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ABSTRACT

A Two-Modulator Generalized Ellipsometer (2-MGE) has been extremely useful in characterizing optical
properties of uniaxial bulk materials, thin films and diffraction gratings. The instrument consists of two polarizer-
photoelastic modulator pairs, one operating as the polarization state generator and the other as the polarization state
detector. Each photoelastic modulator operates at a different resonant frequency (such as 50 kHz and 60 kHz),
making it possible to measure eight elements of the reduced sample Mueller matrix simultanecusly. In certain
configurations, light reflection from non-depolarizing anisotropic samples can be completely characterized by a
single measurement, and the entire reduced Jones matrix can be determined, including the cross polarization
coefficients. The calibration of the instrument involves the measurement of the azimuthal angle of the polarizer
with respect to the modulator, the modulation amplitude, and the medulator strain for each polarizer photoelastic
modulator pair, where the last two are functions of wavelengths. In addition, it is essential to calibrate the azimuthal
angles of the polarization state generator and the polarization state detector with respect to the plane of incidence in
the ellipsometry configuration that is used in the measurements. Because two modulators operating at different
frequencies are used, these calibrations are actually easier and more accurate than for one modulator eilipsometers.
In this paper, we will discuss these calibrations and the resultant accuracy limitations of the 2-MGE.

Keywords: Ellipsometry, generalized ellipsometry, uniaxial materials, cross polarizatibn, photoelastic
modulator

1. INTRODUCTION

The two modulator generalized ellipsometer (2-MGE)' is an especially powerful instrument in that it can
compietely measure the polarization-dependent optical properties of many reflective or transmissive samples. The
instrument consists of two polarizer-photoelastic modulator (PEM) pairs, where the 2 PEM's are operating at
different resonant frequencies (~50 kHz and ~60 kHz in our case). For non-depolarizing samples that can be
described with a Mueller-Jones matrix, the complete Mueller matrix can be determined with a single measurement
of the 2-MGE. If all 16 elements are required, then four separate measurements at different azimuthal orientations
of the polarization state generator (PSG) and the polarization state detector (PSD) must be made.

This instrument has been successfully used to measure the optical functions of a variety of uniaxial crystals,”®
including rutile (TiO,), zinc oxide (ZnO), bismuth triiodide (Bily), and a series of rare earth phosphates. Some of
these samples were so small (<1mm?) that the conventional optical path had to be modified with focussing lenses.
These lenses are strained, so the ellipsometric measurements had to be corrected for their strain-induced
birefringence of the lenses.’

As with any ellipsometer, accurate measurements require accurate calibrations. Since the accuracies desired of
the ellipsometric parameters are typically +0.001-0.003, the azimuthal angles must be determined to ~x(.015® and
other parameters must be determined to .1-0.3%. Fortunately, many of these calibrations are actually EASIER with
the 2-MGE than for other instruments using photoelastic modulators. As we wiil show in this paper, certain errors
often are solely responsible for a particular ellipsometric parameter being different from zero. Hence, the error can
then be unambiguously eliminated by just nuiling the appropriate ellipsometric parameter.



2. PHOTOELASTIC MODULATOR

The basic principle of photoelastic modulation is that a light beam passes through an optical element that is
mechanically stressed by the acoustic wave generated by an oscillating piezoelectric transducer. The oscillating
stress (typically at 20-80 kHz) generates an oscillating optical anisotropy by the photoelastic effect creating a wave
plate with a time-dependent retardation. The retardation of the PEM is normally expressed as®

8= Asin (¢ + ¢) +6,, (1

where A is the amplitude of the modulation, 2nw is the frequency of the moduiator, ¢ is the phase of the modulator,
and §, is the static retardation of the PEM. It is normally assumed that the static retardation can be expressed as a
linear correction (as done in E% 1), which implies that the static strain in the PEM is coilinear with one of the major
oscillating axes of the PEM. If this assumption cannot be made, then the analysis becomes extremely
complicated since the directions of the major axes of the PEM vary through the oscillation cycie of the optical
element..

Typically, the modulation amplitude A is controiled by a modulator voltage V,,, which is given by®
A= ii—irrf(ﬁ,)KQ(l)V —TCKV Z (2a)
2 m ,12! '

where A is the wavelength of light and X is a constant relating V,, to the maximum value of the oscillating strain of
the optical element. The oscillating optical element is characterized by its thickness d, its strain-optic coefficient,

Q(A), and its refractive index n{4). The wavelength-dependent parameters ¢ and n can be parameterized using a
standard Cauchy expansion, as shown in the second part of Eq. 2a.

