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Abstract In this paper, w study the mixing time of random graphs generated 
by the geographical threshold graph (GTG) model , a generali zation of random 
geometric graphs (RGG) . In a OTG nodes are di stributed in a Euclidean space, 
and edges are assigned according to a threshold func tion invol ving the distance 
between nodes as well as randoml y chosen node weights . The m tivation for ana­
lyzing thi model is that many rea l networks (e.g., wireless networks , the Int mel, 
e lc. ) need to be studied by using a "richer" stochastic model (which in tru s case 
includes both a distance between nodes and weights on the nodes). We specifi­
cally study the mixing times of random wal ks on 2-dimensional OTO near the 
connectivity threshold. We provide a set of criteria on the distribution of vertex 
weights lhat guarantees tha t the mixi ng time is 8 (n log n). 

Key words: geographical threshold graph, mixing time, cover time. 

1 Introduction 

In recent years, we have witnessed the development of numerous approaches to study 
the structure of large real-world technological and social networks, and to optimize pro­
cesses on these networks. Large networks, such as the Internet, World Wide Web, phone 
cal graphs, infections di ease c ntacts and financial transactions, have provided new 
challenges for modeling and analysis [Bon05]. As an example, Web graphs may have 
billions of nodes and edges, which implies that processing and extracting information 
on these large sets of data, is 'hard ' [APR02]. Extensive theoretical and experimental 
research has been done in web-graph modeling, attempting to capture both the structure 
and dynamics of the web graph [KRR + OO,BA99,ACLOO,BRSTO 1 ,CFO 1] . 

In general, a particularly fertile approach has been to consider the network as an 
instance of an ensemble, ruising from a suitable random generative model. Since the 
seminal papers on the evolution of unifonn random graph model [ER59,ER60], many 
other models have been proposed to better capture the structure seen in real-world net­
works, which are systematically covered jn [Dur06] . One straightforward example is the 
random geometric graphs (RGG) model, where nodes are placed unifonnly at random 
in a Euclidean space and edges are placed between any two nodes within a thresh­
old distance. For further study of RGGs, see the monograph by Penrose [Pen03]. The 
RGGs have the advantage of describing many aspects of systems such as sensor net­
works, while avoiding unnecessary detail. However, they fail to capture heterogeneity 
in the network . 
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GeographicaJ threshold graphs (GTGs) are a general ization of RGGs . Heterogeneity 
in the network is provided via a richer stocha tic model that nevertheless preserves 
much of the simplic ity of the RGG model. GTGs assign to nodes both a location and 
a weight, which may repre ent a quantity such as transmission power in a wirele 
network or influence in a social network. Edges are placed between tw nodes if a 
symmetric function of their weights and the di stance between them exceeds a certain 
threshold [BK07]. 

Structural properties of GTGs, such as connectivity, clustering coefficient, degree 
distribution, diameter, existence and absence of the giant componen t, chromatic number 
have been recently analyzed [BHP09,BHP07,BMP091. These properties are not merely 
of theoretical importance, but also pl ay an important rol e in app lications. In commu­
nication networks, connectivity implies the ability to reach all parts 01 the nerwork. In 
packet rou ting, diameter gives the minimal number of hops needed for transmission 
between two arbitrary nodes . In the case of epidem ics, the existence or absence of the 
giant component controls whether the epidemic spread or is contained. When treating 
the vertex colors as the djfferent rad io channels or freq uencies, the chromatic number 
give the minimal number of channels needed so that neighboring radio. do not interfere 
with each other. 

Random walks (or more fonnall y, Markov chains) on large networks have many 
applications, For exam ple random walks model the spread of disease or the dispersion 
of infonnation lBGPS06]. The mixing rime of a random walk is the expected number of 
random steps that are required to guarantee that the current distribution is close to the 
stationary distribution. Mixing times are an essential to I in both theory and practice : 
for example , see the recent survey of D iaconis [Oia09] on Markov chai n Monte Carlo 
methods. 

The mixing time for RGG at the connectivity threshold has been detem1ined. For the 
2-dimens ional RGG, Avin and Ercal [AE07] showed that this mixing time is 8 (n log n ). 
More recently, Cooper and Frieze [CF09] proved the analogous resuJt for d ~ 3 and 
actuall y detennine the asymptoticall y correct constant. In this paper, we ·tudy the mix ­
ing times of random walks on 2-dimensional GTGs near the onnectivity threshold. We 
provide a set of cri teria on the distribution of vertex weighls that guarantees that the 
mixing time is 8 ( n log n). 

