) (that
is, F(z) = 1 — e~?®)_If F(x) is continious and increasing (in the case of continuous
wights without mass points) , then it follows that p(x) is continious and increasing, and
furthermore, p(0) = 0 and p(c0) = oc. The following is satisfied

Primax W < z] = (1 — e~ P@)"
— exp ( — n/e"(z))
= exp ( —exp(logn — p(r))),

for z — oo, since e”*) — o0. The last expression takes values: 0, 1 for p(z) = logn—
w(1), p(z) = logn + w(1), respectively. Now, let us “invert” p(z) = logn £ w(1), in
order to obtain thresholds wj and w}. From the definition p(z) = —log(1 — F(z)) it
follows p~1(y) = F~1(1 — e~Y). That is, the thresholds are given by:

e R (R N
1 -
w) = F~Y1 - (;(bgnw(l)J) _ F*l(l _ n_w(ﬁ) )

Finally, we have derived w; and w{, and it follows

lim Prlw; < maxW < w] =1.
n——+oc 4
Specifically for the exponential weight distribution, as a double check, F(z) =
1—e% F7(z) = —log(l — z), p(x) = z, and p~1(z) = z. This gives, w,
—log(l = (1 —w(l)/n)) = —log(w(l)/n) = logn —w(1), and wy = logn + w(1).

)

3.2 Bounds on the degrees of the nodes in GTG

Let us assume that weight distribution satisfies Pr[lW > z] = O(z~"), for some v > 1.
Then it follows that whp all nodes in the graph have weights bounded by O(n/logn).
That is, Pr[WW > ©(n/logn)] = O((log n/n)7), and by union bound we obtain

¥ g
Pr[3v e V: W, > n/logn] = o(l%f_f) = o(1).

This means that the formula for degree distribution d(v|w) ~ Bin(n — 1, p(w)), where
probability p(w) = 7 (w+-p) is the function of weight w, is valid for w = O(n/log n).

We consider the GTG ‘around the connectivity regime’, where 6, = ¢n/ logn, that
is p(w) = %’ilﬁf’lﬁ(l + %). Then, for a given weight w, the expected degree of a node
v is E[d(v|w)] = (n — 1)p(w). By applying Chernoff bound the bound on the degree
distribution follows.
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Claim. If ¢y > 2@/(1 = / ) then all nodes in GTG have degrees > —f—‘ log n.

Proof. The degree distribution of a node v, for a given its weight w, is Bin(n—1, p(w)).
Applying Chernoff bound it follows Pr {d(v|w) < 2:—0“ log n] < exp(—E[X]§%/2),

2c/co

where § =1 — > 0. Furthermore

Pr|d(v|w) < QZT—ulogn] < exp(—E[X]62/2)
0
um logn

<exp | ——
C n

(n~1)(1+%) (1—11%

2
_mn g1y (1_2e/e
_ e (- ) ©)
We now find conditions such that Eq. (6) is o(1/n) for all w > 0 and n sufficiently
big. For the sake of simplicity let us denote £ = 1 4+ w/p > 1, and consider ¢(z) =
£ a(l— CZC )2. It follows that the minimum of ¢(z) is attained at x = 2¢/co, and ¢(x)

is strictly dec,reasmg in (0, 2¢/cp), and furthermore, strictly increasing in (2¢/cg, +00).
Now, taking 2¢/co < 1and ¢(1) = Z£(1—2¢/co)? > 1, or equivalently o > 2c/(1 —
) /f;) it follows ¢(x) > 1 for z > 1. That is, Eq. (6) is o(1/n), for sufficiently large

7.
Thus, the degree distribution satisfies

Pr{d(v) < By Iogn} = /dwf(w)Pr[d('U\w) <

Co Cp
w1 w _2¢/en
/dwf(w) e “)(H“)(l 1+7>
= /du]
o(1/n).

