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Gaps In Support Vector Optimization 

ikolas List l (student author), Don Hush2 , Clint Scovel2 , Ingo 
Stcinwart2 

1 Lehrstuhl Mathemat ik und Informatik, Ruhr-l: niversity BochUnl , Germany 
nlist~lmi. rub .de 

2 CCS-3, Informatics Group , Los Alamos National Laboratory, 
Los Alamos, New Mexico, ·CSA {dhush ,jcs , ingoHl anl. gov 

Abstract. We show that. t he stopping criteria used in many supporl 
ved or machine (SVM) algori thms working on the dual can be interpreted 
as primal optimality bounds which in turn are known to be imp rtant for 
lhe statistica l analysis of SYMs. To t his end we revisit t.he duali ty theory 
underlying the derivat ion f the dual and show t hat in many interesting 
cases primal opt imali ty bounds are the same as known dual optimality 
bounds. 

1 Introduction 

Given a labeled training set (Xl, yd, ... , (xe , Ye ) E X x {-I, I} on an 
input space X t he standard Ll-SVYI for binary classification introduced 
by Vapnik ct. al ill [1] solves an optimization problem of the fonn 

arg min 
(f ,b,E, ) 

1 2 ~ 
R (/ ,b,O := 211 f li'H + C ~fi 

i=l 

s .t . Ei 2: 0 and ?Ji (.f( :cd + b) 2: 1 - ~i f.a . i = 1, ... , t' 

(1) 

where H is t he reproducing kernel Hilbert space (RKHS) of a kernel 
k : X x X -7 IE. and C > 0 is a free regularizat ion parameter. Instead 
of solving this problem dirC'ct ly one usually applies standard Lagrange 
techniques to derive the following dual problem 

1 
min W (a ):= -(KQ, 0) - Q . e 
a ElRl 2 (2) 
S.t. y ·o:=O and O ::; ai~ C fa. i=l, . .. , f. 

where K := (Yiyj k (Xi,Xj)) l <5: i,j <e is t he so-called kernel matrix, e E ]Ri is 
the a.ll ones vector ) and y : = (Y1 , ... , yg). Since the kernel is symmetric 
and positive serm-definite (2) is a standard convex quadratic optimiza­
tion problem, whi h is more simple to solve as t he primal problem (1). 



The Inotivation for this procedure is us ally given by the well known fact 
from Lagrangian Duality T heory, that for the special convex optimiza­
tion problems (1) and (2) the strong d uali ty assumption holds (see for 
example [2, Chapter 5]) ill the 8eU8C that, prilllal aIld dual optimal values 
coincide. Therefore starting from optimal dual solutions one an calculate 
optimal primal solut ions using a simple transformation . 

Howe er, due to the usually large and dens kernel matrix it is not 
easy to solve (2) direct ly. To address thb issue 8cveral t echniques based 
on sequentially solving small subproblems have been proposed [14,7,15, 
13,5,11,21]. Of course, all these methods have in common that they only 
produce an approximate solution t o t he dual problem (2). However, recall 
that in order to establish guarantees on t he generalizat ion performance 
o (1, b,~ ) one needs to know t hat R (1, b, ~ ) approximates the millimulIl 
of (1) up to some pre-defined Ep > 0 (see e.g. [20]). But unfortunately, it 
is not obvious why the above transformation should produce E p-opt imal 
primal p oints from cD-optimal dual points. Consequently, the usual sta­
tistical analysis of SVMs does not apply to the learning machines applied 
in pract ice. This lack of t heore tic.al guarantees has firs t been addressed 
by [6] were the authors showed t hat ED-optimal dual points can be trans­
formed t o O ( JZD)- ptimal primal p oints using specific transformations. 

In this paper we will show, that certin dual optimality bounds trans­
form lirpctly to primal optimality bounds in the sense of E p = E D . Lpt 115 

note, t hat there has already been a similar argumentation for the special 
case of L 1-SVMs in [18, Sec. 10.1]. T he authors there , however, ignore 
the infi uence of the offset parameter b which lead:; to alnbiguous formu­
las in Proposition 10.1. Besides that the approach we describe here is 
far more general and prO! lises t o give a unified approach for analyzing 
approximate d uality. 

