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ABSTRACT. Obtaining a solution that approximates ordinary or partial differential equations 
on a computational mesh or grid does not necessarily mean that the solution is accurate or even 
"correct. " Unfortunately assessing the quality of discrete solutions by questioning the role played 
by spatial and temporal discretizations generally comes as a distant third to test-analysis 
comparison and model calibration. This publication is contributed to raise awareness of the fact 
that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, 
overwhelm in complexity and magnitude other sources of uncertainty that include experimental 
variabil ity, parametric uncertainty and modeling assumptions. The concepts of consistency, 
convergence and truncation error are overviewed to explain the articulation between the exact 
solution of continuous equations, the solution of modified equations and discrete solutions 
computed by a code. The current state-of-the-practice of code and solution verification activities 
is discussed. An example in the discipline of hydro-dynamics illustrates the signif icant effect that 
meshing can have on the quality of code predictions. A simple method is proposed to deri ve 
bounds of solution uncertainty in cases where the exact solution of the continuous equations, or 
its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh 
discretization should always be quantified and accounted for in the overall uncertainty "budget" 
that supports decision-making for applications in computational physics and engineering . 

KEYWORDS: Code and solution verification, mesh refinement, numerical uncertainty. 

1. INTRODUCTION 

Modeling and Simulation (M&S) has established itself in the last 30 years as the approach 
of choice for solving eng ineering and physics problems. Examples of applications where M&S 
has already had a profound impact on the safety and reliability of engineered products include 
airfoil design, the performance of automobiles during crashes and structural health monitoring. 
Questions such as "how to absorb shocks and avoid passenger injury during an automobile 
collision?" or "how to mitigate the effects of earthquakes in urban environments?" are answered 
using M&S on a routine basis. More recently, M&S has become the tool of choice for analyzing 
trends in global climate dynamics and assess the efficacy of effect mitigation strategies. 

It has become evident in recent years that the most difficult challenge to obtain credible 
answers when applying M&S to a specific problem is to manage pred iction uncertainty. Broadly 
speaking, the main three sources of uncertainty are physical experimentation (measurements or 
observations), modeling (assumptions) and solution procedure (numerics). How to estimate 
measurement uncertainty is well understood by experimentalists. Replication can be combined 
to the propagation of uncertainty through the experimentation and signal processing steps to 
arrive at bounds of measurement uncertainty. Likewise tools have been developed to address 
modeling uncertainty. They include parametric methods such as the forward propagation or 
inverse inference of probability density functions, model calibration and non-parametric methods 
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su ch as stochastic modeling (polynomial chaos, random matrices, etc.). The proceedings of the 
1 sl International Conference on Uncertainty in Structural DynamiCs offer an exce llent overview of 
the state-of-the-practice in the discipline of structural dynamics [1]. 

In this publication we focus our attention on the third kind, numerical uncertainty, because it 
seems to be the least well understood of the three. Numerical (or solution) uncertainty resu lts 
from the fact that the ord inary or partial differential equations being modeled in a computer code 
are discretized and solved with a computational method. The resulting solutions always satisfy a 
set of equations that are different from the original, continuous equations. In short, solution error 
refers to the difference between these continuous and discrete solutions. If the exact solution of 
the continuous equations is unknown, then, the error becomes an uncertainty that should be 
modeled and accounted for in the overall uncertainty "budget" of the numerical simulation. How 
to do so rigorously is, however, somewhat unclear. 

This manuscript starts with a brief review of techniques developed to verify the accuracy 
and performance of "black box" computer codes using mesh refinement. Because the focus is 
on non-intrusive methods, error estimation is not addressed [2]. We start in section 2 with a 
discuss ion of modified equation analysis. In section 3, the three concepts of consistency, 
convergence and truncation error are overviewed to exp lain the articulation between the exact 
solution of continuous equations, solution of modif ied equations and discrete solutions obtained 
from a code. Section 4 discusses the current practice of performing mesh refinement to assess 
solution accuracy. The significant effect that meshing can have on the quality of predictions is 
illustrated in section 5 with a hydro-dynamics test problem analyzed with a Lagrangian code. 

The last part of this work discusses the quantification of solution uncertainty when the exact 
solution of the continuous equations is unknown. This applies to all practical si tuations where a 
computer code is used because equations cannot be solved "by hand." A simple derivation is 
proposed in section 6 to estimate bounds of solution uncertainty when sca lar-valued predictions 
are analyzed . The quantification of solution uncertainty is illustrated with the non-linear Burgers 
equation and the extension to multi-dimensional fields, y E 'J\N, is mentioned and illustrated. 

We conclude that numerical uncertainty may, in some cases, be the "gOO-pound gorilla " that 
dwarfs other types of uncertainty. This is particularly acute in applications that involve unstable 
dynamics, sub-grid models or strong interactions between dissimilar time and length scales . The 
good news is that a theory is available to formalize solution uncertainty and approaches are 
being developed , such as the one proposed in this work, to rigorously quantity it. 

2. THE MODIFIED EQUATION OF A NUMERICAL METHOD 

To unders tand where solution uncertainty comes from, and motivate the importance of 
studying and quantifying it, we give a brief overview of the concept of modified equation. In 
short, the equation represents the equation verified by the approximated solution obtained wi th 
a numerica l method on the basis of a computational mesh or grid . 