2 Model 

The GTG model is constructed from of a set of n nodes placed independently in R d 
according to a Poisson point-wise process. A non-negat ive weight Wi, taken randomly 
and independently from a probability distribution function f( w) : R ci ~ R o' is as­
signed to each node Vi fur i E {I \ 2, ... , n}. Let F(x) = J; f( w )dLU be the cumulative 
density function . For two nodes i and j at distance T , the edge (i, j) exi ,ts if and only 
if the follow ing connectivity relation is satisfied: 

( 1) 

where en is a g iven threshold parameter that depends on the size of the network. The 
function h(T) is assumed to be decreasing in T. We use h(T) = T- a , for some positive 
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Q ' , which is typical for e.g., the path-loss model in wireless networks [BK07]. The in­
teraction strength between nodes G( Wi, Wj) is usuaJJy taken to be symmetric and ei ther 
multiplicatively or additively separable , i.e., in the form of G( Wi, 1L'j) = g( wdg( Wj) 

or G(Wil Wj) = g( Wi) + g( Wj). 
Some basic results have already been shown. For the case of uniformly distributed 

nodes over a unit space it has been shown [MMK05,BK07] that the expected degree of 
a node with weight W is 

(2) 

where h- 1 is the inverse of h. The degree distribu tion has been studied for specific 
weight distribution functions ](w) [MM K05]. In both the multiplicative and additive 
case of G (w, w'), questions of diameter, connectivi ty, and topology control have been 
addressed [BK07] . 

Here we restrict ourselves to the case of g(w) = 111 , a = 2, and nodes distributed 
uniformly over a two-dimensional space. For analytical simplicity we take the spa e 
to be a unit torus. We concentrate on the analysis of the additive model, i.e., when the 
connectivity relation for two nodes i and j is given by 

(3) 

3 Bounds on the maximal weight and on the degrees of the nodes 
inGTG 

In Subsection 3.1 we firstly state the upper and lower bounds on the maximal weight in 
GTG . Then, in Subsection 3.2, we proceed by deriving the upper and lower bounds on 
the degrees of the nodes in GTG. 

3.1 Bounds on the maximal weight 

In this subsection we bound the maximal weight of the nodes in the graph. The maximal 
weight satisfies Pr[max W ::; x] = F(x)n, since the weights are distributed indepen­
dently, where F (x ) = Pr[W ::; x] denotes the cumulative density function of the weight 
distribution. 

In the special case of the exponential weight distribution ] (:1:) = e- X we have : 
F (x ) = 1 - e-x and Pr[max ltV ::; :c] = (1 - e-x)n. Let us choose x = clogn, then 
it follows 

Pr[maxW ~ clogn] = 1 - (1 - e-clogn)n 

1 )n 
= 1 - (1 - n

C 

-----t 1- e- n1
-

C

• 
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The la t expression tends to : 1 - l/e, 0, 1, for (' = I, c > 1, c < 1, respectively. 
Thus, for any E > 0, we have Pr[max W 2 (1 + E) log n ] = 0(1) and Pr(max W ~ 
(1 - f) logn] = 0(1). That is, for any E > 0, Pr [maxW E (1 ± E) log n j ~ l. 

Now we consider a general density fu nction f( w) . The goal is to bound max W', 
that is, to find threshold weights 'w~ and w~/, such that Pr[max W ~ w~ ] = 0(1) and 
Pr[max ltV 2 w~/l = 0(1). Let us define the function p(x) := - log (l - F(x)) (that 
is, F(x) = 1 - e-p(x)). If F (x) is continious and increasing (in the case of continuous 
wights without mass points) , then it follows that p(x) is continious and increasing, and 
furthermore, p(O) = 0 nd p( 00) = 00. The following is satisfi ed 

Pr[max W ~ x] = (1 - e-p(x))n 

~ e 'P ( - n/eP(X)) 

