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MODELING OF THE NONLINEAR RESONANT 
RESPONSE IN SEDIMENTARY ROCKS 
Vyacheslav O. Vakhnenko 
Subbotin Institute of Geophysics, 63-B B.Khmel'nyts'ky Street, Kyiv 01054, Ukraine, e-mail: 
vakhnenko@ukr.net 

Oleksiy O. Vakhnenko 
Bogolyubov Institute for Theoretical Physics, 14-B Metrologichna Street, Kyiv 03143, 
Ukraine 

James A. TenCate and Thomas J. Shankland 
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 

We suggest a model for describing a wide class of nonlinear and hysteretic effects in sedi­
mentary rocks at longitudinal bar resonance. In particular, we explain: hysteretic behaviour of 
a resonance curve on both its upward and downward slopes; linear softening of resonant fre­
quency with increase of driving level; gradual (almost logarithmic) recovery of resonant fre­
quency after large dynamical strains; and temporal relaxation of response amplitude at fixed 
frequency. Starting with a suggested model, we predict the dynamical realization of end-point 
memory in resonating bar experiments with a cyclic frequency protocol. These theoretical 
findings were confirmed experimentally at Los Alamos National Laboratory. 

1. Introduction 

Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which 
each grain is much harder than the intergrain cementation material l

. The peculiarities of grain and 
pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by 
rocks, both at quasistatic and alternating dynamic loadingl

-
4

. Thus, the hysteresis earlier established 
for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also 
been discovered for the relation between acceleration amplitude and driving frequency in bar­
shaped samples subjected to an alternating external drive that is frequency-swept through reso­
nance. At strong drive levels there is an unusual, almost linear decrease of resonant frequency with 
strain amplitude, and there are long-term relaxation phenomena such as nearly logarithmic recovery 
(increase) of resonant frequency after the large conditioning drive has been removed. 

In this report we present a short sketch of a model5
,6 for explaining numerous experimental 

observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a 
broad set of experimental data can be understood as various aspects of the same internally consis­
tent pattern5

,6 . Furthermore, the suggested theory will be shown to predict the dynamical realization 
of hysteresis with end-point memory, figuratively resenlbling its well-known quasistatic proto­
type4.7,8. 
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2. Model of resonant oscillations 

A reliable probing method widely applied in resonant bar experiments is to drive a horizon­
tally suspended cylindrical sample with a piezoelectric force transducer cemented between one end 
of the sample and a massive backload, and to simultaneously measure the sample response with a 
low-mass accelerometer attached to the opposite end of the b~,4. The evolution equation for the 
field of bar longitudinal displacements u as applied to above experimental configuration we write 
as follows 

(1) 

Here we use the Stokes internal friction associated with the dissipative function 
:5 = (r / 2)[a2u / axat ]2 . The quantities p and r are, respectively, mean density of sandstone and 

coefficient of internal friction. The stress-strain relation (a-au / ax) we adopt in the form 

E sechr; a = ---- ---'-----
(r - a ) [cosh r; au / a x + l]a + 1 

Esechr; 
(2) 

(r - a) [coshr; au / ax+ IJr + 1 ' 

which for r > a > 0 allows us to suppress the bar compressibility at strain au / ax tending toward 

+ 0 - sech17 . Thus, the parameter cosh 17 is assigned for a typical distance between the centers of 

neighboring grains divided by the typical thickness of intergrain cementation contact. 
The indirect effect of strain on Young's modulus E, as mediated by the concentration c of 

ruptured intergrain cohesive bonds, is incorporated in our theory as the main source of all non­
trivial phenomena. We introduce a phenomenological relationship between defect concentration 
and Young's modulus. Intuition suggests that Emust be some monotonically decreasing function 
of c, which can be expanded in a power series with respect to a small deviation of from its un­
strained equilibrium value co' To lowest informative approximation we have 

E = (1 - C / c cr )E + . (3) 

Here ccr and E+ are the critical concentration of defects and the maximum possible value of 

Young's modulus, respectively. The equilibrium concentration of defects c
G 

associated with a stress 

a is given by 

(4) 

where the parameter v > 0 characterizes the intensity of dilatation. Although formula (4) should 
supposedly be applicable to the ensemble of microscopic defects in crystals, it was derived in the 
framework of continuum thermodynamic theory that does not actually need any specification of 
either the typical size of an elementary defect or the particular structure of the crystalline matrix. 
For this reason we believe it should also work for an ensemble of mesoscopic defects in consoli­
dated materials, provided that for a single defect we understand some elementary rupture of inter­
grain cohesion. The approximate functional dependence of Co on temperature T and water satura-

tion s based on experimental data was treated in refs.5
,6. 

