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We suggest a model for describing a wide class of nonlinear and hysteretic effects in sedi-
mentary rocks at longitudinal bar resonance. In particular, we explain: hysteretic behaviour of
a resonance curve on both its upward and downward slopes; linear softening of resonant fre-
quency with increase of driving level; gradual (almost logarithmic) recovery of resonant fre-
quency after large dynamical strains; and temporal relaxation of response amplitude at fixed
frequency. Starting with a suggested model, we predict the dynamical realization of end-point
memory in resonating bar experiments with a cyclic frequency protocol. These theoretical
findings were confirmed experimentally at Los Alamos National Laboratory.

1. Introduction

Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which
each grain is much harder than the intergrain cementation material'. The peculiarities of grain and
pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by
rocks, both at quasistatic and alternating dynamic loading' ™. Thus, the hysteresis earlier established
for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also
been discovered for the relation between acceleration amplitude and driving frequency in bar-
shaped samples subjected to an alternating external drive that is frequency-swept through reso-
nance. At strong drive levels there is an unusual, almost linear decrease of resonant frequency with
strain amplitude, and there are long-term relaxation phenomena such as nearly logarithmic recovery
(increase) of resonant frequency after the large conditioning drive has been removed.

In this report we present a short sketch of a model™® for explaining numerous experimental
observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a
broad set of experimental data can be understood as various aspects of the same internally consis-
tent pattern™®. Furthermore, the suggested theory will be shown to predict the dynamical realization
of h%sgeresis with end-point memory, figuratively resembling its well-known quasistatic proto-
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2. Model of resonant oscillations

A reliable probing method widely applied in resonant bar experiments is to drive a horizon-
tally suspended cylindrical sample with a piezoelectric force transducer cemented between one end
of the sample and a massive backload, and to simultaneously measure the sample response with a
low-mass accelerometer attached to the opposite end of the bar™*. The evolution equation for the
field of bar longitudinal displacements u as applied to above experimental configuration we write
as follows

(D)

*u 8o 0 63
Pan = as to| Bente i Buabiny |
o’ dx  0Ox| 8(0%u/ bxodr)

Here we wuse the Stokes internal friction associated with the dissipative function
I =(y/2)[0°u/0x0t]*. The quantities p and y are, respectively, mean density of sandstone and
coefficient of internal friction. The stress-strain relation (o —0u/0dx) we adopt in the form

Esechn Esechn

o=

- - 9 (2)
(r—a) [coshn du/dx+11%+L  (r—a)[coshn Bu/dx+1] +1

which for » >a >0 allows us to suppress the bar compressibility at strain du/0x tending toward
+0-sechn . Thus, the parameter cosh# is assigned for a typical distance between the centers of
neighboring grains divided by the typical thickness of intergrain cementation contact.

The indirect effect of strain on Young's modulus £, as mediated by the concentration ¢ of
ruptured intergrain cohesive bonds, is incorporated in our theory as the main source of all non-
trivial phenomena. We introduce a phenomenological relationship between defect concentration
and Young's modulus. Intuition suggests that £ must be some monotonically decreasing function
of ¢, which can be expanded in a power series with respect to a small deviation of from its un-
strained equilibrium value ¢, . To lowest informative approximation we have

E=(-clc,)E,. (3)

Here ¢, and E, are the critical concentration of defects and the maximum possible value of
Young's modulus, respectively. The equilibrium concentration of defects ¢, associated with a stress
o is given by

¢, =c,exp(vo/kT), 4)

where the parameter v >0 characterizes the intensity of dilatation. Although formula (4) should
supposedly be applicable to the ensemble of microscopic defects in crystals, it was derived in the
framework of continuum thermodynamic theory that does not actually need any specification of
either the typical size of an elementary defect or the particular structure of the crystalline matrix.
For this reason we believe it should also work for an ensemble of mesoscopic defects in consoli-
dated materials, provided that for a single defect we understand some elementary rupture of inter-
grain cohesion. The approximate functional dependence of ¢, on temperature 7" and water satura-

tion s based on experimental data was treated in refs.>®.