= exp ( - exp(log n - p( x)) ) , 

for x ~ 00 , since eP(x) ~ 00. The last expression takes values: 0,1 for p(x) = log n ­
w(l), p(x) = log n + w(l), respectively. Now, let us "invert" p(x) = log n ± u,J(l) , in 
order to obtain thresholds w~ and w~/. From the definition p(x) = -log(l - F (x )) it 
follows p-l(y) = F - 1 (1 - e- Y ). That is the thresholds are given by : 

w~ = P-l(l_ e-(logn-w(l))) = F-1(1- W~l)), 

wI! = F - 1 (1 _ e- (logn+w(l))) = F - 1 (1 __ 1_). 
t nw(l) 

Finally, we have derived w~ and w~/, and it follows 

lim Pr[w~ ~ max W ~ w~/ ] = l. 
n----++oo 

Specifically for the exponential weight distribution, a a double check, F (x) 

(4) 

(5) 

1 - e- x , P -l(X) = -log(l - x), p(x) = x, and p-l(x) = :1; . This gives, w~ 
-log (l - (1 - w(l)/n)) = - log(w(l)/n) = log n - w(l) , and w~/ = log n + w(l ). 

3.2 Bounds on the degrees of the nodes in GTG 

Let us assume that weight distribution satisfies Pr[l¥ 2 xl = O(x-I') , for some r > l. 
Then it follows that whp all nodes in the graph have weights bounded by O(n/ log n). 
That is, Pr[W 2 8 (n/ logn)] = O((log n/np), and by union bound we obtain 

Pr [3v E 11: Wv 2 n/ logn] = O C~~~~) = 0(1). 

This means that the formula for degree distribution d(vlw) r-v Bin(n - L p(w)), where 
probability p(w) = ~L (w+p,) is the function of weight 'W , is valid fOf W = O(n/ log n). 

We consider the GTG 'around the connectivity regime', where gn = en/ log n, that 
is p( 'W ) = 7r:: lO~ n (1 + ljf). Then , for a given weight 11!, the expected degree of a node 

v is E[d(vlw)] = (n - l)p(w). By appJying Chernoff bound the bound on the degree 
distribution fo llows. 
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Claim. If Co > 2c/ (1 - U-), then all nodes in GTG have degrees > hf-L log n . V f-LW - ~ 

Proof The degree distribution of a node v, for a given its weight w , is Bin ( n- l, p( w)). 

Applying Chernoff b und it follows Pr [d( vlw) ::; 2;: log n] ::; exp ( -E[X]52 /2), 

h s: - 2c/cQ 0 F h were u - 1 - 1 + 1!L > . urt ennore 
I' 

[ 
27r f-1 ] Pr d( vlw) ::; ~ log n ::; exp ( -E[X ]52 /2) 

IJK log n w 2c/ Co 

( ( )2) ::; exp ----(n - 1)(1 + -) 1 - --, 
c n IJ 1 --l- ~ 

{1 

(6) 

We now find conditions such that Eq. (6) is o( l /n) for all w ?:: 0 and n sufficiently 
big. For the sake of simplicity let us denote x = 1 + 11 / {', ?:: 1, and consider ¢(x ) = 
l:!2!:.x(l - k )2. It follows that the minimum of ¢ (x) is attained at x = 2c/ Co , and ¢(x) 

C co.]; 
is stric tly decreasing in (0 2c/eo), and furthennore, strictl y increasing in (2c/ co, +(0 ). 

Now, taking 2c/co ::; 1 and ¢(1) = w:: (1- 2c/cO)2 > 1, or equivalently Co > 2c/ (1-
j?) , it follows ¢(x) > 1 for x ?:: l. That is, Eq. (6) is o(l/n) , for suffiCiently large 

Thus, the degree distribution satisfies 

Pr [d(v) ::; 2: logn] = J dwf(w )Pr [d(vlw) ::; 2;; log n] 

I 
_P~(l_1.)(1+1Q)(1_~)2 

::; dwf(u,I)n C " P 1+" 

= o( J dw!(w)n- 1
) 

= o(l/n). 

Now, by the union bound the claim follows. 