In addition, we will show, that the above dual optimality bounds coin­
ide with the well known a -gaps that are used to analyze the convergence 

behaviour of cert a in algorithms working on the dual problem (2). Because 
of this connection, the results of t his paper make it possible to combine 
onvergeuce rates for certain Ll-SVM algorithms and oracle inequalit ies 

(s(,C' c.g . (20]) dc::>cribing t he statistical pcrfoflllanc(' of the r('suiting clas­
sifier. 

The rest of this work is organized as follows: In Section 2 we revis it 
duality theory and introduce certain gap func t ions. We then illust rate the 
t heory f r convex quadratic optimization problems . III Spctioll 3 we apply 
our findings to L1-SVMs. In particular, we there consider a -gaps and a 
stopping criterion for maximal violating pairs algorithms. 



2 Gaps in constrained optimization 

Let U be a nOl empty s 't and let <.p : U ~ ~ and ('i : U ~ lR,i = 

1, m be real valued functions. Let c : U ~ IRm denote t he function with 
components (;1:' Consider the primal constrained optimization problem 

sup <.p( u) (3) 
uEU, c(u)-::;O 

The set C := {U E U I c(U) ~ O} is called f easibility region of (3) and 
C'(lch 'U C is callC'd a (ph,m al) f pAsiblA point. We define' the LagranMian 
L : U x ]Rm ~ 1R associated wit h (3) by 

L (u, >.. ) := :p(u) - >... c(u) (4) 

and write (IR+)m := {>.. E IRm : >.. 2: O}. Note that although it i~ customary 
to define the Lagrangian t o be 00 when >.. ~ (IR+)m the definition (4) will 
be convenient when applying the subdifferential calculus. Now the dual 
function to (3) is defined by 

tjJ( >.. ) := sup L ( u, >.. ) 
uE U 

and for fixed>.. E IRm the maximizers of L(-, >.. ) are denoted by 

U).. := arg max L(u, >..) . 
uEU 

(5) 

Note t ha t for a llY u E U).. we have L (u, >..) = I ( ). ) and L (u, >.. ) ~ L (u' , ). ) 
for a ll u' E U. Since the latter equation amount s to one of the two in­
equali ties defining a saddle point we refer to any (u ),) E U). x ]Rm as a 
semi-saddle . T he following lemma attributed to Uzawa from [12, Lemma 
5 .3.1] provides sufficient conditions for u E U to be an op t imal primal 
Rolntion : 

Lemma 1. Any u E U is a primal optimal poin t if there exists a A 2: 0 
such that u E U)., 

c(-u) ~ 0 

and 
}., cJ u ) = 0 f or all i = 1, ... ! Tn 

The second condition is the f easibility of u the thiTd one is called comple­
mentary slackness . 



The nex t lemma shows that without any assumpt ions on cp and c he 
dual function has some remarkable properties . 

Lemma 2. The dual ?jJ : ]Rrn ~ lR. u {+x } is convex and for u E U). we 
have -c(u) E a'IjJ ()..)! wlu:'Te a'IjJ ()..) denotes the subd'ijjcnntial of ~'; at )... 

Proof. Sincr '1jJ is a p ointwise supremum of affine functions it is .onvex. 
Moreover, U i- 0 ilnplies ' (A) = SUP uEU L (u , A) > - 00 for all A. F inally, 
for A' E ]RnL and u E U A we obt ain 

1/;(A' ) 2:: L(11" A') = L (?L~ A) + A ' r (n) - A' . c(11,) = 4' (>\) - c(n)· (X - A). 0 