The starting po int is the realization that, when a system of partial differential equations (or 
ordinary differential equations) is solved numerically by a computer code, the solution obtained 
is different from the solution of the original equations. In fact the solution obtained does not even 
solve the same equationsl To illustrate the discussion, we assume that we are solving partial 
differential equations in 1 D geometry that can be written as a set of conservation laws such as: 

a yEXaCI (x; t) d F (yExaCI (x; t» 
--":""--'---"":"+ =S(x;t), (1) 

at ax 
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where l xact(x; t) is the exact solution, F(o) denotes the fl ux term and S(x;t) is a sou rce or forcing 
fu nction that drives the dynamics of the system. The solution lxact of eq uation (1 ) can be scalar­
valued or represent a mUlti-dimensional field, yExact E ':)\N. The fact that equation (1) is restricted 
to 1 D geometry, and somewhat simplistic, does not restrict our discussion. This equation 
represents, for example, a simplified version of the Navier-Stokes equations in fluid dynamics, 
Eu ler equations that govern gas dynamics, finite element formulation in solid mechanics, or 
evo lution of species in a chemical reaction. 

The exact solution lxact is continuous in the sense that it is solution to a set of eq uations 
that are defi ned at every single point (x;t) in space-time. lxact may be physically discontinuous, 
such as in the case of a shocked flow around an airfoil, but the basic idea is that it defi nes a 
mathematical function that is known everywhere in the domain. Often, the exact solution can not 
be computed analytically because closed-form solutions can only be obtained in the case of 
simple equations, linear models and simple initial and boundary conditions . One then resorts to 
implementing a numerical method to discretize equation (1) on a computational mesh or grid. 

Implementation of a numerical method yields a numerical solution that can be written as: 

y~ = y(k· ill\.;n· Llt) , (2) 

where ill< and t..t are increments in space and time assumed, for clarity, to be constant. An 
approximation such as defined in equation (2) is characteristic of fin ite differencing schemes for 
which values of the solution field are sought at specific, discrete pOints in space-time. Note that 
th is notation does not preclude examination of the case where a fi nite vol ume method (or any 
other method) is implemented because, in these cases, one can define the discrete solution as: 

(3) 

where <1>k(X) and <1>n(t) are weig hting functions or "shape functions" in space and time defined, 
respectively, over the kth volume Ok of the domain and nth interval of time integration [tn; tn+ ,J . A 
finite volume method WOUld, for example, use piece-wise linear interpolation <l>k(X) = ak + ~k'X 

and constant interpolation in time <l>n(t) = 1. Another example of the formalism described in 
equation (3) wou ld be the fi nite element method where values of the solution field are obta ined, 
for example, at integration points within each element of the computational mesh. 

To obta in the numerical solution Ykn, one needs to solve a system of discretized equations 
that, following our 1 D example, can be written as an equation that looks something like: 

n+1 n 1:'n Fn 
Yk - Yk + 1\+112 - k-112 = Sn 

~t ill\. k . 
(4) 

Equation (4) implements a discretization similar to those illustrated in equations (2-3) for the 
source term in the rig ht-hand side and Fk

n denotes discretization of the fl ux, Fk
n = F(Ykn). The 

equation illustrates a discretized equation where, for example, the Euler fo rward differencing is 
implemented in time (fully explicit) and a trapezoidal differencing rule is implemented in space. 

One observes that the discretized equation "appears" sim ilar to the original, continuous 
equation (1) but the similarity is misleading. In fact the two are different. It can be shown that 
approximations Ykn converge to the (exact) solution of a modified equation [3] that has the form: 

-+--= S+ -, ·.6t+_· .6x +_·_· 6.t · .6x + H .O .T , (5) ay aF(y) (a2y a3 y 2 aya2 y 2 

CI t ClX Clt- ClX3 at ClX2 

where the dependency of variables y and S on space and time is omitted for simplicity. This 
example is notional and the correct form of the modified equation depends on the combination 
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of properties of the continuous equation and numerical method used to solve it. Two important 
factors in deciding what the modified equation looks like are, first, the mathematical properties 
of equations (elliptic , hyperbolic or parabolic?) and, second, the fun ctional form of the flux (linear 
or non-linear?). The essential point is that the solution If of equation (5) is different from the 
solution Ixact of equation (1). In fact, solutions If and yExact do not even solve the same equation, 
at least, not until tlx = 0 and ~t = 0 exactly ... which never happens in practice! 

Understanding that the accuracy and performance of a numerical method are governed by 
its modified equation, and not just the properties of a numerical algori thm implemented in the 
code, is essential to study solution error and quantify numerical uncertainty. Truncation error is 
overviewed next because the performance of a numerical method is generally assessed by 
studying its asymptotic properties. The discussion leads to the concepts of convergence of a 
discrete solution and consistency of a numerical method. 

3. THE LINK BETWEEN CONVERGENCE, CONSISTENCY AND TRUNCATION 

Truncation error refers to the difference between the solution of the continuous equations 
and the discrete solution obtained with a computational mesh. Since we have seen that we are 
dealing with two different continuous equations, th is begs the question of which "exact" solution 
should be used to define truncation error. Should one use solution yExact of equation (1) or y 
of equation (5)? Common practice is to refer back to the exact solution I xact even though one 
could argue that solution If is a more appropriate choice since the modified equation governs 
what is "truly" being solved in the code (at least, as long as tlx ,,:0 and ~t ":0). 

