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ABSTRACT

The problem of anomalous change detection arises when two (or possibly
more) images are taken of the same scene, but at different times. The aim
is to discount the “pervasive differences” that occur thoughout the imagery,
due to the inevitably different conditions under which the images were
taken (caused, for instance, by differences in illumination, atmospheric
conditions, sensor calibration, or misregistration), and to focus instead on
the “anomalous changes” that actually take place in the scene. In general,
anomalous change detection algorithms attempt to model these normal or
pervasive differences, based on data taken directly from the imagery, and
then identify as anomalous those pixels for which the model does not hold.
For many algorithms, these models are expressed in terms of probability
distributions, and there is a class of such algorithms that assume the dis-
tributions are Gaussian. By considering a broader class of distributions,
however, a new class of anomalous change detection algorithms can be
developed. We consider several parametric families of such distributions,
derive the associated change detection algorithms, and compare the perfor-
mance with standard algorithms that are based on Gaussian distributions.
We find that it is often possible to significantly outperform these standard
algorithms, even using relatively simple non-Gaussian models.



“Just because everything is different doesn’t mean anything has changed.”
~Irene Peter

1.0 Introduction

Given two or more images of the same scene, taken at different times and under different conditions, what
anomalous change detection (ACD) seeks is the “interesting’’ changes that occurred in the scene. Unfortu-
nately, a mathematics of “interesting” has not been developed' so our approach is to identify the rare, or
anomalous changes. The idea is to distinguish them from the pervasive differences that occur throughout
the scene (e.g., see Fig. 1) due to disparities in illumination, calibration, registration, look angle, or even the
choice of remote sensing platform. They can also be due to diurnal and seasonal variations [2] in the scene.

Part of the motivation for this is the intuition that interesting changes are anomalous. But even when
that intuition fails — after all, “anomalous” is not synonymous with “interesting” — then: 1/ since anomalous
changes are rare, one will not at least be overwhelmed by uninteresting anomalous changes; and 2/ if perva-
sive differences are in fact interesting, they will be large enough or plentiful enough that the the analyst can
readily find them without the aid of the change detection algorithm.

Anomalous changes are assumed to be relatively rare, and occur in only a small part of the image
or image archive. Because the nature of the change is not known beforehand, algorithms for anomalous
change detection are unsupervised. If the nature of specific changes of interest were already known (and
if an adequate and representative sample of those changes were available in the data), then supervised
classification might be employed to identify and delineate those changes.

2.0 Probability distributions

In this section, we will derive ACD algorithms in terms of probability distributions that characterize both
pervasive differences and anomalous changes. An explicit model for anomalous changes sems to defy the
meaning of “anomaly” — it is what Rumsfeld would call an unknown unknown [3] - but a number of existing
algorithms for anomly detection and anomalous change detection have effectively employed such a model,
even if it was not explicitly stated as part of the model.

The use of probability distributions opens up a number of options. The most pragmatic option is pretend
these distributions are Gaussian. This leads to simple close-form solutions (and in some cases to well
established algorithms), and requires only that covariance matrices be estimated.

The “purist” option is to make no assumptions about the distribution at all. Following Vapnik’s dic-
tum [4), we would never model the distribution directly, but instead model the boundary that optimally
separates the distribution of anomalous changes from the distribution of pervasive differences, and base this
model only on the data that are available. As described in Ref. [5] and illustrated in Fig. 2, samples from
the pervasive-differences class are given by the data, while samples from the anomalous-changes class are
given by resampling either from the data or from a uniform distribution. This approach does have some
theoretical advantages, but can also be expensive and sometimes is problematic on the tails.

We will take a middle ground, and model the data with a non-Gaussian distribution that can be described
by a relatively modest number of parameters. Once we fit these parameters to the data, it is straightforward to
plug them into our expressions that involve arbitrary distributions and produce anomalous change detectors.
To the extent that these parametric distributions are better descriptors of the observed data, we expect that
the resulting algorithms will better detect anomalous changes. In particular, since (detectable) anomalous
behavior occurs on the tails of distributions, it will be useful to model data with distributions that better
describe the tails.

