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ABSTRACT. Obtaining a solution that approximates ordinary or partial differential equations
on a computational mesh or grid does not necessarily mean that the solution is accurate or even
“correct.” Unfortunately assessing the quality of discrete solutions by questioning the role played
by spatial and temporal discretizations generally comes as a distant third to test-analysis
comparison and model calibration. This publication is contributed to raise awareness of the fact
that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases,
overwhelm in complexity and magnitude other sources of uncertainty that include experimental
variability, parametric uncertainty and modeling assumptions. The concepts of consistency,
convergence and truncation error are overviewed to explain the articulation between the exact
solution of continuous equations, the solution of modified equations and discrete solutions
computed by a code. The current state-of-the-practice of code and solution verification activities
is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that
meshing can have on the quality of code predictions. A simple method is proposed to derive
bounds of solution uncertainty in cases where the exact solution of the continuous equations, or
its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh
discretization should always be quantified and accounted for in the overall uncertainty “budget”
that supports decision-making for applications in computational physics and engineering.

KEYWORDS: Code and solution verification, mesh refinement, numerical uncertainty.

1. INTRODUCTION

Modeling and Simulation (M&S) has established itself in the last 30 years as the approach
of choice for solving engineering and physics problems. Examples of applications where M&S
has already had a profound impact on the safety and reliability of engineered products include
airfoil design, the performance of automobiles during crashes and structural health monitoring.
Questions such as “how to absorb shocks and avoid passenger injury during an automobile
collision?” or “how to mitigate the effects of earthquakes in urban environments?” are answered
using M&S on a routine basis. More recently, M&S has become the tool of choice for analyzing
trends in global climate dynamics and assess the efficacy of effect mitigation strategies.

It has become evident in recent years that the most difficult challenge to obtain credible
answers when applying M&S to a specific problem is to manage prediction uncertainty. Broadly
speaking, the main three sources of uncertainty are physical experimentation (measurements or
observations), modeling (assumptions) and solution procedure (numerics). How to estimate
measurement uncertainty is well understood by experimentalists. Replication can be combined
to the propagation of uncertainty through the experimentation and signal processing steps to
arrive at bounds of measurement uncertainty. Likewise tools have been developed to address
modeling uncertainty. They include parametric methods such as the forward propagation or
inverse inference of probability density functions, model calibration and non-parametric methods
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such as stochastic modeling (polynomial chaos, random matrices, etc.). The proceedings of the
1% International Conference on Uncertainty in Structural Dynamics offer an excellent overview of
the state-of-the-practice in the discipline of structural dynamics [1].

in this publication we focus our attention on the third kind, numerical uncertainty, because it
seems to be the least well understood of the three. Numerical (or solution) uncertainty results
from the fact that the ordinary or partial differential equations being modeled in a computer code
are discretized and solved with a computational method. The resulting solutions always satisfy a
set of equations that are different from the original, continuous equations. In short, solution error
refers o the difference between these continuous and discrete solutions. If the exact solution of
the continuous equations is unknown, then, the error becomes an uncertainty that should be
modeled and accounted for in the overall uncertainty “budget” of the numerical simulation. How
to do so rigorously is, however, somewhat unclear.

This manuscript starts with a brief review of techniques developed to verify the accuracy
and performance of “black box” computer codes using mesh refinement. Because the focus is
on non-intrusive methods, error estimation is not addressed [2]. We start in section 2 with a
discussion of modified equation analysis. In section 3, the three concepts of consistency,
convergence and fruncation error are overviewed to explain the articulation between the exact
solution of continuous equations, solution of modified equations and discrete solutions obtained
from a code. Section 4 discusses the current practice of performing mesh refinement to assess
solution accuracy. The significant effect that meshing can have on the quality of predictions is
illustrated in section 5 with a hydro-dynamics test problem analyzed with a Lagrangian code.

The last part of this work discusses the quantification of solution uncertainty when the exact
solution of the continuous equations is unknown. This applies to all practical situations where a
computer code is used because equations cannot be solved “by hand.” A simple derivation is
proposed in section 6 to estimate bounds of solution uncertainty when scalar-valued predictions
are analyzed. The quantification of solution uncertainty is illustrated with the non-linear Burgers
equation and the extension to multi-dimensional fields, y € RV, is mentioned and illustrated.

YWe conclude that numerical uncertainty may, in some cases, be the “900-pound gorilla” that
dwarfs other types of uncertainty. This is particularly acute in applications that involve unstable
dynamics, sub-grid models or strong interactions between dissimilar time and length scales. The
good news is that a theory is available to formalize solution uncertainty and approaches are
being developed, such as the one proposed in this work, to rigorously quantity it.

2. THE MODIFIED EQUATION OF A NUMERICAL METHOD

To understand where solution uncertainty comes from, and motivate the importance of
studying and quantifying it, we give a brief overview of the concept of modified equation. In
short, the equation represents the equation verified by the approximated solution obtained with
a numerical method on the basis of a computational mesh or grid.