Here we derive the interval J 'T G , such that all degrees belong to JCTG whp, that 
is, 

\Iv : d(v) E J ;TO, whp. (7) 

In Section 3.1, we have derived the bounds on the maximal wei ght Eq. (4) and 
Eq. (5), 

1 w( l ) 1 1 p - (1 - -) ::; max lV ::; P - (1 - --). 
n nw (l) 

Furthermore, from continuity of F(x ), that is, from ontinuity of it inverse F - 1(x ), it 
follows that for any E > 0 and any function w(l) , there is sufficiently large n = n (f ), 
such that the upper and lower bounds on max W are arbitrarily close I W~I - w~ I ::; E. 
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In Claim 3.2, we have derived the lower bound on the degrees in GTG. We now ob­
tain the upper bound on the degrees. The degree , of a node having the ma.ximal weight, 
satisfie Binomial distribution Bin (n -1, (nj6ln )(max W + p,)), which is oncentrated 
around its mean (njc)(I-ljn)(max~V + J-L)logn. Thus, whp all degrees ofGTG 
belong to the following interval 

Concretely, we present the following two examples. 

Example 1. JCTG for: ( I) exponential weight pdf and (2) power-law ccdf. 

l. For f( x ) = e- x it follows 

7f 2 
JeTe = [alogn, -(1 + 0(1)) log n], 

c 

2. For F(x) = 1 - X-, where i' > 1, it follows 

(8) 

(9) 

JeTe = [a logn, ~logn.nlhw(l)lh(l+o(I)) l = [alog n , ~nlh+o(l) . (10) 
c c 

4 On the number of the nodes of the certain degree in G TG 

Analogously as in [CF09], let us denote D( k) the number of ertices v with d(v) = kin 
GTG. and let E[D (k)] be its expe ted value . Despite the fact that in [CF09) all degrees 
belong to Je = [allog n, a 210g n] (see page 4, [CF09]), here in the case of GTG, 
we have that degrees satisfy Eq. (8) . That is, the length of Jere is not 8 (logn), and 
thus we need some division different then intervals K Q , K 1 , K2 as in [CF09] (see page 
5 [CF09]). 

Let l = 8 (1) be a constant (l to be chosen later) , such that l = log(b1~;:;ogn), which 

specifies r = \j Ibn . Then we divide JeTe in to bins' a ogn 

B = [ar) log n arj +1 loa' n) ) 'b , 

for j = 0 1 ... , l - 1. That is, the size I B j I = a log n (T - 1) r j . Now we deti ne the 
intervals 

K j = {k E Bj : lj::; E[D (k) ]::; Uj} . 

Applying Union bound and Markov inequality, as in reF], we obtain 

::; L El~(k)l 
leE K ) ) 

= 0 (IKj I ~; ) . 
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Choosing bounds IJ;uJ on E[D (k) ] in K j and a bound tJ on D (k) to be: uJ 
a log n rJ+1r and IJ = a log nrj + 1 II' and tj = (lognrJ+2)2, it gives 

Pr[3k E KJ : D (k) 2 t)] :::; o (~) . 

4.1 Approximations on D(k) a nd E[D(k )] by using the saddle point method 

From the previolls discussion we have Pr[d( vlw) ~ kl = (nk1 )p( w)k (1 - p(w) )n-1-k. 
Thus, the foll owing i satisfied for D (klw), D(k) and E[D (J( )] 

D(klw) = L 1 {d(vlw)=k} (11 ) 
vE V 

D (k) = L j' dwJ(w) l {d(vlw)=k} 
v EV w 

(] 2) 

E[D (k lw )] = L E [l {d(vlw)=k} ] 

vEV 

= L Pr[d(vlw) = k] = n ( n ~ l ) p(W)k(l - p(w)t- 1
-

k (13) 
vEV 

E[D(k)] = Ew [E(D (klw)] = nC ~ 1) i dlllf(w)p(w)k(l - p(w))n- I- '(.14) 

In order to obtain the value of E[D (k) ], we need to evaluate the integral 

i dwJ(W)p(w)k(1 - p(w)r- 1
-

k
. 

