aur. 03" Sk

Approved for public release;
distribution is unlimited.

Title: | Applying Bayesian Belief Networks in Rapid Response
Situations

Author(s): | William L. Gibson,
Deborah A. Leishman, and
Edward Van Eeckhout

Intended for: | Presentation at the 42nd Hawai'i International Conference of
System Sciences and publication in the conference
proceedings

A~
. Los Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative actionfequal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/08)



Applying Bayesian Belief Networks in Rapid Response Situations

Abstract

We have developed an enhanced Bayesian
analysis tool called the Integrated Knowledge Engine
(IKE) for monitoring and surveillance. Our
enhancements are suited jfor Rapid Response
Situations where decisions must be made based on
uncertain and incomplete evidence from many
diverse  and  heterogeneous  sources. The
enhancements extend the probabilistic results of the
traditional ~ Bayesian analysis by (1) better
\quantifying  uncertainty  arising  from  model
parameter uncertainty and uncertain evidence, (2)
loptimizing the collection of evidence 1o reach
|conclusions more quickly, and (3) allowing the
lanalyst to determine the influence of the remaining
\evidence that cannot be obtained in the time allowed.
These extended features give the analyst and decision
maker a better comprehension of the adequacy of the
acquired evidence and hence the quality of the
hurried decisions. We also describe two example
\systems where the above features are highlighted.

1. Introduction

For some time now, we have been applying
Bayesian Belief Networks (BBNs) to problems
involving multisource data fusion. In simple terms,
| Bayesian Belief Networks process “evidence™ to
compute probabilities of “hypotheises”. For example,
'some of our problems have involved monitoring of
an adversary’s actions to determine intent (hostile or
[ benign), or monitoring of a remote facility to
determine what types of covert processing might be
done there. In these cases the evidence might be
extracted from textual intelligence messages acquired
from overhead reconnaissance assets or other types of
intelligence. In these applications, evidence is costly
| and risky to obtain and one would want to optimally
task the intelligence gathering assets to collect the
best evidence to reach conclusions quickly and with
reasonable costs. In these problems, the hypothesis
nodes in the BBN will likely represent competing
alternatives as to what the adversary is really doing.
| Another type of problem involves near-real-time

surveillence for the purpose of threat detection and

identification. In such cases, the evidence is extracted

from real-time sensor data feeds as well as other

types of sources. All of these problem types can
require rapid response depending on the severity of
the threat identified.

The consequences of a wrong decision are very
harsh for these types of rapid response problems. The
analyst and decision maker not only want the answer,
but want to know the uncertainty in the answer. They
want a high quality answer quickly, and if that is not
possible, they want to know if the answer is not high
quality. To help with this, we have developed some
enhancements to traditional Bayesian Analysis which
quantify the uncertainty of statements which are
themselves probabalistic in nature (such as the results
from Bayesian analysis). We have found that subject
matter experts have different ways of expressing
uncertainty especially when providing evidence, so
we have tried to be careful to attach clear meanings
tlo expressions of evidence uncertainty. The
enhancements we will describe have to do with
treating model parameter uncertainty, treating
evidence uncertainty, determining the optimal
evidence to collect next (evidence marshalling),
determining the best asset with which to collect the
evidence (asset allocation), and finally, determining
whether one has enough evidence to make a decision
(remaining influence).

Procedurally, our approach was to select a well-
known traditional Bayesian Analysis tool called
Netica (typically used by researchers), as our
Bayesian inference engine. Our enhanced Analysis
tool, called the Integrated Knowledge Engine (IKE)
wraps around Netica to “weaponize” traditional
Bayesian analysis to better handle these types of
problems and to make it more suited for use by
intelligence analysts and decision makers.

This paper is intended to be expository or
practical, rather than academic or theoretical. and is a
report on a mature work in progress. After a brief
introduction to Bayesian Networks which also
defines our terminology, we will discuss two
example applications of IKE, and then focus on the
mechanics of IKE’s key capabilities.