The starting point is the realization that, when a system of partial differential equations (or
ordinary differential equations) is solved numerically by a computer code, the solution obtained
is different from the solution of the original equations. In fact the solution obtained does not even
solve the same equations! To illustrate the discussion, we assume that we are solving partial
differential equations in 1D geometry that can be written as a set of conservation laws such as:

a yExaCt(x:t) # aF(yExacl (X,t)) _
ot ox

S(x;t), (M
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where y®*(x:t) is the exact solution, F(+) denotes the flux term and S(x;t) is a source or forcing
function that drives the dynamics of the system. The solution y=* of equation (1) can be scalar-
valued or represent a multi-dimensional field, y=* e R®". The fact that equation (1) is restricted
fo 1D geomelry, and somewhat simplistic, does not resirict our discussion. This equation
represents, for example, a simplified version of the Navier-Stokes equations in fluid dynamics,
Euler equations that govern gas dynamics, finite element formulation in solid mechanics, or
evolution of species in a chemical reaction.

The exact solution y¥**' is continuous in the sense that it is solution to a set of equations

that are defined at every single point (x;t) in space-time. y¥*! may be physically discontinuous,
such as in the case of a shocked flow around an airfoil, but the basic idea is that it defines a
mathematical function that is known everywhere in the domain. Often, the exact solution cannot
be computed analytically because closed-form solutions can only be obtained in the case of
simple equations, linear models and simple initial and boundary conditions. One then resorts to
implementing a numerical method to discretize equation (1) on a computational mesh or grid.

Implementation of a numerical method yields a numerical solution that can be written as:
ye = y(k- Ax;n- At), (2)

where Ax and At are increments in space and time assumed, for clarity, o be constant. An
approximation such as defined in equation (2) is characteristic of finite differencing schemes for
which values cf the solutien field are sought at specific, discrete points in space-time. Note that
this notation does not preclude examination of the case where a finite volume method (or any
other method) is implemented because, in these cases, one can define the discrete solution as:

vi= [ (00000 dx )0, 0-at, ®
where @, (x) and ®.(t) are weighting functions or “shape functions” in space and time defined,
respectively, over the k™ volume Q, of the domain and n™ interval of time integration [tn; the]. A
finite volume method would, for example, use piece-wise linear interpolation ®y(x) = ax + Bx'x
and constant interpolation in time ®,(t) = 1. Another example of the formalism described in
equation (3) would be the finite element method where values of the solution field are obtained,
for example, at integration points within each element of the computational mesh.

To obtain the numerical solution yi", one needs to solve a system of discretized equations
that, following our 1D example, can be written as an equation that looks something like:
n-l n n n
vl -y, +Fk+1/2_Fk—1/2 SN (4)
At Ax

Equation (4) implements a discretization similar to those illustrated in equations (2-3) for the
source term in the right-hand side and F," denotes discretization of the flux, F" = F(y."). The
equation illustrates a discretized equation where, for example, the Euler forward differencing is
implemented in time (fully explicit) and a trapezoidal differencing rule is implemented in space.

One observes that the discretized equation “appears” similar to the original, continuous
equation (1) but the similarity is misleading. In fact the two are different. It can be shown that
approximations y," converge to the (exact) solution of a modified equation [3] that has the form:

= ~ 2 A 3aA ~ 2
8_y+aF(y):S+ g ,y-At+a ?Ax%ﬂ-a 32/

ot  dx ot” dx dt dx
where the dependency of variables y and S on space and time is omitted for simplicity. This
example is notional and the correct form of the modified equation depends on the combination

m-m%u.o.r}, (5)
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of properties of the continuous equation and numerical method used to solve it. Two important
factors in deciding what the modified equation looks like are, first, the mathematical properties
of equations (elliptic, hyperbolic or parabolic?) and, second, the functional form of the flux (linear
or non-linear?). The essential point is that the solution y of equation (5) is different from the
solution y¥*¢' of equation (1). In fact, solutions § and y=**' do not even solve the same equation,
at least, not until Ax = 0 and At = 0 exactly ... which never happens in practice!

Understanding that the accuracy and performance of a numerical method are governed by
its modified equation, and not just the properties of a numerical algorithm implemented in the
code, is essential to study solution error and quantify numerical uncertainty. Truncation error is
overviewed next because the performance of a numerical method is generally assessed by
studying its asymptotic properties. The discussion leads to the concepts of convergence of a
discrete solution and consistency of a numerical method.

3. THE LINK BETWEEN CONVERGENCE, CONSISTENCY AND TRUNCATION

Truncation error refers to the difference between the solution of the continuous equations
and the discrete solution obtained with a computational mesh. Since we have seen that we are
dealing with two different continuous equations, this begs the question of which “exact” solution
should be used to define truncation error. Should one use solution y=*°* of equation (1) ory
of equation (5)? Common practice is to refer back to the exact solution y¥** even though one
could argue that solution ¥ is a more appropriate choice since the modified equation governs
what is “fruly” being solved in the code (at least, as long as Ax #0 and At #0).