It is common, though not universal, to set V,, to a voltage such that A = 2.4048. Eq. 2a can be re-arranged to
give

vV, =—— (2b)

The modulator voltage required to keep A constant is nearly linear with wavelength with a small dispersive
correction.

Similarly, the static strain of the PEM can be expressed as

&.

3, =7 Pyn (l)Q(l)_—i-nPoth ' (2c)

where P, is the static strain of the modulators. If Egs. 2b and 2¢ are multiplied, then

v s =4Ah

(2d

For any particular modulator, the product of the voltage required to keep A constant and the static strain will be a
constant.

By employing a polarizer before the PEM, dynamically elliptically polarized light is generated, with the
ellipticity changing at the frequency of the PEM. A convenient way of representing the polarization state of the




ligf]lt];;eam after it has passed through the PEM is by its Stokes vector. The Stokes vector is a 4-vector, defined
by ™

IU IO
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where 1, 1s the intensity of the light beam, and [y, Lis, fop, and 145 are the light intensities for linearly polarized light at
0°, 45°, 90°, and —45° respectively with respect to the plane of incidence. /.. and I, are the intensities of right- and
left-circularly polarized light, respectively. All elements of the Stokes vector are intensities and therefore are real.
The total light intensity

L2+ U% + V¥)I? (4)

where the equality holds only if the light beam is totally polarized.

The Stokes vector for unpolarized light passing through a polarizer-PEM pair is given by

1
C,C,+5,8,Y; (5)
Sp_pem =
Sm Cb - Cm SbY6
S, X5
where

Cy=c08 (26,); 5, = 5in (28,) (6a)
Cp=cos (268,); S, = sin (26,) (6b)

The angle @, is the azimuthal angle of the modulator with respect to the plane of incidence and the angle 8, is the
azimuthal angle of the polarizer with respect to the PEM. The quantities X; and Y are the time-dependent basis
functions, given by
X = sin (8) = sin (A sin (wt + $) + 8,), (7a)
= sin (A sin (Wt + §)) + 8,cos (A sin (@L+ N =X+, Y
¥5=cos (8) = cos (A sin (©t + &) + 5,). (7b)
= cos (A sin (0t + $)) - 8, sin (A sin (0t + $)) =Y+ 5, X.

The last expansion that separates out the static strain-induced retardation assumes that the static strain is smail with
respectio i,

The characterization of any polarizer-PEM pair requires four separate calibrations. The azimuthal orientation of
the optical elements is described by two angles 6, and 8, (see Eqs. 5 and 6). The PEM is described by two
wavelength-dependent parameters A(A) and &,{A).




3. TWO-MODULATOR GENERALIZED ELLIPSOMETER
The intensity of the light beam through the 2-MGE is given by
Intensity = S."MS,, (8)
where Sy is the Stokes vector for the polarization state generator (PSG), given by Eq. 5 and SlT is the transposed
Stokes vector for the polarization state detector (PSD). The Mueller matrix M is a 4X4 real matrix and represents

the light interaction with all elements between the PSG and the PSD. The light intensity can be expressed as a dc¢
term plus 8 constant terms multiplied by 8 basis functions'

Intensity =1y, + Ixo Xog + Ivo Yost Ixy X1+ Iys Yis+ Ixoxs Xos X15+ Ixovr Xos Yist Ivoxr Yos Xist Ivovs Yos Yig
{9a)

The 0 and / subscripts of X and Y refer 10 the PSG and the PSD, respectively. The strain-induced retardation can be
separated out, giving

1 0 0 0 0 0 0 0 0YI,
0 1 8 0 0 0 0 0 0|1,
0-6 1 0 0 0 0 0 0|1
D0 0 1t § 0O 0 0O 0l
Intensity=(1 X, ¥, X, ¥, XX, XY, v, X, ,Jo 0 0 -6 1 0 O 0 O} Iy,
0 0 0 0 0 1 & & 0|l
0 0 0 0 0 -8 1 0 &\tlm
0 0 0 0 0 -8 0 1 & |lhm
00 0 0 0 0 -8 =5 1[Iy
(5b)

The 8 constant terms Iy, Iy, etc. are usually normalized by the I, term (to eliminate fluctuations of the incident
light intensity, and to eliminate the dependence of the sample reflectivity), so the time-dependence of the intensity is
determined by 8 parameters.