Now, by the union bound the claim follows.
Here we derive the interval Igrq, such that all degrees belong to /g whp, that
is,
Yo : d(U) € lare, whp. @)
In Section 3.1, we have derived the bounds on the maximal weight Eq. (4) and
Eq. (5),

1 1
F—1(1-M> <maxW < P71(1 - ).
n nw(1)
Furthermore, from continuity of F(z), that is, from continuity of it inverse F~1(x), it
follows that for any € > 0 and any function w(1), there is sufficiently large n = n(e),
such that the upper and lower bounds on max W are arbitrarily close |w}’ — wj| < e.
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In Claim 3.2, we have derived the lower bound on the degrees in GTG. We now ob-
tain the upper bound on the degrees. The degree, of a node having the maximal weight,
satisfies Binomial distribution Bin(n — 1, (7/6,,)(max W + u)), which is concentrated
around its mean (7/c)(1 — 1/n)(max W + u)logn. Thus, whp all degrees of GTG
belong to the following interval

— o E =1 s
Iore = [alogn.loonCF (1

Wl(l))u +o(1))]. (8)

Concretely, we present the following two examples.
Example 1. Igrc for: (1) exponential weight pdf and (2) power-law ccdf.

1. For f(z) = e~ it follows
Iere = [alogn,%(l + o(1)) log® n], )
2. For F(z) =1 -2~ 7 where v > 1, it follows

Icrc = |alogn, %logn-nl/”w(l)l/"’(l +0(1))] = [alogn, %n1/7+0(1)]. (10)

4 On the number of the nodes of the certain degree in GTG

Analogously as in [CF09], let us denote D(k) the number of vertices v with d(v) = kin
GTG, and let E[D(k)] be its expected value. Despite the fact that in [CF09] all degrees
belong to I. = [a1logn,azlogn| (see page 4, [CF09]), here, in the case of GTG,
we have that degrees satisfy Eq. (8). That is, the length of I is not ©(logn), and
thus we need some division different then intervals Kg, K3, K> as in [CF09] (see page
5, [CF09)).

Let! = ©(1) be a constant ({ to be chosen later), such that { = lop(bajaieyn)

i , which

specifies r = ¢

Bj; = [ar? logn,ar’ ! logn),

for j = 0,1,...,0 — 1. That is, the size | B;| = alogn(r — 1)r/. Now we define the
intervals
K; ={k € B; :l; <E[D(k)] <u;}.

Applying Union bound and Markov inequality, as in [CF], we obtain

Pr[3k € K, : D(k) > t;] < S Pr[D(k) > t]
keK,
E[D(k)]

keK; %
= o181 2).
t]
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Choosing bounds I, u; on E[D(k)] in K; and a bound ¢; on D(k) to be: u; =
alog nritlr and I; = alognr?*!/r and t; = (lognrit?)2, it gives

Pr[3k € K, : D(k) > t;) < 0(%)

4.1 Approximations on D (k) and E[D(k)] by using the saddle point method

From the previous discussion we have Pr{d(v|w) = k] = (”;l)p(w)k(l —p(w))*~ 1%,
Thus, the following is satisfied for D(k|w), D(k) and E[D(K)]

D(k|lw) = Z Lid(uw)=k) (D
veV
D(k) = Z dw f(w) 1 {g(wjw)=k} (12)
vev 7Y
E[D(k[w)] = ) B[l (gofw)=k}]
veV
- Z Prld(v|w) = k] = n(”k 1)p(w)k(1 — plw)yn 1k (13)
veV

E[D(k)] = Eo[E(D(klw)] = n(” ; 1) [ duitwpta)ta -t

In order to obtain the value of E[D(k)], we need to evaluate the integral
[ duwstipu)t(n - pwyi.
To pursue the approximation, we use the saddle point approximation. Let ¢(z) =

;I—f—l Inz+(1— n—f—l) In(1 — ) and the probability density function f(x) be continuous
functions. By using the saddle point method [BO78], we approximate the integral J(n),

Jn—-1):= /xk(l — )" kR g(z)dx = /f(af)e(”_l)‘f’(”dz. (15)

The following is satisfied ¢'(z) = 251 - (1 — E) L and ¢"(z) = £ 5 —
(1- %)(1%)2 The maximum of ¢(x) is attained at zg = k/(n — 1) and ¢(zp) =