Faor completeness, it is mentioned that recent results on “finite scale equations” pursue this
logic te discover that a modified equation includes, in addition to truncation error, a contribution
from physically-motivated terms [4-5]. Discriminating truncation error from physics is, of course,
key to define more meaningful convergence testing protocols. It also offers a path forward to
construct better numerical methods.

Common practice, however, is not to consider the modified equation, nor the “finite scale
equation” of Reference [5], but to define truncation error as the difference between the exact
solution y¥** of equation (1) and the discrete solution y," of equation (4). This difference can be
expressed in the sense of a global norm that is appropriate for the problem:

e(Ax; At) = HyExaCl (x;t)—y, (Ax;At]’. (6)

An appropriate choice of norm ||¢|| in the context, for example, of the finite element method is
the weak norm of the equations of motion. Applied to the “toy” example of equations (1-5) and
assuming, first, linearity of the flux term (that is, F(y) = a'y where a is a constant coefficient or
operator) and, second, that the limit of infinite space-time resolution is taken (that is, Ax < O
and At = 0), one can relate truncation error to the modified equation as follows:

2 Exact 3 _ Exact Lxact 2 _ Exact

:-:(A.\';At): y, -At+a 4 -A>(2+ay 9y
‘ ot’ dx ot ox’

The significance of these steps is to illustrate that the error of a properly implemented numerical
method can be driven to zero by increasing the spatial resolution and reducing the time step.
This is generally achieved by running the calculation on a finer computational mesh because the
controls of explicit or implicit time stepping algorithms usually subordinate the time step At to the
size Axmin Of the smallest zone, cell or element in the mesh.

At Ax*+H.O.T, (7)

The above derivations show why it is important to assess the behavior of truncation error: it
is our “gateway” into understanding if the numerical method behaves according to expectation.
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Equation (7) suggests, for example, that our numerical method should be first-order accurate in
fime and second-order accurate in space because the leading terms of the expansion are
proportional to powers At and Ax?, respectively. Not meeting these expectations may indicate an
implementation deficiency or coding mistake.

Strictly speaking, equation (7) is correct only at the limit Ax = 0 and At = 0. This regime is
where truncation error g(Ax;At) is dominated by the lower-order terms of the (potentially infinite)
expansion. This motivates studying the asymptotic behavior using a simple equation such as:

e(Ax; At) = B- AxP, (8)

where the pre-factor coefficient B is assumed to be constant and the exponent p denotes the
rate-of-convergence of the numerical method, as Ax = 0. Running, for example, a finite element
calculation using second-order elements should provide an observed rate of p = 2 under mesh
refinement. The series expansion (8) is often restricted to spatial convergence because, in most
calculations, temporal resolution is “sfaved” to spatial convergence. References [6-7] discuss
the analysis of combined, space-time convergence.

Continuous Equations

3 yExacl (X; t) d F(yExau) . _’ Exact
a " + a = = S(X, t) SOIution, yExaC! ‘_
Implementation of a Consistency

Numerical Method

l limy=y
Ax—0

Exact

Modified Equations T
v ) 2 33 —p Modified
9 9FD o[0T a2 T sxs || solution, §
ot ox ot? dx’ DN, Y
v Convergence
Discretization on a
Computational Mesh limy} = e
h 4

Discrete Equations

n+l

Ye —Yi . F,—F',, i > Discrete )
At Ax k Solution, y;

Figure 1. Articulation between exact, modified and discrete equations.
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To find the governing equation of truncation error g(Ax;At), such as shown in equation (7),
we have implicitly assumed consistency of the numerical method. This property states that the
modified equation is consistent with the original equation. This can be captured by writing that:

1- o Exact . 9

A[—>(§,§1—>Oy y ( )

(Strictly speaking, “consistency” is a property of a numerical method while “convergence,” see

below, is a property of a discrete solution.) The property captured in the model of truncation

error (8), on the other hand, expresses convergence. Convergence states that the discrete
solution approaches the exact solution under mesh refinement:

lim yp=y™ (10)

A1—0.4x—0

The connection between exact, modified and discrete equations and the flow of information
required to assess the properties of consistency and convergence are illustrated graphically in
Figure 1. For completeness, it should also be mentioned that the concepts of consistency and
convergence are linked through the famous equivalence theorem of Peter Lax who established
in 1954 that “stability + consistency — convergence” for linear systems where F(y) = a-y in
equation (1), see Reference [8]. It means that stability and consistency of the numerical method
are necessary and sufficient to establish convergence of the discrete solutions.

Developing an understanding of the link between consistency, convergence and truncation
error is necessary to discuss how to improve the practice of code and solution verification. In the
next section, mesh refinement is overviewed because it is the mechanism to generate datasets
that enable the study of asymptotic convergence (“are we converged yet?” question of Figure 1)
and the quantification of solution uncertainty, as discussed in section 6.