To pursue the approximation, we use the saddle point approximation . Let ¢(x) 
n~ 1 In :r + (1 - n~ 1 ) In (1 - x) and the probabi lity density function J (x) be continuous 
functions . By using the saddle point method [B078], we approximate the integral J (n), 

J (n - 1):= J xk(l - x)n-1-kg(x)dx = J J(:r)e(n-l)¢(x )dx. (1 5) 

The followi ng is satisfied ¢I (x) = n~l ± - (1 - n~ 1) l~X' and ¢" (x) = - n ~l /2 -
(1 - n~l) (1-\)2' The maximum of ¢ (.T) is attained at Xo = kl(n - 1) and ¢(xo) = 
- h(kl(n - 1)), ¢"(XO) = - k((:~~~2k)' where 

h(x) = - x logx - (1 - x) log(l - x ), (1 6) 

is the entropy function (log denotes natural logarithm). By [B078] Eq.(6.4.35) we have 
that 

J( 1) 21f (n-1)¢(xo) {f() 1 ( JI/(xo) 
n- ;:;:::: (n-1) 1¢"(xo)l e .. Xo +n- l - 2(jJII (XO) 

j(xo)¢(4) (xo) j'(XO)q/"(XO) _ 5f'(XO)¢III(xo)2 j(xo) ) } 
+ 8¢"(XO)2 2¢"(XO)2 24¢II(XO)2 . (1 7) 
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It follows that 

J (n-1) ~ f( x o) erP (x o) 27f = f(k/n) e- (n-l)h(k/(n-l)) (n - 1)11;"(,1:0)1 
k(n- l - k ) 

27f ( )3' n- 1 

(18) 

We now approximate Eq. (14). by firs tly evaluating the integral 

J = 10 ' ,;;.-1' dwJ( w)p(w)k(1 - p(w) )n--l-k 

Let us denote J (xo, t:) = J:OO~EE dwf(w)p(w)k(l - p(w))n-l-k, From the continuity 

of 1J (x ) and un iqueness of its maximum, it can easily be shown that 

where c5 = maxXE(XO-E,XO+E) (f(xo) - f(x)). Now from the previous analysis for en = 
en / log n it follows 

~ ~~e-(n-l)H(k/(n-l)) 
7f log n 

k(n-l-k) '( (}nk ) 
27f f - J-L 

(n-1)3 ' n(n-1) 

By 1'((~;'!:1) = -; lo~n (1 + 8 (1/n)) and using continuity of f , we finall y obtain 

E[D(k)] ~ n(n -1) ~~e-(n-l)H(k/(n-l)) 
k / n log n 

k(n-1-k)j'( C k ) 27f --- - p, . 
(n - 1)3 ' 7f log n ' 

(19) 

Example 2. (Exponential weight distribution ) We discuss the example of the exponen­
tial weight distribution, i.e ., where the weigh ts are drawn from the exponential distribu­
tion f (w) = e- w

, Let LIS denote A. = ~~(J-L + w) and v = ~,~, then w = A. /v - jJ.. , By 
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using Poisson approximation it follows 

~ j '.CO ).k -A(l+lju) d). 

v · k! , J-1.v 

= ~(1 + l/v)-(k+l) (Xl ().(1 + I/V))k e-A(l+l/v)d). (1 + l/v) 
v· k! } /-Lv(l+ljv) 

= ~(1 + l /v)-(k+l) roo tk e-tdt 
V· k! } /-L(1+v) 

vk r (k + 1; ,u(1 + v)) 
(1 + v)k+l r(k + 1) 

5 Mixing time bound via Canonical Paths 

Our argument is similar to the one found in [CF09]. We use a canonical path argument 
as introduced in [MS96]. For every vertex pair x, y we choose a canonical path l ab 

between them. We define 

1 
P = max ( )P() L 1f(a)1f(b) !"'(ab l 

e={x,y}EE(G) 7f X ::r , Y i'ab3e 

where [''lab [ is the length of the canonical path between a and b. As per [MS96] Propo­
sition 12.1 , the mixing time from vertex x satisfies 

5.1 Canonical paths on the toric grid 

For the moment, let 's talk about creating canonical paths on the toric k x k grid. We 
want to ensure that every edge appears in roughly the same number of paths. (We'll 
show how to adapt thi s to GTG later.) The (two phase) path from (a , b) to (c, d) will be 

(a, b), (a + 1 mod k, b), . .. , ( ., b), (c, b + 1 mod k) , . . . , (c. d). 