2. Bayesian Belief Networks

Bayesian Belief Networks [1,2] provide a way to
conceptualize and model problems which involve
trying to reach conclusions based on evidence. Often



they are used to try to understand the causal
relationships between a set of variables. BBNs have
been successfully applied to various problem
domains such as medical (diagnosis), judicial
(guilt/innocence), and forensics (what happened), to
name a few. A BBN consists of nodes and directed
links (arrows) connecting the nodes. One can think of
the arrow as representing the biblical “begat”
relationship. Thus nodes may be thought to have
parent-child  relationships. Often in Bayesian
modeling, the arrow represents a causal relationship.
Hence the rule of thumb - “Parents cause the
children”.

A node in a BBN represents a variable that can be
in only one of finitely many states. For example if
temperature is a variable, one could say that the
temperature could be hot or cold. Thus the
temperature node would be modeled as having two
states: hot and cold. A more complicated problem
might require that temperature have four states;
freezing, cold, warm. hot. We may not know what
state the temperature node is in, in which case we say
that the temperature node is unknown. If we get some
data that tells us the state is hot, we can enter that
finding into the BBN and “set” the temperature
node’s state to hot. This is called entering evidence
(or entering a finding).

Often the top-level nodes in a BBN represent the
competing alternatives that we are trying to sort out:
is the factory making fertilizer or anthrax, or sarin?
These nodes are called hypothesis nodes. Often the
bottom level nodes in the network represent things
we can observe as evidence: is the factory using low,
medium, or high amounts of electricity? These nodes
are called evidence nodes. Given the evidence that
we have entered into the BBN, we want the BBN to
calculate the probabilities of the states of the
hypothesis nodes to reach a conclusion such as: The
probability that the factory is making fertilizer is
90%: anthrax, 7%; and sarin, 3%. Several algorithms
[3] have been developed that can perform this
Bayesian Inferencing in a practical and useful manner
- provided the network is a BBN.

In order for a network to be a BBN it must satisfy
two conditions: (1) It must be an Acyclic Directed
Graph — acyclic in the sense that there are no loops in
the graph — i.e. a parent may not be the child of one
of it’s descendents, and (2) The network must satisfy
the Markov condition — if the state of all the parents
of a node are known, then the state of that node is
influenced only by it’s descendents. These conditions
simplify the problem enough that it can be solved by
Bayesian Inferencing algorithms. Condition (1) keeps
the algorithms from encountering an infinite loop,
and condition (2) allows the model builder and the

algorithms to worry only about the immediate
relationships between a node and it’s parents. The
figure below shows a portion of a BBN whose
purpose is to diagnose car trouble (from an example
by NORSYS). This snippet shows a child node with
it's three parents.
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Figure 1. Car Diagnosis BBN Excerpt

To construct a BBN one must provide a table of
conditional probabilities (CPs) for each node. These
CPs represent our answer to the question: Given the
state of all my parents, the probabilities for my states
are the following. For example, the CP Table (CPT)
for the “Voltage at Plug” or PV node is shown below.
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okay okay dead 0.000 0.000  100.00
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okay faulty dead 0.000 0.000 100.00
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blown okay dead 0000 0.000 100.00

blown faulty sQng | 0.000 0.000  103.00
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Figure 2. Node conditional probability table

The CP shown in the highlighted cell means:
Given that Main Fuse is okay and Battery is okay,
but Distributor is faulty, the probability that the
Voltage at Plug is none is 80%. Because we are
reasoning from cause to effect (from parent to child),
a subject matter expert (such as an auto mechanic)
who is familiar with the system being modeled can
usually come up with these conditional probabilities
and easily populate the table. We call this eliciting
the conditional probabilities. It is much harder to
reason from effect to cause, but this is precisely what



the Bayesian inferencing algorithms do for us. We
enter the observed effects into the BBN as evidence,
and the BBN calculates the probable cause. The CP
Table row that is highlighted is representative of any
CPT row in that it is a vector of conditional
probabilities (expressed as percentages) that add to
100% (the probabilities add to one) and the
dimension of the vector is the number of states of the
node. ‘There is one CPT row for each possible
combination of parent state values. When the node
has no parents, the CPT contains only one row. The
probabilities in this row are called prior probabilities,
they are unconditional probabilities that represent the
probability that that node state will occur in the
general population.

