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We present a measurement of 777 7 7~ photonuclear production in ultra-peripheral Au-Au
collisions at /sy, = 200 GeV from the STAR experiment. The 77 77~ final states are ob-
served at low transverse momentum and are accompanied by mutual nuclear excitation of the beam
particles. The strong enhancement of the production cross section at low transverse momentum



is consistent with coherent photoproduction. The 777~ 7

T~ invariant mass spectrum of the co-

herent events exhibits a broad peak around 1540 + 40 MeV/c? with a width of 570 4+ 60 MeV/c?,
in agreement with the photoproduction data for the p0(1700). ‘We do not observe a corresponding
peak in the 717~ final state and measure an upper limit for the ratio of the branching fractions of
the p°(1700) to 77w~ and 77~ 7wt 7™ of 2.5 % at 90 % confidence level. The ratio of p°(1700) and
p0(770) coherent production cross sections is measured to be 13.4 + 0.8stat. £ 4.4sys¢,%.

PACS numbers: 25.20.Lj, 13.60.-r

I. INTRODUCTION

The electromagnetic field of a relativistic heavy nu-
cleus can be approximated by a flux of quasi-real virtual
photons using the Weizsécker-Williams approach [1]. Be-
cause the number of photons grows with the square of the
nuclear charge, fast moving heavy ions generate intense
photon fluxes. Relativistic heavy ions can thus be used
as photon sources or targets. Due to the long range of
the electromagnetic interactions, they can be separated
from the hadronic interactions by requiring impact pa-
rameter b larger than the sum of the nuclear radii Ra
of the beam particles. These so-called ultra-peripheral
heavy ion collisions (UPCs) allow us to study photonu-
clear effects as well as photon-photon interactions [2].

A typical high-energy photonuclear reaction in UPCs
is the production of vector mesons. In this process the
virtual photon, radiated by the “emitter” nucleus, fluc-
tuates into a virtual gg-pair, which scatters elastically off
the “target” nucleus, thus producing a real vector meson.
The scattering can be described in terms of soft Pomeron
exchange. The cross section for vector meson production
depends on how the virtual gg-pair couples to the target
nucleus. This is mainly determined by the transverse mo-
mentum pp of the produced meson. For small transverse
momenta of the order of pr < h/Ra the ¢g-pair cou-
ples coherently to the entire nucleus. This leads to large
cross sections which depend on the nuclear form factor
F(t), where ¢ is the square of the momentum transfer to
the target nucleus. For larger transverse momenta the
qq-pair couples to the individual nucleons in the target
nucleus. This “incoherent” scattering has a smaller cross
section that scales approximately with the mass num-
ber A modulo corrections for nuclear absorption of the
meson.

Due to the intense photon flux in UPCs, it is pos-
sible that vector meson production is accompanied by
Coulomb excitation of the beam particles. The excited
ions mostly decay via the emission of neutrons [3] which
is a distinctive event signature that is utilized in the trig-
ger decision. To lowest order, events with mutual nuclear
dissociation are described by three-photon exchange (see
Fig. 1): one photon to produce the vector meson and two
photons to excite the nuclei. All three photon exchanges
are in good approximation independent, so that the cross
section for the production of a vector meson V' accompa-
nied by mutual nuclear dissociation can be factorized [3]:
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FIG. 1: Schematic view of the photonuclear production of a
vector meson V' in an ultra-peripheral Au-Au collision and its
subsequent decay into four charged pions. The meson produc-
tion in the fusion processes of photon 7" and Pomeron P is
accompanied by mutual Coulomb excitation of the beam ions.
The processes are independent as indicated by the dotted line.

(1) OV, znxzn =

/ Lb[1— Poaa()] - Py (8) - P (8) - Pono(0),

where Phaq(b) is the probability for hadronic interaction,
Py (b) the probability to produce a vector meson V, and
P,y,.i(b) the probability that nucleus ¢ emits 2 neutrons.
Compared to exclusive photonuclear vector meson pro-
duction, reactions with mutual Coulomb excitation have
smaller median impact parameters.

