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ABSTRACT 

The problem of anomalous change detection arises when two (or possibly 
more) images are taken of the same scene, but at different times. The aim 
is to discount the "pervasive differences" that occur thoughout the imagery, 
due to the inevitably different conditions under which the images were 
taken (caused, for instance, by differences in illumination, atmospheric 
conditions, sensor calibration, or misregistration), and to focus instead on 
the "anomalous changes" that actually take place in the scene. In general, 
anomalous change detection algorithms attempt to model these normal or 
pervasive differences, based on data taken directly from the imagery, and 
then identify as anomalous those pixels for which the model does not hold. 
For many algorithms, these models are expressed in terms of probability 
distributions, and there is a class of such algorithms that assume the dis­
tributions are Gaussian. By considering a broader class of distributions, 
however, a new class of anomalous change detection algorithms can be 
developed. We consider several parametric families of such distributions, 
derive the associated change detection algorithms, and compare the perfor­
mance with standard algorithms that are based on Gaussian distributions. 
We find that it is often possible to significantly outperform these standard 
algorithms, even using relatively simple non-Gaussian models. 



1.0 Introduction 

"Just because everything is different doesn't mean anything has changed." 
-Irene Peter 

Given two or more images of the same scene, taken at different times and under different conditions, what 
anomalous change detection (ACD) seeks is the "interesting" changes that occurred in the scene. Unfortu­
nately, a mathematics of "interesting" has not been developed I so our approach is to identify the rare, or 
anomalous changes. The idea is to distinguish them from the pervasive differences that occur throughout 
the scene (e.g., see Fig. I) due to disparities in illumination, calibration, registration, look angle, or even the 
choice of remote sensing platform. They can also be due to diurnal and seasonal variations [2) in the scene. 

Part of the motivation for this is the intuition that interesting changes are anomalous. But even when 
that intuition fails - after all, "anomalous" is not synonymous with "interesting" - then: II since anomalous 
changes are rare, one will not at least be overwhelmed by uninteresting anomalous changes; and 21 if perva­
sive differences are in fact interesting, they will be large enough or plentiful enough that the the analyst can 
readily find them without the aid of the change detection algorithm . 

Anomalous changes are assumed to be relatively rare, and occur in only a small part of the image 
or image archive. Because the nature of the change is not known beforehand, algorithms for anomalous 
change detection are unsupervised. If the nature of specific changes of interest were already known (and 
if an adequate and representative sample of those changes were available in the data), then supervised 
classification might be employed to identify and delineate those changes. 

2.0 Probability distributions 
In this section, we will derive ACD algorithms in terms of probability distributions that characterize both 
pervasive differences and anomalous changes. An explicit model for anomalous changes sems to defy the 
meaning of "anomaly" - it is what Rumsfeld would call an unknown unknown [3) - but a number of existing 
algorithms for anomly detection and anomalous change detection have effectively employed such a model, 
even if it was not explicitly stated as part of the model. 

The use of probability distributions opens up a number of options. The most pragmatic option is pretend 
these distributions are Gaussian. This leads to simple close-form solutions (and in some cases to well 
established algorithms), and requires only that covariance matrices be estimated. 

The "purist" option is to make no assumptions about the distribution at all . Following Vapnik's dic­
tum [4), we would never model the distribution directly, but instead model the boundary that optimally 
separates the distribution of anomalous changes from the distribution of pervasive differences, and base this 
model only on the data that are available. As described in Ref. [5) and illustrated in Fig. 2, samples from 
the pervasive-differences class are given by the data, while samples from the anomalous-changes class are 
given by resampling either from the data or from a uniform distribution . This approach does have some 
theoretical advantages, but can also be expensive and sometimes is problematic on the tails. 

We will take a middle ground, and model the data with a non-Gaussian distribution that can be described 
by a relatively modest number of parameters . Once we fit these parameters to the data, it is straightforward to 
plug them into our expressions that involve arbitrary distributions and produce anomalous change detectors. 
To the extent that these parametric distributions are better descriptors of the observed data, we expect that 
the resulting algorithms will better detect anomalous changes. In particular, since (detectable) anomalous 
behavior occurs on the tails of distributions, it will be useful to model data with distributions that better 

describe the tails. 

'Indeed, some would say that "interesting mathematics" is an oxymoron. 
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Figure 1. Two satellite images of the Camino Redondo neighborhood in Los Alamos, New Mexico, 
taken roughly six years apart. lIIustrated are "pervasive differences" (such as brightness, contrast, 
shadows and focus) which occur throughout the image, and "anomalous change" (such as the roof 
that has evidently been replaced) which occurs only once, or in only a small subset of the pixels. 