3. The Integrated Knowledge Engine
(IKE)

The Integrated Knowledge Engine enhances the
traditional Bayesian Analysis provided by the Netica
engine, by providing the following additional major
capabilities:

e  Apalysis (Inferencing with Uncertainty)
e Evidence Marshalling (with Uncertainty)
e Asset Allocation

e Remaining Influence

Other useful capabilities (not discussed here)
include:

Graphical User Interface
Evidence Message Processing
Message Database Store/Replay
Geographic Situation Display
Evidence Message Simulation

IKE’s flexible graphical user interface can be
easily changed, so each new application of IKE may
have it’s own look and feel, while the underlying
classes that implement the core capabilities remain
unchanged.

In the simplest configuration, IKE is used like a
hand calculator with the analyst manually entering
whatever evidence is deemed appropriate. In some
applications, raw intelligence messages arrive at IKE
only to be placed in the mailbox for an evidence node
(some process has routed the message to the
appropriate node). The analyst reviews the message
manually and decides whether to enter evidence. In
other near-real-time applications, special IKE
evidence messages are automatically generated from
the multisource data streams and set their evidence
into IKE automatically. We have found that viewing

incoming data streams as sources of discrete evidence
in a Bayesian Belief Network provides a framework
(and a simple architecture) for integrating diverse
types of input data for knowledge discovery. A
typical architecture for near-real-time applications is
shown in the figure below.
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Figure 3. Typical near-real-time architecture

The kind of processing done inside each evidence
generator is determined by the type of data source(s)
streaming into that generator. It ranges from simple
threshold triggering to highly complex textual or
image/signal processing. All of the evidence
generators know they must generate evidence for one
or more evidence nodes in the BBN, so the modeling
process that identified the important evidence
variables has given definition and purpose to the
evidence generation processing.

The Integrated Knowledge  Engine s
implemented using the Java programming language
and interacts with Netica via the Netical Application
Programmatic Interface (API) .

4. Example Systems

Traditional BBN models make no distinction
between hypothesis nodes and evidence nodes
(evidence may be entered at any node). However,
when we build a BBN model for a client application,
we explicitly identify the hypothesis nodes for the
problem and give them labels h1, h2, etc. We identify
the evidence nodes as those effects that are actually
observable in practice and give them labels el, e2,
etc. In a downward flow layout, the hypothesis nodes
tend to be at the top of the diagram and the evidence
nodes at the bottom. This helps the analyst and
decision maker focus on the nodes that are important
to them.



The first example (see figure below) is a version
of IKE used in a mailbox/manual mode by the
analyst. The right side displays the BBN. The upper
left tabulates results for the hypothesis nodes since all
may not be visible in the diagram window. The lower
left shows the evidence node mail boxes. The analyst
reads the messages in the mail boxes and manually
sets the evidence into the BBN to perform analysis.

Figure 4. Analysis

The next figure shows the planning tab, used for
evidence marshalling and asset allocation. On the
simplified diagram, the analyst selects one or more
hypothesis nodes and some subset (usually all) of the
evidence nodes to marshall over. The lower left
displays the prioritized list of best evidence to gather
next (the evidence nodes that give the most
information about the selected hypothesis nodes), and
the lower right shows the best assets to use to collect
the evidence.
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Figure 5. Planning

The second example (see figure below) shows
IKE embedded in a near-real-time architecture (like
figure 3) called the Remote Perimeter Surveillence
(RPS) system wused to monitor vehicular and
pedestrian traffic on a remote canyon road. The RPS
system processes data from a distributed sensor
network (DSN) whose nodes have seismic, acoustic,

still camera, and radiation sensors and from a video
system that does motion detection and object
tracking. The evidence generators consume these data
streams to produce IKE evidence messages to set
evidence into a BBN whose purpose is to determine
the probability that the moving object is a vehicle
(car, humvee, truck) or a pedestrian, and whether it is
suspicious.
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Figure 6. Remote Perimeter Surveillance System

The upper left shows the video view from the
canyon rim with a bounding box around the detected
moving object (a car), middle left is a plot of the raw
DSN data. and lower left shows a close-up view from
a DSN still camera down in the canyon bottom. The
upper right shows the DSN sensor nodes on a
geographic situation display. with the nodes reporting
shown in red, middle right shows raw/averaged DSN
and video data, and bottom right shows the two main
IKE hypothesis nodes and some evidence nodes for
manual entry.

