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Applying Bayesian Belief Networks in Rapid Response Situations 

Abstract 
1_ We have developed an enhanced Bayesian 
rnalySiS 100/ called the Inlegrated Knowledge Engine 

I
(IKE) for monitoring. and survei~!ance. Our 
enhancements are sui/ed for Rapld Response 

ilualions H'here decisions must be made based on 
uncertain and incomplete evidence from many 
diverse and heterogeneous sources. The 
enhancements e);·tend the probabilistic result · of the 
traditional Bayesian analysis by (J) better 
quanlffYing uncerlainty arzslng f rom model 
parameter uncertainty and uncertain evidence, (2) 
optimizing the collection of evidence to reach 
conclw;;on. more quickly , and (3) allowing the 
analyst 10 de/ermine the influence of the remaining 
evidence that cannot be obtained in the time allowed. 
These eXlended f eatures give the analyst and decision 
maker a beller comprehension of the adequacy of the 
aC(luired evidence and hence the quality of the 
hurried de ·isions. We also describe two example 

'SY5;lems where the above feall/reS are highlighted. 

1. Introduction 

For some time now, we have been applying 
Bayesian Beli f Networks (BBNs) to problems 
involving multisource data fusion. In simple terms, 
Bayesian Belief Networks process 'evidenc " to 
compute probabilities of' hypotheises". For example, 
some of our problems have invo lved monitoring of 
an adversary' s actions to determine intent (hostile or 
benign), or monitoring of a remote facility to 
determine what types of covert processing might be 
done there. In these cases the evidence might be 
extracted from textual in telligence messages acquired 
from overhead reconnaissance assets or other types of 
intelligence. In these applications, evidence is costly 

, and risky to obtain and one would want to optimally 
task th intel ligence gathering assets to collect the 

I 
best evidence to reach conclusions quickly and with 
reasonable costs. In these problems, the hypothesis 
nodes in the BBN will likely represent competing 
alternatives as to what the adversary i really doing. 
Another type of problem invo lves ne r-real-time 
sllrveillence for the purpose of threat detection and 
identification. In such cases, the evidence is extracted 
from real-time sensor data feeds as well as other 

types of sourc s. All of th se problem types can 
require rapid response depending on the severity of 
the threat identified . 

The consequenc s of a wrong decision are VlJry 

harsh for these types of rapid response problems. The 
analyst and decision mak r not only want the answeL 
but want to know the uncertainty in the answer. They 
want a high quality answer quickly, and if that is not 
poss ible they want to know if the answer is not high 
quality . To help with this, we have developed some 
enhancements to traditional Bayesian Analysis which 
quantify the uncertainty of statements which are 
themselves probabalistic in nature (sllch as the results 
from Bayesian analysis). We have D und that subject 
matter experts have different ways of expressing 
uncel1ainty especially when providing evidence, so 
we have tried to be careful to attach clear meanings 
to expressions of evidence uncertainty. The 
enhancements we will describe have to do with 
treating model parameter uncertainty, treating 
evidence uncertainty, determining the optimal 
evidence to coHect next (evidence marshalling), 
detelmining the best asset with which to collect the 
ev idence (asset allocation), and finally , determining 
whether one has enough evidence to make a decision 
(remaining influence). 

Procedurally, our approach was to se lect a well­
known traditional Bayesian Analysis tool called 
Netica (typically used by researchers), as OUf 

Bayesian inference engine. Our enhanced Analysis 
tool, called the Integrated Knowledge Engine (IKE) 
wraps around Netica to "weaponize" traditional 
Bayesian analysis to better handle these types of 
problems and to make it more su ited for use by 
intelligence analysts and decision makers. 

This paper is intended to be expository or 
practical, rather than academic or theoretical, and is a 
report on a mature work in progress. After a brief 
introduction to Bayesian Networks which also 
defines our terminology, we will discuss two 
examp le applications of IKE, and then focus on the 
mechanics of IKE's key capabilities. 

2. Bayesian Belief Networks 

Bayesian Belief Networks [ J ,2] provide a way to 
conceptualize and model problems which invol ve 
trying to reach conclusions based on ev idence. Often 



they are used to try to understand the causal 
relationships between a set of variab les . BBNs have 
been successfully applied to various prob lem 
domains uch as medical (diagnosis), judiial 
(guilt/innocence) and forensics (what happened), to 
name a few. A BBN consists of nodes and directed 
links (arrows) connecting the nodes. One can think of 
the arrow as representing the biblical "begat" 
re lationship. Thus nodes may be thought to have 
parent-child relationsh ips. Often in Bayesian 
modeling, the arrow represents a causal relationship . 
Hence the rule of thumb - " Parents cause the 
chi ldren '. 