Note that we always increment the index by + 1 (even if there is a shorter path) . While 
there are k4 canonical paths, each edge appears in at most k 3 of them. Indeed jf the 
canonical path from (a, b) to (c,d) traverses the edge ((i,j),(i + l, j) then b = j , 
leaving at most k3 choices for a , c, d. Similarly, if we traverse the edge (( i, j), (i, j + 1) 
then i = c, leaving k 3 choices for a, b, d. 

Furthermore, the maximum length of a path is 2k. 
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5.2 Choosing the grid size 

We assume that there are a n high weight vertices and (1 - O' )n low weight vertices. Let 

r c = V log n denote the critical radius for the high weight vertices. We divide the unit (urn 

torus into a grid whose squares have side length Jsrc . This makes a e(r~l) x e(r~ l) 
grid. 

Let Si denote a square in this grid. Consider 'high-weighted ' (blue) vertices (' high­
weighted ' vertices are the vertices with weights 2: F -1 (1 -0'). By the Chemoffbound 
in each Si there are Hi = 8 (log n) blue vertices whp 

Pr [B i 2: (1 - 5)aco log n] 2: 1 - n acoo2/2 (20) 

Now, the probability that every S i has at least (1 - 5) O'co blue vertices, as IL ---t 00 IS 

given by 

nl-acno2/2 

---t exp{ }, (22) 
Co logn 

since the vertices are tossed over the squares independently. Since 0: , Co, 5 are constants , 
the last expression, Eq. (22) tends to 1, as far as 

(23) 

Similarly, there are 8 (log n) low weight nodes in each square. We summarize these two 
observations in the follow ing claim. For each square 5 let £ (S) denote the low weight 
nodes and let H (S) denote the high weight nodes. 

Claim. Whp, there exist constants Co, Cl such that every square S satisfies 

Co log n S IL (S)I S '1 log n 

Co log n S 1 H ( S) 1 S ('1 log n 

We turn our attention to the connections between adj acent , quares in our grid. High 
weight nodes in adjacent squares are adjacent in the GTG, 

Claim. For any two 'neighboring ' squares Si and Sj there are n (l g2 n) interconnec­
tions between them , That is, the number of edges that connect blue vertices from S i and 
blue vertices from Sj is at least 

((1 - 5) aco log n) 2. (24) 

Proof Let Si and Sj be two ne ighboring squares, as stated above. Let us onsider 
any bJue vertex bi E Si and any blue vertex bj E Sj, with the weights tObi and Wb}, 
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respectively. T he distance between bt and bj is at most J5 0 log nln. Con ider the 
connectivity relation 

p -l( l - a ) n 

Co log n 
(25) 

Then it follows, that any two blue vertices bi E 8 i , bJ E 8 j are connected with proba­
bility one if 

(26) 

5.3 Canonical paths for GTG 

The general idea for GTG is to use the k x k toric grid with k = 5r;1 as a guide 
for how to connect pairs of vertices. We turn these toric paths into canonical paths 
for out GTG by chasing a high random weight vertex in each square of the path . The 
independence of these choices guarantees that whp 'no particular edge is u ed more 
than 8 (k3) = 8 (r;3) = 8 ((n/ 10gn)3/2) times. 

Here is the randomized procedure that guarantees our bound on max . EEl { lab leE 
lab }l . For each square S , partition L(8) evenly into H (S) sets . So each set in the 
partition will contain either led coJ or I cd Co l low wei ght vertices. Associate each set 
in the partition to a unique high weight vertex. 

For every vertex pair (x, y) : 

I. Say x E Sa.b and y E Sc,d: 
2. Use the tone glid to identify the sequence of squares in the canonical path : 

S a.b , Sa+l,b, . .. , Sc,b, Sc.b+l, ... S'c,d. For simplicity, call these squares So" 1 ,· .. , S t. 
3. If x is a high weight vertex, set Xo = x. Otherwise set ~r o to be the high weight 

vertex associated to ~; . 

4. For 1 :S i :S t - 1, choose Xi+l to be a random high weight node in "i. 
S. If y is a high weight vertex. set X t = y. Otherwise set Xt to be the high weight 

vertex associated to y. 
6. Connect x to Xo (if x -I- xo)· 
7. For 0 :S i < t , connect ;Ci to X i+l. 