S. Quantifying Uncertainty

Traditional Bayesian analysis produces results
that are probabilities — the probabilities that the node
is in each of it’s states. For example if the node is
Animal (see figure below) the BBN will calculate a
probability for each kind of animal.

h1: Animal
Monkey — 38.0 j—
Penguin 183 _—
Platypus 24.6 jm
Raobin 0.78

Turtle 18.4 3

Figure 6. Point Probabilities



The results are not saying the animal is 2 monkey,
but rather that it is most probably a monkey. The
results tell you how to bet. These probabilities are
sometimes called “point probabilities” or “first-order
probabilities”, and they are the answers from
traditional Bayesian analysis. But how good are these
answers?

We know they are affected by how well we
elicited the conditional probabilities. The CPs in the
CP tables (including the priors) are the parameters of
our model, so errors in the model parameters can
introduce errors in the answers. If we entered some
evidence of which we were not certain, this could
also induce an error into the answers.

We wish to put a “one sigma error bar” on the
point  probabilities, representing one standard
deviation. to show how much uncertainty is
contributed by the model parameter uncertainty and
by the uncertainty in the evidence. To do this we use
a Monte Carlo simulation [ 4 ].

We need to think of each CPT row as a multi-
variate random variable - a vector of scalar random
variables in the interval [0, 1] —and here’s the catch —
whose components must sum to one.

Instead of each CP in the CPT row being just a
probability, there is now a mean value for the CP and
a sigma value for the CP. Thus the CP is a random
variable characterized by it’s mean and sigma. The
size of sigma expresses how much uncertainty there
is in the CP. In this way we have augmented the
traditional CP table by including the sigmas along
with the means (the original CP values). Thus each
CPT row becomes a vector of means and a
corresponding vector of sigmas. For each CPT row,
we must create a multi-variate random distribution
having the same means and sigmas. such that each
random vector drawn from the distribution sums to
one. We found that a mixture of two Dirichlet
Distributions is able to do this [5]. To initialize the
Monte Carlo simulation, the BBN is traversed, and
for each augmented CPT row, a matching Dirichlet
Mixture (DM) is created and assigned to the row.

Then on each cycle of the simulation:

e Each CP Table Row draws its CP values
from its associated DM (including Priors)
Retract all evidence from the BBN

e Enter current evidence for this cycle (can
include uncertain evidence)

* Ask NETICA to inference and obtain all the
state probabilities

e Accumulate  state  probabilities  for
calculating means and sigmas

e  Accumulate state probability minimums and
maximums
When the desired number of cycles have been
completed:
e Calculate state probability means and
sigmas from accumulated data
e Fetch the state probability minimums and
maximums
The results (now with our desired error bar) are
displayed as in the figure below. The analyst can
easily ascertain at a glance how good the answer is
(how much uncertainty is caused by model parameter
uncertainty and evidence uncertainty (discussed
below).

1 Sigma error bar either side of mean
clipped outside [0, 1]

min(state prob) - red dot
.
mean(state prob)

/
(h1) Anik‘\ | / .-'"j

Monkey 418 W) +343

Penguin 315 W £262

Platypus 21 £ 293

Robin 0.0 l | +0.0

Turtle 246 W | +605
/l

I max(state prob) — red dot
1 Sigma (state prob)
/

Colored probability bar (Gray, Yellow, Red)

Figure 7. IKE Results for a node

Currently IKE deals with evidence uncertainty by
dithering the evidence during the Monte Carlo
Simulation. Rather than entering evidence in the
traditional way by picking one of the node’s states as
the finding for that node, and holding that setting
constant during the Monte Carlo. we enter a
“certainty” value for each state of the node. These
state certainties are percentages and must sum to 100.
For example, for a temperature node, we might enter
certainties of: 80 for hot. 15 for warm, and 5 for cold.
This could be interpreted as saying... I'm 80%
certain that the temperature is hot. 1 might be wrong,
but even if I am it is still more likely to be warm than
cold...say 15% for warm, and only 5% for cold.