The PDG currently lists two excited p° states, the
pY(1450) and the pY(1700), which are seen in various
production modes and decay channels including two- and
four-pion final states [4]. The nature of these states is still
an open question, because their decay patterns do not
match quark model predictions [5]. Little data exist on
high-energy photoproduction of excited p® states in the
four-pion decay channel. Most of them are from photon-
proton or photon-deuteron fixed target experiments at
photon energies in the range from 2.8 to 18 GeV [6-9].
The OMEGA spectrometer measured photoproduction
on proton targets at energies E, of up to 70 GeV [10].
The heaviest target nucleus used so far to study diffrac-
tive two- and four-pion photoproduction was carbon with
photon energies between 50 and 200 GeV [11]. These ex-
periments observe a broad structure in the four-pion in-
variant mass distribution at masses ranging from 1430 £
50 MeV/c? [6] to 1570 & 60 MeV/c? [8] and with widths
between 340 4 60 MeV/c? [8] and 850 4= 200 MeV/c? [7]
that the PDG assigns to the p°(1700). However, data in-
dicate that the peak might consist of two resonances [9].



We will use the symbol p’ to designate this structure in
the rest of the text.

The measurements presented in this paper extend the
four-pion photoproduction data to fixed target equivalent
photon energies of up to 320 GeV as well as to heavy
target nuclei. This represents the first measurement
of four-prong production in ultra-peripheral heavy ion
collisions complementing the pioneering work on ete™,
pY(770), and J/Ap production in UPCs at STAR [12-15]
and PHENIX [16].

There are at least three models for the production of
pY(770) mesons in ultra-peripheral collisions: The model
of Klein and Nystrand (KN) [17] employs the Vector
Dominance Model (VDM) to describe the virtual pho-
ton and a classical mechanical approach for the scat-
tering on the target nucleus, using results from vp —
p°(770) p experiments. The Frankfurt, Strikman, and
Zhalov (FSZ) model [18] is based on a generalized VDM
for the virtual photon and a QCD Gribov-Glauber ap-
proach for the scattering. The model of Gongalves and
Machado (GM) [19] employs a QCD color dipole ap-
proach that takes into account nuclear effects and par-
ton saturation phenomena. The KN model agrees best
with the available data on p°(770) production, the FSZ
and in particular the GM model overestimate the p°(770)
production cross section [14]. Only the FSZ calculations
make predictions about the production of exited p° states
in UPCs.

II. EXPERIMENTAL SETUP AND DATA
SELECTION

The analysis is based on 1.9 - 10° events taken with
the STAR experiment at the Relativistic Heavy Ion Col-
lider (RHIC) in Au-Au collisions at /5., = 200 GeV
during the year 2007 run. The Solenoidal Tracker at
RHIC (STAR) experiment uses a large cylindrical Time
Projection Chamber (TPC) [20] with 2 m radius and
4.2 m length, operated in a 0.5 T solenoidal magnetic
field, to reconstruct charged tracks.

Two detector systems are used for triggering: the Cen-
tral Trigger Barrel (CTB) [21], which is an array of
240 plastic scintillator slats around the TPC that allows
us to trigger on charged particle multiplicities, and the
two Zero Degree Calorimeters (ZDCs) [22], which are lo-
cated at 18 m from the interaction point. The ZDCs
have an acceptance close to unity for neutrons originating
from nuclear dissociation of the beam ions. In the trig-
ger, these neutrons are used to tag UPC events by requir-
ing coincident hits in both ZDCs with amplitudes corre-
sponding to less than about 7 to 10 neutrons. The ADC
sum of all CTB slats is restricted to a range equivalent
to a hit multiplicity between about 2 and 40 minimum
ionizing particles. In order to enrich events at central
rapidities, events with hits above the minimum ionizing
particle threshold in the large-tile Beam-Beam Counters
(BBCs) [23], which cover 2.1 < |n| < 3.6, are vetoed.
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FIG. 2: Distribution of the 777 7 7~ transverse momen-
tum pr = |Z?:117T»i|1 The filled circles are the measured
points with the statistical errors. The hatched filled histogram
shows the expected distribution from simulation of coherent
photoproduction (cf. section IIT). The strong enhancement
at low transverse momenta is due to coherently produced
m T~ w7 ™. This unique signature is used in the event selec-
tion which requires pr < 150 MeV/c (arrow). The remaining
background is estimated from +2 or —2 charged four-prong
combinations, by normalizing (factor = 1.186 £ 0.054) their
pr distribution (gray filled histogram) to that of the neutral
four-prongs in the region of pr > 250 MeV/c (vertical line)
yielding the unfilled histogram (see section IV).