For completeness, it is mentioned that recent results on "finite scale equations" pursue this 
logic to discover that a modified equation includes, in addition to truncation error, a contribution 
from physically-motivated terms [4-5]. Discriminating truncation error from physics is, of course, 
key to define more meaningful convergence testing protocols. It also offers a path forward to 
construct better numerical methods. 

Common practice, however, is not to consider the modified equation, nor the "finite scale 
equation" of Reference [5], but to define truncation error as the difference between the exact 
solution I xact of equation (1) and the discrete solution Ykn of equation (4). Th is difference can be 
expressed in the sense of a global norm that is appropriate for the problem: 

E(Lli; At) = IlyExact (x; t) - y~ (Ax; At ~ I. (6) 

An appropriate choice of norm 11"11 in the context, for example, of the finite element method is 
the weak norm of the equations of motion. Applied to the "toy" example of equations (1-5) and 
assuming, first, linearity of the fl ux term (that is, F(y) = a·y where a is a constant coefficient or 
opera tor) and, second, that the limit of infinite space-time resolution is ta ken (that is, tlx ~ 0 
and b.t ~ 0), one can relate truncation error to the modified equation as follows: 

a 2 Exact a 3 Exact a Exact a 2 Exact 

€(Ax;At)= y') ·Llt+ y ·Llx 2 + y . y ·At ·Llx 2+ H.O .T. (7) ar- ax} at ax 2 

The significance of these steps is to illustrate that the error of a properly im plemented numerical 
method can be driven to zero by increasing the spatial resolution and reduci ng the time step. 
This is generally achieved by running the calculation on a finer computational mesh because the 
control s of explicit or implicit time stepping algorithms usually subordinate the time step £'.t to the 
size tlxMin of the smallest zone, cell or element in the mesh. 

The above derivations show why it is important to assess the behavior of truncation error: it 
is our "gateway" into understanding if the numerical method behaves according to expectation. 
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Equation (7) suggests , for example, that our numerical method should be first-order accurate in 
time and second-order accurate in space because the leading terms of the expansion are 
proportional to powers 6 t and bx2

, respectively, Not meeting these expectations may indicate an 
implementation deficiency or coding mistake, 

Strictly speaking, equation (7) is correct only at the limit bx -7 0 and 6 t -7 0, This regime is 
where truncation error £(bx; 6 t) is dominated by the lower-order te rms of the (potentia lly infinite) 
expansion. This motivates studying the asymptotic behavior using a simple equation such as: 

(8) 

where the pre-factor coefficient f3 is assumed to be constant and the exponent p denotes the 
rate-of-convergence of the numerical method, as bx ~ O. Running, for example, a fin ite element 
calculation using second-order elements should provide an observed rate of p = 2 under mesh 
refinement. The series expansion (8) is often restricted to spatial convergence because, in most 
calcu lations, temporal resolution is "slaved" to spatial convergence. References [6-7] discuss 
the analysis of combined, space-time convergence. 

Continuous Equations 

a yExact (x; t) a F(yExaCl) 
---=-----'---'---'- + = S ( x' t) at a x ' 

Implementation of a 
Numerical Method 

Discretization on a 
Computational Mesh 

Discrete Equations 

Y"+l _ yn Fn Fn 

k k + k+li2 - k-li2 = s~ 
~t L.lX 

Exact 
Solution, y EXact ..-

Consistency 

Modified 
Solution, y 

Discrete 
Solution, Ykn 

Convergence 

l im y~ = yExaCl 
t.x--;O 

Figure 1. Articulation between exact, modified and discrete equations. 
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To fi nd the governing equation of truncation error £( ill<;llt), such as shown in eq uation (7), 
we have implici tly assumed consistency of the numerical method. This property states that the 
modified equation is consistent with the original equation. This can be captured by writing that: 

1· ~ E,aci 1m y = y . 
""1->0,",,,....,0 

(9) 

(Strictly speaking, "consistency" is a property of a numerical method wh ile "convergence, " see 
below, is a property of a discrete solution.) The property captured in the model of truncation 
error (8 ), on the other hand, expresses convergence. Convergence states that the discrete 
solution approaches the exact solution under mesh refinement: 

lim y~ = yExaCI . 
LlI-)O,ilx....,O 

(10) 

The connection between exact, modified and discrete equations and the flow of information 
required to assess the properties of consistency and convergence are illustrated graphically in 
Figure 1. For completeness, it should also be mentioned that the concepts of consistency and 
convergence are linked through the famous equivalence theorem of Peter Lax who established 
in 1954 that "stability + consistency <-+ convergence" for linear systems where F(y) = a'y in 
equation (1), see Reference [8]. It means that stability and consistency of the numerical method 
are necessary and sufficient to establish convergence of the discrete solutions. 

Developing an understanding of the link between consistency, convergence and truncation 
error is necessary to discuss how to improve the practice of code and solution verification. In the 
next section, mesh refinement is overviewed because it is the mechanism to generate datasets 
that enable the study of asymptotic convergence ("are we converged yet?" question of Figure 1) 
and the quantification of solution uncertainty, as discussed in section 6. 