—h(k/(n = 1)), ¢"(z0) = — g2t 7. where
h(z) = —zlogz — (1 — x)log(1l — ), (16)

is the entropy function (log denotes natural logarithm). By [BO78] Eq.(6.4.35) we have
that

_ on n—1)¢(ao 1 f"(@o)
J(’H—l)m \/G—me( )( )'{f(IO)Jrn—l(_ 2(‘5,,(10)

F(zo)p™ (o) f'(0)¢™ (z0) 5f’(I0)¢”/(Io)2f(Io))} (17)
8¢ (xo)? 2¢"(z0)? 24" (x0)? .
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It follows that

21

. - T pleo) [ =7
J(n—1) = f(zo)e? (n — 1)[¢"(z0)]

= f(k'/n)c“(”‘l)h(k/(n—1))

We now approximate Eq. (14). by firstly evaluating the integral

Let us denote J(zg,€) = jjﬂoj: dw f(w)p(w)*(1 — p(w))*~1=*. From the continuity
of ¢(x) and uniqueness of its maximum, it can easily be shown that

|J — J(zg,€)| < e~ ™19,

where § = maxX;¢(zq—e,zq+¢) (f(Z0) — f(x)). Now from the previous analysis for 8, =
en/logn it follows

zot+e€ - T ] il
.IQ:/ ) dwf(w)(gi(u%—w))k(l—O—(M—I—w)) bk

zo—€

=
L C N —enHK () o K1 —k) e Bk
7rlogn6 - (n—1)3 f(ﬂ(n—l) M)

By —fek_ — £ _k (1 4 ©(1/n)) and using continuity of f, we finally obtain

m(n—1) 7 logn

n—1\e¢ n _, _ o k(n—1-k) .rc k
N 9 (n=1)H(k/(n=1)) [q L5 Y
ED(E)] n( k )ﬂlogne \W (n—1)3 f(Trlogn “)
(19)

7

Example 2. (Exponential weight distribution) We discuss the example of the exponen-
tial weight distribution, i.e., where the weights are drawn from the exponential distribu-
tion f(w) = e™™. Let us denote A = 72(u + w) and v = Z2, then w = A\ /v — pu. By
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using Poisson approximation it follows

= /OhC dw f (w) (Z) (%(u + w))k(l - %(N‘F w))"

NG
k!

k
_1 /oo D= Mr=w) AN
“w

p OO
—>/ dwe Ve
Jo

v S k!
_ et ki /\kf’_/\(1+1/u)d/\
v-k! ) o
nz
K oG ‘
- 1+ 1/u>-<k+1>/ (AL +1/0))ee TGN (1 + 1/v)
vkl pv(14+1/v)
et =
- (14 1/p)~ 0+ / tketdt
vkl m(l+v)

¥ I'k + 1 p(1+v))
(1+ )kl I'(k+1)

173
= o

5 Mixing time bound via Canonical Paths

Our argument is similar to the one found in [CF09]. We use a canonical path argument,
as introduced in [MS96]. For every vertex pair x,y we choose a canonical path v
between them. We define

i}
e:{xl}yl?gE(G) m(x)P(z,y) Z m(a)m(b)

YabD€

P = Yab|
where |v,3| is the length of the canonical path between a and b. As per [MS96] Propo-
sition 12.1, the mixing time from vertex x satisfies

72(€) < p (logm(z) ™' +loge ™).

5.1 Canonical paths on the toric grid

For the moment, let’s talk about creating canonical paths on the toric £ x & grid. We
want to ensure that every edge appears in roughly the same number of paths. (We'll
show how to adapt this to GTG later.) The (two phase) path from (a, b) to (¢, d) will be

(a,b),(a+1mod k,b),...,(c,b),(c,b+1modk),...,(c.d).

Note that we always increment the index by +1 (even if there is a shorter path). While
there are k* canonical paths, each edge appears in at most k3 of them. Indeed if the
canonical path from (a, b) to (¢, d) traverses the edge ((i,7),(¢ + 1,7) then b = 7,
leaving at most k2 choices for a, ¢, d. Similarly, if we traverse the edge ((4, 7), (4,7 + 1)
then 7 = ¢, leaving k3 choices for a, b, d.