In order to achieve reliable consistency between theory and experiment we have used the con-
cept of blended kinetics, which finds more-or-less natural physical justification in consolidated ma-
terials®. The idea presents the actual concentration of defects ¢ as some reasonable superposition of
constituent concentrations g, where each particular g obeys rather simple kinetics. Specifically,

we take the constituent concentration g to be governed by the kinetic equation:
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oglot=—{ub(g-g,)+vo(g, —g)g-g,)- &)

Here p=p,exp(-U/kT) and v =v, exp(-U/kT) are the rates of defect annihilation and defect
creation, respectively, and #(z) designates the Heaviside step function. A huge disparity v, >> g,

between the priming rates (attack frequencies) v, and g, is assumed, notwithstanding the native

cohesive properties of cementation material. Typical resonant response experiments'** correspond

to forced longitudinal vibration of a bar, which we associate with the boundary conditions:

u(x=0|1)= D(t)cos((0+Jdm)(r)) o(x= L|t)+;/aa (x=L|t)=0, (6)

where L is sample length, and D(¢) is driving amplitude. Initial conditions are

x| =0)=0, g—?(xlt=0)=0, glx|t=0)=¢c;. (7)

3. Computer simulation and comparison with experiment

Computer modeling of nonlinear and slow dynamics effects was performed in the vicinity of
the resonance frequency f;(2), which we choose to be the second frequency (/ =2) in the funda-

mental set,

fo(l)—ﬂ\/(l el )E1p  (I=123,.). )

Figure 1 shows typical resonance curves, i.e., dependences of response amplitudes R (calculated at
x=L) on drive frequency f =w/2x, at successively higher drive amplitudes D . Solid lines cor-
respond to conditioned resonance curves calculated after two frequency sweeps were performed at
each driving level in order to achieve repeatable hysteretic curves. The dashed line illustrates an
unconditioned curve obtained without any preliminary conditioning. Arrows on the three highest
curves indicate sweep directions.

g

Acceleration (m/s?)
g &

250
100
0 - . = = =3
3800 3850 3900 3950 4000 3800 3840 3880 3920 3960 4000
Driving frequency (Hz) Frequency (Hz)
Figure 1. Resonance curves j=0,1,2,3,4,5 at Figure 2. Experimental resonance curves (see
; p 2 2 ; 2
successively  higher driving amplitudes reference®).

D, =3.8(j+0.25,)10" L. The time to sweep

back and forth within the frequency interval
3700—-4100Hz is chosen to be 120s.

To improve the illustration, results of the computer simulations were adapted to experxmental
conditions appropriate to the data obtained by TenCate and Shankland for Berea sandstone’. In par-




16" International Congress on Sound and Vibration, Krakéw, Poland, 5-9 July 2009

ticular, L=0.3m, f,(2)=3920Hz, vE, /kcoshn=275K, coshn=2300, a=2, r=4. For com-

parison the experimental resonance curves from ref.” are shown in Fig. 2. The shift of resonance
frequency as a function of drive amplitude D was found to follow the almost linear dependence
typical of materials with nonclassical nonlinear response, i.e., materials that possess all the basic
features of slow dynamics (see refs.” for more details).

Apart from the reason mentioned earlier, measurements of temporal relaxation of acceleration
amplitude at fixed frequency provide experimental documentation of how a rock gradually loses
memory of the highest strain®, and they thus elucidate the most interesting aspects of bond restora-
tion kinetics. Figure 3 show theoretical relaxation curves that correctly reproduce the main features
of the experiments (Fig. 4). As in the experiments the simulated response amplitude gradually de-
creased when the stopping frequency was lower than the resonant frequency (see Figs. 3(a), 3(b))
and increased when the stopping frequency was higher (see Figs. 3(c), 3(d)). Moreover, after ap-
proximately 10min of relaxation the relaxation curves at a particular stopping frequency ap-

proached a long term level corresponding to the unconditioned part of the initial resonance curve
whether or not the upward or downward preceding sweep was selected.

" 1 P ‘gm @ D:' ] (©
et .) ..'& 1 .—-—-"'_’P-_’—; = a1 hw'
: YN o (N - '
- | | o Itl W g bf l L
4 — - N 4 A
7 33 i e I 30 "
34 38 - ' 32
t '}\._\ | : ] (b) 1 (d)
i T S ub |
4|I | / : E " |
5 -".l 1 21 l:' 4 5 ]
5 4 -: | 5 -
| \ - A § - -
il 1
&l '—‘___‘ /‘ \

0 200 400 600°°
Time (s) Time (s)

Trre s Trels

Figure 3. Response amplitude R at driving Figuzre 4. Experimental results from refer-
amplitude D =1.9-10" L and fixed frequency WLER
(a,b) f, =3825Hz, (c,d) f, =3900Hz.