4. WHAT IS A MESH REFINEMENT STUDY USEFUL FOR? 

We briefly overview the state-of-the-practice of mesh refinement because it is the technique 
commonly accepted to investigate the asymptotic behavior of truncation error. Mesh refinement 
refers to running the same problem on two, possibly more, meshes to accumulate enough 
instances of equation (8) and solve for its two unknowns ( ~ ; p). It can then be verified that the 
observed rate-of-convergence matches the formal order of accuracy of the numerical method. 

Assum ing that the exact solution lxact of the continuous equations is known analytically, 
which implies that mesh refinement is applied to simple test problems, two calculations can be 
performed using coarse and fine discretizations. The discrete solution computed on the coarse­
size mesh is labeled Ykn( ill<c) where ill<c denotes a characteristic size of the coarse mesh. 
Likewise, the discrete solution obtai ned from the refined mesh is labeled Ykn( L'v<F) where L'v<F is a 
charac;teristic s ize of the fine mesh. Two values of truncation error (6) can then be com puted as: 

E(ax c )=llyEXaCI(x ;t)_y~(~xdl and E(ax F)=llyEXaCI (x ; t)-y~(ax F~I, (11) 

where dependency on time discretization llt is omitted for simplicity. It can be eas ily verified that 
the solution to equation (8) is obtained as: 

p = !Og( :~:: i } Og(R), (12) 

where R denotes the refinement ratio, that is, R = L'v<C/ill< F > 1. A closed-form solution can also 
be found for the regression pre-factor ~ of equation (8). The observed rate-of-convergence is 
com pared to the theoretical order of accuracy of the method to verify the appropriateness of its 
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algorithmic implementation ("is there any code deficiency that prevents reaching p = pTheory ?,,) 
and assess solution accuracy ("should fj,x be decreased to improve solution accuracy?'). 

More details about the application of mesh refinement to code verification can be obtained 
from References [6-7, 9-13]. Practical details are discussed in Reference [12] and, in particular, 
what the best strategy may be to compute the error differences of equation (11) when the exact, 
coarse-mesh and fine-mesh solutions are expressed on different computational grids. 

We now shift our attention to the case where the exact solution of the continuous equations 
is unknown. This is referred to as calculation verification (or solution veri fication). The procedure 
outlined in equations (1 1-12) cannot be applied directly because the so lution error £(Llx ) cannot 
be calculated if lxact is unknown. The practice most often encountered in computational physics 
and engineering is to restrict the analysis to the special case of monotonic convergence of 
scalar-va lued solutions. The exact solution yExact is replaced by an (unknown) reference solution 
yReference that becomes a third unknown of the problem. In addition equation (8) is specialized to 
scalar-va lued responses to make it possible to go through the derivations "by hand. 11 

This simplified variant of equations (6) and (8) becomes: 

yRefcrcncc = y(4x )+~, ~P+ O(Ax p). (13) 

Because equation (13) features three unknowns (yReference; ~; p), a minimum of th ree equations 
are needed. These equations are provided by the discrete solutions obtained from coarse-mesh 
(Llxc), medium-mesh (LlxM) and fine-mesh (LlxF) calculations. It means that the same problem 
must be analyzed a minimum of three times, using three different meshes. It can be verified that 
the rate-of-convergence is solution to the following non-linear equation: 

1 (R ) 1 (1 R P ) I (1 RP )-1 (Y(~X M )-Y(~X C ): p' og MF + og - eM - og - MF - og ( ) _ ( )' 
Y ~XF Y ~M (14 ) 

where RCM denotes the refinement ratio from coarse-to-medium meshes (RCM = IJ.xc/LlxM) and 
RMF is the refinement ratio from medium-to-fine meshes (RMF = LlxM/LlxF)' There is no closed­
fo rm solution to equation (14), except in the case of a constant refinement where RCM = RMF = R. 
This special case yields the well-known solution: 

p = 10g( y(~x M ) - y(~c ): Ilog(R). 
Y(~ F)- Y(~ M) ( 15) 

Finally, solutions y(Llxc) , y(LlxM) and y(LlxF) can be extrapolated to a common reference l eference 
that is the best estimate, given the three discrete solutions available, of the solution that would 
be predicted if the ca lculation could be run at "infinite resolution," Llx = O. The extrapolation is: 

yReference = y(ill<F) + Y(Llx~;!1(ill< M ), (16) 

where p denotes the observed rate-of-convergence from equation (14) or (15). Knowing p and 
leference, the regress ion coefficient ~ can be back-calculated from equation (13). 

An example of performing mesh refinement to verify that an algorithm yields the theoretical 
order of accuracy of the numerical method is presented in the next section. Going back to the 
question "what is mesh refinement useful for?," we see that it is the mechanism that generates 
datasets to verify the asymptotic behavior of truncation error. We will show in section 6 that 
mesh refinement also enables the estimation of bounds of solution uncertainty when the exact 
solution of the continuous equation, or the solution of the modified equation, is unknown . 
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5.15 THE MESH THE BIGGEST "KNOB"OF YOUR SIMULATION? 