2.1 Arbitrary distributions 
Begin with two (approximately) co-registered images which we will call the x -image and the ,),-image. Let 
x E JRdz be the spectrum of a pixel in the x -image, and y E JRdy the spectrum of the corresponding pixel in 
the ,),-image. Here, dx and dy correspond to the number of spectral channels in the x -image and ,),-image, 
respective, and that they need not be equal. If we treat x and y as random variables, then we can write 
P(x, y) as a joint probability distribution over x and y , and remark that P(x , y) models what we mean by 
regular or pervasive differences. This leads to a natural way of identifying the "irregular" differences (or 
anomalous changes): these are the pixels (x , y) for which P(x, y) is smallest. 

Following Refs. [6,7,8], we remark that anomaly detection can be recast as binary classification, where 
the second class corresponds to a uniform measure U, and the resulting likelihood ratio P (x , y) / U(x, y) is 
equivalent to the density P(x, y) . The motivation for a likelihood ratio approach was discussed in Refs. [5, 
9] . 

Since our aim is anomalous change detection, versus straight anomaly detection, we find conditional 
anomalousness a useful concept. Instead of looking for mall values of the joint distribution P(x, y), we 
can instead use the conditional distribution P(ylx) = P(x, y)/ P(x). When the pixel value y is unusual 
given the value of x, then the conditional distribution will be small. For the multivariate Gaussian case, it 
can be shown [9] that this formalism leads to the chronochrome detector [10]. There is an asymmetry in this 
formalism; the conditional distribution P(xly) = P(x,y)/P(y) leads to a different detector. There are in 
fact two chronochrome detectors. 

A framework for anomalous change detection proposed in Ref. [5]d, leads to the symmetric likelihood 
ratio 

P(x,y) 
P(x)P(y) . 

(I) 

Anomalous changes are associated with small values of this ratio. When P (x , y) is Gaussian, this ratio 
produces the Hyperbolic Anomalous Change Detector (HACD), so named for the hyperbolic boundary 
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Figure 2. Illustrates the resampling approach for generating a background distribution of anomalous 
changes. Here, the x and y correspond to the two images, and the diagonal swath of blue dots blue to 
the pervasive changes. The simulated anomalous changes are shown as red pluses and are obtained 
by resampling from the normal data. (a) P (x , y) vs U(x )U(y) gives level curves of P (x, y) and 
produces the RX-style straight anomaly detector; here the background data is generated by drawing 
from a uniform distribution. (b) P (x , y) vs P (x)U(y ) produces a generalized chronochrome. Here 
the x component is randomly sampled from the x -image, and the y component of the anomalous 
background is drawn from a uniform distribution. (c) P (x,y ) vs U(x )P (y ) produces the "other" 
generalized chronochrome. (d) P (x, y ) vs P (x )P (y ) employs the machine learning framework. Here, 
x is sampled from the x -image, and y is independently drawn from the I'-image. 

4 



5 

>- 0 

-5 

5 

>- 0 

-5 

(a) RX 

~----------~~----------~ 
-5 o 

x 

(c) Chronochrome 

5 

~-L ____ L-__ ~~ __________ ~ 

-5 o 
x 

5 

5 

>- 0 

-5 

-5 

(b) Chronochrome 

o 
x 

(d) Hyperbolic ACD 

o 
x 

5 

5 

Figure 3. The four cases shown in Fig. 2 in the case where P (x , y) is Gaussian. Since A (x, y) is 
quadratic, the contours will be quadratic surfaces: (a) ellipsoid, with the eigenvalues of the covariance 
matrix all positive; (b,c) ellipsoidal "tube" with some of the eigenvalues of the covariance matrix 
strictly equal to zero; (d) hyperboloid, with some of the eigenvalues negative. 
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separating regular from anomalous. 
These change detection algorithms have different origins, but each of them can be treated as a ratio of 

probability densities (or "likelihoods"), where we write U(x) and U(y) to represent uniform density in the 
x and y space. The negative logarithm of the likelihood ratio is large when the likelihood ratio is small, and 
provides anomalousness measures: 

HACD: 

CC: 

CC: 

RX: 

A(x, y) = -log P(x , y) + log P(x) + log P(y) 

A(x, y) = -log P(x, y) + log P(x) 

A(x,y) = - logP(x,y) + 10gP(y) 

A(x, y) = - log P(x, y) 

2.2 Gaussian distributions 

(2) 

In this subsection, we consider the case that P(x, y) is a multivariate Gaussian. We can subtract the mean 
so from here on out, we assume that the distribution is centered at the origin; thus: (x) = 0 and (y) = o. 
It is convenient to introduce 

z = [ ; ] E ~d , (3) 

with d = dx + ely, as the pixel in the "stacked" image. Then, we write the covariance matrix for the stacked 
pixel z defined in Eq. (3). 