A node in a BBN represents a variable that can be 
in only one f fin itely many states. For example if 
temperature is a variable, one could say that the 
temperature could be hot or cold. Thus the 
temperature node would be modeled as havi ng two 
states: J10t and cold. A mor complicat d problem 
might require that temperature have four states; 
freezing, cold, warm, hot. We may not know what 
state the temperature node is in, in which case we say 
that the temperature node is unknown. If we get some 
data that tel ls us the state is hot, we can enter that 
finding into the BBN and "set ' the temperature 
node's state to hot. This is called entering evidence 
(or entering a findi ng). 

Often the top-leve l nodes in a BBN represent the 
competing alternatives that we are trying to sort out: 
is the factory making fe t1ilizer or anthrax, or sarin? 
These nodes are called hypothes is nodes. Often the 
bottom level nodes in the network represent th ings 
we can observe as evidence: is the factory using low, 
medium, or high amou nts of electricity? These nodes 
are called evidence nodes. Given the evidence that 
we have entered into the BBN, we want the BBN to 
calcu late the probab i lities of the states of the 
hypothesis nodes to reach a conc lusion such as: The 
probability that the factory is mak ing fertilizer is 
90%: anthrax, 7%' and sarin, 3%. Several algorithms 
[3] have been developed that can perform this 
Bayesian Inferencing in a practical and useful manner 
- provid d the network is a BBN . 

In order for a network to be a BBN it must satisfy 
two conditions: (I) It must be an Acyclic Directed 
Graph - acyclic in the sense that there are no loops in 
the graph - i.e. a parent may not be the child of one 
of it's descendents, and (2) The network must satisfy 
the Markov condition - if the state of all the parents 

f a node are known then the state of that node is 
influenced only by it' s descendents. These conditions 
simpl ify the problem enough that it can be solved by 
Bayesian Inferencing algorithms. Condition (I ) keeps 
the algorithms from encountering an infinite loop, 
and condition (2) allows the model builder and the 

algorithms to worry only about the immediate 
relationshi ps between a node and it ' s parents. The 
figure below shows a portion of a BBN whose 
purpose is to diagnose car trouble (from an example 
by NORSYS). This snippet shows a child node with 
it' s three parents. 

Figure 1. Car Diagnosis BBN Exc rpt 

To construct a BBN one must provide a table of 
conditional probabilities (CPs) for each node. These 
CPs represent our answer to the question : Given the 
state of all my parents, the probabilities for my states 
are the following. For exampl , the CP Table (CPT) 
for the "Voltage at Plug" or PV node is shown be low. 
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Figure 2. Node conditi nal probability table 

The CP shown in the highlighted cell means: 
Given that Main Fuse is okay and Battery is okay, 
but Distributor is faulty, the probability that the 
Voltage at Plug is none is 80%. Because we are 
reason ing from caus to effect (fi'om parent to child), 
a subject matter expert (such as an auto mechan ic) 
who is familiar with the system being modeled can 
Lls ually come up with these conditional probabilities 
and easily populate the table. We call this eliciting 
the conditional probabilit ies. It is much harder to 
reason from effect to cause, but this is precisely what 



the Bayesian inferencing algorithms do for us. We 
enter the observed effects into the BBN as evidence, 
and the BBN calculates the probable cause. The CP 
Table row that is highlighted is representative of any 
CPT row in that it is a vector of conditional 
probabilities (expressed as percentages) that add to 
100% (lhe probab ilities add to one) and the 
dimension of the vector is the number of states of the 
node . ' here is one CPT row for each possible 
combination of par nt state values. When the node 
has no parents, the CPT contains only one row. The 
probabilities in this row are called prior probabi lities, 
they ar unconditional probabilities that represent the 
probability that that node state will occur in the 
general population. 