4. WHAT IS A MESH REFINEMENT STUDY USEFUL FOR?

We briefly overview the state-of-the-practice of mesh refinement because it is the technique
commonly accepled to investigate the asymptotic behavior of truncation error. Mesh refinement
refers to running the same problem on two, possibly more, meshes to accumulate enough
instances of equation (8) and solve for its two unknowns (8; p). It can then be verified that the
observed rate-of-convergence matches the formal order of accuracy of the numerical method.

Assuming that the exact solution y¥**' of the continuous equations is known analytically,

which implies that mesh refinement is applied to simple test problems, two calculations can be
performed using coarse and fine discretizations. The discrete solution computed on the coarse-
size mesh is labeled y"(Axc) where Axc denotes a characteristic size of the coarse mesh.
Likewise, the discrete solution obtained from the refined mesh is labeled y,"(Axg) where Axg is a
characteristic size of the fine mesh. Two values of truncation error (6) can then be computed as:

BAKS )= HyE‘“‘ (x; ) -y (Axcjr and e(Ax,)= ”yExa“ (x:t)—y; (AxF]| , (11

where dependency on time discretization At is omitted for simplicity. It can be easily verified that
the solution to equation (8) is obtained as:

p= 10g[ii—3jflog(R), | (12)

where R denotes the refinement ratio, that is, R = Axc/Axe > 1. A closed-form solution can also
be found for the regression pre-factor B of equation (8). The observed rate-of-convergence is
compared to the theoretical order of accuracy of the method to verify the appropriateness of its
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algorithmic implementation (“is there any code deficiency that prevents reaching p = p""®?"
and assess solution accuracy (“should Ax be decreased to improve solution accuracy?”).

More details about the application of mesh refinement to code verification can be obtained
from References [6-7, 9-13]. Practical details are discussed in Reference [12] and, in particular,
what the best strategy may be to compute the error differences of equation (11) when the exact,
coarse-mesh and fine-mesh solutions are expressed on different computational grids.

We now shift our attention to the case where the exact solution of the continuous equations
is unknown. This is referred to as calculation verification (or solution verification). The procedure
outlined in equations (11-12) cannot be applied directly because the solution error £(Ax) cannot
be calculated if y¥*®' is unknown. The practice most often encountered in computational physics
and engineering is to restrict the analysis to the special case of monotonic convergence of
scalar-valued solutions. The exact solution y=**' is replaced by an (unknown) reference solution
yReference that becomes a third unknown of the problem. In addition equation (8) is specialized to
scalar-valued responses to make it possible to go through the derivations “by hand.”

This simplified variant of equations (6) and (8) becomes:
y R — y(Ax)+B: AxP+ O(AxP). (13)

Because equation (13) features three unknowns (y*¢*™®™®: B: p), a minimum of three equations
are needed. These equations are provided by the discrete solutions obtained from coarse-mesh
(Axc), medium-mesh (Axy) and fine-mesh (Axg) calculations. It means that the same problem
must be analyzed a minimum of three times, using three different meshes. It can be verified that
the rate-of-convergence is solution to the following non-linear equation:

y(Ax M )_ Y(Axc )J
Y(AXF)_ :‘/(AX M ) ,

where Rcy denotes the refinement ratio from coarse-to-medium meshes (Rey = Axc/Axy) and
Ruyr is the refinement ratio from medium-to-fine meshes (Ryr = Axu/Axg). There is no closed-
form solution to equation (14), except in the case of a constant refinement where Rey = Rye = R.
This special case yields the well-known solution:

_ Y(Ax M)_Y(AKC)
P —log[ y(AxF)—y(AxM)]/log(R)v (19)

Finally, solutions y(Axc), y(Axy) and y(Axg) can be extrapolated to a common reference y
that is the best estimate, given the three discrete solutions available, of the solution that would
be predicted if the calculation could be run at “infinite resolution,” Ax = 0. The extrapolation is:

Reference y(AxF)_ y(AXM)
= y(AX; )+
Y( F) RP_1
where p denotes the observed rate-of-convergence from equation (14) or (15). Knowing p and
yreferenee tha regression coefficient B can be back-calculated from equation (13).

p IOg(R MF )+ 10g(l —R%u )‘ 10g(l ~Rie ) = log[ (14)

Reference

y , (16)

An example of performing mesh refinement to verify that an algorithm yields the theoretical
order of accuracy of the numerical method is presented in the next section. Going back fo the
question “what is mesh refinement useful for?,” we see that it is the mechanism that generates
datasets to verify the asymptotic behavior of truncation error. We will show in section 6 that
mesh refinement also enables the estimation of bounds of solution uncertainty when the exact
solution of the centinuous equation, or the solution of the modified equation, is unknown.
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5. 1S THE MESH THE BIGGEST “KNOB” OF YOUR SIMULATION?

