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Matrix Interdiction Problem

Shiva Kasiviswanathan* Feng Panf

Abstract

In the matrix interdiction problem, a real-valued matrix and an integer k is given. The
objective is to remove k columns such that the sum over all rows of the maximum entry in each
row is minimized. This combinatorial problem is closely related to bipartite network interdiction
problem which can be applied to prioritize the border checkpoints in order to minimize the
probability that an adversary can successfully cross the border. After introducing the matrix
interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate
with an additive n7 factor for a fixed constant -y. We also present an algorithm for this problem
that achieves a factor of (n — k) multiplicative approximation ratio.

1 Introduction

In this paper, we introduce a combinatorial optimization problem, named matriz interdiction. The
input to a matrix interdiction problem consists of a real valued matrix of dimension m x n and
an integer k < n. The objective is to remove k columns from the matrix such that the sum over
all rows of the maximum entry in each row is minimized. This combinatorial problem is closely
related to a bipartite network interdiction problem in which limited resources are allocated to
reduce the probability of nuclear material trafficking. The matrix interdiction problem turns out to
be NP-hard, in fact it turns out that it is even NP-hard to get an additive n” approximation (for a
fixed constant 7). Nevertheless, we show a simple greedy algorithm running in linear in the size of
the input matrix can get a multiplicative (n — k)-approximation factor for the matrix interdiction
problem.

Network interdiction is an active research area in operations research. Network interdiction
problems can be viewed as a Stackelberg game on a network. There are two competitors, an evader
and an interdictor, and the two competitors compete on an objective with opposing interests. The
interdictor interdicts the network by modifying node and edge attributes on a network, and these
modifications are usually constrained by limited resources. The evader then optimizes over the
residual network. The origins of the network interdiction work can be traced back to 1970s when
minimizing mazimum flow models [12, 17] were developed to disrupt flow of enemy troops and
supplies in the Vietnam War. Discrete version of maximum flow interdiction considers removing
edges 25, 26] and is NP-hard. An another type of network interdiction problem is the shortest path
interdiction where the goal is given that only a fixed number of edges (or nodes) can be removed,
is to decide which set of edges (or nodes) to be removed so as to produce the largest increase in
the shortest path between a source and a destination [11, 13, 16]. This problem is also known as
the most vital edges (also most vital nodes) problem [6] and is also NP-hard [3].

There are a wide range applications of network interdiction models, including detecting drug
smuggling [23], analyzing power grid vulnerability [22], and fighting infectious disease in hospital [2].
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Figure 1: Bipartite network interdiction for border control (a) 3 sources and 2 destinations for smuggling
attempts; 3 border crossings (b) equivalent bipartite network

Some recent network interdiction research has been motivated by homeland security applications.
Researchers [24, 4] investigated how to allocate resources at individual ports to stop the illegal
trafficking of WMDs (weapons of mass destruction). For the application of detecting smuggled
nuclear material, interdiction models that minimize maximum-reliability paths on a transportation
network [20, 18, 19] have been used to prioritize border crossings for the installation of radiation
monitors. Stochastic models were developed to capture the uncertainties in the source-destination
pairs [18], smuggling paths [14, 10], and physical characteristics of the detectors [9]. Minimizing
maximum reliability path on general network can be applied to the cases where there are multiple
layers of borders, but again this problem is NP-hard [19, 20]. For a single layer of border, the
problem can be formulated as interdiction on bipartite network, which as we show in Section 2 is
closely related to the matrix interdiction problem.

Many network interdiction problems are formulated as stochastic integer programs, and solution
methods mainly involve the techniques from mixed integer programming. Benders decomposition
is an efficient method to decompose the interdiction problem to smaller subproblems [8, 16], and
valid inequalities are derived to strengthen the formulation [16, 21]. Approximation algorithms
have been developed for some special types of the network interdiction problem like the maximum
flow interdiction problem [5] and the graph matching interdiction problem [27].

The outline for the remaining paper is a follows. In Section 2, we will formally define the
matrix interdiction problem and explain its relation to the bipartite network interdiction. A proof
of NP-hardness is given in Section 3. In Section 4, we show the inapproximability result for the
matrix interdiction problem, and in Section 5, we describe a greedy approximation algorithm for
the matrix interdiction problem.