In the Monte Carlo simulation of say, 1000
cycles, we interpret this to mean that for 800 of the
cycles temperature should be set to hot; for 150
cycles, temperature = warm, and for 50 cycles
temperature = cold. When dithering more than one
evidence node, care must be taken not to induce
correlations between the dithered nodes, This can be
done by drawing a selector variable from a uniform
distribution.



Another way to deal with uncertain evidence at
modeling time is to place a “noisy observer” node
below the real evidence node as its only child. The
observer node represents a noisy sensor or an
imperfect observer and its false positive and false
negative rates can be entered into the observer’s CPT.
One then enters the evidence into the observer node
rather than the real evidence node. This could be
done at run time by creating the observer node on the
fly and inserting it into the BBN at run time. An area
of research for us is the use of Bayesian “likelihoods™
to express evidence uncertainty.

5. Optimizing Evidence Collection

To perform evidence marshalling in IKE, the
analyst selects one or more hypothesis nodes and
then runs evidence marshalling. The system will then
rank order all the evidence nodes in terms of how
much information gain each evidence node
contributes to the group of selected hypothesis nodes.
Thus the system identifies the most influential
evidence to collect next. In so doing, the system
acknowledges the evidence currently set in the
analysis, and calculates the information gains over
the remaining unknown evidence nodes.

Like the IKE Analysis function, evidence
marshalling uses Monte-Carlo to compute the
variance of the results...in this case the variance of
the information gains. This variance is used in a
utility function to penalize an evidence node if the
variance of its information gain is relatively larger
than that of another evidence node having nearly
equal information gain, causing the node to rank
lower.

Information gain is computed from entropy, a
concept from thermodynamics. As a system becomes
more disorganized its entropy increases and its
information gain decreases. When applied to
information theory, entropy and information gain are
inverse measures of the influence one node has on
another, We use a Netica method to calculate the
information gain [G(h:e) between a hypothesis node
and each of the evidence nodes. When the user
selects multiple hypothesis nodes hl,h2,h3  to
marshall over, we would have liked to compute the
joint information gain IG(h1,h2,h3 : e). Since Netica
has no method for joint information gain, we
approximate the desired result as avg[ IG(hl:e),
1G(h2:e), 1G(h3:e) ]. An area of research for us is to
compute the joint information gain, and also to
enhance this sensitivity analysis to find the evidence
that best reduces wuncertainty and that best
discriminates between competing hypotheses.

If the analyst has the ability to task assets to go
collect evidence, IKE has a capability to perform an
optimal asset allocation based on the optimal list of
evidence nodes produced by evidence marshalling.
Beforehand, one must make a mapping that identifies
which assets can collect (evidence for) which
evidence nodes. Then one adds asset characteristics
like availability (is the asset available), cost (how
costly is the asset to use for collecting this evidence),
timeliness (how quickly can this asset collect this
evidence), and risk (how risky to collect this
evidence). One then adds collection constraints (find
me an immediately available asset that can collect the
evidence within 30 minutes at the lowest cost and
risk) and turns this into an integer linear
programming optimization problem (a la operations
analysis) which can be solved by a linear
programming solver. IKE uses a freeware solver
called LP Solve. The result is a list of the best assets
with which to collect the optimal list of evidence.
When the analyst then goes to the collection
community with hat in hand to beg for an asset,
hopefully the fact that IKE says this is the most
effective evidence and the most effective asset will
hold some sway.

6. Determining Remaining Influence

Knowing when you have enough evidence to
make a decision can be difficult. After obtaining
some evidence, the IKE analysis might be pointing to
a particular answer, and the uncertainty in that
answer due to model parameter error and evidence
uncertainty might even be small (see figure below),
but might there not be another piece of remaining
evidence that would overturn that answer if that
evidence could be collected?

(h1) Animal
Monkey 00 1 +0.1
Penguin 95.0 IEEEE + 3.2

Platypus 00 1 +01
Robin 40 1128
Turtle 09 1 +18

Figure 8. Enough evidence for decision?