GiV(ll the Lagrangian L of the problem (3) t ht" corresponuillg dnal 
problem is defined by 

inf lj;( A) . 
..\ 2: 0 

(6) 

ote that this a onvex optimization problem by Lemma 2. We define 
the feasibility region of the dual to be (lR+)m and any A 2:: 0 is called a 
(dual) feasib le point. Now, for any primal feasible 11 and any dual feas ible 
A we have 'P (u) ~ <.p (u) - A' (u) = L (u, A) ::; 1j; (). ) and hence we obt ain 

If; (A) - cp(u ) ~ 0, u E C, A 2:: 0 . (7) 

Let us write 

:.p* := sup cp(,u) 
uEU, c(u) ~O 

'II/f. := inf 'I/; (A) 
A20 

for the values of t he primal and dual problem, respectively. TheIl 7/,* - <p* 

ii) the smallest possible gap in (7) and is aBed the duality gap. However, 
in this work we also need the gap for arbitrary primal-dual p airs , i.e . for 
not necessarily feasible u E U and A E lRm we consider 

gap(u,..\ ) := 'l/J (A) - <p( 'IJ,) . (8) 

The following lemllla C 'lIlputes gap (u, A) fo r semi-saddles. 

Lemma 3. For all semi-saddles (u , ).. ) E U A X lRm we have 

gap (u, A) = - ..\. c(u) . 

Proof. Wehave gap (u,).) = 1j;( ..\ )-i.f(u) = L(U,A)-cp(U) = - A·C(ll). 0 



ow n te t hat for (u,.\ ) E ( U)...~I C ) X (JR +)m we have (; (/.1 ) 2: 0 and 
.\ 2: ° and hence Lemma 3 shows that gap ('U , .\) = 0 is equivalent to the 
complementary lackness condition of Lemma l. This fact leads to the 
following tihllplc and natural optill1ality bounds: 

Definition 1 (Forward Gap). Th e fo rward gap of a f easible 'U E U is 
defirJ,(~d by 

-----1 

G (u) := inf{ - .\ . c(u) .\ 2: 0, U E U).. } . (9) 

D efinition 2 (Backward Gap). The backward gap of a fea8ible .\ is 
defined by 

(10) 

Furthermore, for any feasible primal U E U we define its suboptimality 
to be 

£lp (u) := rp* - r.p (u) 

and analogously for any feasible dual .\ we define its sub optimality to be 

£lO (.\) := 1jJ( .\) - 1jJ* . 

ThE' following simple lemma shows t hat the gaps control suboptimality: 

Lemma 4. SV,PPM'€ that u and .\ arp ff'.a sibl ,. Thwn 'W , have 

-----1 f--

d p(u)::; G (u) and d o (.\)::; G (.\). 

Proof. Using (7) we obtain .1p(u) = rp*-~(u) ::; '!/; (X )-rp(u) = gap (u , X ) 
for all X 2: 0 satisfyin (J u E U)..I. Similarly, for u' E U).., n C we have 
LlD (.\) = 41 (.\) - '1/)* ::; ;~)( .\ ) - r.p(u') = gap (1/, /\ ). By Leulina 3 we theu 
obtain the assertion. 0 

2. 1 Forward gap and dual optimality 

The forward o·ap is of particular utility if we have a closed formulation of 
{.\ 2: 0 : 'U E U).. }. In this section we illustrate this for the forwar gap of 
the d·ual problem. To that end we write (6) as a maximization problem 
by hanging'IjJ to - 1/-'. T he corresponding Lagrangian i t hen 

Since 1/.' is convex we bserve that .\ E Uf-L := argmax)..,/ERm LD (>( J.1 ) if 
and only if 0 E fJ)..,( _ LD (.\ ,/-l)) = 8'l/; (.\ ) - jJ., which ccurs if and only if 



J1 E 8fljJ (A). In other words we have U{L = {A E JRm : J1 E (}~J ( A )} . Sin e 
this imp lies 

{Ji- ~ 0 I A - Up} = ih/J(/\ ) n (JR+)m 

we se , hat the forward gap of (6) can be computed by 

The following two results establish important properties of (11). 