In the offline analysis two- and four-prong data sets are
selected. Four-prong events are required to have exactly
four tracks with zero net charge in the TPC that form
a common (primary) vertex. Because the STAR TPC
has a drift time of about 36 psec, any charged tracks
produced within a time window of +36 psec around the
triggered collision will overlap with the event of inter-
est. Some of these additional tracks come from beam
induced background reactions, but, due to the high lu-
minosities reached in the RHIC 2007 run [24], a large
percentage is from real heavy ion collisions. In order to
account for those out-of-time events and backgrounds up
to 86 additional tracks per event, which do not point to
the primary vertex, are allowed, but excluded from the
analysis. The primary vertex is confined to a cylindrical
region of 15 cm radius and 200 ¢m length centered around
the interaction diamond which reduces contaminations
from pile-up events and beam-gas interactions. Each of
the four-prong tracks is required to have at least 14 out
of a maximum possible 45 hits in the TPC. No particle
identification is employed in the event selection; all four
tracks are assumed to be pions. The distribution of the
ionization energy loss dE/dx of the selected tracks in
the TPC indicates that contaminations from other par-
ticle species are small. The transverse momentum dis-
tribution of the #™7~ 7 7~ combinations, as shown in
Fig. 2, exhibits an enhancement at low pp, characteristic
of coherent production. Coherent events are selected by



requiring pr < 150 MeV/c. This cut also suppresses con-
taminations from peripheral hadronic interactions and
from 7T~ 77~ + X events, where the X is not recon-
structed.

Due to charge conjugation invariance, we expect no
p°(770) p°(770) component in the diffractively produced
7T~ aTr~ final state. Possible contributions from
pY(770) pair production by two independent photopro-
duction reactions on the same ion pair are negligible.
The KN model predicts a cross section ratio of exclu-
sive photonuclear p° pair production and exclusive single
pY production of about 1.2 - 1073 [17]. For mutual nu-
clear dissociation of the beam ions the ratio is expected
to be of comparable value so that contaminations of the
atn~ntr~ sample by this process are at most a few
percent. Also v*y* — p°(770) p°(770) events contribute
below the percent level. Here the cross section ratio for
exclusive p° pair production in two-photon events and ex-
clusive photonuclear p°(770) production was calculated
to be 3.2 - 107> for pY(770) pair invariant masses in the
range between 1.5 and 1.6 GeV/c? [25].

The two-prong selection criteria are very similar and
follow the STAR UPC p°(770) analyses [13, 14]. As in the
four-prong case, out-of-time events and background are
taken into account by allowing up to 36 tracks per event
in addition to the two primary TPC tracks. Background
from two-photon eTe™ and photonuclear w production is
negligible [14]. Cosmic ray background is strongly sup-
pressed, due to the ZDC requirement in the trigger.

III. EFFICIENCY AND ACCEPTANCE
CORRECTIONS

Detector efficiency and acceptance are studied using a
Monte Carlo event generator based on the KN model [17]
which describes coherent vector meson production ac-
companied by mutual Coulomb excitation in UPCs. In
order to reduce model dependence, the acceptance cor-
rections are applied in two stages. Within the detector
acceptance of |y| < 1, the corrections are calculated using
a realistic detector simulation based on GEANT 3 [26].
In a second step, the results are then extrapolated to the
full 47 solid angle based on the KN model distributions.

In order to determine the acceptance corrections for
the four-prong case, we assume a simple decay model,
where an excited p meson decays into p%(770) and
f0(600), each in turn decaying into 7 7

(2)
o' = pP(770) fo(600) = [7T 7] powave [T 77 | sowave

This decay model is motivated by the fact that the
invariant mass spectrum of the unlike-sign two-pion sub-
systems in the four-prong sample shows an enhancement
around the p°(770) mass (cf. Fig. 3). Figure 4 compares
the invariant mass spectrum of the lightest 777~ pair
with the spectrum of the pair recoiling against it and
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FIG. 3: Invariant Mass distribution of two-pion subsystems:
The filled circles show the measured 777~ invariant mass
spectrum for the selected four-prong sample (four entries
per event) with statistical errors. The open circles repre-
sent the mass spectrum of the like-sign pion pairs (two en-
tries per event). The unlike-sign mass distribution exhibits
an enhancement with respect to the like-sign pairs in the
p°(770) region. The solid line histograms show the pre-
diction from simulation assuming the relative S-wave decay
p' = p°(770) fo(600).