[
X C

T
] Z = (zzT ) = C Y (4) 

where X = (xxT), Y = ( yyT), and C = ( yxT ) . The Gaussian model for the distribution of z is given 
by 

P(z) = (21T)-d/2IZI- 1/ 2 exp [_~zT Z-lz] . (5) 

For Gaussian distributions, small density corresponds to large Mahalanobis distance from the mean, so 
we can write A(z) = zT Z-l z as a measure of anomalousness. This is the RX anomaly detector [I J J. 

In the Gaussian case, we Can write all of the detectors described in the previous subsection with an 
expression of the form A(z) = zT Qz where the quadratic coefficient matrix is given by 

HACD: = [X CT
] -1_ [X 0] -1 

Q c Y 0 Y (6) 

CC: = [X CT
] -1_ [ X -1 0] 

Q C Y 0 0 
(7) 

CC: [
X CT]-l [0 0 ] 

Q = C Y - 0 y-l (8) 

RX: Q = [~ c; r1 

(9) 

We define the following three scalars for the pixel (x, y): 

~x x T X-IX 

~y yTy-ly ( 10) 

~z zTZ-l z . 
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Then the anomalousness of change at the pixel (x, y) can be expressed as: 

HACD: 

CC: 

CC: 

RX: 

A(x,y) = ~z + ~x + ~y 
A(x,y) = ~z +~x 

A(x,y) = ~z + ~y 
A(x, y) = ~z 

These four detectors are illustrated for the case dx = dy = 1 in Fig. 3. 

2.3 Parametric non-Gaussian distributions 

(II) 

We will in particular consider elliptically contoured distributions [12], where P(z) depends on the covari­
ance matrix Z and can be written 

(12) 

where IZI is the determinant of Z, d is the dimension of z, ~z = zTZ-I z is a scalar that corresponds to 
the squared Mahalanobis distance of z to the origin, and H is a positive scalar function . As an example, 
H(d ,O = (211" )-dj 2 exp( -02) corresponds to the Gaussian distribution . 

If we model our data with an EC distribution, then the anomalousness at pixel (x, y) will depend on x 
and y only through the scalar values of ~x, ~y, and ~z defined in Eq. (10). In particular, we can write 

HACD : 

CC: 

CC: 

RX: 

A(x,y) = h(d,~z) - h(dx,~x) - h(dy,~y) 

A(x,y) = h(d,~z) - h(dx,~x) 

A(x,y) = h(d,~z) - h(dy,~y) 

A(x,y) = h(d,~z) (13) 

where h(d,~) = -log H(d , O. Note that the RX depends only on ~z and threfore it is equivalent to the 
Gaussian RX. 

Kano [13] defines a consistent family of EC distributions as a set of functions H(d, 0, defined for all 
positive integers d, with the following property: if P(z) = IZI-Ij2H(d,~z), where z E IRd is the stacked 
vector in Eq. (3), and ~z is the scalar defined in Eq. (10); then P(x) = IXI-1j2 H(dx, ~x) is the marginal 
distribution associated with the projection of z onto the dx < d dimensional subspace corresponding to x. 

The Gaussian is an example of a consistent family, and as already seen in Eq. (II), leads to a simple 
anomalous change detector. 

Not all families are consistent. For instance, a popular choice of EC distribution is given by the general­
ized Gaussian: 

(14) 

with c(d, D, ,) the normalization constant. Here D = 1 produces the Gaussian distribution, and D < 1 is 
a fatter tailed distribution. However the projection of a generalized Gaussian to lower dimension does not 
produce a generalized Gaussian and it is not a consistent family [13]. It is, in principle, possible to take the 
expression in Eq. (14) for a specific value of d and derive a consistent family of distributions for smaller 
values d' < d, but the corresponding expressions for these other values of d will not have the nice form in 
Eq. (14). 