The computational mesh or grid is generally not thought of as being a “knob, " or calibration
variable, of a numerical simulation that can be adjusted to produce a desired result. But the fact
that discrete solutions are only approximations of the exact solution and that, as seen in section
2, they do not even verify the same equations begs the question of understanding the influence
of a mesh on the quality of the solution obtained. So we ask: do you know the extent to which
your mesh influences the accuracy and overall quality of your numerical solution?

To illustrate that this is indeed a sensible question, and that situations may arise where the
computational mesh may very well be the most influential knob, we discuss the simulation ¢f the
Noh problem. It is a code verification test problem that assesses the ability of a hydro-dynamics
method to convert kinetic energy into internal energy. Figure 2 (left) illustrates that the Noh
problem is a uniformly convergent flow towards the origin of the domain. The initial condition
creates an instantaneous discontinuity (or shock) that expands outwards. The conservation laws
nevertheless possess an exact solution y¥2%(x;t) [14]. The exact solution is plotted in Figure 2
(right) for the density field using a 1D, spherical coordinate system.

Exact Solution (Test Problsm = *noh10*)

. P ) 1
Radial velocity: Uz = -1 cm.sec.
Tangential velocity: Ug = 0 cm.sec.”

Flow pressure: p =0 ergs.cm

2

Flow density: p =1 gm.cm ™~ B
Adiabatic constant (ideal gas): y = 5/3 é
5" ‘ Expand
Point s 5 Shock
Y (Rye) % | DnSCCﬁ"iiﬂi:Hy
o : NS
_?
p Velocity &%
(Ur:Ue) \
10
X ° 0z Toa 05 aa~r>|v‘ szvuA Tb nv_a ¢z

Cell Center (cm)

Figure 2. Initial condition of the Noh test problem (left) and exact solution y¥*** (right).

The code used for this example is developed at Los Alamos for research and development
in hydro-dynamics methodologies and algorithms. It solves the Euler equations of gas dynamics
using a second-order accurate finite volume method defined in a Lagrangian frame-of-reference
and capable of handling arbitrary geometries. The Noh problem is discretized in 2D geometry
and a half-symmetry domain is analyzed. Figure 3 depicts two discretizations analyzed. The one
on the left of Figure 3 is analyzed first. It features a flow-aligned grid while the second one (on
the right) does not due to the presence of a square mesh inserted at the center of the domain.

The Noh problem is first solved using the flow-aligned mesh of Figure 3 (left) and in pure
Lagrangian mode. This means that zones are allowed to move with the flow without any mesh
adaptation. Figure 4 plots the values of solution error ||y®(x;t) — y"(Ax)||; for the density field
as a function of mesh size Ax. Truncation error is defined with the L' norm, a choice that is
consistent with the analysis of a discontinuous solution. Values of |ly=2%(x;t) — y"(Ax)||; and Ax
are shown on logarithmic scales such that equation (8) should become a straight line of slope
p™™°¥ = 1. (The second-order accuracy of the finite volume method should degrade to first-order
due to the presence of the shock discontinuity.)
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Y
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>

X
Figure 3. Uniform (left) and non-uniform (right) meshes analyzed for the Noh problem.

Figure 4 shows that, as expected, the first-order asymptotic behavior is recovered when the
same calculation of the Noh problem is performed with four different mesh sizes. The observed
rate-of-convergence is equal to p = 0.987, which confirms that the Lagrangian hydro-dynamics
method implemented in the code performs satisfacterily on a flow-aligned mesh.
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45 4 35 3 25 2

Zone Size, log(Ax) (cm)

Figure 4. Asymptotic convergence of the finite volume method for the Noh problem.

The analysis is repeated next with the non-uniform mesh illustrated in Figure 3 (right). Mesh
adaptation is turned on during the calculation. Adaptation is needed to help the hydro-algorithm
negotiate the “corners” of the imprinted box as the material flows inwards. Running the problem
with either mesh should not make any difference because the mesh simply provides a support
to express the solution. It should not, in itself, be a significant factor that influences accuracy.

The Arbitrary Lagrangian Eulerian (ALE) algorithm adapts the mesh in an attempt to better
“follow” the flow and avoid highly distorted zones that would pollute the numerical quality of the
solution. ALE is turned on at every cycle of time integration. After a full hydro-step is completed
that solves the conservation laws, ALE performs a rezoning step where a new mesh is obtained
that minimizes zone distortion. This first step is followed by a second one where solution fields
expressed on the old (distorted) mesh are re-mapped onto the new (somewhat more uniform)
mesh. This completes the cycle and the calculation advances to the next time step, ty.q = t+AL
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Figure 6. ALE results obtained with the type-A rezoning and type-Ill viscosity model.

Figures 5-7 show, on the left, snapshots of the deformed mesh at time t = 0.6 sec. and, on
the right, comparisons between discrete and exact solutions. The exact solution is plotted with a
black, solid line. The colored lines represent multiple discrete solutions obtained by varying the
amount of artificial viscosity allowed in the calculation. Figures 5-7 compare discrete solutions
obtained with different combinations of two rezoning algorithms (labeled type-A and type-B) and
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two models of artificial viscosity (labeled type-l and type-Il). Details about these calculations are
available from Reference [15].