3. The Integrated Knowledge Engine 
(IKE) 

The Integrated Know ledge Engine enhances the 
traditional Bayesian Analysis provided by the Netica 
engine, by providing the follow ing additional major 
capab i lities: 

• Analysis (Inferencing with Unceltainty) 
• Evidence Marshall ing (with Uncertainty) 
• Asset Allocation 
• Remaining Intl uenc 

Other useful capabilities (not discussed here) 
include: 

• Graphical User Interface 
• Eviden e Message Processing 
• Message Database Store/Replay 
• Geographic Situation Display 
• Ev idence Message Simulation 

IKE 's flexible graphical LiseI' interface can be 
easily changed, so each new applicat ion of IKE may 
have it's own look and feel, wh ile the underlying 
cia ses that implement the core capabi lities remain 
unchanged . 

In the simplest contiguration, I KE is used like a 
hand calculator with the analyst manually entering 
whatever vidence is deemed appropriate. In some 
applications, raw intelligence messages arrive at IKE 
only to be placed in the mailbox fo r an evidence node 
(some process has routed the message to the 
appropriate node). The analyst reviews the message 
manually and decides whether to enter evidence. In 
other near-real-time applications, special IKE 
evidence messages are automatically generated from 
the multisource data streams and set their evidence 
into IKE automatically . We have found that viewing 

incoming data streams as sources of discrete evidence 
in a Bayesian Belief Network provides a framework 
(and a simple architecture) for integrating diverse 
types of input data for knowledge discovery_ A 
typical architecture for near-real-time applications is 
shown in the figure below. 

Data strea ms I KE evidence 
messages --c,---, ---

---~II~ '-__ -----' 
II 

IKE 

Figure 3. Typical near-real-time architcctur 

he kind or processing done inside each evidence 
generator is determined by the type of data source(s) 
streaming into that gen rator. It ranges from simple 
threshold triggering to high ly complex textual or 
imag /signal processing. All of the evidence 
generators know they must generate evidence for one 
or more evidence nodes in the BBN , so the model ing 
process that identified the important evidence 
variables has given definition and purpose to the 
evidence generation processing. 

The Integrated Knowledge Engine is 
implemented lIsing the Java programming language 
and interacts wi th Netica via the NeticaJ Application 
Programmatic Intelface (API) . 

4. Example Systems 

Traditional BBN models make no distinction 
between hypothesis nodes and eviden e nodes 
(ev idence may be entered at any node). However, 
when we build a BBN model for a client application , 
we explicitly identify the hypothesis nodes for the 
problem and b ive them labels hI, h2. etc. We identity 
the ev idence nodes as those efn cts that are actually 
observable in practice and give hem labels e I , e2, 
etc. In a downward flow layout, the hypothes is nodes 
tend to be at the top of the diagram and the evidence 
nodes at the bottom. This helps the analyst and 
decision maker focus on the nodes that are important 
to them. 



The first example (see figure below) is a version 
of IKE used in a mailbox/manual mode by the 
analyst. The right side displays the BBN. The upper 
left tabulates results for the hypothesis nodes since all 
may not be visible in the diagram window. The lower 
left shows the evidence node mail boxes. The analyst 
reads the messages in the mail boxes and manually 
sets the evidence into the BBN to perfonn analysis. 

Figure 4. Analysis 

The next fi~ure shows the planning tab, used for 
evidence marshalling and asset allocation. On the 
simplified diagram, the analyst selects one or more 
hypothesis nodes and some subset (usually all) of the 
evidence nodes to marshall over. The lower left 
displays the prioritized list of best ev idence to gather 
next (the evidence nodes that give the most 
information about the selected hypothesis nodes), and 
the lower right shows the best assets to use to collect 
the evidence. 

igure 5. Planning 

The second examp le (see figure below) shows 
IKE embedded in a near-real-time architecture (like 
tigure 3) called the Remote Perimeter Surveillence 
(RPS) system used to monitor vehicular and 
pedestrian traffic on a remote canyon road. The RPS 
system processes data from a distributed sensor 
network (OSN) whose nodes have seismic, acoustic, 

still camera, and radiation sensors and from a video 
system that does motion detection and object 
tracking. The evidence generators consume these data 
streams to produce IKE evidence messages to set 
evidence into a BBN whose purpose is to determine 
the probability that the moving object is a vehicle 
(car, humvee, truck) or a pedestrian, and whether it is 
suspicious. 

on"......,....... 
, ... ".., ,'1 

.... i~, ......... _ .,t ,...... Ii . ' II~ 
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Figure 6. Remote Perimeter Surveillance System 

The upper left shows the video view from the 
canyon rim with a bounding box around the detected 
moving object (a car), middle left is a plot of the raw 
DSN data, and lower left shows a close-up vi w from 
a OSN still camera down in the canyon bottom. The 
upper right shows the DSN sensor nodes on a 
geographic situation display, with the nodes reporting 
shown in red, middle right shows raw/averaged OSN 
and video data, and bottom right shows the two main 
IKE hypothesis nodes and some evidence nodes for 
manual entry. 