8. Connect Xt to y (if y -I- Xt ) . 

Let the random variable Z xy denore the number of times the edge xy is chosen. 
First, suppose that x is low weight and y is high weight. U nless x and y are in the same 
square, ZXY = O. When x and y are in the same square, then Z x y is chosen if and only 
if the canonical path has x as one of its endpoints. There are n - 1 = o( r; 3) such paths . 

N w suppa e that both x and y are high weight vertices. There are a number of 
cases, 

Case 1: x and y are in the same square. There are at most (1 + rcl / cOl )2 = 0 (1) 
canonical paths that use the edge X'.lJ . The endpoints of these paths mu t be 1: y or ne 
of the low weight nodes associated to either x or y. 

Case 2: x E S l and y E S2 are in adjacent squares. Here there are a number of 
subcases for the path types. Let 

P( S l , S2) = {Iabbab traver es from S1 to 5 2}. 
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1. The canonical path stam and ends in 51 and 5 2. There are (1 + r cl 1 cO l ) 2 = 0 (1 ) 
such paths (similar to Case 1) 

2. The canonical path starts and ends outs ide of both 5 1 and 82 • This means that both 
x and y were chosen randomly to real ize the toric canonical path . Let Z~b denote 
the number of such events . Let 

Then 

(
C1 ) 2 .- 3 

7 L • 

Co 

Indeed. the number of toric paths that pass from 51 to 52 is O (r;3). Each toric 
path corresponds to at most (C1 log n)2 paths in the GTG. Since both x and y are 
internal vertices of these paths, they were both chosen un iformly and indep ndently 
with probabili ty at most 11 Co log n. 
Now we must use tight concentrati on and a union bound to show that all edges are 
used O (7·~3 ) times. Using Chernoff for this binomial di tri bution. 

The union bound DOW gives 

Pr [!\a,b ( I Z~,b - E (Z' [a, u])1 2: EE(Z~,b)) ] 

~ L Pr [ IZ~,b - E(Z'[a, b]) 1 2: fE ( Z~.b) 1 
a.b 

Therefore whp, every edge between high weight vertices in adjacent squares is used 
by (1 ± E)r; 3 = G((nl 10gn)3/2) canonical paths . 

3. The path starts in S1 and does not end in 5 2. The tOlal number of such edges is 
O(n). Indeed, the number of start vertices in 5 1 who c nneet to 52 via a fixed high 
weight vertex is at most 1 + icd Co l. There are O( n) end vert ices for path that 
must leave S 1. 

4. The path ends in 52 and does nOI start in S1. By an argument analogous to the 
previous case, the total number of such edges is O( n) . 

Our conclus ion is that the 2.2 case above i the dominant one. Therefore the maxi­
mum usage of any edge is 8 ((nl logn)3/ 2). 
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5.4 The dominant term for canonical paths 

Let B denote the set of all low weight nodes in the GTG. Let p(B B ) denote the 
contribution to p of paths between low weight nodes . We have 

1 (J 1ogn ) ( 1 )2/i!i p(B,B ) rv -1- -o'nlogn (exn log n) -1 -1 
n ogn n og n og n 

ex 2 n 
logn· 

Indeed, we have 1/21EI = G(nl ogn ),. A strip of width )logn/n contain ' V lo~n exn log n 
low weight nodes. These nodes have degree G (n). The next tenn states that every low 
weight node is a potential end point, each one contributing G (log n) for its degree. The 
(log n ) -2 reflects the random choice of edge to traverse from one square to the next. 
Finally, every canonical path has length O ( ) n/ log n). 

We will see be low that thi is indeed the dominant tenn when calculating p. So w 
will obtain 

n -1 
T x (f) ::;::; n + -- log f . 

logn 

6 Canonical paths argument for the exponential distribution 

For now, we limit cur argument about high weight nodes to the exponential distribution. 
We will extend this argument to hold for general distributions. 

6.1 Using the Gamma Function to calculate the total number of edges 

We consider f( w) = e- w . We know that whp all weights less than log n. This means 
that the whp the degrees are in 

[log n, (log n) 2]. 

Each weight is governed by the exponential distribution Pr( w ::; ::r; ) = 1 - e- x. So 
the sum of the weights is governed by the gamma distribution T (n, 1). We have Mr = n 
and o-} = n. 