'Indeed, some would say that “‘interesting mathematics” is an oxymoron,
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Figure 1. Two satellite images of the Camino Redondo neighborhood in Los Alamos, New Mexico,
taken roughly six years apart. Illustrated are “pervasive differences” (such as brightness, contrast,
shadows and focus) which occur throughout the image, and ‘“‘anomalous change” (such as the roof
that has evidently been replaced) which occurs only once, or in only a small subset of the pixels.

2.1 Arbitrary distributions

Begin with two (approximately) co-registered images which we will call the x-image and the y-image. Let
x € R% be the spectrum of a pixel in the x-image, and y € R% the spectrum of the corresponding pixel in
the y-image. Here, d. and d, correspond to the number of spectral channels in the x-image and ~y-image,
respective, and that they need not be equal. If we treat x and y as random variables, then we can write
P(x,y) as a joint probability distribution over x and y, and remark that P(x, y) models what we mean by
regular or pervasive differences. This leads to a natural way of identifying the “irregular” differences (or
anomalous changes): these are the pixels (x,y) for which P(x,y) is smallest.

Following Refs. [6, 7, 8], we remark that anomaly detection can be recast as binary classification, where
the second class corresponds to a uniform measure U/, and the resulting likelihood ratio P(x,y)/U(x,y) is
equivalent to the density P(x,y). The motivation for a likelihood ratio approach was discussed in Refs, [5,
9].

Since our aim is anomalous change detection, versus straight anomaly detection, we find conditional
anomalousness a useful concept. Instead of looking for mall values of the joinr distribution P(x,y), we
can instead use the conditional distribution P(y|x) = P(x,y)/P(x). When the pixel value y is unusual
given the value of x, then the conditional distribution will be small. For the multivariate Gaussian case, it
can be shown [9] that this formalism leads to the chronochrome detector [10]. There is an asymmetry in this
formalism; the conditional distribution P(x|y) = P(x,y)/P(y) leads to a different detector. There are in
fact rwo chronochrome detectors.

A framework for anomalous change detection proposed in Ref. [5]d, leads to the symmetric likelihood

ratio
P(x,y)
P(x)P(y)

Anomalous changes are associated with small values of this ratio. When P(x,y) is Gaussian, this ratio
produces the Hyperbolic Anomalous Change Detector (HACD), so named for the hyperbolic boundary

(h



@ P(x,y) s Ux)U(y) (b) P(x,y) vs P(x)U(y)

+ihg Bog  +f, THU o
..""‘(4’.’-.. = 48

TF

R

-5 0 5 -5 0 5
x

Figure 2. Illustrates the resampling approach for generating a background distribution of anomalous
changes. Here, the x and y correspond to the two images, and the diagonal swath of blue dots blue to
the pervasive changes. The simulated anomalous changes are shown as red pluses and are obtained
by resampling from the normal data. (a) P(x,y) vs U(x)U(y) gives level curves of P(x,y) and
produces the RX-style straight anomaly detector; here the background data is generated by drawing
from a uniform distribution. (b) P(x,y) vs P(x)U(y) produces a generalized chronochrome. Here
the x component is randomly sampled from the y-image, and the y component of the anomalous
background is drawn from a uniform distribution. (c) P(x,y) vs U(x)P(y) produces the ‘“other”
generalized chronochrome. (d) P(x,y) vs P(x)P(y) employs the machine learning framework. Here,
x is sampled from the y-image, and y is independently drawn from the v-image.
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Figure 3. The four cases shown in Fig. 2 in the case where P(x,y) is Gaussian. Since A(x,y) is
quadratic, the contours will be quadratic surfaces: (a) ellipsoid, with the eigenvalues of the covariance
matrix all positive; (b,c) ellipsoidal “tube” with some of the eigenvalues of the covariance matrix
strictly equal to zero; (d) hyperboloid, with some of the eigenvalues negative.



separating regular from anomalous.