5. Quantifying Uncertainty 

Traditional Bayesian analysis produces results 
that are probabilities - the probabilities that the node 
is in each of it ' s states. For example if the node is 
Animal (see figure below) the BBN will calculate a 
probability for each kind of animal. 

h1: Animal 
rv10nke v 38.0 _ ._ 
Penguir, 18.3 
Pl atypu s 24.5 
Robin 0.78 
Turtle 18.4 

Figure 6. Point Probabilitie 



The results arc not saying the an imal is a monkey, 
but rather that it is most probably a monkey. The 
results tell you how to bet. These probabilities are 
sometimes called "point probabil ities" or "first-order 
probabilities", and they are the answers from 
traditional Bayesian analysis. But how good are these 
answers? 

We know they are affected by how well we 
elicited the conditional probabilities. The CPs in the 
CP tables (including the priors) are the parameters of 
our model, so errors in the model parameters can 
introduce errors in the answers. I f we entered some 
ev idence of which we were not certain, this could 
also induce an en'or into the answers. 

We wish to put a "one sigma error bar" on the 
point probabilities, representing one standard 
deviation. to show how much uncertainty is 
contributed by the model parameter uncertainty and 
by the uncertainty in the evidence. To do this we u e 
a Monte Carlo simulation [ 4 ]. 

We need to th ink of each CPT row as a multi­
variate random variable - a vector of scalar random 
variables in the interval [0, 1] ·- and here's the catch -
whose components must sum to one. 

Instead of each CP in the CPT row being just a 
probability, there is now a mean value for the CP and 
a sigma value for the CPo Thus the CP is a random 
variable characterized by it's mean and sigma. The 
size of sigma expresses how much uncertainty there 
is in the CP. In this way we have augmented the 
traditional CP table by including the sigmas along 
with the means (the origi nal CP values). Thus each 
CPT row becomes a vector of means and a 
corresponding vector of sigmas. For each CPT row, 
we must create a multi-variate random distribution 
having the same mans and sigmas, such that each 
random vector drawn from the distribution sums to 
one. We found that a mixture of two Dirichlet 
Distributions is able to do this [5]. T in it ialize the 
Monte Carlo simulation, the BBN is traversed, and 
for each augmented CPT row, a matchillg Dirichlet 
~v1ixtllre (OM) is created and assigned to the row. 

Then on each cycle of the imulation: 
• Each CP Table Row draws its CP values 

from its associated OM (i ncluding Priors) 
• Retract all evidence from the BBN 
• Enter current evidence for this cycle (can 

include uncertain evidence) 
• Ask NETICA to inference and obtain all the 

slale probabilities 
• Accumulate state probabilities for 

calculating means and sigmas 

• Accumulate state probability minimums and 
maximums 

When the desired number of cycles have been 
completed: 

• Calculate state probability means and 
sigma. from accumulated data 

• Fetch the stat probabi li ty minimums and 
maximums 

The results (now with Ollr desired error bar) ar 
displayed as in the figure below. The analyst can 
easily ascertain at a glance how good the answer is 
(how much uncertainty is caus d by model parameter 
uncertainty and evidence uncertainty (discussed 
below). 

1 Sigma error bar either side of mean 
clipped outside [0, 1] 

min (state prob) - red dot 
"­

mean(state Prob~ 

max(state prob) - red dot 

1 Sigma (state prob) 

(hi) Anima~. '~ • 
Monkey 41.8 IiiL:.:... ±34.3 

± 26 .2 
±9.3 
±O.O 
± 60,5 

Penguin 31 .5 
Platypus 2.1 
Robin 0.0 
Turtle 24.6 

/ '" 

Colored probability bar (Gray, Ye llow, Red) 

Figure 7. IKE Results for a node 

Currently IK deals with evidence uncertainty by 
dithering the evidence during the Monte Carlo 
Simulation . Rather than entering evidence in the 
traditional way by picking one of the node' s states as 
the finding for that node, and holding that setting 
constant during the Monte Carlo, w enter a 
"certainty" value for each state of the node . These 
state certainties are per entages and must sum to 100. 
For example. for a temperature node, we might enter 
certaint ies of: 80 for hot. l5 for warm, and 5 for cold. 
This could be interpreted as saying ... I' m 80% 
certain that the l mperature is hot. I might be wrong, 
but even if I am it is utili more likely to be warm than 
cold . .. say 15% for wanTI and only 5% for cold . 