2 Matrix Interdiction

Let [n] denote the set {1,...,n}. For a matrix M of dimension m x n, let M; ; denote the (i, j)th
(ith row and jth column) entry of M. For a set J € [n], let M|; denote the submatrix of M
obtained by picking only the columns of M present in J. Define,

val(M|;) = 3 max{M;).
i=1

Definition 1 (Matrix Interdiction Problem). Let M be an m x n matriz with entries from R. Let
M be the set of all submatrices of M with dimension m x n— k. The matriz interdiction problem



is to select a submatriz M™* € Mg such that

T
M™ = argmin jcn] |J|=n—k {Z o {Mi,j}} )
i=1

In other words, the matriz interdiction problem is to find an element M* from Mg with the property
that
M*) = mi I(M)}.
val(M") = min {val( 2)}

Bipartite Network Interdiction Problem. In the bipartite network interdiction problem,
there is a single layer of border crossing (B) which separates sources (5) and destinations (7). An
evader attempts to travel from a source to a destination, and any source-destination route will go
through one and only one border crossing. Evasion may happen between any source-destination
(s-t) pair, and every s-t pair is weighted probabilistically as py. At each edge, there is the edge
reliability defined as the probability of traversing the edge without being captured, and the evader
will use a route with the maximum reliability. For a triplet (s,b,t) where s€ S, b€ Bandte€ T,
we can calculate the maximum reliability of a path from s through b to t and denote it as 7rgp.
Interdiction of a border crossing b means to strengthen the security at the location, and as the
result, rg¢ = 0 for all s € S and ¢ € T. The bipartite network structure is a result of the triplet
by representing source-destination pairs as one set of nodes and border crossings as the other set
of nodes. An edge in the bipartite network implies that there exists a path connecting the triplet.
For example, in Figure 1, there are three sources, three border crossings, and two destinations. To
go from source 1 to destination 1 the evader has to go through crossing 1, therefore, there is an
edge between source-destination pair (1,1) and crossing 1. While, between source 1 and destination
2 the evader has the option of using either crossing 1 or 3, therefore, there are edges between
source-destination pair (1,2) and crossings 1 and 3. Figure 1(b) shows the bipartite network. The
maximum reliability for the triplet (1,1,2) is calculated by multiplying the maximum reliability
between source 1 and crossing 1 and between crossing 1 and destination 2. A budgetary constraint
limits the interdiction to k crossings, and the objective of the interdiction is to select k crossings
in order to minimize the expected maximum probability of successful evasion between any pair of
source and destination. This problem can be formulated as a bi-level integer program:

min Pst Max rgp (1 — 2p). (1)
|X|=k,X €{0,1}/BI (s,t}EZSxT “oeB °®

For more details on the bipartite network interdiction, see [19, 18].

We can construct a matrix M from bipartite network interdiction problem as follows. The
dimension of M is set as n = |B| and m = |S| x [T'|, and the entry m;; = r5;ps; where i is the node
index in the bipartite network for source-destination pair (s,¢). With this construction, the entries
of M are positive real values between 0 and 1, and the optimal solution of the matrix interdiction
problem for input M is exactly the k optimal border crossings to be interdicted in (1). Also, the
two problems will also have the same optimal objective values. This leads to the following theorem.

Theorem 2. Bipartite network interdiction problem is a special case of the matriz interdiction
problem.

3 NP-hardness Result

In this section, we show that the matrix interdiction problem is NP-hard. Thus, assuming P # NP
there exists no polynomial time algorithm that can exactly solve the matrix interdiction problem.



For establishing the NP-hardness we reduce the clique problem to the matrix interdiction problem.
The clique problem is defined as follows.

Definition 3 (Clique Problem [7]). Let G = (V, E) be an undirected graph where V' is the set of
vertices and E is the set of edges of G. For a subset S C V, we let G(S) denote the subgraph
of G induced by S. A clique C is a subset of V such that the induced graph G(C) is complete
(i.e., Yu,v € C an edge exists between u and v). The clique problem is the optimization problem
of finding a clique of mazimum size in the graph. As a decision problem, it requires us to decide
whether there exists a clique of a given size k in the graph.

Reduction from Clique to Matrix Interdiction Consider a graph G = (V, E) with |E| =m
and |V| = n. We construct a matrix M = M(G) of dimension m x n as follows: The rows of M
correspond to the edges of G and columns of M correspond to the vertices of G. Let e1,...,e, be
the edges of G. Now for every | € [m] consider the edge ¢;, and let u and v be the end points of ¢;.
In the Ith row of M add 1 in the columns corresponding to u and v, all other entries of the Ith row
are 0.

Notice that M has exactly two 1's in each row, and all the remaining entries of M are 0. Now,

m

m
val(M) = Z;rel?;:]c{M”} = Zl =m.
i=1

i=1

That is each edge in G contributes 1 to val(M). Now if there exists a clique C of size k in G, then
we can delete the columns of M corresponding to vertices in C' and we obtain a submatrix M* with
val(M*) =m — (g) (because by deleting the columns corresponding to C, contribution to val(M*)
will be 0 for the (f) rows of M corresponding to the (‘E) edges in C). Similarly, if the output to the
matrix interdiction problem is a matrix M* and if val(M*) > m — (g) then there exists no clique
of size k in G and if val(M*) = m — (f) then there exists a clique of size k in G. The following two
lemmas formalize the observations explained above.