Furthermore, the maximum length of a path is 2k.
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5.2 Choosing the grid size

We assume that there are an high weight vertices and (1 — a)n low weight vertices. Let

Te = 4/ %’i—g denote the critical radius for the high weight vertices. We divide the unit
torus into a grid whose squares have side length %rc. This makes a O(r;1) x O(r; 1)
grid.

Let S; denote a square in this grid. Consider ‘high-weighted’ (blue) vertices (‘high-
weighted’ vertices are the vertices with weights > F~!(1—a)). By the Chernoff bound
in each S; there are B; = ©(logn) blue vertices whp

Pr[B; > (1 — d)acglogn] >1—n a2, (20)

Now, the probability that every S; has at least (1 — §)acg blue vertices, as n — oo, is
given by

Pri()(B: > (1 — 6)acologn}] > (1 — nced*/2)n/(calogn) @1)
1—acnd?/2

— exp{——=—1}, (22)
cologn

since the vertices are tossed over the squares independently. Since ¢, ¢q, ¢ are constants,
the last expression, Eq. (22) tends to 1, as far as

acgd? > 2. (23)

Similarly, there are ©(log n) low weight nodes in each square. We summarize these two
observations in the following claim. For each square S, let L(.S) denote the low weight
nodes and let H(S) denote the high weight nodes.

Claim. Whp, there exist constants g, ¢; such that every square S satisfies

cologn < |L(S)| < ¢ logn
cologn < |H(S)| < ¢ logn

We turn our attention to the connections between adjacent squares in our grid. High
weight nodes in adjacent squares are adjacent in the GTG.

Claim. For any two ‘neighboring’ squares .5; and .S; there are .Q(l()g2 n) interconnec-

tions between them. That is, the number of edges that connect blue vertices from .5; and
blue vertices from .S; is at least

((1 —0)aey logn)z. (24)

Proof. Let S; and S; be two neighboring squares, as stated above. Let us consider
any blue vertex b; € .S; and any blue vertex b; € S;, with the weights wy, and wy,,
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respectively. The distance between b, and b; is at most v/beglogn/n. Consider the
connectivity relation

We, + Wp, Fll-a)+F'1-a) F'l-a) n
N (v/5eglogn/n)? o logn

Then it follows, that any two blue vertices b; € S;, b; € S; are connected with proba-
bility one if

r2 25)

F'(1—aq)/cg > c. (26)

5.3 Canonical paths for GTG

The general idea for GTG is to use the k x k toric grid with & = 57,1 as a guide

for how to connect pairs of vertices. We turn these toric paths into canonical paths
for out GTG by chosing a high random weight vertex in each square of the path. The
independence of these choices guarantees that whp ‘no particular edge is used more
than O(k%) = O(r3) = O((n/logn)*/?) times.

Here is the randomized procedure that guarantees our bound on maxee g [{Yap€ €
~ab}|. For each square S, partition L(S) evenly into H(S) sets. So each set in the
partition will contain either |¢1/cq] or [¢1/¢0] low weight vertices. Associate each set
in the partition to a unique high weight vertex.

For every vertex pair (z,y):

1. Sayz € Sypandy € S, 4:

2. Use the toric grid to identify the sequence of squares in the canonical path:
SabsSat1,br- - >Sc by Sebtis- - Sc,q- For simplicity, call these squares Sy, Sy,..., S,

3. If x is a high weight vertex, set o = z. Otherwise set xo to be the high weight
vertex associated to z.

4. For1l < i <t—1,choose z;4+; to be arandom high weight node in S;.

5. If y is a high weight vertex, set 2y = y. Otherwise set z; to be the high weight

vertex associated to y.

. Connect z to zg (if x # xg).

. For0 <1 < t, connect x; t0 T;41.

8. Connect z; to y (if y # ).

~

Let the random variable Z;, denote the number of times the edge zy is chosen.
First, suppose that z is low weight and y is high weight. Unless z and y are in the same
square, Zz, = 0. When z and y are in the same square, then Z, is chosen if and only
if the canonical path has z as one of its endpoints. There are n— 1 = o(r®) such paths.