---t 

(11 ) 

Lemma 5. Given a f easible A ~ 0. The minimum value G (A) in (11) is 
finite an d attained. 

Proof. The b jective func t ion A' J.L and the constraint set {J1 ~ ° I A E Up} 
have no direction of recession in commOll. Nloreover {J.L > 0 I A E UJJ = 
8'lj)(A ) n (lR+rn is closed and convex and hence we obtain the assertion 
by [16, Theorem 27.3] . 0 

---t 

Theorem 1. I f A ~ 0 satisfies G (/\ ) = 0, then A is optimal fo r (6). On 
the other hand if A ~ ° is optimal for (6) and ri(dom 1jJ ) n ri ((JR.+) m) i- 0 
then G (A) = 0, where ri A denotes the re lative interior of a set A. 

Proof. T he first assertion follows directly from Lemma 4. For the second 
suppose that A ~ ° is optimal for (6). We write (6) as an unconstrained 
ma.ximization of the funct ion - W(A) - 1( 1~+)m (>.. ) where we note that for 
A ~ ° we have 81(JRT)m( >.. ) = { J.L:::; O I Ai> O'* J1.i= O} . Since A ~ 0 
i~ optimal it follows that 0 E 8(<J)( A) + l (l~+ )m( A )). However , by [16 , 

Thm. 23.8] the assumpti ns imply t hat 8( 'IjJ (>.. ) + l (JR' )m (>.. )) = 8'IjJ (/\ ) + 
8 1( +Vn( A) so t hat we conclude that there exists a J1 E D'IjJ (>..) such that 

---t 
IL ~ 0 and Ii i = 0 for all i such t hat >"i > O. T his implies G (>.. ) = 0 , 0 

2 .2 Backward gap and the duality gap 

Suppose we have a feasible dual variable ,\ and we a 'k for the best possible 
associated primal ?J E U>... A silllple calculation reveals, that for eac;h 
feas ible primal u and each feas ib le dual>" we have 

and therefore t he duality gap is obviously a lower bound on t he backward 
gap : 



To calculat e the backward gap of a given ~ recall that Lemma 2 implies 
that { -c(u) I u E U>J ~ d't}; (A). Since Eh/} (A) is onvex it then follows 
that 

satisfies - co C A. ~ d-W (A). The revers incl usion will prove to be ext remely 
useful so we recall the following definition from [3, Def. 2.3. 1]: 

Definition 3. We say the fi lling property holds f or A, iff 

- co G\ = fJ1j; (A) . (12) 

If in addition CA. is convex we say, that the strict filling property holds 
for A. 

We will pres nt some conditions under which the strict filling property 
holds in Section 2.4. We nd t his section by the following theorem which 
shows the import ance of the (strict ) filling property for the connee ion 
betwe 'Il the primal alld d ual problems. Sillce this theorem is llot Il' ded 
in the following we omi its element ary proof. 

Theorem 2. Assume the filling property holds for a given A 2: O. T hen A 
is an optim al dual so lution iff there exist s ::; m + 1 fe asible primal points 

11,1, ... , 1LIj E UA and I I'[ , ... , lXs 2: 0 s'uch that Z=:=1 01' = 1, 

s s 

L Qrc ( u r ) ::; 0, and Ai L Qr Ci(UT ) = 0 for all i = 1, ... ) m. 
7'=1 

Moreover if the strict fill ing property holds for an optimal A, then the 
duality gap is 0 and the solutions of the primal problem are given by the 
feasible 'u E UA., for which gap (u, A) = O. S ince (u) A) E UA. x (IR.+yn the 
latter is equivalen t to complemen tary slackness. 

2.3 Relation between the gaps 

Given a dual feasible point for which only approximate optimality can be 
guaranteed, OUI main question in this work is how t his can be translated 
into aPPl'oximat(: opt imality gnarant c(:s for "associated" primal points . 
Fortunately, using forward and backward gaps as optimality bounds, the 
answer is quite simple , as the fo llowing theorem shows: 



Theorem 3. Let A 2: 0 be a dual point for which the strict filling property 
holds. Then we have 

ol-- ---jo 

G (A)= G (:\ ) 

In addition there exists a feasible it E U A such that - A . C( it ) 
!V[oreoverJ it is an optimal solution of 

sup {<p (u) I u E UA, C(U) S; O} . 