shows that the four-pion final state consists mainly of a
low-mass pion pair accompanied by a p°(770).
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FIG. 4: Invariant Mass distribution of two-pion subsystems:
The open circles show the measured invariant mass spec-
trum of the lightest 77~ pair in the event with the bars
indicating the statistical errors. The filled circles represent
the invariant mass distribution of the 777~ that is recoiling
against the lightest pair. The spectrum exhibits a clear peak
in the p°(770) region. The solid line histograms show the pre-
diction from simulation assuming the relative S-wave decay
p' = p°(770) fo(600).

In principle, the p° and f; are allowed to be in a rel-
ative S- or D-wave, but, due to the low statistics of the
data, we are not able to estimate the D-wave parame-



ters. Consequently we only consider S-wave decay. Pos-
sible D-wave contributions are well within the estimated
systematic error (see section IV).

The angular distribution I that is used to estimate
the acceptance corrections for the four-prong sample is
parameterized:

(3) o> > T - A AT

e m,m’

where A7 is the amplitude for the decay of a p’ with
spin J = 1 and a projection m of J along the quantiza-
tion axis assuming the model of Eq. (2). “ry, s repre-
sents the spin density matrix elements. The amplitudes
are defined in the p’ rest frame with the z-axis along the
beam direction and the y-axis parallel to the production
plane normal, pheam X Ppr. Due to the large beam en-
ergy and the coherent nature of the production process,
this frame coincides approximately with the p’ helicity
frame. Both the amplitudes and the spin density matrix
are constructed using eigenstates of the operator II,, of re-
flections in the production plane, the so-called reflectivity
basis with e = +1 [27]. The sum in Eq. (3) is simplified
by assuming s-channel helicity conservation (SCHC) and
that the quasi-real photons come with helicities +1 only,
so that ~ry; = "r1; are the only non-zero spin density
matrix elements. The amplitudes A/, are factorized:

(4) A7 = Ap(myp) - Agy(my,) - M (0,65 05, 65, 7p)

Here A, f, are the amplitudes for the p° and f reso-
nance shapes as a function of the invariant masses of
the intermediate states m, . For the p°(770) a P-
wave Breit-Wigner with mass-dependent width includ-
ing Blatt-Weisskopf barrier factors is used [28]. The fo
is modeled by an S-wave Breit-Wigner at 400 MeV/c?
with a width of 600 MeV/c?. The decay amplitudes ‘M,
describe the angular dependence and include relativistic
corrections via the Lorentz factor v, of the p° in the p’
rest frame (RF) according to [29]. ‘M, depends on the
angles 6 and ¢ of the p° in the p’ rest frame as well as
on the angles 6, and ¢, that describe the orientation of
the 7T from the p® decay in the p® helicity rest frame.
This frame is defined starting from the p’ rest frame and
has its zj,-axis parallel to the p’-momentum and its -
axis along the cross product of beam and p° momentum.
Finally, the sums in Eq. (3) are Bose symmetrized to
account for the four indistinguishable final state configu-
rations.

The simulations agree well with the two- and four-
pion kinematic distributions. The mean p" reconstruc-
tion efficiency in the region |y| < 1 is about 21.9 + 0.2%,
that for the p’ approximately 6.5 & 0.5%. The efficien-
cies show no strong dependence on the z-position of the
primary vertex or on the transverse momentum in the
region of the coherent peak. However, due to the TPC
acceptance, the efficiencies decrease to roughly 1 % for

the p° and 0.1 % for the p’, respectively, at y = 1. The
mass dependence of the p® efficiency is flat for masses
above about 600 MeV/c? and decreases quickly for lower
masses. The p’ efficiency rises with mass, until it reaches
a plateau at approximately 1500 MeV/c?, so that the
a7~ 7~ mass peak in the uncorrected data is shifted
towards larger masses (see the dashed curve in Fig. 5).
From the simulations the resolutions for pr, y, and
invariant mass of the selected pion pairs are estimated
to be approximately 6 MeV/c, 0.009, and 5 MeV/c?, re-
spectively. The corresponding values for the four-pion
combinations are 10 MeV/c, 0.006, and 10 MeV/c?.