The computational mesh or grid is generally not thought of as being a "knob," or calibration 
variab le, of a numerical simulation that can be adjusted to produce a desired resu lt. But the fact 
that discrete solutions are only approxi mations of the exact solution and that, as seen in section 
2, they do not even verify the same equations begs the question of understanding the influence 
of a mesh on the quality of the solution obtained. So we ask: do you know the extent to which 
your mesh influences the accuracy and overall quality of your numerical solution? 

To ill ustrate that th is is indeed a sensible question, and that si tuations may arise where the 
computational mesh may very well be the most influential knob, we discuss the simulation of the 
Noh problem . It is a code verification test problem that assesses the abi lity of a hydro-dynamics 
method to convert kinetic energy into internal energy. Figure 2 (left) illustrates that the Noh 
prob lem is a uniformly convergent flow towards the origin of the domain. The initial condition 
creates an instantaneous discontinuity (or shock) that expands outwards. The conservation laws 
nevertheless possess an exact solution lxact(x;t) [14]. The exact solution is plotted in Figure 2 
(right) for the density field using a -I D, spherical coordinate system. 

Radial velocity: UR = -1 cm.sec.- ' 
Tangential velocity: Ue = 0 cm.sec.-1 

Flow pressure: p = 0 ergs.cm-3 

Flow density: p = 1 gm.cm-3 

Adiabatic constant (ideal gas): V = 5/3 

y 
Point 

.(R;9) 

~elocity 
R; / (UR;Ua) 
; 

; 9 

""--.......... x 
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Exact Solution (resl Problem· "noh1D') 

Expanding 
Shock 

02 0.4 0..6 08 1 1.2 U 115 1 S 

Cell Center (em) 

Figure 2. Initial condition of the Noh test problem (left) and exact solution { xac! (right). 

The code used for this example is developed at Los Alamos for research and development 
in hydro-dynam ics methodologies and algorithms. It solves the Euler equations of gas dynamics 
using a second-order accurate finite volume method defined in a Lagrangian frame-of-reference 
and capable of handling arbitrary geometries. The Noh problem is discretized in 2D geometry 
and a half-symmetry domain is analyzed. Figure 3 depicts two discretizations analyzed. The one 
on the left of Figure 3 is analyzed first. It features a flow-aligned grid while the second one (on 
the ri ght) does not due to the presence of a square mesh inserted at the center of the domain. 

The Noh problem is first solved using the flow-aligned mesh of Figure 3 (left) and in pure 
Lagrangian mode . This means that zones are allowed to move with the flow without any mesh 
adaptation. Figure 4 plots the values of solution error Illxact(x;t) - Ykn(l~x )lh for the density field 
as a function of mesh size I'lx. Truncation error is defined with the L 1 norm, a choice that is 
consistent with the analysis of a discontinuous solu tion . Values of Illxact(x;t) - Ykn(I'lx)lh and I'lx 
are shown on logarithmic scales such that equation (8) should become a straight line of slope 
p Theory = 1. (The second-order accuracy of the finite volume method shou ld degrade to first-order 
due to the presence of the shock discontinuity.) 
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y 

Figure 3, Uniform (left) and non-uniform 
X 

ght) meshes analyzed for the Noh problem. 

Figure 4 shows that, as expected, the first-order asymptotic behavior is recovered when the 
same calculation of the Noh problem is performed with four different mesh sizes. The observed 
rate-of-convergence is equal to p = 0.987, wh ich confirms that the Lagrangian hydro-dynamics 
method implemented in the code performs satisfactorily on a flow-aligned mesh. 
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Figure 4. Asymptotic convergence of the finite volume method for the Noh problem. 

The analysis is repeated next with the non-uniform mesh ill ustrated in Figure 3 (right). Mesh 
adaptation is tu rned on during the calculation. Adaptation is needed to help the hydro-algorithm 
negotiate the "corners" of the imprinted box as the material flows inwards. Running the problem 
with either mesh should not make any difference because the mesh simply provides a support 
to express the solution. It should not, in itself, be a significant factor that influences accuracy. 

The Arbitra ry Lagrangian Eulerian (ALE) algori thm adapts the mesh in an attempt to better 
"follow" the flow and avoid highly distorted zones that would pollute the numerical quality of the 
solution. ALE is turned on at every cycle of time integration . After a ful·1 hydro-step is completed 
that so lves the conservation laws, ALE performs a rezoning step where a new mesh is obtained 
that minim izes zone distortion, This first step is followed by a second one where so lution fields 
expressed on the old (distorted) mesh are re-mapped onto the new (somewhat more uniform) 
mesh. This completes the cycle and the calculation advances to the next time step, tk+ 1 = tk+Llt. 
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Figure 5. ALE results obtained with the type-A rezoning and type-I viscosity model. 
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Figure 6. ALE results obtained with the type-A rezoning and type-II viscosity model. 

Figures 5-7 show, on the left, snapshots of the deformed mesh at time t = 0.6 sec. and, on 
the right, comparisons between discrete and exact solutions. The exact solution is plotted with a 
black, solid line. The colored lines represent multiple discrete solutions obtained by varying the 
amount of arti ficial viscosity allowed in the calculation. Figures 5-7 compare discrete solutions 
obtained with different combinations of two rezoning algorithms (labeled type-A and type-B) and 
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two models of art ificial viscosity (labeled type-I and type-II ). Details about these calculations are 
ava ilable from Reference [1 5]. 