These change detection algorithms have different origins, but each of them can be treated as a ratio of
probability densities (or “likelihoods™), where we write U (x) and U(y) to represent uniform density in the
x and y space. The negative logarithm of the likelihood ratio is large when the likelihood ratio is small, and
provides anomalousness measures:

HACD:  A(x,y) = —log P(x,y) + log P(x) + log P(y)
CC: A(x,y) = —log P(x,y) + log P(x)
CC:  A(x,y) =~ log P(x,y) + log P(y)
RX: A(x,y) = —log P(x,y) (2)

2.2 Gaussian distributions

In this subsection, we consider the case that P(x,y) is a multivariate Gaussian. We can subtract the mean
so from here on out, we assume that the distribution is centered at the origin; thus: (x) = 0and (y) = 0.
It is convenient to introduce

X d
= R
z { } e R", (3)

with d = d; + d,, as the pixel in the “stacked” image. Then, we write the covariance matrix for the stacked
pixel z defined in Eq. (3).
x cT

Z=(zzT>;{

where X = (xxT),Y = (yy” ), and C = (yxT ). The Gaussian model for the distribution of z is given
by
P(z) = (2r)~4%| 2|7 exp {—%ZTZ"IZ:I ; (5)

For Gaussian distributions, small density corresponds to large Mahalanobis distance from the mean, so
we can write A(z) = zT Z~'z as a measure of anomalousness. This is the RX anomaly detector [11].

In the Gaussian case, we can write all of the detectors described in the previous subsection with an
expression of the form A(z) = z Qz where the quadratic coefficient matrix is given by

x ¢t x o]
HACD: Q=[C Y__‘OY] (6)
X 1 [xrp
Ce; Q={C y | 7| o 0] )
X ¢cT1' [0 o
x et
RX: Q=[C (“; . )
We define the following three scalars for the pixel (x,y):
& = x'X x
& = y Yy (10)
& = z? 2713z,



Then the anomalousness of change at the pixel (x,y) can be expressed as:

HACD: Ax,y) =& +E&+ &
CC:  AXxy)=&+&
CC: Alx,y) =& + &y
RX: Ax,y) =& (1

These four detectors are illustrated for the case d, = d,, = 1 in Fig. 3.

2.3 Parametric non-Gaussian distributions
We will in particular consider elliptically contoured distributions [12], where P(z) depends on the covari-

ance matrix Z and can be written
P(z) = |2|"Y2H(d,£;) (12)

where |Z| is the determinant of Z, d is the dimension of z, . = 27 Z~'z is a scalar that corresponds to
the squared Mahalanobis distance of z to the origin, and /{ is a positive scalar function. As an example,
H(d,€) = (2r)~%? exp(—£/2) corresponds to the Gaussian distribution.

If we model our data with an EC distribution, then the anomalousness at pixel (x,y) will depend on x
and y only through the scalar values of &, £, and £, defined in Eq. (10). In particular, we can write

HACD:  A(x,y) = h(d,€.) — h(d,, &) — h(d,, &)
CC:  A(x,y)=h(d,§:) — h(ds, &)
e A(x,y) = h(d, €.) — h(dy, &)
RX: A(x,y) = h(d,£.) (13)

where h(d, &) = —log H(d,&). Note that the RX depends only on £, and threfore it is equivalent to the
Gaussian RX.

Kano [13] defines a consistent family of EC distributions as a set of functions H(d, £), defined for all
positive integers d, with the following property: if P(z) = |Z|~'/2H(d,£,), where z € R is the stacked
vector in Eq. (3), and &, is the scalar defined in Eq. (10); then P(x) = |X|~'/2H(d.,£;) is the marginal
distribution associated with the projection of z onto the d, < d dimensional subspace corresponding to x.

The Gaussian is an example of a consistent family, and as already seen in Eq. (11), leads to a simple
anomalous change detector,

Not all families are consistent. For instance, a popular choice of EC distribution is given by the general-
ized Gaussian:

H(d, o, 7,€) = c(d, o, 7) exp(—€*) (14)

with e(d, o, v) the normalization constant. Here a = 1 produces the Gaussian distribution, and o < 1 is
a fatter tailed distribution. However the projection of a generalized Gaussian to lower dimension does not
produce a generalized Gaussian and it is not a consistent family [13]. It is, in principle, possible to take the
expression in Eq. (14) for a specific value of d and derive a consistent family of distributions for smaller
values d’ < d, but the corresponding expressions for these other values of d will not have the nice form in
Eq. (14).