IV. RESULTS

The ratio of coherent p’ and p°(770) production
cross sections can be calculated from the respective
acceptance-corrected yields which are determined from
fits of the 7*7~ 77~ and 77~ invariant mass distri-
butions, respectively.

Figure 5 shows the measured 7t7~ 7 7~ invariant
mass spectrum which exhibits a broad peak around
1540 MeV/c? indicating resonant p’ production similar
to what was seen in fixed-target photoproduction exper-
iments [6-11]. This assumes that the peak is dominated
by spin states with quantum numbers J¢ = 1-~. Con-
tributions from other spin states cannot be ruled out,
because in order to disentangle them a much larger data
set would be required.

The data are fit in the range from 1 to 2.6 GeV/c?
with a relativistic S-wave Breit-Wigner which is modi-
fied by the phenomenological Ross-Stodolsky factor [30]
and which sits on top of a second order polynomial that
parameterizes the remaining combinatorial background:

" mglg

(m3

(5) fir(m) = A-(72)

_ m2)2 + mgF% +fBG(m)
Here m is the 777~ 777~ invariant mass. The resonance
mass mg, the width T'g, and the exponent n are left as
free parameters.

The background polynomial fpg is fixed by fitting the
invariant mass distribution of +2 or —2 charged four-
prongs. Because at larger pr the coherent cross sec-
tion becomes negligible, the region pr > 250 MeV/c is
used to define the total amount of background by scaling
the pr distribution of the charged four-prongs, so that it
matches that of the neutral four-prongs (cf. Fig. 2). This
procedure treats incoherently produced 7tn nt7n~ as
background. The extracted scaling factor of 1.18640.054
— about half of the value estimated for the p° back-
ground (see below) — is applied to the background poly-
nomial.

Fitting Eq. (5) to the data yields a resonance mass
of 1540 & 40 MeV/c?, a width of 570 £ 60 MeV/c?, and
an exponent of n = 2.4 £ 0.7. The values for mass and
width, however, depend strongly on the choice of n. The
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FIG. 5: (Color online) Invariant mass distribution of coher-
ently produced 7 7 7w 7w : The filled circles are the mea-
sured points with the statistical errors, the gray filled his-
togram is the background estimated from charged four-prongs
(cf. Fig. 2). The thick black line shows the fit of a modified
S-wave Breit-Wigner on top of a second order polynomial
background (thin black line; c¢f. Eq. (5)) taking into account
the detector acceptance in the region |y| < 1 (rising dashed
line). The dotted curve represents the signal curve without
background.

peak contains Ny, = 9180+ 540 events in the mass range
from 1 to 2.6 GeV/c?. As seen in Fig. 5 and also indicated
by the x?/n.d.f. of the maximum likelihood fit of about
36/16, Eq. (5) does not describe the peak shape well.
This is in accord with observations from other photo-
production experiments, which favor a description using
two resonances in this mass region [9]. However, the low
statistics of the data does not permit to extract the res-
onance and mixing parameters for a two-resonance sce-
nario.

In both the background and the signal fit, the mass
dependence of the reconstruction efficiency for |y| < 1
is taken into account (dashed curve in Fig. 5). The ef-
ficiency is parameterized by a fifth order polynomial de-
termined by fitting the Monte Carlo data.

The p°(770) peak in the 77~ invariant mass distribu-
tion of the selected two-prong data set is fit by a P-wave
Breit-Wigner with mass-dependent width and Soding in-
terference term [31] on top of a second order polynomial
background as described in [13-15] (cf. Fig. 6). As in
the p’ case, the background polynomial is determined
from a fit of the like-sign pair invariant mass distribu-
tion that is scaled up by a factor of 2.284 4+ 0.050 which
is extracted from the incoherent part of the pp distri-
bution. The fit gives a p mass of 772.3 & 1.2 MeV/c?
and a width of 152.1 & 1.9 MeV/c?, in agreement with
both the PDG data on p° photoproduction [4] and ear-
lier results from photonuclear production [13-15]. As
expected, modifications of the p°(770) properties that
were measured in peripheral Au-Au collisions [32] and
attributed to in-medium production are not observed
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FIG. 6: (Color online) Invariant mass distribution of coher-
ently produced 777~ pairs. The filled circles are the mea-
sured points with statistical errors. The thick black line shows
the fit taking into account the detector acceptance in the re-
gion |y| < 1. The non-interfering combinatorial background
is represented by the thin black line, which is a fit to the like-
sign invariant mass distribution scaled by a factor estimated
from the pr distribution (gray filled histogram). The dot-
ted curve shows the Breit-Wigner without background, the
dashed line the interfering background component that is as-
sumed to be mass-independent. The dash-dotted curve is the
Soding interference term of the two [31].