Figures 5 and 6 clearly demonstrate that poor-quality meshes are produced by the type-A
rezoning algorithm which, in turn, leads to poor accuracy at, and behind, the shock front. These
meshes deteriorate the quality of discrete solutions to a peint where it becomes difficult to trust
the predictions. On the other hand, the solution shown in Figure 7 and obtained by running with
the combination of type-B rezoning algorithm and type-Il model of artificial viscosity matches the
expected accuracy. Simply by varying the type of computational mesh as shown in Figure 3, we
observe vastly different performances. Of course, the rezoning and re-mapping steps of the ALE
strategy can also influence the numerical quality of solutions. But the rcle of mesh adaptation is
primarily in avoiding mesh tangling and guaranteeing the “survivability” of the calculation.

i ¢

L XN

>

sity (kg/n~2

Den

Figure 7. ALE results obtained with the type-B rezoning and type-ll viscosity model.

This example illustrates that meshing can play a critical role in delivering good-quality or
poor-quality solutions. This may be a somewhat extreme example but the same remains true of
calculations performed with other numerical methods, such as finite element analysis. The point
we are making is that we may not always realize the extent to which our computational meshes
or grids may be “knobs” in our simulations, just like parameters of viscosity models or material
models can be calibrated to match physical measurements. If the effect of meshing is unknown,
then, the uncertainty originating from running with a given mesh should be rigorously quantified
to increase the confidence placed in predictions. This topic is further addressed next.

6. A PROPOSAL FOR ESTIMATING BOUNDS OF SOLUTION UNCERTAINTY

In sections 2 and 3, we have briefly reviewed the theoretical framework available to assess
the accuracy of solutions calculated by a numerical method implemented in a code. This has
lead to an overview of code and calculation verification activities in section 4. We now furn our
attention to open areas of research and develocpment and, more specifically, the quantification
of solution uncertainty.
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Techniques available to study asymptotic convergence are based on the practice of mesh
refinement to accumulate discrete solutions by running the calculation with different mesh or
grid sizes. These methods assume that the exact solution y¥3¢ of the continuous equations is
known, which helps to define truncation error and carry out derivations. But what happens when
the exact solution is unknown?

We have seen in equations (13-16) that solution verification can be achieved using an
extrapolated solution yR¢®™® to replace the “true-but-unknown” solution y¥**'. Solution error,
such as Jy®e(x:t) — y"(Ax)| can then be replaced by an approximation |y ¢®®™¢(x:t) — y,(Ax)|
and the equations can still be solved as long as asymptotic convergence is monotonic and
restricted to scalar-valued response quantities. It is our contention, however, that when the “gold
standard” of an exact solution y¥**°' is unknown, solution error becomes solution uncertainty.

When the exact solution is unknown, the best that one can do is bound the solution error of
prediction y,"(Ax) obtained at mesh size Ax. Our goal is, therefore, to arrive at an upper bound
of uncertainty defined as:

y"* (0 - yp(Ax) < Up(ax), (17)
where the exact solution y¥** of the continuous equations is unknown. To render the derivations
possible in closed-form, analysis is restricted below to scalar-valued responses. The case of
multi-dimensional fields is addressed at the end of the section for y=* ¢ %" and y" € RN,

Derivations start by writing error models for solutions obtained with coarse-mesh {Axg) and
fine-mesh (Axg) discretizations. It implies that the calculation must be run twice, on twao different
meshes. Assuming that these runs are located within the regime of asymptotic convergence, the
following equations hold:

yExaCl —~ y:(AXF)+BAX§
yo = yp (Ax )+ B AxE

The well-known triangular inequality |a| + |b| =|a + b| is modified as |x — y| =|x| — |y| =0 (simply
use x =a+ bandy = b) and applied to the difference between two discrete solutions:

YE (AX;')— YE(AXC): (YE(AXr)‘ yExm )_ (YE(AXC)_ yExau ) (19)

X=y X y

(18)

Using the two instances of equation (18), one can write:
Yelax )= yilaxc )2 [y=* - yi(axc} - |y - yi(ax, | = p- AxE-B-Ax}, (20)

where it is assumed, without loss of generality, that the pre-factor coefficient is positive (B > 0)
and the fine-mesh error is smalier than the coarse-mesh error. Introducing the refinement ratio
defined as R = Axc/Ax: > 1, one can re-write the previous equation as:

yi(ax,)-yo(ax o) 2p-axp-(R?-1), (21)

and recalling from equation (18) that [y™®* — y,"(Axg)| = B-Ax® for the fine-mesh solution, the
term (B-Axg®) can be eliminated:

Axg ) -y ;
L& (—\\(R)p_yléﬂxc)! > [y — vy (Ax, ). (22)