Lemma 1. Consider a graph G, and let M = M(G) be the matriz as defined above. If there exists
a cligue C of size k in G, then there exists a submatrizc M* of M such that val(M*) = val(M)— (‘2“)
and M* is a (optimum) solution to the matriz interdiction problem. Otherwise, if there exists no
cliqgue of size k in G then any (optimum) solution to the matriz interdiction problem will have a
value strictly greater than val(M) — (5).

Proof. To show the first part of the lemma notice that each row of M contributes 1 to val(M),
or in other words each edge in G contributes 1 to val(M). Consider a row of M, let us assume it
corresponds to some edge (u,v) in G. Now notice that to obtain M* if one only deletes the column
corresponding to u or the column corresponding to v then the contribution of this row to val(M*)
still remains 1 (because the row has two 1's and only one of these gets removed). So to reduce the
contribution of this row to 0 one needs to delete columns corresponding to both u and w.

A clique C of size k has exactly (g) edges between the vertices in C. Therefore, by deleting the
columns corresponding to vertices in C, one can create a submatrix M* of dimension m x n—k with
val(M*) = val(M) — (;) We now argue that M* is a (optimum) solution to the matrix interdiction
problem. Consider a set J € [n],|J| = n — k and let J = [n] — J. By deleting the columns of M
which are in J to create M|; reduces val(M) by the number of edges present between the vertices
corresponding to entries in J (entries in J are the columns that are deleted from M to create M ¥,
and each column corresponds to a vertex in G). In other words, val(M|;) = val(M) — e(J), where



e(J) is the number of edges in G that are present between the vertices corresponding to entries in
J. Since, for any J, e(J) < (g), therefore for all J,

val(M|;) > val(M) - (’2“)

Therefore, M* whose value equals val(M) — (g) is a (optimum) solution to the matrix interdiction
problem.

To show the second part of the lemma, notice that if there exists no clique of size k in &G, then
for all J,

val(M|y) = val(M) — e(J) > val(M) — (;)1

as in the absence of a clique of size k, e(J) is always less than (g) O

Lemma 2. Consider a graph G, and let M = M(G) be the matriz as defined above. Let M™*
be a (optimum) solution to the matriz interdiction problem with input M. Then if val(M*) =
val(M) — (%) then there exists a clique of size k in G, and otherwise there exists no clique of size

kindG.

Proof. From Lemma. 1, we know that val(M*) > val(M) — (g) Let J be the set of columns deleted
from M to obtain M*. If val(M*) = val(M)—e(J) = val(M)— (%), then the vertices corresponding
to entries in J form a clique of size k (as e(J) = (g)) If val(M*) > val(M) — (g), then there exists
no clique of size k in G because if there did exist a clique of size k£ in G then one can delete the
columns corresponding to the vertices in the clique to obtain a matrix M, with

val(M;) = val(M) — (;) < val(M™)

, a contradiction to the optimality of M™. O
Theorem 4. The matriz interdiction problem is NP-hard.

Proof. The clique problem is NP-complete [7]. Lemmas 1 and 2 show a polynomial time reduction
from the clique problem to the matrix interdiction problem. Therefore, the matrix interdiction
problem is NP-hard. O

4 Inapproximability Result

In this section, we show that there exists a fixed constant 7 such that the matrix interdiction
problem is NP-hard to approximate to within an additive n” factor. More precisely, we show
that assuming P # NP there exists no polynomial time approximation algorithm for the matrix
interdiction problem that can achieve better than an n? additive approximation. Note that this
statement is stronger than Theorem 4. Whereas, Theorem 4 shows that assuming P # NP there
exists no polynomial time algorithm that can solve the matrix interdiction problem exactly, this
inapproximability statement shows that unless P = NP it is not even possible to design a polynomial
time algorithm which gives close to an optimum solution for the matrix interdiction problem.

To show the inapproximability we use a reduction similar to that in the previous section. It
will be convenient to use a variant of the clique problem known as the k-clique.



Definition 5 (k-clique Problem). In the k-clique problem the input consists of a positive integer
k and a k-partite graph G (that is a graph that can be partitioned into k disjoint independent sets)
along with its k-partition. The goal is to find the largest clique in G. The k-clique(G) is defined as
¢/k, where £ is the size of the largest clique in G.

Since in a k-partite graph G a clique can have at most one vertex in common with an independent
set, the size of the largest clique in G is at most k. Therefore, k-clique(G) < 1.

Theorem 6 (Arora et al. [1|). There exists a fized & > 0 such that approximating the k-clique
problem to within a multiplicative factor of n® is NP-hard.