A generalization of the Gaussian which is a consistent family is the multivariate t distribution [14, J 3, 
15]: 

(15) 

This is a fatter tailed distribution than the Gaussian, and it gets fatter as v gets smaller. In fact, as v -> 2, 
the variance diverges. The limit v -> 00 recovers the Gaussian distribution. Not only is Eq. (15) consistent, 
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it is also convenient. It provides a simple closed fonn expression for all positive integers d. By substituting 
the above multivariate t fonn into Eq. (13), and dropping unimportant additive constants, we obtain the 
following expressions for anomalousness of change 

EC-HACD: A(x, y) = (dx + dy + v) log (~z + v - 2) -(dx + v) log (~x + v - 2) 

-(dy + v) log (~y + v - 2) 

EC-CC: A(x, y) = (dx + dy + v) log (~z + v - 2) -(dx + v) log (~x + v - 2) (16) 

EC-CC: A(x, y) = (dx + dy + v) log (~z + v - 2) -(dy + v) log (~y + v - 2) 

Note that as v -; 00 (and in particular for v » dx + dy), and dividing out an irrelevant factor of v, this 
expression reduces to the Gaussian limit in Eq. (I I). 

Another limit of interest is v -; 2. This simplifies the above expression considerably, in in particular, 
for dx = dy » 2, and again dropping unimportant constants, we can write: 

HACD: 

CC: 

CC: 

A(x,y) = ~; / (~X~y) 
A(x, y) = ~;/~x 

A(x,y) = ~;/~y 

3.0 Validation of Anomaly Detection Algorithms 

(17) 

One problem with validating anomaly detcection algorithms is that anomalies are rare. While there is inde.ed 
value to anecdotal examples of real anomalies detected in real images, it is difficult to do statistical analysis. 
And when using these examples for algorithm development, the dangers of overfitting are considerable. 

On the other hand, it is difficult to trust pure simulation; imagery is notoriously difficult to simulate. 
Even apart from all the physical issues of radiation transfer, atmospheric distortions, sensor noise, etc., there 
is also the problem of simulating "clutter" in remote sensing imagery. It is asking a lot for a simulation to 
include the plethora of junk that people leave lying around on the ground. 

Our hybrid approach [16] is to start with real data - which will naturally include whatever noise, distor­
tions, and clutter are in that imagery - and introduce our own pervasive differences and anomalous changes. 
The pervasive differences are produced by applying some operator to all of the pixels; the anomalous 
changes are produced by applying some other operator just to one pixel (or in some cases, to a small patch 
of pixels [17]), as illustrated in Fig. 4. The "trick" is to employ appropriate operators. 

3.1 Simulating pervasive differences 
One of the best ways to simulate pervasive differences is to use two actual images of the same scene, taken 
at different times. One drawback to this approach is that there may be anomalous changes in the scene that 
are not known. Our opinion is that this is a minor issue, since those anomalous changes will be small and/or 
subtle, and when used for comparing different algorithms, all of the algorithms will be up against the same 
artifacts. A second drawback is that only one kind of pervasive differences can be examined this way -
the pervasive differences that are exhibited in that particular image pair. Both of these drawbacks can be 
addressed by simulating the pervasive differences. For the simulation, only a single image of a scene is used, 
and from that single image, a pair of images are produced. One can, for instance, take that image and add 
noise to it, apply some spatial operator (such as smoothing) to it, modify the brightness or contrast of the 
image, or spatially translate the image to produced a misregistered pair. For multispectral, and especially 
hyperspectral, imagery, once can also "split" the spectral bands. For instance, AVIRIS data has 224 spectral 
bands; one can take the first 112 bands and consider that the first image, and the second 112 bands and call 
that the second image. This simulates the situation where the two images are taken with different cameras. 
Finally, one can also take combinations of these. 

8 



3.2 Simulating anomalous changes 
When anomalous changes are simulated, the idea is to make the change only at a single pixel. Having chose 
which pixel that will be, the anomalous change could be something like a brightening or a darkening of the 
pixel, but our approach has been to simulate the anomalous changes with another pixel chosen randomly in 
the image. 

The idea is to distinguish anomalous changes from outright anomalies; so at the location where the 
anomalous change will be simulated, one replaces that pixel with another pixel taken from elsewere in the 
image. Along these lines, subpixel anomalous changes can be generated by taking a linear combination of 
the current pixel with the other randomly chosen pixel. 