In the Monte Carlo simulation of say, 1000 
cycles, we int rpret this to mean that for 800 of the 
cycles temperature should be set to hot; for 150 
cycl s, temperature = warm, and for 50 cycles 
temp rature = cold. When dithering more than one 
evidence node, care Illust be taken not to induce 
correlations between the dithered nodes. This can be 
done by drawing a selector variable from a unifoml 
distribution. 



Another way to deal with uncertain evidence at 
modeling time is to place a "noisy observer" node 
below the real evidence node as its only hild. The 
observer node represents a noisy sensor or an 
imperfect observer and its false positive and fa lse 
negative rates can be entered into the observer's CPT. 
One then enters the evidence into the observer node 
rather than the real ev idence node. This could be 
done at run time by creating the observer node on the 
fl y and inserting it into the BBN at run time. An area 
of research for us is the use of Bayesian "likelihoods" 
to express evidence uncertainty. 

5. Optimizing Evidence Collection 

To perform evidence marshalling in IKE, th 
analyst selects one or more hypothesis nodes and 
then runs ev idence marshalling. The system will then 
rank order all the evidence nodes in terms of how 
much information gain each evidence node 
contributes to the group of selected hypoth is nodes. 
Thus the system identifies the most influential 
evidence to collect next. In so doing, the system 
acknowledge the evidence currently set in the 
analysis, and calculates the information gains over 
the remaining unknown ev idence nodes. 

Like the IKE Analysis 'function, ev idence 
marshalling uses Monte-Carlo to compute the 
variance of the r suits .. . in this case the variance of 
the information gains. This var iance is used in a 
utility function to penaliz an evidence node if the 
variance of its information gain is relatively larger 
than that of another evidence node having nearly 
equal information gain, causing the node to rank 
lower. 

Information gain is computed from entropy, a 
concept from thermodynamics. As a system becomes 
more disorganized its entropy increases and its 
information gain decreases. When applied to 
information theory, entropy and information gain are 
inverse measures of the influence one node has on 
another. We use a Netica method to calculate the 
information gain IG(h:e) between a hypothesis node 
and each of the evidence nodes. When the user 
selects multiple hypothesis nodes hI ,h2,h3 to 
marshall over, we would have liked to compute the 
joint information gain IG(h I ,h2,h3 : e). Since Netica 
has no method for joint information gain, we 
approximate the desired result as avg[ IG(h I :e), 
IG(h2:e), IG(h3:e) ]. An area of research for us is to 
compute the joint information gain, and also to 
enhance this sensitivity analysis to find the evidence 
that best reduces uncertainty and that best 
discriminates between competing hypotheses , 

If the analyst has the ability to task as, ets to go 
collect evidence, I KE has a capability to perform an 
optimal asset allocation based on the optimal list of 
evidence nodes produced by evidence marshalling. 
Befo rehand, one must make a mapping that identifies 
which assets can collect (evidence for) which 
evidence nodes. Then one adds asset characteristics 
like availability (is the asset availab le), cost (how 
costly is the asset to use for collecting this evidence), 
timeliness (how quickly can this asset collect thi s 
evidence), and ri sk (how risky to collect this 
evidence). One then adds collection constraints (find 
me an immediately availab le asset that can collect the 
evidence within 30 minutes at the lowest cost and 
risk) and turns this into an integer linear 
programming optimization problem (a la operations 
analysis) which can be solved by a linear 
programming solver. IKE uses a fr eware solver 
called LP Solve. The result is a list of the best assets 
with which to collect the optimal list of evidence. 
When the analyst then goes to the collection 
community with hat in hand to beg for an asset, 
hopefull y the fact that IKE says this i the most 
effective ev idence and the most ffective asset will 
hold some sway. 

6. Determining Remaining Influence 

Knowing when you have enough evidence to 
make a dec ision can be difficult. After obtaining 
some evidence, the IKE analysis might be pointing to 
a particular answer, and the uncertainty in that 
answer due to model parameter error and evidence 
uncertainty might even be small (see figure below) 
but might there not be another piece of remaining 
evidence that would overturn that answer if that 
evidence could be collected? 