Now suppose that both = and y are high weight vertices. There are a number of
cases.

Case 1: z and y are in the same square. There are at most (1 + [c1/c0])? = O(1)
canonical paths that use the edge zy. The endpoints of these paths must be -, i or one
of the low weight nodes associated to either x or y.

Case 2: x € S; and y € Sy are in adjacent squares. Here there are a number of
subcases for the path types. Let

P(S1,52) = {~Vav|vap traverses from Sy to Sa}.
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The canonical path starts and ends in S7 and S3. There are (1 + [¢1/c0])% = O(1)
such paths (similar to Case 1)

The canonical path starts and ends outside of both S and S5. This means that both
x and y were chosen randomly to realize the toric canonical path. Let Z, denote
the number of such events. Let

P'(S1,52) = {Vab|Vab € P(S1.82) Aa ¢ S Ab¢ Sa}.
Then

2
_ 1 C1 <1
E(Z,) = Pr(zy € Vo) < T3 (c1logn)? —— = [ 2} p7%
(Zas) ) (zy € Yap) S 7" (c1logn) G logn) e B
YabEP’(S51.52)

Indeed, the number of toric paths that pass from S; to S is O(r23). Each toric
path corresponds to at most (c; logn)? paths in the GTG. Since both z and y are
internal vertices of these paths, they were both chosen uniformly and independently
with probability at most 1/¢g log n.

Now we must use tight concentration and a union bound to show that all edges are
used O(r, ) times. Using Chernoff for this binomial distribution,

)
Pl ~ E(Z)| > cB(Zi0)] < 2exp (- S E(Z20))

5 e/ n 3
= 2exp | —= | ———
P 3 Lomlogn
)

The union bound now gives
Pr [/\a,b (,Z(’,b — E{(Z"a,b))| 2 eIZ‘(Z(’l’b))]
< ZP“ 1245 — E(Z']a,b])] 2 €E(Z, )]
a.b

<n?o(e™™) - 0.

Therefore whp, every edge between high weight vertices in adjacent squares is used
by (1 +€)r;? = O((n/logn)3/?) canonical paths.

. The path starts in S; and does not end in S3. The total number of such edges is

O(n). Indeed, the number of start vertices in S; who connect to Sy via a fixed high
weight vertex is at most 1 + [e;/co]. There are O(n) end vertices for paths that
must leave .S7.

. The path ends in S and does not start in S;. By an argument analogous to the

previous case, the total number of such edges is O(n).

Our conclusion is that the 2.2 case above is the dominant one. Therefore the maxi-

mum usage of any edge is O((n/ logn)3/?).
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54 The dominant term for canonical paths

Let B denote the set of all low weight nodes in the GTG. Let p(B, B) denote the
contribution to p of paths between low weight nodes. We have

1 logn 1 % n
B,B) ~ \/ ——anl log — —
ALEh nlogn ( n " ogn) ROV <1ogn> logn

a’n

logn’

Indeed, we have 1/2|E| = O(nlogn),. A strip of width 4/log n/n contains 4/ lﬁ?an logn
low weight nodes. These nodes have degree ©(n). The next term states that every low
weight node is a potential end point, each one contributing ©(log n) for its degree. The
(logn)~2 reflects the random choice of edge to traverse from one square to the next.
Finally, every canonical path has length O(y/n/logn).

We will see below that this is indeed the dominant term when calculating p. So we
will obtain

r loge™?.

(&) St e

6 Canonical paths argument for the exponential distribution

For now, we limit our argument about high weight nodes to the exponential distribution.
We will extend this argument to hold for general distributions.

6.1 Using the Gamma Function to calculate the total number of edges

We consider f(w) = e~*. We know that whp all weights less than log n. This means
that the whp the degrees are in

llogn, (logn)?].

Each weight is governed by the exponential distribution Pr(w €< z) =1 — ¢ %. So
the sum of the weights is governed by the gamma distribution I"(n, 1). We have up = n
and 0% = n.