G (>\). 

Proof. Since the strict filling property implies that the infima in (10) and 
(11) range over the same Se't, We' obt ain equality of the gaps. Lem ma 5 
and the str ict filling proper y then imply, that there exists feasible U E U A 

sHch that G P,) = - .\ . c(D,). lvlorcovC'r for ('U, ,\ ) E UA X IRm Lemma a 
shows t.p(u) - A· c(u) = 'IjJ( A). Consequently, we see that for fixed A 2: 0 
maximizing t.p is equivalent to minimizing - .\ . c(·) and therefore t.p( it) is 
also the maximal value i.p at ains on {ll E U A I c( 11, ) S; O}. 0 

2.4 Sufficient Conditions for Filling 

We now show hat for concave quadratic optimizat ion problems the st rict 
filling property holds for any feas ible dual point in the effective domain 
of th dual function (see [191 for more general set tings). To t hat end let 
U b e a Hilbert space' w U , d E IRm , Q : U ---jo U be a 1 ()l1lL<~gat ivc; 

selfadj oint operator such that Q : ker ( Q) -1 ---jo ker ( Q) -1 has a continuous 
inverse Q-1 and A : U ---jo ~m be con inuous and linear . Then the convex 
quadratic problem 

(13) 

is of t he form (3) for t.p (u ) := - ~ (Qu , u ) + (w, u) and c(u ) := Au - d. The 
next lemma, which includes the linear programming easel ·h ws that the 
strict filling property holds : 

Lemma 6. Consider the convex quadratic programming problem (13) . 
Then the strict filling property holds for all A in the domain of the La­
grangian dual criterion function . 

Proof. The associated Lagrangi' n is L( H , A) = - ~ (Qu, u) + (w., u) - A . 
(An - d) = - ~ (Qu, u) + (w - A* A) u) + A·d and its dnal criterioll flwct iul1 
is defined by (5). If w - A *,\ is not orthogonai to ker Q then it is easy 
to see that 1jJ (A) = 00. Xow suppose t hat w - A* A E (ker Q )-1 = imgQ. 



Then we can solve 0 = ()/L L (u. /\ ) = - Qu + 'W - A*'\ for 'U and hence we 
obtain 

U). = Q - 1 (11) - A " ,\ ) + ker Q , 

1jJ (,\) = ~ \Q-l(w - A* ,\), w - A*'\) + ,\ . d 

dom 'l,l) = {'\ E IRm 
I w - A*'\ E imgQ} . 

The latter formula for dom?jJ implies 

EJ1jJ (,\ ) = AQ-l(A*'\ - w) +- d + {/-h I A*J.l E img Q}~ 

for a ll ,\ E dom VJ. IVIorcov '1': for ,\ E d01ll 1.b we abo ubtain 

- c). := { - (; (u) I 'U E U,\ } 

= { d - Au I u E Q - 1 (w - A * ,\) +- ker Q} 

= d +- AQ- l(A*,\ -w) +-A kerQ . 

(14) 

From Lemma 2 it suffi 'es to show that (AkerQ)~ C { /-h IA*J,l E imgQ} to 
complete the proof. To that end suppose t hat J.l 1- A ker Q. Then we have 
(A·I-'-,z) = \f£, Az) = 0 for all z E kerQ whkh implies A·J.l E imgQ. 0 

Lf't 118 denote ttl(' gradif'nt of t h(' dual :rit<:r ion funct ion (14) rc tricted 
to its domain by 

(15) 

U ~illg th i~ notat ion t he followillg corollary follows immediately froUl (15), 
the definition of the backward-gap and T heorem 3: 