The basis functions for any polarization modulation ellipsometer, including the 2-MGE, are the functions X and
Y, shown in Eq. 7. These basis functions are related to the common Fourier basis functions using an infinite series
including integer Bessel functions:

X =sin( Asin(@t+¢)) = 3 J,,,(A)sin(( 2 — 1)@ +¢)) {10a}
=1 .
Y =cos{ Asin( wr +¢)) = J,(A)+ 22 J,;(A)cos( 2 jlan +¢)) (10b)

i=l

For many ellipsometric applications, A is chosen to be 2.4048 radians, where Jy(4) = 0, Ji(A) = 0.5192, J)(A) =
0.4318, J3(4) = 0.1990, J4(4) = 0.0647, J5(A) = 0.0164, Jg(A) = 0.0034, etc. At this value for A, the Fourier

expansion of the X and Y basis functions have no dc terms and the series converges very rapidly. The Ji{(A} and
J2(A) are also within 15% of their maximum values for A = 2.4043.,

Because the basis functions of PEM’s are so closely related to Fourier basis functions, lock-in amplifiers have
often be used to measure the coefficients [y, and Jyif only a single PEM is used, where Iy is proportional to the 1f
signal, and Iy is proportional to the 2f signal. However, this solution becomes untractable when more than one PEM




1s used, since one would have to have at least eight lock-in amplifiers to analyze the time-dependent intensity given
in Eq. 9. Furthermore, the PEM’s are resonant devices, and their frequency and phase are set by the physical
dimensions and temperature of the optical element. Therefore, any data analysis will require a precise knowledge of
the instantaneous phase of both of the PEM’s. The technique that we have used to deconvolute the time-dependent
intensity incolrporates a trigger circuit that initializes a waveform digitization when the phase of each PEM is at a
known value,

The first four basis functions of the 2-MGE are easily determined from the expressions given in Eqgs. 10, but the:
last four are product functions, and therefore include sum and difference Fourier functions in the Bessel function
expansions. The result is that many Fourier components are created with a significant amplitude (see Table I of ref.
1); for two PEM’s operating at 50 and 60 kHz, the time-dependent intensity includes 31 Fourier components at
frequencies less than 240 kHz, all with a significant amplitude.

Information concerning the values of the individual elements of the sample Mueller matrix is included in the
measured values of the eight coefficients of the time-dependent basis functions. The elements of the sample Mueller
matrix can, in turn, be related to the ellipsometric parameters of the sample. The particular elements of the sample
Mueller matrix will depend upon the azimuthal orientations of the PSG and the PSD, Schematically, the measured
elements of the sample Mueller matrix can be represented by:

e Ly Iy 1

. IYO ]X[)
M8 . =0908 =090 = ¢ * P 1 * Teom Txon
(8, =0908,, =0.90) M(8,, =0,90;8,, = +45) =
Iy & Ly Iyon ¢ o . .
Iyy * Lo Ixon Tei * D Taon
(11a,b)
I Iy e Iy E oIy o Iy
- — I * * * L Iyy DLyon * Iyon
M(,, =+56,, =090)= M@, = 145,6,, = £45) =
Iy Lyon * Iyom . . . .
T Ty ® Ixom Fer Troxi * Tegm
(11c,d)

where the sign is not included in the representation. If an element of the sample Mueller matrix has a filled-in dot

(*) then that particular element cannot be measured in the given configuration. If an element of the sample Mueller
matrix can be measured, then the appropriate normalized constant term is shown.

For a simple isotropic sample where there are no windows, the sample Mueller matrix is given by

1 -N 0 ¢

-N 1 0 o
M = , (12a)

0 6 C S

a 0 -5 C

where the N, §, and C parameters are given by

N =cos (2y) (12b)
S = sin (2y) sin A, {12¢)




C = sin (2¥) cos A. (12d)

These parameters arc related to the traditional ellipsometry parameters w and A by

Top a_ C+IS
= -— = tan = e, (123)
P K, ) 1+N

where r,, and r are the complex reflection coefficients for light polarized in the plane of incidence or perpendicular
to the plane of incidence, respectively. Therefore, the sample Mueller matrix for an isotropic sample can be
completely characterized if 8,p= +45°; 6,, = 0°, 90° or if 8,5 = 0°, 90°; 8, =+45°, where several of the measured
parameters will be zero.