In order to achieve reliable consistency between theory and experiment we have used the con­
cept of blended kinetics, which finds more-or-less natural physical justification in consolidated ma­
terials6

• The idea presents the actual concentration of defects c as some reasonable superposition of 
constituent concentrations g , where each particular g obeys rather simple kinetics. Specifically, 

we take the constituent concentration g to be governed by the kinetic equation: 
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(5) 

Here J.1 = Jio exp( - U / kT) and v = v 0 exp( - U / kT) are the rates of defect annihilation and defect 

creation, respectively, and B(z) designates the Heaviside step function . A huge disparity Vo » Jlo 

bet\veen the priming rates (attack frequencies) Vo and Jio is assumed, notwithstanding the native 

cohesive properties of cementation material. Typical resonant response experiments1
,2,4 correspond 

to forced longitudinal vibration of a bar, which we associate with the boundary conditions: 

t 8 2 

u(x = 0 It) = D(t)cos(tp + fdrm(r )), a(x = L It) + r - u-(x = L it) = 0 , 
o 8x8t 

where L is sample length, and D(t) is driving amplitude. Initial conditions are 

8u 
u(x I t = 0) = 0, al(x It = 0) = 0, g(x I t = 0) = co ' 

3. Computer simulation and comparison with experiment 

(6) 

(7) 

Computer modeling of nonlinear and slow dynamics effects was performed in the vicinity of 
the resonance frequency f o (2) , which we choose to be the second frequency ( I = 2) in the funda-

mental set, 

(l = 1, 2,3, ... ). (8) 

Figure I shows typical resonance curves, i.e., dependences of response amplitudes R (calculated at 
x = L ) on drive frequency f = m / 2:r , at successively higher drive amplitudes D . Solid lines cor-

respond to conditioned resonance curves calculated after two frequency sweeps were performed at 
each driving level in order to achieve repeatable hysteretic curves. The dashed line illustrates an 
unconditioned curve obtained without any preliminary conditioning. Arrows on the three highest 
curves indicate sweep directions. 
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Figure 1. Resonance curves j = 0, 1, 2, 3, 4, 5 at 
successively higher driving amplitudes 
Dj = 3.8(j +O.28jo ) lO -8L . The time to sweep 

back and forth within the frequency interval 
3700 - 4 100Hz is chosen to be 120s . 

3800 3840 3880 3920 3960 4000 
Frequency (Hz) 

Figure 2. Experimental resonance curves (see 
reference2

) . 

To improve the illustration, results of the computer simulations were adapted to experimental 
conditions appropriate to the data obtained by TenCate and Shankland for Berea sandstone2

• In par-
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ticular, L = 0.3m , 10(2) = 3920 Hz , vE+ / kcoshl] = 275 K , cosh17 = 2300 , a = 2 , r = 4 . For com­

parison the experimental resonance curves from ref. 2 are shown in Fig. 2. The shift of resonance 
frequency as a function of drive amplitude D was found to follow the almost linear dependence 
typical of materials with nonclassical nonlinear response, i.e. , materials that possess all the basic 
features of slow dynamics (see refs.5,6 for more details). 

Apart from the reason mentioned earlier, measurements of temporal relaxation of acceleration 
amplitude at fixed frequency provide experimental documentation of how a rock gradually loses 
memory of the highest strain2

, and they thus elucidate the most interesting aspects of bond restora­
tion kinetics. Figure 3 show theoretical relaxation curves that correctly reproduce the main features 
of the experiments (Fig. 4). As in the experiments the simulated respon~e amplitude gradually de­
creased when the stopping frequency was lower than the resonant frequency (see Figs. 3(a), 3(b)) 
and increased when the stopping frequency was higher (see Figs. 3(c), 3(d)). Moreover, after ap­
proximately 1 0 min of relaxation the relaxation curves at a particular stopping frequency ap-

proached a long term level corresponding to the unconditioned part of the initial resonance curve 
whether or not the upward or downward preceding sweep was selected. 
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Figure 3. Response amplitude R at driving 

amplitude D = 1.9 .10-7 L and fixed frequency 

(a,b) h = 3825 Hz, (c,d) Is = 3900Hz. 
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Figure 4. Experimental results from refer­
ence2

. 