Corollary 1. Giv n a dual feasible point A E dom ?jJ ) A 2:: 0, we have 

(---

GQP(A) := G (A) = inf {A ' C'V'I/I(A) - A z ) I \l?jJ(A) - Az 2:: O} . (16) 
zEkcr Q 

3 A pplications to SVwI optimization 

In t his sect ioll we we apply our rcsulb to SV1tIs . We begin by showing, 
t hat in t his case (16) is a generalization of t he well known a-gap which has 
been used in [5. 11] both as stopping criterion for t he dual problem and 
as an important quantity in the const ruction of algorithms which possess 
convergence rates . We then calculate the forward-gap for Ll-SVlVIs in 
Subsectioll ~.2 . F illaJly, in Section 3.~{ we show tha t t he t-itoppillg cr iteria 
used in MVP dual algorithms can dir ctly be derived from this gap leading 
to primal optimality gllarantees. 



3 .1 The u-gap 

Let .-\.* denote an opt imal solution t o the dual problem (6). From t he 
convexity of tj) it then follows that 1jJ( .-\. ) - 1./) (.-\.* ) ::; fh/)(>") . (.-\. - A* ). 
Consequently CT( -\ ) := sUp{01P (A) . (,\ -~) I ). E dom~,). 2: O} satisfies 
c¢( A) -¢( ,\* ) -s; CT( A) and hence CT can be used as a stopping criteria for the 
dual. For quadrat ic cony x programs the CT-gap amounts to t hat defined 
in [11], namely 

CT(-\) = sup {V'1/)(>")· (>.. - p, ) I Pi ~ 0, W - A*p,..l ker Q } . (17) 

It. was shown in [5] for Ll-SVMs that itr[R.t. ivr schrmes which choose a. 
successor An+l of An tha satisfies a¢ ('\n)' (-\n - An+ d 2: TCT( An) COl1verg 
to opt imal with a rate depending upon T. his resu lt was improved and 
extended to general convex quadratic programmin g problems in [11]. Our 
next result s [ lat e the CT-gap to GQP ('\ ): 

Lemma 7. F OT any feasible A E dom'l/J s'uch that GQP(A) < 00 we have 

P1'OUJ. Lemma 6 em;ures t hat t he strict fi lling property hold::; f01" allY dual 
point ,\ E dom 4) = {A I w - A" A _L ker Q}. Let P : m:m ~ A ker Q denote 
the orthogonal projection onto A ker Q. Since the duality gap for li near 
programming is zero (see for example [3][Cor. 2.3.6]) we have 

CQP ()., ) = inf {A · (V' 'I/' (-\) - Az) I Z E ker Q V" I/J ()., ) - Az ~ O} 

= - sup { -\ . TJ I TJ E lRm
, PTJ = 0, "7 ::; V''I/J ().,)} + A . V''l/J ()., ) 

=- inf {J.L . 'V'I/) ( >.. ) I J-L 2: 0, V E N m, f.l + P v = A} + A . V' 'IP ( ). 

S'nce (>.. - p, ) = Pu is equival nt w - A p, ..1 ker Q the right hand is 
equivalent t o the CT-gap defined in (17) and the claim fo llows. 0 

The next corollary follows directly from Theorem 3 and Lemma 7: 

C orollary 2. Let >.. be feasi,b lf~ $ 'U h that w - A * -\ ..1 kerQ and a ('\ ) < 00 . 

Let z optimize the gap GQp ()., ) dr.fined in (16). Th e. n 'U := 'UJ - A*'\ + z 
is a CJ( >.. ) -optimal soi'lJ,tion of the primal problem , i. e 



3.2 LI-SVMs 

To represcnt t hc L l-SVM optimit:atioll problelll (1) as a quadratic pro­
gramming problem (13) we write U := 'H. x IR x ]R£ where H is the 
RKHS associat ed with a kernel k. Recall tha t t he canonical feature m ap 
<P : X ~ H is given by <P(x) = k(x, .), x E X, and that the reproducing 
property st at es f (x ) = (j, <P(x )), f E H, x E X . We further writ e 

w :=- c en - yc<J> (Xe ) -Ye - ec 
Of-{ 0 - C1 (

IdTl 00) 
Q : = 6: ~ ~ , A := 

(-e) d: = 0 ' 