We know that 21 EI = Lv deg(v) ::;::; 2:v Wv logn = 1 gn 2:v W v· 
Using Chebycheff, we have X = Lv Wv rv T(n, 1) and 

So whp, 

1 
Pr (IX - nl ;:::: n) ::; -. 

n 

21EI = G(nlogn). 
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6.2 Partitioning the weights 

We know that whp, all weights are smaller than 2 10g n. We have picked 0 < Q' < 1 so 
that a n nodes have degree e (log n). Tn particular, they all have weight no greater than 
log( l / a ) > 1 whp. We are turn our attention to the nodes with weights in [log(l/ 0: ), 2 log n]. 

We divide th is interval into subregions as follows. Let 

'Wo = 2 10g n 

Wk = min{2 1og(ak_l), log(l/a)} 

The Wk are only defined until we reach log (l/o:). Call this fina l index M. The iter­
ated log function log* n is the number of times we mu t iteratively apply the log func­
tion so that the result is less than 1. This slowly growing fllnction satisfies 1 g* n = 

o(log log n). Our partition consi ts of IvI ::; log* n sub intervals of the form [Wk ' W k - l ] . 

Note that ex p(wk) = Wk-l for 1 ::; k ::; 1\;1 . Let Ak be the set of nodes with weights in 
interval [Wk. Wk-l]. Then 

By the Chebychev inequality, the actual value is tightly concentrated around its mean. 
We also know that the degree of each of the nodes in Ak is 0 ((1 + w) log n ) = 
O (Wk-llogn). 

6.3 Canonical paths involving high weight nodes 

Our previous argument for low weight nodes still holds. These nodes have degree 
8 (log n) and the total number of edges is O (n log n). We must extend our argument 
to handle the high weight nodes. In particular, we show that the " low weight to low 
weight" nodes are the domi nan t case. 

We focus on the usage of the randomly chosen edge between squares. Recall that 

1 
P = max ()P() L n(a)n(b) h abl 

e={x.Y}EE(G) n X x , '!J 
I'nb3 

1 
max - lE I L deg( a ) deg(b) h iabl 

e={x.y}EE(G) 2 
l'ab 3 e 

where we make use of the fac t that for an undirected graph , the stationary distribution 
of a node is proportional to its degree . 

We make a small digression . We have partitioned the square into a grid structure, 

where each subsquare has side length e ( V lo~ n ). If we look at how many nodes in 

Al are in a g iven square , we get 

( lOg n~) = 0 (1) 
n Wo 
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which is problematic . Lucki ly, we do not care about particular squares! For example, 
let us fix a horizontal edge (x, y) between squares. Let '11, v E Ao. If a canonical (v , 'u)­
path is el igible to use this edge, the node '/1 must be in the same row as both x and y. 

This means we are interested in a strip with area Jlo~n. The number of nodes in Al in 

such a strip is 

o ( ~!!.-) = 0 ( rI.) V --:;:- Wo V log n 

which is most certainly concentrated ! As for the node v, we place no re trictions . So 
the contribution to p from paths between nodes in Ao is roughly 

p( Ao ,Ao) f'.J -1_1- ( JIOgn n2 (IOgn)Wo) (~(lOgn)wo) (_1_)2 J n 
n ogn n Wo W5 Iog n logn 

n n 
= w5 10g n rv (log n)3 ' 

Now let's consider the more general case where '/1, E AT and v E As. 

p( A
1

. , As) rv _1_ (JIOgn n
2 

(lOg'fl)WT ) ( ~(logn)w )\ ('_1_)2 J n 
n logn n wT w; S log n Iog n 

n 

The final new case to consider i when the first node is low weight and the second node 
is high weight. Let's use B to denote the set of low weight nodes. 

p( B,As) rv -1_1- (JIOgnomIOgn\ ( n
2

(logn)ws ) (_11_)2 VI n 
n og n n ) W s \ og n og n 

an 
wslogn' 

I N oW all of these terms are o( n / log n). Furthermore, there are a total of 0 ( (1 + 
Iog* n) 2) such pairings of various types of nodes. The total contribution i 

an, MIn M M 1 ( n ) 
rv logn L Wi + logn 2: L WJWk = 0 Iog n . 

z=l J=lk=l 

In other words, the paths between low weight nodes are the dominant term in the cal­
culation of p, and our previous result is still valid . 
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