3.1 Straight-through configuration

When the 2-MGE is placed in the straight-through configuration, the sample is just free space, where the
Mueller matrix is the identity matrix (N = § = 0; C = 1). If the azimuthal angles of each of the polarizers are set
close to +45°, the eight constant prefactors of Eqgs. 9 are given by

Iy = 0, (13a)
Iy = Pos [JolAD) cos (2 8,) - 2 5in (2 8,) &), (13b)
Iy = 0, (13c)
Iy, = Py [Fo{Ag) cos (2 8,) + 2 sin (2 8,) Expl (13d)
Iy = -Por, (13e)
Ixoy, = -Pyr [6; + Scos (2 0,)], (135
Tyox = -Por [6 + 8y cos (2 8,)], (13g)
Iwyr = Py cos (2 6,), (13h)

where Py; = sin (2 6y) sin (2 ;) = 1 and the static strain-induced retardation has been incorporated into the 8
coefficients. The angle 6, is the angle of the PSG with respect to the PSD, and &, and &,; are the errors of 8, and
6, from +45°. The quantities Jo(Ap) and J{A,) are the O™ order integer Bessel functions at angles A, and A;, where
it is assumed that A, and A, are set near 2.4048 radians, where J{A,) and JiA;) are small. Note that all elements
except fyox; and Iyoy; are close to zero.

When the 2-MGE is set such that the PEM’s are aligned or perpendicul.ar to each other, then 8,,=0° or 90° and
sin(28,,) = 0 and cos(28,) = +1. In this situation, Iy, and ly; are proportional to Jo(4,) and Jo(A,), respectively.
Since

JolA) = - 0.5196 (2.4048 - A), (14)

the measurement of Iy, and Iy; [and therefore Jo(Aq) and Jo(A )] is a direct and very sensitive method for measuring
the deviation of A; from 2.4048. Such sensitivity is not available from single PEM ellipsometers.

Similarly, if the two PEM’s are aligned at +45° with respect to each other, then sin(28,) = +1 and cos(28,) = G.
In this case, Iyp and [y, are proportional 1o &, and &, respectively, which are the errors of 8,; and &y from +45°.




Therefore, the +45° alignment can be used 1o set By and 8, to precisely £45°. Again, this sensitivity is not available
with one-modulator systems, where one has to first establish the 0° and/or the 90° positions of the polarizer with

respect to the PEM and then rely on the precision of the rotator to get the 8, to +45°. In addition; fxgy; = +8; and

Iyoxy = &, which allows for the precise measurement of the static strain-induced retardation as a function of
wavelength.

All of these calibrations do not depend upon getting the PEM’s precisely aligned or set at £45° with respect to

each other, sitce errors in 6, do not enter in first order. Residual errors in 8,, are always multiplied by another small
number, so the product is always small to second order.

3.2 Ellipsometry Configuration

In the ellipsometry configuration with an isotropic sample and without windows

- [Nsin (2 8,5) - CJsAD)], (15a)

fyp

I}'I

- [N'sin (2 8,1) - CJAAD)] (15b)

where it is assumed that 6y = &, = 45°. If Jy(Ag) = Jo{A;) = 0, then these two parameters can be used to set the
azimuthal angles of the PEMs 8,5 and 8,; precisely with respect to the plane of incidence. This calibration is not
possible if the sample is anisotropic, since the anisotropy may also contribute to fyp and fy;. Clearly, the most
accurate calibrations of 8, and 8,,; occur when N is large. .

During any ellipsometry configuration measurement of a 2-MGE, it is possible to monitor the value of the
Bessel angle A by monitoring the higher harmonics. For example, if the coefficient fyp were large, then the value of
Ap could be measured by determining both the 2ax and the 4ax components. If the intensities of these two
components are {(2ay) and I{4ax) respectively, then

= 14@y) | faned s (Ag +0A) _ Fiog J"(A“)(1+6A( 1 di (A 1 d]z(A‘,)))
1Qwy)  fraod 2(Ag +8A) ~ fruo /2(4) Ji(Ay)) dA Jo(Ay) dA
(162)
ar
A=A, +B8A= A, + (6.416 R 220 _ 09609 )- (16b)
400

In Egs. 16, the quantitics frug and fio are the electronic gains at the frequencies 2ay and the 40% components,
respectively. Similar expressions can be developed for any of the frequency components that are reasonably large.
While this technique can always be used, care must be taken to also monitor the errors in both the measured
parameters and in the the quantities frup and figp.

Obviously, this technique could also be used with the 1% and 3" harmonics (10 measure the Iyp and the Iy,
components), but this requires that the associated element of the sample Mueller matrix be large. With one-
modulator ellipsometers, these harmonics can be used to also measure A whenever 15| is large, but two-modulator
ellipsometers require the m;q and the m,; components to be large, which rarely happens.