Figures 5 and 6 clearly demonstrate that poor-quality meshes are produced by the type-A 
rezoning algorithm which, in turn , leads to poor accuracy at, and behind, the shock front. These 
meshes deteriorate the quality of discrete solutions to a point where it becomes difficult to trust 
the predictions. On the other hand, the solution shown in Figure 7 and obtained by ru nning with 
the combination of type-B rezoning algorithm and type- II model of artifi cial viscosity matches the 
expected accuracy. Simply by varying the type of computational mesh as shown in Figure 3, we 
observe vastly different performances. Of course, the rezoning and re-mapping steps of the ALE 
strategy can also influence the numerical quality of solutions. But the role of mesh adaptation is 
primarily in avoiding mesh tangling and guaranteeing the "survivability" of the calcu lation. 
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Figure 7. ALE results obtained with the type-B rezoning and type-II viscosity model. 

This example illustrates that meshing can playa critica l role in delivering good-quality or 
poor-quality solutions. Th is may be a somewhat extreme example but the same remains true of 
calculations performed with other numerical methods, such as finite element analysis . The point 
we are making is that we may not always realize the extent to wh ich our computational meshes 
or grids may be "knobs" in our simulations, just like parameters of viscosity models or material 
models can be calibrated to match physical measurements. If the effect of meshing is unknown, 
then, the uncerta inty originating from ru nning with a given mesh should be rigorou sly quantified 
to increase the confidence placed in predictions. This topic is fu rther addressed next. 

6. A PROPOSAL FOR ESTIMATING BOUNDS OF SOLUTION UNCERTAINTY 

In sections 2 and 3, we have briefly reviewed the theoretical framework available to assess 
the accuracy of solutions calculated by a numerical method implemented in a code. This has 
lead to an overview of code and calcu lation verification activities in section 4. We now tu rn our 
attention to open areas of research and development and, more specifica lly, the quantification 
of solution uncertainty. 
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Techniques available to study asymptotic convergence are based on the practice of mesh 
refinement to accumulate discrete solutions by running the calculation with different mesh or 
grid sizes. These methods assume that the exact solution lxact of the continuous equations is 
known, which helps to define truncation error and carry out derivations. But what happens when 
the exact solution is unknown? 

We have seen in equations (13-16) that solution verification can be achieved using an 
extrapolated solution yReference to replace the "true-but-unknown" solution lxact. Solution error, 
such as Ilxact(x;t) - Ykn( ill<)1 can then be replaced by an approximation lyReference(x;t ) - Ykn( ill<)I 
and the equations can still be solved as long as asymptotic convergence is monotonic and 
restri cted to scalar-valued response quantities. It is our contention, however, that when the "gold 
standard" of an exact solution lxact is unknown, solution error becomes solution uncertainty. 

When the exact solution is unknown, the best that one can do is bound the solution error of 
prediction Ykn( ill<) obtained at mesh size b.x. Our goal is, therefore, to arrive at an upper bound 
of uncerta inty defined as: 

lyExact (x ; t) - y~ (~~ ~ U ~ (ax ), (17) 

where the exact solution l xact of the continuous equations is unknown. To render the derivations 
possible in closed-form, analysis is restricted below to scalar-valued responses. The case of 
multi -dimensional fields is addressed at the end of the section for lxact E ~HN and Yk n E ~N. 

Derivations start by writing error models for solutions obtained with coarse-mesh (ill<e) and 
fine-mesh (ill<F) discretizations. It implies that the calculation must be run twice, on two different 
meshes. Assuming that these runs are located within the regime of asymptotic convergence, the 
following equations hold: 

{

yExacl "" y~ (~X F) + ~. ~x ~ 

yEXaCl ~ y~ (~xc) + ~. ~x & . 
(18) 

The well-known triangular inequality lal + Ibl 2':la + bl is modified as Ix - yl 2':lxl - Iyl ;;:::0 (simply 
use x = a + band y = b) and applied to the difference between two discrete solutions : 

0(6. ' )_ "(ax )=( "(~ )_ Exact)_( "(ax )_ Exact) 
!k X F Yk C, ,Yk F Y ,/k C Y " (19) 

x-y y 

Using the two instances of equation (18), one can write: 

I Y~ (A.x F )- y~ (6.xc ~ :2ly Exacl_ y~ (6.xc ~ _lyEXact - y~ (6.x ~ ~ =~. 6. ~ -~. &~, (20) 

where it is assumed, without loss of generality, that the pre-factor coefficient is positive (13 > 0) 
and the fine-mesh error is smaller than the coarse-mesh error. Introducing the refinement ratio 
defined as R = ill<e/ ill<F > 1, one can re-write the previous equation as: 

I Y ~ (.::lx F ) - Y ~ (AX c ~ :2 ~. Llx ~ . (R P - 1 ) , (21 ) 

and recalling from equation (18) that Ilxac1 - Ykn(b.xF)1 = ~'ill<FP for the fi ne-mesh solution , the 
term (13 ' ill<FP) can be eliminated: 

I 0 (6.x ) 0 (AX ~ 
Y k F - Y k (' ~ > I Exact n ( . ~ (22) (R p -1) - Y - Y k ~x r ~ . 