in the current study. The Breit-Wigner peak contains
N, = 55940 £ 910 events in the mass range from 500 to
1100 MeV/c?. The x?/n.d.f. of the maximum likelihood
fit is 115/36 which mainly reflects the fact that the fit
function does not reproduce well either the high mass
tail of the p(770) or the low mass region. This mass re-
gion exhibits a peak from K9 — 77—, where the kaons
most likely come from photoproduced ¢(1020).

Using the acceptance-corrected yields N, and Ny, for
the p°(770) and the p’, respectively, it is possible to calcu-
late the cross section ratio for coherent p® and p’ produc-
tion which is accompanied by mutual nuclear excitation
and where the p’ decays into 77~

™o

coh coh . / S R

( ) U47r,;vnwn o Up{wnwn B(p — T T ) o N47'r
coh - coh - )
p?xn xn Up?zn n NP

where B(p) — wtn~nT7~) is the branching fraction of
the p' into nta -7 tm™.

The cross section ratio does not depend strongly on
rapidity and in the region |y| < 1 has a mean value of
16.4 £ 1.0gpat. & 5.2¢yst.%. Based on the KN model [17]
we estimate extrapolation factors to the full 47 solid an-
gle of 1.8 £ 0.14ys. for the p’ and of 2.2 & 0.1y for the
pY, where the latter value is taken from [14]. With this
extrapolation, the overall coherent cross section ratio is
13.4 £+ 0.8t 4-4syst.%- Using the measured cross sec-
tion agf’};n +n for coherent p°(770) production accompa-
nied by mutual nuclear excitation of the beam particles



from [14], the p’ — 7t7~ 77~ production cross sec-
tion can be calculated. The cross section within |y| < 1
is aj?rhmm(|y| < 1) = 2.4 £ 0.24at. £ 0.84y¢.mb, the
corresponding rapidity-integrated value is UZ?&’MM =
4.3+ O-3stat. + 1.55yst,mb.

The influence of systematic effects on the cross section
ratio was studied. The main source of systematic uncer-
tainty comes from the model dependence of the angular
distribution of the 77~ 77~ used in the acceptance
correction. This uncertainty is estimated to be 21 % by
comparing to the cross section ratio obtained using an
isotropic angular distribution in the Monte Carlo simu-
lation. The uncertainty from the parameterization of the
7t~ S-wave in the four prong-decay model is about
11 % and is estimated by increasing the mass and/or
width of the f3(600) Breit-Wigner to 600 MeV/c? and
1000 MeV/c?, respectively. Additional systematic errors
come from the event selection cuts (14 %), the back-
ground subtraction (10 %), as well as the invariant mass
binning and the fit range (8 %). The systematic error as-
sociated with the particular choice of the fit function for
the 77~ 7t 7~ invariant mass peak (cf. Eq. (5)) is esti-
mated to be 9 % by trying to fit a non-relativistic Breit-
Wigner and by fixing the value of the Ross-Stodolsky
exponent in Eq. (5) ton = 0 and 4. The error for the ex-
trapolation to the full 47 solid angle was estimated to be
6 % for the p® in [14] by comparing the KN [17] and the
FSZ [18] models. The extrapolation factor depends on
the photon-energy spectrum, which is well-known, and
on the poorly known energy dependence of the photo-
production cross section. Because the KN model [17]
describes the observed mT 7w~ 77~ rapidity distribution
well, we assume that the p’ production mechanism is not
too different from that of the p° and assign the same
systematic error of 6 %.