Of-{ 0 - e f 

where 0 denot es the zero vector in IRe and e denot es the vector of all 
1 's in IR£ . Let us solve (2) using Corollary 1. To that end let us write 
A = ( (3 ) E lR:u . T hen elementary calculations show that the condition 
11 - A * A 1.. ker Q amounts to 

y . ()' = 0 and n + (3 = C (' -

For feasible A satisfying (18) elementary calculations show t hat 

L~= l QiYIYik( Xi, X l) - 1 

L~=l Q:'iYfYik(Xi , X f ) - 1 
o 

o J 

(18) 

where ltV (o ) is given as in (2) . Since ker Q quaIs the last two components 

of U ----' 'H. x IR x IRe i t follows fro111 (Hi) that t he gap G (,X ) for the L1-SVM 
is 

iuf a . (V' TV (0: ) + b . y + ~) + (3 . ~ 
(b,~) 

s.t. V'W (a)+b·y+ '; ~ O , ~~ O . 



~or feas ible ). E dom 't/J we have O:i 2:: 0 and {3 = C - (X l ~ o. There­
fore the infimum above for fixed b is obt ained by setting each ~i = 

[- VlV(O)'i - byd +. If we use the equality v = [v] + - [- v]+ where [v)+ := 
{ -

ma.x (0, 1/) we conclude that G ().) = G(n) where 

f 

G(n ) := lltli< (~<'I i [VW (" )i- by,]+ + (C - a,) [hJJi - VW (n) ,j+) . 

(19) 
Note, that G (a ) can be computed :solely in terms of the dual problem 
since it is the forward gap on t he dual. The 'onnection to the backward 
gap given ill Theorem 3 however leads to a nice cOllsequellce: 

Corollary 3. Let ED> 0, let 0 :S 0' :S C ·e be a vector satisfying y T Q = 0, 
and let b be an op t1:mal solu tion of (1 9) . A 8sume that 0 is ED -optimal in 

~ A e 
the sense that G(o) = G ( ) :S cD · Defi ne f := Li=l Yio/P (xd and 

{i := [b:lJi - V'W (o)i ]+ ,i = 1, .. ,t. Th en (j,b, €) is a ~D -optimal solution 

of (1), ~ . e . 

R (j, b, €) - R * :S G(Ct ) . 

Recall t hat [1, Theorem 2] only .. howed that (1, b, €) is a O ( JED)­
optimal primal solution, and consequently t he above corollary substan­
tially improves this earlier resul t. 

3.3 Optimality criteria and maximal violating pairs 

The most popu a1' SVM algorithms are maximum-viola ting pair alga­
rithm~ (NIVP) , which arc implemented for example in svrvrlight and SMO­
type algorithms. Often this selection strateay has been mot ivated directly 
from Karush-Kuhn-Tucker (KKT) conditions on the dual [8- 10], but there 
ha.'5 been no justification in te rms of optimality guarantee::;. Let us fir::;t 
introduce some notation to be able to formulate the st opping criterion 
used in :NIVP algorithms. To that end recall the well known t.op-bottOlll 
candidate definition of Joachims and Lin [7,9]: 

ftop ( 0) : = {i I (Oi < C , Yi = - 1) V ((};i > 0, Yi = + 1 ) } 

100/(0 ) := {i I (Qi < C, Yi = 1) V (a i > 0, Yi = - I )} . 
(20) 

Any pair (i,j ) E Itop( O' ) x 1oot( cr ), such that Yi VW~ (O)i > YjV'W(a: )j is 
called a v'lOlati ng pair- since it forces at least one of the summands in (19) 



corresponding to 'i or j t o b e non-zero for any choice of b. For t he maximal 
violating pair define 

f := max ~1iV'W (O')i and b:= min Yi V'W (O')i. 
iE l tnp(O') tEhot(O') 