What is arrived at is an upper bound of solution uncertainty for the fine-mesh calculation . It 
is therefore proposed to define solution uncertainty as: 
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U~(~XF)= R~~l'ly~(~xF )-Y~ (~X ('~' (23) 

where Fs is a user-defined factor of safety (Fs ;;::1) used to provide add itional conserva tism. The 
analogy between definition (23) and the Grid Convergence Index (Gel ) of References [16-1 8] is 
noticed. The Gel of a fine-grid calculation is computed as: 

y~ (~X F)- y~ (~Xc) 

y~ (~X F) 
(24) 

with 1 ::;Fs ::;3. Even though the two equations are similar, it is emphasized that the motivation 
of the GCI is completely different. According to Patrick Roache, the idea behind the GCI is: 

". .. to approximately relate the error obtained by whatever grid convergence 
study is performed (whatever p and R) to the error that would be expected from a 
grid convergence study of the same problem, with the same fine grid, using p :::: 2 
and R = 2, i.e. a grid doubling with a ~d-order method." ([17], chapter 5, pp. 115.) 

Another difference is that the Gel requires a facto r of safety Fs = 3 to be true to the comparison 
of mesh refinement studies mentioned above while there is no such constraint fo r the bound of 
solution uncertainty defi ned in equat ion (23). 

In the remainder of th is section , the solution uncertainty bound of equation (23) is applied to 
. a simple differential equation to illustrate its performance. The estimation of solution uncerta inty 
bounds for mUlti-dimensional fiel ds is also briefly illustrated. The equation chosen for analysis is 
Burgers equation in 1 D, Cartesian geometry. Though easy to work with, it is also a non-linear, 
hyperboli c equation capable of developing discontinuous so l,utions [19]. The continuous Burgers 
eq uation with diffusion added in the righ t-hand side is defined as : 

a y . ) 1 a y 2 ( • ) a 2 y ( . (25) a t (x, t +"2' ~ X, t = f.1' a x 2 x, t), 

where !J > O. Burgers equation is solved in the domain -% ::;(xlL) ::;% using an in itial cond ition 
defined by an arc-tangent function , y(x; t=O) = yo(x) = (LlTT)·tan-\w·x), and over the time period 
of 0 :o;t :0;1 sec. Values L = 3 m and w = 5 cm-1 are used for numerical application. 

Equation (25) is solved in conservation form using the Lax-Wendroff integration scheme 
implemented as a finite volume method with piece-wise, constant interpolation within each zone 
[20-21J. Th is algorithm is second-order accurate when applied to the simulation of conti nuous 
solutions. The non-linear, hyperbolic nature of Burgers equation evolves the initia l cond ition 
yo(x) in a sharp discontinuity, which deteriorates accuracy of the algorithm to first-order. 

T bl 1 R a e esu It f so 'd f d f h 10 B a gn re mement stu Iy or t e f urgers equa Ion. 

Grid Resolution Cell Size, llx Density Jump, [Y]s Rate-of-convergence, p 

Extra-coarse, Yk n(llxxc) 5.00 cm 0.9995 gm. cm--3 r""I 
Coarse, Ykn(llxc) 1.25 cm 1.3083 gm. cm-3 

~ p = 1.01 
Medium, Ykn(llxM) 0.3125 cm 1.3832 gm .cm -;5 

Fine, Ykn(llxF) 0.0781 25 cm 1.401 8 gm.cm-3 f..I (The theory predicts 

Extrapolation , yReference llx ~ 0 1.4080 gm .cm-3 p Theory :;:: 1.) 

Fou r runs are performed with 60, 240, 960 and 3,840 zones and the results are reported in 
Tables 1 and 2. The mesh refinement ratio is constant and equal to R = 4. The pred iction of 
interest is the discontinuity jump [Y]s defined as the value of the solution to the left of the 
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discontinuity minus the value to the right. Table 1 lists the predictions of discontinuity jump [Y]s 
and the best-fitted rate-at-convergence. A value of p = 1.01 is observed, wh ich is in excellent 
agreement with the expectation of first-order behavior. The prediction yReference at "infinite" mesh 
resolution, that is, 6x -7 0, is also shown. This extrapolation represents the best approximation, 
given the discrete solutions available, of the unknown solution of the continuous equations. 

Table 2 lists the values of bounds Uk
n(6x) com puted from equation (23) and corresponding 

percentages of solution uncertainty. It can be observed that these va lues are relatively low, 
hence, suggesting that the calculation is sufficiently resolved with !1x ~0 . 3 1 2 5 cm. In a formal 
Verification and Validation (V&V) assessment, solution uncertainty would be compared to other 
types of uncertainty, such as experimental variability or parametric uncertainty, to decide on the 
best course of action needed to improve prediction accuracy or red uce the "total uncertainty. " 

T bl 2 B a e . d fir rt " ty f th 1 0 B oun so so u Ion u nce am or e f ("th F 1) urgers equa Ion WI s= 

Grid Resolution Cell Size, /1x Uncertainty, Uk n(/1x) Percent Uk n(llx)/Yk n(/1x) 

Extra-coarse, Yk n(ill<:xc) 5.00 cm N/A N/A 
Coarse, Ykn(6xe) 1.25 cm 0.1011 gm.cm-3 7.72% 
Medium, Yk n( ill<:M) 0.3125 cm 0.0245 gm cm-j 1.77% 
Fine,y,/ I ill<: F) 0.0781 25 em 0.0061 gm.cm-3 0.43% 

Figure 8 summarizes graphically the analysis of Tables 1 and 2. It depicts the predictions of 
jump discontinuity [Y]s obtained with different mesh resolutions, extrapolated solution leference 
and bounds of solution uncertainty Ukn( ill<:). For the purpose of th is illustration, the uncertainty 
bounds plotted are twice the values listed in Table 2, that is, 2·Uk

n(ill<:). 