To reproduce another experimental facet of recovery time2 we varied the previous simulations 
by stopping the sweep and simultaneously turning off the drive for 30s with the sweep moving 

downward (Fig. 5(a») or upward (Fig. 5(b») from an already conditioned resonance. In a relatively 
short time (tens of seconds) the memory of the high strain amplitude rock had experienced at reso­
nance diminished far more quickly than when the drive was left on. According to the kinetic Eq. (5) 
this distinction finds its rational explanation in a more favorable regime for defect annihilation un­
der zero stress a = 0 in comparison with the regime governed by the oscillating stress of a consid­
erable amplitude (though lesser than that at resonance). Figure Sea) displays the resonance curves 
obtained by the continuous sweep in upward followed by a sectionally continuous sweep down­
ward. Figure 5(b) shows the complementary curves obtained by a continuous sweep downward fol­
lowed by a sectionally continuous sweep upward. Effects of quick recovery (increase) of bar 
modulus E while sweep and drive were stopped are clearly seen as discontinuities in the curves. At 
stopping frequencies below resonance response amplitude drops closer to the first (recovered) up­
ward-swept curve marked on Fig. 5(a) by the dashed line. At stopping frequencies above resonance 

4 



16th International Congress on Sound and Vibration, Krakow, Poland, 5- 9 July 2009 

response amplitude jumps closer to the first (recovered) downward-swept curve marked in Fig. 5(b) 
by the dashed line. 
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Figure 5. During the downward sweep both 
drive and sweep were turned off simultane­
ously for 30s at fixed frequency (a) 

f s = 3825Hz, (b) is. = 3900Hz. 
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Figure 6. Experimental resonance curves (see 
reference2

), 

A qualitative view of these jumps comes from the indirect impact of strain on bar modulus 
through the concentration of defects. During the period of time when the sweep is approaching and 
passing resonance strain intensity becomes substantial causing a corresponding generation of de­
fects, and the modulus decreases. This effect is manifested as a shift of resonance curve downward 
in frequency when the sweep has already passed resonance. If the drive and sweep are then turned 
off, the strain vanishes causing progressive annihilation of defects so that modulus increases. As a 
consequence the part of resonance curve, tracked after drive and sweep have been resumed, moves 
back (i.e., upward in frequency) as memory of the high strain is lost. 

Figure 7 shows the gradual recovery of resonant frequency f r to its maximum limiting value 

f o after the bar has been subjected to high amplitude conditioning and conditioning was stopped. 

We clearly see the very wide time interval 1 0 ~ (I - t e) / to :::;; 1000 of logarithmic recovery of the 

resonant frequency (Fig. 7), in complete agreement with experimental results IO (Fig. 8). Here te is 

the moment when conditioning switches off and to = Is is the time scaling constant. Curves 

j = 1,2,3 on lower Fig. 7 correspond to successively high water saturations S j = 0.05(2j - 1) . 

4. Dynamical realization of end-point memory 

The question of whether an effect similar to the end-point (discrete) memory that is observed 
in quasi-static experiments with a multiply-reversed loading-unloading protocol (see refs.7-

9 and 
references there) could also be seen in resonating bar experiments with a multiply-reversed fre­
quency protocol has been raised in ref. 6 and was first examined theoretically. The graphical results 
of this investigation are presented in Fig. 9 (see also Fig. 16 in ref.6

). The model constants are given 
in ref. 6• One of the features of dynamical end-point memory, defmed here as the memory of the 
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previous maximum amplitude of alternating stress, is seen as small loops inside the major loop. The 
starting and final points of each small loop coincide, which is typical of end-point memory. 
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Figure 7. Recovery of resonant frequency Ir 
to its maximum limiting value j~. Numerical 

result. 

TIME .. 
2 

~ 
e 
~ 1 .5 

e 
R 1 

i 
0.5 

300S 3010 3015 

F'~ney (Hz' 

: I 

Figure 8. Recovery of resonant frequency Ir 
to its maximum limiting value 10. Experi­

mental results from reference 10. 

Following the theoretical results, shown in Fig. 9, we performed experimental measurements 
to verify our prediction. The sample bar was a Fontainebleau sandstone and the drive level pro­
duced a calculated strain of about 2 · 10--6 at the peak. Figure 10 shows the low frequency sides of 
resonance curves that correspond to the frequency protocol given on inset of Fig. 10. We clearly see 
that the beginning and end of each inner loop coincide, i.e., a major feature of end-point memory. 
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Figure 9. Manifestation of end-point memory in dynamic response with a multiply-reversed frequency 
protocol. 

The experimental results for the Fontainebleau sandstone shown in Fig. 10 were reproduced 
by using our model equations thougb with constants (including a state equation) developed for 
Berea sandstone5

,6. We note the good qualitative agreement between the experimental (Fig. 10) and 
the theoretical (Fig. 11) curves suggesting that our physical model is appropriate for both sand­
stones. 

Hence, the suggested model enables us to describe correctly a wide class of experimental facts 
concerning the unusual dynamical behaviour of such mesoscopically inhomogeneous media as 

6 
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sandstones. Moreover, as it is shown below, we have predicted the phenomenon of hysteresis with 
end-point memory in its essentially dynamical hypostasis. These theoretical findings were con­
firmed experimentally at Los Alamos National Laboratory. 

Figure 10. The low frequency sides of ex­
perimental resonance curves for F ontaine­
bleau sandstone. 
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