One way to get a handle on this might be to run
evidence marshalling and look at the remaining
evidence nodes that rise to the top of the list. If their
information gains are small, one might feel confident
that remaining evidence will not greatly affect the
current answer. However, the information gain scale
has not yet been calibrated (future research) and,
marshalling uses it only in a relative way, so looking



at the information gain values is not really helpful at
this time.

IKE can produce a definitive answer to this
quandary by performing an analysis of “remaining
influence”. Given the evidence already entered in the
system. IKE generates all possible combinations of
the remaining evidence findings. Then, on each cycle
of the remaining influence simulation, it sets one
possible remaining evidence combination into the
BBN and accumulates results just as in the Monte
Carlo simulation  discussed previously. The
simulation results are displayed in the same way, but
now the interpretation is different. The data displayed
has nothing to do with model parameter uncertainty
or evidence uncertainty, but rather comes from the
dithering of the remaining evidence through all
possible combinations. For each node state the mean
now represents the average state probability over all
the remaining evidence — which may not be very
informative. But the standard deviation is informative
— it tells us how much variation in the answer is
possible due to the influence of the remaining
evidence. The max and min markers (the red dots of
figure 7) are also informative — especially the max.
The max marker records the maximum probability
that occurred during the simulation. This implies that
there was a remaining evidence combination that
caused that maximum value. If a state having this
max value would overturn the answer currently in the
system, then this is the combination of remaining
evidence that would do it. The figures below show
two results from the remaining influence simulations.
The first result shows that the current answer will not
be overturned — hence enough evidence has been
obtained for a decision. The second result shows that
the current evidence is not sufficient for a decision,
but if the decision must be made anyway, at least
there is some feeling for the alternatives.
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Figure 9. Current answer (Penguin) is firm
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Figure 10. Robin could overturn Penguin
7. Conclusions

The Integrated Knowledge Engine extends
traditional Bayesian analysis by giving the modeler a
way to express model parameter uncertainty and by
giving the analyst a way to express evidence
uncertainty. A Monte Carlo simulation wrapped
around a traditional Bayesian analysis tool then
allows these effects to be included in the enhanced
analysis. IKE also provides enhancements to
optimize the collection of evidence and to understand
when enough evidence has been obtained for a solid
decision, and if not, a better understanding of the
alternatives. As mentioned in the introduction, all
these enhancements are well suited for rapid response
situations.

Although IKE has been a mature capability for
several years now, there are still several areas of
research, as this is a work in progress. We would like
to move towards more analytic methods of
incorporating the uncertainty directly into the
Bayesian analysis and move away from simulation,
However, due to the speed of Netica, we find that
simulation performs quite well on fairly large models
of several hundred nodes. We are looking for a multi-
variate random distribution that is a bit more robust
than our Dirichlet Mixture. Although uncertainty is
considered in evidence marshalling. we would like
marshalling to actually drive down uncertainty and
drive discrimination between competing hypotheses.
Remaining influence analysis is a relatively new
capability that can certainly be improved.

Currently, IKE is a monolithic application. We
are currently developing a web version of IKE so that
teams of analysts can collaborate over the web, each
entering evidence in a joint analysis.

IKE is a National Lab capability. If it can help
your organization solve a problem, please contact one
of the authors.

10. References

[1] Pearl, Judea (2000). Causality: Models, Reasoning, and
Inference. Cambridge University Press. ISBN 0-521-
77362-8.



[2] Finn V. Jensen, “Introduction to Bayesian Networks”,
Springer: | edition (August 15, 1997).

[3] C. Huang and A. Darwiche, "Inference in belief
networks: A procedural guide”, International Journal of
Approximate Reasoning. volume 15, number 3, pp. 225-
263 (1996)

[4] N. Metropolis and S. Ulam, "The Monte Carlo
Method", Journal of the American Statistical Association,
volume 44, number 247, pp. 335-341 (1949)
(doi:10.2307/2280232)

5] D. lzraelevitz, H. F. Martz, D. A. Leishman, and W. L.
Gibson. “On representing second-order uncertainty in
multi-state systems via moments of mixtures of Dirichlet
distributions”. Journal of Siatistical Computation and
Simulation (2008) (to appear).