Solution Convergence and Uncertainty of 1D Burgers 
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Figure 8. Predictions [Y]s and uncertainty bounds Uk n(/1x) for Burgers equation. 
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It is clear from Figure 8 that the asymptotic convergence of discrete solutions is monotonic. 
Even though values 2·Uk

n(fu<) are plotted on Figure 8, it can be veri fied from the tables that the 
bounds of uncertainty encompass the extrapolated solution: lyReference - Ykn( fu<)1 ~Ukn(fu<). This 
makes sense since leference provides the best estimate of the exact-but-unknown solution . The 
practical signifi cance of uncertainty bound Ukn(fu<) is to define an interval where the exact-but­
unknown solution lxact may be located relative to prediction y(f),x) at mesh resolution fu<. 
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Figure 9. Solution uncertainty for a finite element prediction of stress curve [23] . 

To conclude we briefly mention that the estimation of solution uncertainty has, so far, been 
restricted to scalar-valued responses. This makes derivations possible in closed-form. However, 
predictions from computer codes generally come in the form of mUlti-dimensional fields such as 
curves or images. The technique can be generalized for application to multi-d imensional fields, 
as shown in References [22-24]. The basic idea is to decompose discrete solutions Ykn( fu<) E 9\N 

obtained from a mesh refinement study on a truncated basis of empirical "modes," then, apply 
equations (17-23) to the coordinates of this expansion. Solution uncertainty for the entire field, 
that is, Uk n( f),x) E 9\N, can then be recomposed using the truncated basis and interval arithmetic 
to combine the intervals of solution uncertainty for coordinates kept in the expansion. 
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Figure 10. Solution uncertainty for a finite volume prediction of velocity curve [24]_ 
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Illustrations of solution uncertainty for entire curves are given in Figures 9 and 10, Figure 9 
illustrates the prediction of a stress field for the fi nite element simulation of Hertz contact, see 
Reference [23], The figure on the left depicts the coarse-mesh calculation where a ri gid sphere 
applies pressure to an elastic region. The figure on the right shows stress values for the top row 
of fi nite elements (black, square symbols), the bounds of solution uncertainty (red, so lid lines) 
and extrapolated solution (blue, solid line). The analysis indicates that, as we saw for Burgers 
equation, the bounds of solution uncertainty encompass the extrapolated solution . 

Figure 10 conveys a similar message for the prediction of velocity field for a finite volume 
calculation, see Reference [24]. The problem is the propagation of a pressure front between the 
inner and outer su rfaces of a solid sphere. The figure on the left compares the exact solution of 
ttle continuous equations (black, solid line) to several hydro-dynamics calculations performed 
with different mesh sizes and artificial viscosity settings. The figure on the rig ht indicates that the 
bounds of solution uncertainty for a run performed at /).x = 0.104 mm include the exact solution 
except, as expected , at the very tip of sharp discontinuities. 

7. CONCLUSION 

The main theme of this publication is that discrete solutions computed by a com puter code 
introduce numerical uncertainty, which is one of many types of uncertainty that one needs to 
manage in physics and engineering applications. Other sources include experimental variab ility 
that introduces uncertainty on measurements, parametric variability that generates uncertainty 
on predictions, algorithmic selections and other assumptions needed to develop and implement 
models in computer simulations. Numerical uncertai'nty results from discretization. It should be 
quantified and accounted for in the overall uncertainty "budget" of the simulation; not doing so 
would introduce the risk of missing a significant uncertainty and jeopardizing decision-making. 

To understand where numerical uncertainty comes from, the concepts of mod ified equation, 
consistency, convergence and truncation error are overviewed. The current state-of-the-practice 
of code and solution verification is discussed. A simple proposal is made to estimate bounds of 
solution uncertainty if the exact solution of the continuous equations being solved is unknown, 
which is always what happens in practice. This is when solution error becomes an uncertainty. 
Several examples from finite element and hydro-dynamics calculations are given to illustrate the 
influence that meshing can exercise on the quality of discrete solutions and demonstrate the 
quantification of solution uncertainty. 

On-going and future work includes addressing many small-yet-important details that arise 
during the implementation of solution uncertainty bounds. One such detail is how to perform a 
mapping of solution fields obtained from different meshes on a common, "reference" grid so that 
solution errors can be meaningfully estimated. Another track of research and development that 
shows promise is to perfect our understanding of the "finite scale equations" of a numerical 
method, as proposed in References [4-5], to implement better algorithms and enhance the rigor 
of code and solution verification analyses. 
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