The measured cross section ratio cannot be com-
pared directly to the ratio of the total exclusive co-
herent p’ and p° cross sections of 14.2 % predicted by
the FSZ model [18], because the branching fraction for
p' — 7T~ w1 is not known. The ratio between the
cross section for p’ production accompanied by mutual
Coulomb excitation, as measured here, and the exclusive
coherent p’ cross section, where the beam ions remain
unchanged, should be similar to the one for the p°. If in
addition a 100 % branching fraction to the 77~ 77~
final state is assumed, the measured cross section ratio
agrees with the FSZ prediction. Under the same as-
sumptions we can estimate, using the value for agf’}(}n on
from [14] and the measured cross section ratio, the to-
tal exclusive coherent p’ production cross section to be
U,C)?}O‘n on = D3E4gtar. 119y mb. The value corresponding
to the predicted cross section ratio is 56 £ 3gat. £ 8syst. mb.
These values are about half of the exclusive coherent p’
cross section of 133 mb predicted by the FSZ model. On
the other hand, this model predicts also p" cross sec-
tion values roughly twice larger than observed by exper-
iment [14].

In previous photoproduction experiments using carbon
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FIG. 7: (Color online) High mass region of the m_ .- spec-
trum with tighter cuts applied in order to suppress back-
ground: The filled circles are the measured values with statis-
tical errors. No significant enhancement is seen in the region
around 1540 MeV/c? where the 77 n 7T~ invariant mass
spectrum exhibits a peak. The thick solid line shows the fit of
a modified S-wave Breit-Wigner (cf. Eq. (5)) with parameters
fixed to the values extracted from the fit of the 777 7 7~
invariant mass distribution on top of an S-wave Breit-Wigner
that describes the tail of the p°(770) (thin solid line) tak-
ing into account the detector acceptance. The dashed curve
represents the signal curve without the p° tail.

targets the p’ was seen not only in the 777~ 7 7~ decay
mode, but also in 777~ final states [11]. We do not
observe a significant p’ signal in the high mass region
of the m +,- spectrum as shown in Fig. 7. In order to
suppress backgrounds, in particular cosmic rays, tighter
cuts are applied: the rapidity is limited to 0.05 < |y| < 1,
the transverse momentum of the 77~ pairs is required
to be lower than 100 MeV/c¢, and the primary vertex is
confined to |zprim| < 70 cm and 7pim < 8 cm.

The p’ yield in the resulting 77~ invariant mass spec-
trum is estimated by fitting the modified S-wave Breit-
Wigner of Eq. (5) on top of an S-wave Breit-Wigner for
the high-mass tail of the p"(770) in the mass range from
1.1 to 3 GeV/c?. Assuming that the p’ peak shape is
the same in the 77~ channel, we fixed mass, width,
and exponent of the p’ Breit-Wigner to the values ob-
tained from the fit of the 77~ 77~ invariant mass dis-
tribution. This gives an acceptance- and background-
corrected p’ yield of Na, = 110 4 90 in the mass range
from 1 to 2.6 GeV/c?. Na. can be compared directly to
the p’ yield Nyr in the 777~ 77~ channel so that the
ratio of the branching fractions of the p’ to 777~ and to
aTn -7t r™ can be calculated:

B(p) = ntm™)  Nox
B(p = mtm—mtn=) Ny

(7) R=

Due to the low statistics, the measured value of R =
0.01240.010 has a large uncertainty. The systematic er-
ror from neglecting the P-wave nature of the 777~ decay



by using a mass-independent resonance width in Eq. (5)
is within the range of the statistical error. The corre-
sponding upper limit of the ratio is R < 2.5 % at 90 %
confidence level. This is an indication that, in the process
measured here, R is smaller than the ratio of the total
p’ cross sections in the two- and four-pion channel on a
carbon target which was measured to be 6.6 +3.4% [11].

V. CONCLUSIONS

We have observed diffractive photonuclear production
of #Tn~ 7T 7~ final states in ultra-peripheral relativistic
heavy ion collisions accompanied by mutual Coulomb ex-
citation of the beam particles. The 777~ 7+ 7~ invariant
mass peak exhibits a broad peak around 1540 MeV/c?.
Under the assumption that the peak is dominated by
spin states with J©¢ = 17~ this is consistent with the
existing photoproduction data currently assigned to the
p°(1700) by the PDG. No corresponding enhancement in
the 77~ invariant mass spectrum is found. The ratio of
the branching fractions of the excited p° state to w7~
and 7t 7~ 7T~ final states is smaller than 2.5 % at 90 %

confidence level. The coherent p’ production cross sec-
tion is 13.4 £ 0.84at. £ 4.4syst. % of that of the p°(770)
meson.
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