To reproduce another experimental facet of recovery time? we varied the previous simulations
by stopping the sweep and simultaneously turning off the drive for 30s with the sweep moving

downward (Fig. 5(a)) or upward (Fig. 5(b)) from an already conditioned resonance. In a relatively
short time (tens of seconds) the memory of the high strain amplitude rock had experienced at reso-
nance diminished far more quickly than when the drive was left on. According to the kinetic Eq. (5)
this distinction finds its rational explanation in a more favorable regime for defect annihilation un-
der zero stress o =0 in comparison with the regime governed by the oscillating stress of a consid-
erable amplitude (though lesser than that at resonance). Figure 5(a) displays the resonance curves
obtained by the continuous sweep in upward followed by a sectionally continuous sweep down-
ward. Figure 5(b) shows the complementary curves obtained by a continuous sweep downward fol-
lowed by a sectionally continuous sweep upward. Effects of quick recovery (increase) of bar
modulus £ while sweep and drive were stopped are clearly seen as discontinuities in the curves. At
stopping frequencies below resonance response amplitude drops closer to the first (recovered) up-
ward-swept curve marked on Fig. 5(a) by the dashed line. At stopping frequencies above resonance
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response amplitude jumps closer to the first (recovered) downward-swept curve marked in Fig. 5(b)

by the d%shed line.
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Figure 5. During the downward sweep both Figure 6. Experimental resonance curves (see
drive and sweep were turned off simultane- reference?).

ously for 30s at fixed frequency (a)
f, =3825Hz, (b) f, =3900Hz.

A qualitative view of these jumps comes from the indirect impact of strain on bar modulus
through the concentration of defects. During the period of time when the sweep is approaching and
passing resonance strain intensity becomes substantial causing a corresponding generation of de-
fects, and the modulus decreases. This effect is manifested as a shift of resonance curve downward
in frequency when the sweep has already passed resonance. If the drive and sweep are then turned
off, the strain vanishes causing progressive annihilation of defects so that modulus increases. As a
consequence the part of resonance curve, tracked after drive and sweep have been resumed, moves
back (i.e., upward in frequency) as memory of the high strain is lost.

Figure 7 shows the gradual recovery of resonant frequency f, to its maximum limiting value

f, after the bar has been subjected to high amplitude conditioning and conditioning was stopped.
We clearly see the very wide time interval 10<(z—¢,)/¢t, <1000 of logarithmic recovery of the
resonant frequency (Fig. 7), in complete agreement with experimental results'® (Fig. 8). Here ¢z, is
the moment when conditioning switches off and 7, =1s is the time scaling constant. Curves
J=1,2,3 on lower Fig. 7 correspond to successively high water saturations s, =0.05(2j —1).

4. Dynamical realization of end-point memory

The question of whether an effect similar to the end-point (discrete) memory that is observed
in quasi-static experiments with a multiply-reversed loading-unloading protocol (see refs.”” and
references there) could also be seen in resonating bar experiments with a multiply-reversed fre-
quency protocol has been raised in ref.® and was first examined theoretically. The graphical results
of this investigation are presented in Fig. 9 (see also Fig. 16 in ref.®). The model constants are given
in ref.®. One of the features of dynamical end-point memory, defined here as the memory of the
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previous maximum amplitude of alternating stress, is seen as small loops inside the major loop. The

starting and final points of each small loop coincide, which is typical of end-point memory.
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Figure 7. Recovery of resonant frequency f, Figure 8. Recovery of resonant frequency f.
to its maximum limiting value f;. Numerical to its maximum limiting value f;. Experi-
result. mental results from reference'®.

Following the theoretical results, shown in Fig. 9, we performed experimental measurements
to verify our prediction. The sample bar was a Fontainebleau sandstone and the drive level pro-
duced a calculated strain of about 2-10™ at the peak. Figure 10 shows the low frequency sides of
resonance curves that correspond to the frequency protocol given on inset of Fig. 10. We clearly see
that the beginning and end of each inner loop coincide, i.e., a major feature of end-point memory.
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Figure 9. Manifestation of end-point memory in dynamic response with a multiply-reversed frequency
protocol.

The experimental results for the Fontainebleau sandstone shown in Fig. 10 were reproduced
by using our model equations though with constants (including a state equation) developed for
Berea sandstone™®. We note the good qualitative agreement between the experimental (Fig. 10) and
the theoretical (Fig. 11) curves suggesting that our physical model is appropriate for both sand-

stones.
Hence, the suggested model enables us to describe correctly a wide class of experimental facts

concerning the unusual dynamical behaviour of such mesoscopically inhomogeneous media as
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sandstones. Moreover, as it is shown below, we have predicted the phenomenon of hysteresis with
end-point memory in its essentially dynamical hypostasis. These theoretical findings were con-
firmed experimentally at Los Alamos National Laboratory.

' 3
=
74
o
Figure 10. The low frequency sides of ex- Figure 11. The low frequency sides of the
perimental resonance curves for Fontaine- resonance curves calculated for Berea sand-
bleau sandstone. stone
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