We know that 2|E| = 3", deg(v) = ) w,logn =logn )", w,.

Using Chebycheff, we have X = )" w, ~ I'(n, 1) and

Pr(|X —n|>n) <

3=

So whp,
2|E| = O(nlogn).
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6.2 Partitioning the weights

We know that whp, all weights are smaller than 21log n. We have picked 0 < o < 1 s0

that an nodes have degree ©(logn). In particular, they all have weight no greater than

log(1/a) > 1 whp. We are turn our attention to the nodes with weights in [log(1/a), 2 log n].
We divide this interval into subregions as follows. Let

wg = 2logn
wg = min{2log(ax—1),log(1/a)}

The wy are only defined until we reach log(1/«). Call this final index M. The iter-
ated log function log” n is the number of times we must iteratively apply the log func-
tion so that the result is less than 1. This slowly growing function satisfies log” n =
o(log log n). Our partition consists of M < log™ n subintervals of the form [wi, wg—1].
Note that exp(wg) = wi_l for 1 < k < M. Let A be the set of nodes with weights in
interval [wg, wk—1]. Then

E(|Ag]) S ne™¥b = ——.
(| k|)— € w}iA1

By the Chebychev inequality, the actual value is tightly concentrated around its mean.
We also know that the degree of each of the nodes in Ay is O((1 + w)logn) =
O(wg—1 logn).

6.3 Canonical paths involving high weight nodes

Our previous argument for low weight nodes still holds. These nodes have degree
©(logn) and the total number of edges is O(nlogn). We must extend our argument
to handle the high weight nodes. In particular, we show that the “low weight to low
weight” nodes are the dominant case.

We focus on the usage of the randomly chosen edge between squares. Recall that

p= max —1— Z 7(a)m (D) |Vas|

e={z.w}eB(C) T(2)P(7,y) “3,
1
= max — deg(a) deg(b)|7,
e={z.y}eE(C) 2| E| Wge g(a) deg(b)|vasl

where we make use of the fact that for an undirected graph, the stationary distribution
of a node is proportional to its degree.
We make a small digression. We have partitioned the square into a grid structure,

where each subsquare has side length © (\/ lﬁiﬁ) If we look at how many nodes in

A are in a given square, we get

OC%”E):Om

n  Wo
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which is problematic. Luckily, we do not care about particular squares! For example,
| letus fix a horizontal edge (z,y) between squares. Let u, v € Ag. If a canonical (u, v)-
path is eligible to use this edge, the node u must be in the same row as both = and y.

| This means we are interested in a strip with area \/195—”- The number of nodes in A; in
such a strip is

O(/logni>zo< n)
| n  wo logn

which is most certainly concentrated! As for the node v, we place no restrictions. So
the contribution to p from paths between nodes in Agq is roughly

| 1 logn n n L Y* [
Ao, Ag) ~ B2 5 (log reh Al
p(Ao, Ao) nlogn ( " wg( ogn)wo (wz( Obn)wf)) (10gn> \/ logn

0

_n n
! “wilogn  (logn)3’

Now let’s consider the more general case where u € A, and v € A,.

1 llogn n n \WAEERS [_n
A, Ag) ~ —(1 9 - — (1 s 1
PlAr; As) nlogn ( n w?K BT ) (uﬂ,( BT ) (1055”) logn

s
7

‘  wyw, logn
! ~ . .
The final new case to consider is when the first node is low weight and the second node

is high weight. Let’s use B to denote the set of low weight nodes.

\ 2
1 [logn \ n 1 n
AN~ 1 —(1 )Wy
‘ P(B, As) nlogn ( p CToET <u}2( ogn)w ) \ log n) logn

s

an

wy logn’

| Now all of these terms are o(n/logn). Furthermore, there are a total of O((1 +

log™ n)?) such pairings of various types of nodes. The total contribution is
[

an & 1 n e n
~ — = — O .
| logn;wg + logn;; W5 W (logn)

|

|

In other words, the paths between low weight nodes are the dominant term in the cal-
iculation of p, and our previous result is still valid.
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