3.3 Windows

If there are windows or lenses between the samplie and the PSG and/or the PSD, then the retardation from these
elements must be taken into account for very accurate measurements. If it can be assumed that the window strain is
small (so that the linear approximation can be used), the sample-windows Mueller matrix becomes’

1 -N 0 S,N
Mg =My MM, =| " ! S5 =5 -8C | (172)
¢ e 0 8,8 C-WS  S+WwC

~S,\N §,+5,C ~(S+WC) C-Ws

Each window is described by a static retardation &,p and 8, (which will depend upon wavelength in a similar
manner as the PEM static retardation, given in Eq. 2¢) and by a fast axis direction 8,4 and 8,;. The window between
the sample and the PSG is labeled w0 and the window between the sample and the PSD is labeled wl. InEq. 11,

So = 8,0 5in (26,0, (17
8, = &, sin (26,)), (17¢)
W = 8.5 cos (28,0) + 6, cos (26,.)). (17d)

The cosine terms are not independent, and always enter to first order as the term W, so only three parameters must
be specified to characterize the windows. However, the W parameter is difficult to measure in the ellipsometry
configuration, since it is impossible to separate it from the measured values of § and C. One possible solution is to
place the 2-MGE in the straight-through configuration, where it is known that N = § = 0 and C = 1. In this case,
configurations where either 8,y and/or 8,,; are 0° or 90° can be used to measure W. The parameters S, and S, can be
measured in the ellipsometry configuration if the sample is isotropic. This is particularly useful in that these
parameters can be measured in-situ at the same time and configuration that the actual ellipsometric parameters N, §,
and C are measured.

4, CALIBRATIONS

The most helpful configuration for the calibration of the 2-MGE is the straight-through configuration, where the
polarizer azimuthal angle 8, the modulator static strain 8, and the modulator voltage V., required fo give a
modulation amplitude of 2.4048 can all be easily determined. Aside from the calibration of the azimuthal angles of
the PEM’s with respect to the plane of incidence, this is the only required calibration for the insttument. Moreover,
the PEM’s are remarkably stable, so this calibration nced only be done once unless extremely accurate
measurements are required. Small drifts can be observed in the moduiator voltage of <0.3% and in the static strain-
induced birefringence of <0.002, but these 100 can be eliminated with more frequent calibration.

The straight-through calibration is performed using four zones: 8,, = 0° and 8,, = -45°, 0°, 45°, 90°. The +45°
zones are used to measure the static retardation, while the 0° and the 90° zones are used to determine the Jy(A;) for
each modulator, which is then used to determine the required voltage to give A; = 2.4048, i =0, 1.

Figure 1 shows an exampie of the values of Jo(A,) obtained from the 8,; = 0° and the 6,,; = 90° configurations.
These values indicate how far A; is off from 2.4048 (see Eq. 14) and the are then used to calculate the correct voltage
to be applied to each of the PEM’s to give a modulator amplitude A; of 2.4048. This corrected voltage is shown in
Fig. 2 for each of the modulators. The data in Fig. 2 does not extrapolate to zero, nor is it quite a straight line.
Generally, the error in the set voliage is 0.001-0.002 ‘volts, which results in an error in A; of 20.002-0.003. A 3-term
Cauchy fit is usually sufficient to fit this data with a reduced 3 ~ 1.
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In the 8,; = +45° configurations, the errors in the polarizer azimuthal angles are measured, as is the static strain-
induced retardation. The errors in the polarizer azimuthal angles 6, do not depend upon wavelength, so the results
can be averaged over all data points taken, This results in a measurement of the error in 8,; that is accurate to £0.01-
0.02°. The strain-induced retardation is also measured in this configuration and is shown in Fig. 3 for both
modulators, where the fitted line requires three Cauchy coefficients to get a reduced ¥ ~ 1.

Figure 4 shows a plot of typical windows parameters obtained for two fused silica lenses. The W parameter is
obtained in the straight-through configuration, while the S; and the S, parameters are obtained in the ellipsometry
configuration where the sample is an isotropic material such as crystalline silicon. Although the corrections are
small, they are easily measurable, and very accurate measuremnents require that these corrections be applied.
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Fig. 5 Sample Rho data for silicon taken at an angle of incidence of 65.26°,

Sample data for silicon is shown in Figure 5. Any residual systematic errors in these calibrations tend to show
up in the cross polarization elements, 5o a good test is to perform the measurements on an isotropic material such as
silicon, where it is known that the cross-polarization reflection coefficients are zero. As can be seen, the cross-
polarization terms are extremely small, and are less than 10.0011 over the central part of the spectrum. (Reduced light
in the UV and IR tends to increase the error in these parts of the spectrum.). Therefore, this measurement shows that
the 2-MGE is capable of measuring the cross-polarization reflection coefficients very accurately and that calibration

erTors can essentially be eliminated from the measurement.
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