It is well known, tha t whenever i ::; b t he dual variable 0: is optimal. 
This lead to the heuristic dual stopping criterion i - b :s; E. We now show 
that our result s do also provide primal optimality guarautecs : 

Lemma 8. Oiuen a fina l SOlUt'1 071 n of a A1VP-algorithm wh'ich te7'ln'i­
nated with accuracy E, i . e. i - b :S E, then for any b E [b, i] the as­

sociated prim al so lution Cf, b , ~ (b)) defined by i := L::;=l &/P(Xi ) and 
~i(b) := (bYi - V W (o: )d+ is Ct· E optimal, i .e. 

R (j , b , ~ ( b)) - R* S Ct · E 

Proof. Using the definition (20) the gap G( o: ) given in (19) can be com­
pnted by 

inf ( . L J.lt ~YiV'W (O')i - b] + + L J.l,i [6 - YiVlV (D: )i ]+) , 
bER 

zE ftop (cx)iEh od 0') 
Yl 'VW (O')i >6 Yi 'VW (O'h <b 

where 

+ _ {o:t I-Li -
C - Q i 

if Yi = +1 

el e 
and 

(21 ) 

if Yi = +1 

else 

Indeed note, that for any i E hop (Ci ) such that Yi V'W (0') i S; b we either 
have i E ivai (0') too, and the cont ribut ion of index i is counted by the 
second sum , or i is d top-only cdudidate, i.e. (V i = 0 and Jii = - lor 
(X i = C and Y'i = 1. In both cases t he cont ribution of index i to (19), 
given by 

is zero . Similar arguments hold for bottom-candidates with Yi V'W «(} )i 2 
b. 
We llOW try to bOllud the t e n llS in (21 ) for arbitrary b [b,~ . Obviously 
we have 

for i E Itop( a ) and 

for i E h ot ( ()' ) . 



Since t h \ two SlUllS ill (21) fallge over di ' joillt illdex-sets and 11,71- S: C 

we conclude for any b E [b . n t hat 

and the claim follows from Corollary 3. o 

Remark 1. If we count t he number 

of indices which could indicate a violat ion if b is chosen in [b , n. Then 
Lemma 8 can be improved so the right hand side is Cd· E. 

4 C onclusion and Open prob lem s 

We have presented a general framework for deriving primal ptimality 
guarantees from dual optimality bounds. vVe improve the resu ts given 
ill [4] lusofar a.-.; we call d irectly transform d ual ill primal optimality h'lmr­
antees without loosin o' by an order of O( vic). In addition our results are 
easily extensible to more general 'ases whenever t he stric t filli ng prop­
erty can be proven. T he main advantage in the framework of support 
vector optimization is however the fact, that important dual optimality 
bounds which ~rr, used in practice could d irect ly be derived from the 
abstrac t forward-backward gaps. This doses a main gap in analysis of 
sllpport vector machine algorithms since now optimality guarantees for 
approximately opt imal dual points can be transfered to gener alization 
guarantees for an associated classifier us ing t he results from stat istical 
learning theory. 

We point out , t hat using results from [19], the generalization of t ight 
relation of dual and primal problem even for approximately opt imal points 
should be straight forward bu t was beyond this work. T he question if the 
st rict fill ing property is also a necessary condit ion for this relation is 
howrvcr an open qnestion. 

We leave it as an object ive for fut ure research, whether t he deeper 
kn()wledg(~ about t he' optuuality bOlluds prcscmtcd hen' ('an be used to ex­
t end known convergence guarantees from quadratic optimization to more 
general optimization problems. 
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Abstract: 
We show that the stopping 
criteria used in many support vector machine (SVM) algorithms working on the dual can 
be interpreted 
as primal optimality bounds which in tum are known to be important for the 
statistical analysis of SVMs. 
To this end 
we revisit the duality theory underlying the 
derivation of the dual and show that in many interesting cases 
primal optimality bounds are the same as known dual optimality bounds. 