What is arrived at is an upper bound of solution uncertainty for the fine-mesh calculation. It
is therefore proposed to define soiution uncertainty as:
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. K " ;
Uk(AXF):Rps_l. Yk(Axl)_Yk(Ax(‘jr (23)

where Fg is a user-defined factor of safety (Fs =1) used to provide additional conservatism. The
analogy between definition (23) and the Grid Convergence Index (GCI) of References [16-18] is
noticed. The GCI of a fine-grid calculation is computed as:

Fs YE(AXF)_},E(AXC)J (24)
RP~1 }’Q(AXF) ‘

with 1 <Fg <3. Even though the two equations are similar, it is emphasized that the motivation
of the GCl is completely different. According to Patrick Roache, the idea behind the GCl is:

@

GCI=

. to approximately relate the error obtained by whatever grid convergence
study is performed (whatever p and R) to the error that would be expected from a
grid convergence study of the same problem, with the same fine grid, using p = 2
and R = 2, i.e. a grid doubling with a 2"-order method.” ([17], chapter 5, pp. 115.)

Another difference is that the GCI requires a factor of safety Fg = 3 to be true to the comparison
of mesh refinement studies mentioned above while there is no such constraint for the bound of
solution uncertainty defined in equation (23).

In the remainder of this section, the solution uncertainty bound of equation (23) is applied to
~a simple differential equation to illustrate its performance. The estimation of solution uncertainty
bounds for multi-dimensional fields is also briefly illustrated. The equation chosen for analysis is
Burgers equation in 1D, Cartesian geometry. Though easy to work with, it is also a non-linear,
hyperbolic equation capable of developing discontinuous solutions [19]. The continuous Burgers
equation with diffusion added in the right-hand side is defined as.
dy 1 oy’ 9’y
— X+ = %) = pis x;t), 25
at‘t)28x(()“8x2(‘) .
where y > 0. Burgers equation is solved in the domain -2 <(x/L) <V using an initial condition
defined by an arc-tangent function, y(x; t=0) = yo(x) = (L/m)tan™(w-x), and over the time period
of 0 <t =1 sec. Values L =3 mand w =35 cm™ are used for numerical application.

Equation (25) is solved in conservation form using the Lax-Wendroff integration scheme
implemented as a finite volume method with piece-wise, constant interpolation within each zone
[20-21]. This algorithm is second-order accurate when applied to the simulation of continuous
solutions. The non-linear, hyperbolic nature of Burgers equation evolves the initial condition
Yo(x) in @ sharp discontinuity, which deteriorates accuracy of the algorithm to first-order.

Table 1. Results of a grid refinement study for the 1D Burgers equation.

Grid Resolution Cell Size, Ax | Density Jump, [y]s | Rate-of-convergence, p
Extra-coarse, V."(Axxc) 5.00 cm 0.9995 gm.cm™
Coarse, Yi"(Axc) 1.25 cm 1.3083 gm.cm’™ =101
Medium, yi"(Axy) 0.3125 cm 1.3832 gm.cm™ ’ _
Fine, ye'(Axz) 0.078125 cm 1ADTE g [~ AENE Moty pradiets
Extrapolation, y <" Ax > 0 1.4080 gm.cm™ P =1.)

Four runs are performed with 80, 240, 960 and 3,840 zones and the results are reported in
Tables 1 and 2. The mesh refinement ratio is constant and equal to R = 4. The prediction of
interest is the discontinuity jump [y]s defined as the value of the solution to the left of the
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discontinuity minus the value to the right. Table 1 lists the predictions of discontinuity jump [yls
and the best-fitted rate-of-convergence. A value of p = 1.01 is observed, which is in excellent
agreement with the expectation of first-order behavior. The prediction y**™™ at “nfinite” mesh
resolution, that is, Ax = 0, is also shown. This extrapolation represents the best approximation,
given the discrete solutions available, of the unknown solution of the continuous equations.

Table 2 lists the values of bounds U,"(Ax) computed from equation (23) and corresponding
percentages of solution uncertainty. It can be observed that these values are relatively low,
hence, suggesting that the calculation is sufficiently resolved with Ax <0.3125 cm. In a formal
Verification and Validation (V&V) assessment, solution uncertainty would be compared to other
types of uncertainty, such as experimental variability or parametric uncertainty, to decide on the
best course of action needed to improve prediction accuracy or reduce the “total uncertainty.”

Table 2. Bounds of solution uncertainty for the 1D Burgers equation (with Fs = 1).