Proof. The proof presented in [1] (see also Chapter 10 in [15]) proceeds by showing a polynomial
time reduction 7 from the SAT problem (the problem of determining whether the variables of
a Boolean formula can be assigned in a way that makes the formula satisfiable) to the k-clique
problem. The reduction 7 ensures for all instances I of SAT:

If I is satisfiable = k-clique(7 (1)) = 1,
If I is not satisfiable =  k-clique(7(I)) < ;15

Since, SAT is a NP-complete problem, therefore approximating the k-clique problem to within a
multiplicative factor of n® is NP-hard (because if one can approximate the k-clique problem to
within a multiplicative n® factor, then one can use 7 to solve the SAT problem in polynomial
time). O

The following lemma relates the problem of approximating the k-clique to approximating the
matrix interdiction problem.

Lemma 3. Let G be a k-partite graph and § be the constant from Theorem 6. Let M = M(G) be
a matriz created from G as defined in Section 8. Let M* be a (optimum) solution to the matriz
wnterdiction problem with input M. Then

If k-cliqgue(G) =1 = wval(M*) =wval(M) — (§)=

&

If k-clique(G) < n—lg = wval(M*) < wval(M) — na(k;‘;ﬁ) - ('12) ((%)2 - 1).

Proof. If k-clique(G) = 1, then the size of the largest clique in G is k, and by deleting the columns
corresponding to the vertices in this clique we get a submatrix M* with val(M*) = val(M) — (g)

If the k-clique(G) < 1/n%, then the size of the largest clique in G is at most k/n’. The maximum
reduction to val(M) occurs when there are n° cliques each of size k/n® and one deletes the k columns
corresponding to the vertices appearing in all these cliques. Each clique has (k”;‘s) edges within

itself. Since there are n® such cliques, this gives a total of nd (k‘;ﬂ ) edges within the cliques. There

are also edges across these n® cliques. Now across any two cliques there are at most (k/n%)2 — 1
. & . . s "

edges, and since there are at most (", ) such pairs of cliques, this gives a total of ("2‘5)((1%:/:«?,‘5)2 -1)

edges across the cliques. In this case,
8 ') 2
val(M*) §va£(M)—n‘5(k/2n ) - (T;) ((%) —1) ‘

Theorem 7. There exists a fized constant «y, such that the matriz interdiction problem is NP-hard
to approzimate within an additive factor of n7.

O



Proof. From Theorem 6, we know there exists a constant § such that it is NP-hard to approximate
the k-clique problem to within a multiplicative n? factor. From Lemma 3, we know that for a
k-partite graph G, there exists a matrix M = M (G) such that

If k-clique(G) =1 = val(M*) = val(M) — (%'i - g)
If k-clique(G) < 5 = val(M*) <val(M) — (L5 - §) - (§ - & - + %),

By comparing the above two equations, we see that if we can approximate the matrix interdiction
problem with an n2'§/2 - n6/2 additive factor, then we can approximate the k-clique problem
to within an n® multiplicative factor. Since, the latter is NP-hard, it implies that an additive
n? /2 — n%/2 approximation of the matrix interdiction problem is also NP-hard. Setting 7 such
that, n? = n?%/2 — n%/2 proves the lemma. O

5 Greedy Approximation Algorithm

In this section, we present a greedy algorithm for the matrix interdiction problem that achieves
an (n — k) approximation factor. The input to the greedy algorithm is a matrix M of dimension
m x n with entries from R. The output of the algorithm is a matrix My. The running time of the
algorithm is linear in the size of the input matrix.

ALGORITHM GREEDY(M)

1. For every j € [n], compute ¢; = Y v, M;j, i.e., ¢; is the sum of the entries in the jth column.
2. Pick the top k columns ranked according to the column sums.

3. Delete the k columns picked in Step 2 to create a submatrix M, of M.

4. Output M,.

Theorem 8. Algorithm Greedy is a multiplicative (n — k) approzimation algorithm for the matriz
interdiction problem. More precisely, the output My of Greedy(M) satisfies the following inequality

val(My) < (n — k)val(M™),
where M* is a (optimum) solution to the matriz interdiction problem with input M.

Proof. Let Soln C [n],|Soln| = n — k be the set of n — k columns present in M,. Let Opt C
[n], |Opt] = n — k be the set n — k columns present in M*. Now,

val(M,) = erensagtcn{M”}<Z Z M;

i=1 jeSoln
m

= Z zwft'-‘" S Z ZMi’j

jESoln i=1 jEOpt i=1

m
= Z Z M;; < Zn- rna.x{M,J}

=1 jEOpt
= In= k)zjrélg.xt{M_J}
= (n—k)val(M*).



The second inequality follows because the Greedy algorithm deletes the k-most columns ranked ac-
cording to column sums. The third inequality follows because for any real vector v = (v1,...,Vp—k),
~k
Sk, < (n — k) max{o). -
The above argument shows that the Greedy algorithm achieves an (n — k) multiplicative ap-
proximation factor for the matrix interdiction problem. O

6 Conclusion
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