(h1) Animal 
Monkey 
Penguin 
Platypus 
Robin 
Turtle 

0.0 
95.0 

0.0 
4.0 
0.9 

;:::::::::~, ± 0.1 
± 3.2 
± 0.1 
± 2.8 
± 1.8 

Figure 8. Enough ev idence for decision? 

One way to get a handle on th is might be to run 
evidence marshalling and look at the remaining 
evidence nodes that rise to the top of the list. If their 
information gains are small , one might feel confident 
that remaining evidence will not greatly affect the 
current answer. However, the information gain scale 
has not yet been calibrated (future r s arch) and, 
marshalling uses it only in a relative way, so looking 



at the information gain values is not really helpful at 
this time. 

IKE can produce a definit ive answer to this 
quandary by p rforming an analysis of "remaining 
influence". Given the ev idence air ady entered in the 
system, IKE generates all possible combinations of 
the remaining evidence findings . Then on each cycle 
of the remaining influence simulation, it sets one 
possible remaining evidence combination into the 
BBN and accumulates results j ust as in the Monte 
Carlo simulation discussed previously. he 
simulation results are displayed in the same way, but 
now the interpretation is different. The data disp layed 
has nothing to do with model parameter uncertainty 
or evidence uncertainty, but rather comes from the 
dithering of the remaining evidence through all 
possible combinations. For each node state the mean 
now represents the average state probability over all 
the remaining evidence - which may not be very 
inrormative. But the standard deviation is in fonnative 
- it tells us how much variation in the answer is 
po:sible due to the influence of the remaining 
eV Idence. The max and min markers (the red dots of 
figure 7) are also informat ive - especially the max. 
The max marker records the maximum probability 
that oCCUlTed during the simulation. This implies that 
there was a remaini ng evidence comb ination that 
caused that maximum value. If a state having this 
max value would overturn the answer currently in the 
system, then this is the combination of remaininO' 

. b 

eVIdence that would do it. The fig ures below show 
two results from the remaining influence simulations. 
The first result shows that the current answer will not 
be overturned - hence enough evidence has been 
obtained for a decision . The s cond resul t shows that 
the current evidence is not suffic ient for a decision 
but if the decision must be made anyway, at leas~ 
there is some feeling for the alternatives. 

(h1) Animal 
Monkey 
Penguin 
Platypus 
Robin 
Turtle 

2.3 
71.1 

0.0 
20.0 

0.0 

± 3.0 
±28.5 
± 0.0 
± 29.6 
± 0.0 

Figure 9. Curren t answer (Penguin) is firm 

(h1) Animal 
Monkey 
Penguin 
PI atY(l us 
Robin 
Turtle 

0.0 
54.7 

0.2 
36.4 

8.7 

± 0.0 
± 31.5 
± 0.7 
± 37.1 
± 19.8 

Figure 10. Robin cou ld overturn Penguin 

7. Conclusions 

The In tegrated Knowledge Engine extends 
traditional Bayesian analysis by giving the modeler a 
w.a~ to express model parameter uncertainty and by 
grvmg the analyst a way to exprss vidence 
uncertainty. A Monte Carlo simulation wrapped 
around a traditional Bayesian analysis tool then 
allows these effects to be included in the enhanced 
analysis. IKE also provides enhancements to 
optimize the collection of evidence and to understand 
when enough evidence has been obtained for a solid 
decision, and if not, a better understandin o· of the 

. b 

alternatIves. As mentioned in the introduction, all 
these enhancements are well suited for rapid response 
situations . 

Although IKE has been a mature capability for 
several years now, there arc still several ar as of 
research, as this is a work in progress. We would like 
to move towards more analytic methods of 
incorporating the uncertainty directly into the 
Bayesian analysis and move away from simulation. 
However, due to the speed of Netica. we find that 
simulation performs quite we ll on fairly large models 
of several hundred nodes. We are looking for a multi ­
variate random distribution that is a bit more robust 
than our Dirichlet Mixture. Although uncertainty is 
considered in evidence marsha lling. we would like 
marshal ling t actually drive down uncertainty and 
drive discrimination between competing hypotheses. 
Remaining influence analysis i a re latively new 
capability that can certainly be improved. 

Cun'ently, IKE is a monolithic application . We 
are currently developing a web version of IKE so that 
teams of analysts can collaborate over the web, each 
entering ev idence in a joint ana ly. L' . 

IKE is a National Lab capability. I f it can help 
your organization solve a problem, please contact one 
of the authors. 
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