Grid Resolution Cell Size, Ax | Uncertainty, U,"(Ax) | Percent U,"(Ax)/y"(Ax)
Extra-coarse, v,"(Axxc) " 5.00 cm ~ N/A N/A
Coarse, yi"(AXc) 1.25 cm 0.1011 gm.cm™ 7.72%
Medium, v,"(Axy) 0.3125 cm 0.0245 gm.cm™ 1.77%
Fine, v."(Axg) 0.078125 cm 0.0061 gm.cm™ 0.43%

Figure 8 summarizes graphically the analysis of Tables 1 and 2. |t depicts the predictions of
jump discontinuity [yls obtained with different mesh resolutions, extrapolated solution yRe*ee
and bounds of solution uncertainty Uy"(Ax). For the purpose of this illustration, the uncertainty
bounds plotted are twice the values listed in Table 2, that is, 2-U,"(Ax).

Solutien Convergence and Uncertainty of 1D Burgers
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Figure 8. Predictions [y]s and uncertainty bounds U,"(Ax) for Burgers equation.
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It is clear from Figure 8 that the asymptotic convergence of discrete solutions is monotonic.
Even though values 2:U,"(Ax) are plotted on Figure 8, it can be verified from the tables that the
bounds of uncertainty encompass the extrapolated solution: [yRee™™® _ v, "(Ax)| <U,"(Ax). This
makes sense since y**™®*"¢ provides the best estimate of the exact-but-unknown solution. The

practical significance of uncertainty bound U,"(Ax) is to define an interval where the exact-but-
Exact

unknown solution y may be located relative to prediction y(Ax) at mesh resolution Ax.

Traction Stress "$22" of Hertz Contact (w/ Scales 1, 2)
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Figure 9. Solution uncertainty for a finite element prediction of stress curve [23].

To conclude we briefly mention that the estimation of solution uncertainty has, so far, been
restricted to scalar-valued responses. This makes derivations possible in closed-form. However,
predictions from computer codes generally come in the form of multi-dimensional fields such as
curves or images. The technique can be generalized for application to multi-dimensional fields,
as shown in References [22-24]. The basic idea is to decompose discrete solutions y,"(Ax) € R™
obtained from a mesh refinement study on a truncated basis of empirical “modes,” then, apply
equations (17-23) to the coordinates of this expansion. Solution uncertainty for the entire field,
that is, U"(Ax) e RN, can then be recomposed using the truncated basis and interval arithmetic
to combine the intervals of solution uncertainty for coordinates kept in the expansion.

Dynamic Sphere Test Problem (2D Runs) Solution Uncertainty Bounds ("DynSphere2D")
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Figure 10. Solution uncertainty for a finite volume prediction of velocity curve [24].
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lllustrations of solution uncertainty for entire curves are given in Figures 9 and 10. Figure 9
illustrates the prediction of a stress field for the finite element simulation of Hertz contact, see
Reference [23]. The figure on the left depicts the coarse-mesh calculation where a rigid sphere
applies pressure to an elastic region. The figure on the right shows stress values for the top row
of finite elements (black, square symbols), the bounds of solution uncertainty (red, solid lines)
and extrapolated solution (blue, solid line). The analysis indicates that, as we saw for Burgers
equation, the bounds of solution uncertainty encompass the extrapolated solution.

Figure 10 conveys a similar message for the prediction of velocity field for a finite volume
calculation, see Reference [24]. The problem is the propagation of a pressure front between the
inner and outer surfaces of a solid sphere. The figure on the left compares the exact solution of
the continuous equations (black, solid line) to several hydro-dynamics calculations performed
with different mesh sizes and artificial viscosity settings. The figure on the right indicates that the
bounds of solution uncertainty for a run performed at Ax = 0.104 mm include the exact solution
except, as expected, at the very tip of sharp discontinuities.

7. CONCLUSION

The main theme of this publication is that discrete solutions computed by a computer code
intfroduce numerical uncertainty, which is one of many types of uncertainty that one needs to
manage in physics and engineering applications. Other sources include experimental variability
that introduces uncertainty on measurements, parametric variability that generates uncertainty
on predictions, algorithmic selections and other assumptions needed to develop and implement
models in computer simulations. Numerical uncertainty results from discretization. It should be
quantified and accounted for in the overall uncertainty “budget” of the simulation; not doing so
would introduce the risk of missing a significant uncertainty and jeopardizing decision-making.

To understand where numerical uncertainty comes from, the concepts of modified equation,
consistency, convergence and truncation error are overviewed. The current state-of-the-practice
of code and solution verification is discussed. A simple proposal is made to estimate bounds of
solution uncertainty if the exact solution of the continuous equations being solved is unknown,
which is always what happens in practice. This is when solution error becomes an uncertainty.
Several examples from finite element and hydro-dynamics calculations are given to illustrate the
influence that meshing can exercise on the quality of discrete solutions and demonstrate the
quantification of solution uncertainty.

On-going and future work includes addressing many small-yet-important details that arise
during the implementation of solution uncertainty bounds. One such detail is how to perform a
mapping of solution fields obtained from different meshes on a common, “reference” grid so that
solution errors can be meaningfully estimated. Another track of research and development that
shows promise is to perfect our understanding of the “finite scale equations” of a numerical
method, as proposed in References [4-5], to implement better algorithms and enhance the rigor
of code and solution verification analyses.
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