As described, this scheme simulates only a single anomalous change at a time. For computational 
efficiency, once can produce an entire image of anomalous changes by scrambling the locations of all the 
pixels . In this scenario, one uses a pair of images produced by the pervasive difference operator to compute 
covariance matrices and to produce a curve of false alarm rate as a function of ACD threshold . Then, one 
applies the ACD algorithm to a pair of images in which the same pervasive differences are present but for 
which one of the image pixels have been scrambled, and one uses this to produce a curve of detection rate 
versus the same threshold values . Combining these two curves, one produces a ROC curve of detection rate 
versus false alarm rate. 

One further twist: in our experiments, the pixels are randomly partitioned into separate "training" and 
"testing" sets. The ACD algorithm is trained (i.e., the covariance matrix and other parameters - such as the 
parameter // in the multivariate-t distribution - are fit) on the training set, and the curves detailing detection 
rate and false alarm rate versus thershold are computed on the testing set. We can re-do this with different 
partitions and this provides an ensemble of ROC curves that provide a sense of how variable the ROC curve 
estimates are .. 

3.3 Results 
We applied the simulation framework shown in Fig. 4 to an AVIRIS image with 224 channels [18] , using 
two different pervasive change cases, and two different dimension reduction schemes. We found in Fig. 5 
that HACD outperformed both chronochromes, both of which in turn outperformed RX. But using the non­
Gaussian parametric distribution given by the multivariate t , we found that EC-HACD outperformed HACD 
and EC-CC outperformed Cc. The value of v was fit using the moment method described in Ref. [19]. 

In an exercise that ran over many months, Eismann et at. [2] took a series of hyperspectral images of 
the same scene (see Fig. 6). In addition to a grassy field with trees in the background, four panels were 
also present in the scene. These panels exhibited spectra unlike what was in the rest of the scene and might 
be considered anomalous, but because they are in both images, they are not anomalous changes. A pair of 
images from this experiment, shown in the top two panels of Fig. 6 provides an example with real pervasive 
differences due to seasonal changes from August to October. Following Refs . [2, I], the data were reduced to 
d = 10 bands by taking principal components from the August dataset. We used the simulation framework 
to introduce anomalous changes and computed ROC curves, as seen in Fig. 7(a) . The results agree with 
those seen in the full simulation in Fig. 5: HACD beat CC beat RX, EC-HACD beat HACD, and EC-CC 
beat cc. 

As a further check, we considered an example with actual anaomlous changes, as seen in the left two 
panels of Fig. 6. These two images are taken two months apart, and there are two folded tarps in the second 
image, which provides anomalous changes. Although results with real anomalies, shown in Fig. 7(b), are 
necessarily anecdotal, they still confirm what was observed for the simulated anomalies: in the low false 
alarm rate regime, the EC-based change detectors outperformed their Gaussian counterparts . 
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Original image 

Pervasive difference 

Anomallous change 

Figure 4. Simulation framework: pervasive differences are simulated with an operator applied to 
every pixel in the scene; anomalous changes are simulated with only a single pixel. Our favorite way 
to simulate anomalous changes is to move a pixel from one part of the scene to another. That way the 
pixel itself is not anomalous, only the change is. 

4.0 Summary 
The distinction is made between anomalous changes and pervasive differences, and each of these two classes 
is modelled by a probability distribution. One learns the distribution for the pervasive difference - this is 
provided by the observed data - and one derives from this a distribution for the anomalous changes. Finally, 
from these two distributions, one can produce detectors of anomalous changes: these find the pixels in an 
image pair where the changes are most unusual. 

When these distributions are Gaussian, then familiar ACD methods are recovered . But by using a 
broader (i.e., non-Gaussian) class of distributions , new ACD algorithms can be produced. In particular, 
observed data generally exhibits much fatter tails than those given by Gaussian distributions. Since it is the 
tails of the data distribution where the distinction between normal data and outliers is most difficult, better 
models of the tails have the potential to produce better anomaly detection. 
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Figure 5. ROC curves for simulated anomalous changes. In the top two panels, these are based on ten 
trials, each one a different in-sample!out-of-sample partition. The bottom panels are based on a single 
trial, but use canonoical components analysis (CCA) instead of principal components analysis (PCA) 
for dimension reduction. In all cases for this experiment, HACD outperformed CC, which in turn 
outperformed RX. But the main point is that EC-HACD outperforms HACD and EC-CC outperforms 
Cc. We recall that there are two EC-CCs and two CCs, and this is reflected in the bunching of curves 
in the figures above 
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Figure 6. Images corresponding to the hyperspectral data taken by Eismann et at. [2]. 
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