A generalization of the Gaussian which is a consistent family is the multivariate ¢ distribution [14, 13,

15]:
P (422) £\~
H(d.,u,f):1,(,;_)_'1(”1,(2“_2)5W (1+V_2) , (15)

This is a fatter tailed distribution than the Gaussian, and it gets fatter as i gets smaller. In fact, as v — 2,
the variance diverges. The limit » — oo recovers the Gaussian distribution. Not only is Eq. (15) consistent,

7



it is also convenient. It provides a simple closed form expression for all positive integers d. By substituting
the above multivariate ¢ form into Eq. (13), and dropping unimportant additive constants, we obtain the
following expressions for anomalousness of change

EC-HACD: A(x,y) = (d: +dy, +v)log (€. +v —2) —(d; +v)log (&, + v —2)
—(dy +v)log (& +v —2)

EC-CC: A(x,y) = (d; +dy, +v)log(€:+v—2) —(dy + v)log (& +v —2) (16)
EC-CC: A(x,y) = (dz +dy +v)log (€. +v—2) —(d, +v)log (& +v —2)

Note that as v — oo (and in particular for v > d. + d,), and dividing out an irrelevant factor of v, this
expression reduces to the Gaussian limit in Eq. (11).

Another limit of interest is ¥ — 2. This simplifies the above expression considerably, in in particular,
for d, = d, > 2, and again dropping unimportant constants, we can write:

HACD:  A(x,y) = £2/(€:&)
CC:  A(x,y) = £2/¢: (17)
CC:  Alxy) =€/,

3.0 \Validation of Anomaly Detection Algorithms

One problem with validating anomaly detcection algorithms is that anomalies are rare. While there is indeed
value to anecdotal examples of real anomalies detected in real images, it is difficult to do statistical analysis.
And when using these examples for algorithm development, the dangers of overfitting are considerable.

On the other hand, it is difficult to trust pure simulation; imagery is notoriously difficult to simulate,
Even apart from all the physical issues of radiation transfer, atmospheric distortions, sensor noise, etc., there
is also the problem of simulating “clutter” in remote sensing imagery. It is asking a lot for a simulation to
include the plethora of junk that people leave lying around on the ground.

Our hybrid approach [16] is to start with real data — which will naturally include whatever noise, distor-
tions, and clutter are in that imagery — and introduce our own pervasive differences and anomalous changes.
The pervasive differences are produced by applying some operator to all of the pixels; the anomalous
changes are produced by applying some other operator just to one pixel (or in some cases, to a small patch
of pixels [17]), as illustrated in Fig. 4. The “trick” is to employ appropriate operators.

3.1 Simulating pervasive differences

One of the best ways to simulate pervasive differences is to use two actual images of the same scene, taken
at different times. One drawback to this approach is that there may be anomalous changes in the scene that
are not known. Qur opinion is that this is a minor issue, since those anomalous changes will be small and/or
subtle, and when used for comparing different algorithms, all of the algorithms will be up against the same
artifacts. A second drawback is that only one kind of pervasive differences can be examined this way —
the pervasive differences that are exhibited in that particular image pair. Both of these drawbacks can be
addressed by simulating the pervasive differences. For the simulation, only a single image of a scene is used,
and from that single image, a pair of images are produced. One can, for instance, take that image and add
noise to it, apply some spatial operator (such as smoothing) to it, modify the brightness or contrast of the
image, or spatially translate the image to produced a misregistered pair. For multispectral, and especially
hyperspectral, imagery, once can also “split” the spectral bands. For instance, AVIRIS data has 224 spectral
bands; one can take the first |12 bands and consider that the first image, and the second 112 bands and call
that the second image. This simulates the situation where the two images are taken with different cameras.
Finally, one can also take combinations of these.



3.2 Simulating anomalous changes

When anomalous changes are simulated, the idea is to make the change only at a single pixel. Having chose
which pixel that will be, the anomalous change could be something like a brightening or a darkening of the
pixel, but our approach has been to simulate the anomalous changes with another pixel chosen randomly in
the image.

The idea is to distinguish anomalous changes from outright anomalies; so at the location where the
anomalous change will be simulated, one replaces that pixel with another pixel taken from elsewere in the
image. Along these lines, subpixel anomalous changes can be generated by taking a linear combination of
the current pixel with the other randomly chosen pixel.

As described, this scheme simulates only a single anomalous change at a time. For computational
efficiency, once can produce an entire image of anomalous changes by scrambling the locations of all the
pixels. In this scenario, one uses a pair of images produced by the pervasive difference operator to compute
covariance matrices and to produce a curve of false alarm rate as a function of ACD threshold. Then, one
applies the ACD algorithm to a pair of images in which the same pervasive differences are present but for
which one of the image pixels have been scrambled, and one uses this to produce a curve of detection rate
versus the same threshold values. Combining these two curves, one produces a ROC curve of detection rate
versus false alarm rate.

One further twist: in our experiments, the pixels are randomly partitioned into separate “training” and
“testing” sets. The ACD algorithm is trained (i.e., the covariance matrix and other parameters — such as the
parameter i in the multivariate-t distribution — are fit) on the training set, and the curves detailing detection
rate and false alarm rate versus thershold are computed on the testing set. We can re-do this with different
partitions and this provides an ensemble of ROC curves that provide a sense of how variable the ROC curve
estimates are..

3.3 Results

We applied the simulation framework shown in Fig. 4 to an AVIRIS image with 224 channels [18], using
two different pervasive change cases, and two different dimension reduction schemes. We found in Fig. 5
that HACD outperformed both chronochromes, both of which in turn outperformed RX. But using the non-
Gaussian parametric distribution given by the multivariate ¢, we found that EC-HACD outperformed HACD
and EC-CC outperformed CC. The value of v was fit using the moment method described in Ref. [19].

In an exercise that ran over many months, Eismann er al. [2] took a series of hyperspectral images of
the same scene (see Fig. 6). In addition to a grassy field with trees in the background, four panels were
also present in the scene. These panels exhibited spectra unlike what was in the rest of the scene and might
be considered anomalous, but because they are in both images, they are not anomalous changes. A pair of
images from this experiment, shown in the top two panels of Fig. 6 provides an example with real pervasive
differences due to seasonal changes from August to October. Following Refs. [2, 1], the data were reduced to
d = 10 bands by taking principal components from the August dataset. We used the simulation framework
to introduce anomalous changes and computed ROC curves, as seen in Fig. 7(a). The results agree with
those seen in the full simulation in Fig. 5: HACD beat CC beat RX, EC-HACD beat HACD, and EC-CC
beat CC.

As a further check, we considered an example with actual anaomlous changes, as seen in the left two
panels of Fig. 6. These two images are taken two months apart, and there are two folded tarps in the second
image, which provides anomalous changes. Although results with real anomalies, shown in Fig. 7(b), are
necessarily anecdotal, they still confirm what was observed for the simulated anomalies: in the low false
alarm rate regime, the EC-based change detectors outperformed their Gaussian counterparts.
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Pervasive difference
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Figure 4. Simulation framework: pervasive differences are simulated with an operator applied to
every pixel in the scene; anomalous changes are simulated with only a single pixel. Our favorite way
to simulate anomalous changes is to move a pixel from one part of the scene to another. That way the
pixel itself is not anomalous, only the change is.

Anomalous change

4.0 Summary

The distinction is made between anomalous changes and pervasive differences, and each of these two classes
is modelled by a probability distribution. One learns the distribution for the pervasive difference — this is
provided by the observed data — and one derives from this a distribution for the anomalous changes. Finally,
from these two distributions, one can produce detectors of anomalous changes: these find the pixels in an
image pair where the changes are most unusual.

When these distributions are Gaussian, then familiar ACD methods are recovered. But by using a
broader (i.e., non-Gaussian) class of distributions, new ACD algorithms can be produced. In particular,
observed data generally exhibits much fatter tails than those given by Gaussian distributions. Since it is the
tails of the data distribution where the distinction between normal data and outliers is most difficult, better
models of the tails have the potential to produce better anomaly detection.
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Figure 5. ROC curves for simulated anomalous changes. In the top two panels, these are based on ten
trials, each one a different in-sample/out-of-sample partition. The bottom panels are based on a single
trial, but use canonoical components analysis (CCA) instead of principal components analysis (PCA)
for dimension reduction. In all cases for this experiment, HACD outperformed CC, which in turn
outperformed RX. But the main point is that EC-HACD outperforms HACD and EC-CC outperforms
CC. We recall that there are two EC-CCs and two CCs, and this is reflected in the bunching of curves
in the figures above :
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Figure 6. Images corresponding to the hyperspectral data taken by Eismann e al. [2].
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