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Gaps in Support Vector Optimization

Nikolas List! (student author), Don Hush?, Clint Scovel?, Ingo
Steinwart?

! Lehrstuhl Mathematik und Informatik, Ruhr-University Bochum, Germany
| nlist@lmi.rub.de
? CCS-3, Informatics Group, Los Alamos National Laboratory,
Los Alamos, New Mexico, USA {dhush, jcs, ingo}@lanl.gov

Abstract. We show that the stopping criteria used in many support
vector machine (SVM) algorithms working on the dual can be interpreted
as primal optimality bounds which in turn are known to be important for
the statistical analysis of SVMs. To this end we revisit the duality theory
underlying the derivation of the dual and show that in many interesting

cases primal optimality bounds are the same as known dual optimality
bounds.

|l 1 Introduction

| Given a labeled training set (z1,y1),...,(ze %) € X x {-1,1} on an
| input space X the standard L1-SVM for binary classification introduced
by Vapnik et. al in [1] solves an optimization problem of the form
p

¢
1§ .
' arg min  R(f,b,€) :==|fl3 +C ;
B (£,6,€) == 5l flln ;5 1)
st. & >0 and yi(f(z))+b)>1-¢& fa. i=1,....¢

b

(where H is the reproducing kernel Hilbert space (RKHS) of a kernel
.k : X xX — R and C > 0 is a free regularization parameter. Instead
of solving this problem directly one usually applies standard Lagrange
techniques to derive the following dual problem

|

: B
crxréhn( W(a) = E{f\a‘a} —a-e

st. y-a=0 and 0<e; <C fa. i=1,...,¢

(2)

‘where K := (yiy;jk(2i, ¢;)),<; j< is the so-called kernel matrix, e € Rt is
the all ones vector, and y = @1, ..., ye). Since the kernel is symmetric
and positive semi-definite (2) is a standard convex quadratic optimiza-
|l;ion problem, which is more simple to solve as the primal problem (1).



The motivation for this procedure is usually given by the well known fact
from Lagrangian Duality Theory, that for the special convex optimiza-
tion problems (1) and (2) the strong duality assumption holds (see for
example [2, Chapter 5]) in the sense that primal and dual optimal values
coincide. Therefore starting from optimal dual solutions one can calculate
optimal primal solutions using a simple transformation.

However, due to the usually large and dense kernel matrix it is not
casy to solve (2) directly. To address this issue several techniques based
on sequentially solving small subproblems have been proposed [14, 7, 15,
13,5, 11, 21]. Of course, all these methods have in common that they only
produce an approzimate solution to the dual problem (2). However, recall
that in order to establish guarantees on the generalization performance
of (f,b,€) one needs to know that R(f,b, &) approximates the minimum
of (1) up to some pre-defined £p > 0 (see e.g. [20]). But unfortunately, it
is not obvious why the above transformation should produce zp-optimal
primal points from ¢ p-optimal dual points. Consequently, the usual sta-
tistical analysis of SVMs does not apply to the learning machines applied
in practice. This lack of theoretical guarantees has first been addressed
by [6] were the authors showed that € p-optimal dual points can be trans-
formed to O(,/ep)-optimal primal points using specific transformations.

In this paper we will show, that certain dual optimality bounds trans-
form directly to primal optimality bounds in the sense of ep = ep. Let us
note, that there has already been a similar argumentation for the special
case of L1-SVMs in [18, Sec. 10.1]. The authors there, however, ignore
the influence of the offset parameter b which leads to ambiguous formu-
las in Proposition 10.1. Besides that the approach we describe here is
far more general and promises to give a unified approach for analyzing
approximate duality.

In addition, we will show, that the above dual optimality bounds coin-
cide with the well known o-gaps that are used to analyze the convergence
behaviour of certain algorithms working on the dual problem (2). Because
of this connection, the results of this paper make it possible to combine
convergence rates for certain L1-SVM algorithms and oracle inequalities
(see e.g. [20]) describing the statistical performance of the resulting clas-
sifier.

The rest of this work is organized as follows: In Section 2 we revisit
duality theory and introduce certain gap functions. We then illustrate the
theory for convex quadratic optimization problems. In Section 3 we apply
our findings to L1-SVMs. In particular, we there consider o-gaps and a
stopping criterion for maximal violating pairs algorithms.



2 Gaps in constrained optimization

Let U be a nonempty set and let ¢ : U — Rand ¢; : U — R,7 =
1, m be real valued functions, Let ¢ : U — R™ denote the function with
components ¢;. Consider the primal constrained optimization problem

sup  ¢(u) 3)
well, e(u)<0

The set C := {u € U | ¢(u) < 0} is called feasibility region of (3) and

cach u € C is called a (primal) feasible point. We define the Lagrangian
L:U x R™ — R associated with (3) by

L(u, A) := (u) — A - e(u) (4)

and write (R*)™ := {A € R™ : A > 0}. Note that although it is customary
to define the Lagrangian to be oo when A ¢ (R*)™ the definition (4) will
be convenient when applying the subdifferential calculus. Now the dual
function to (3) is defined by

¥(A) := sup L(u, A) (5)

uel

and for fixed A € R™ the maximizers of L(-, A) are denoted by

Uy :=argmax L(u, A) .
uel

Note that for any u € Uy we have L(u, ) = ¥(A) and L(u, \) > L{d', A)
for all ¥’ € U. Since the latter equation amounts to one of the two in-
equalities defining a saddle point we refer to any (u,A) € Uy x R™ as a
semi-saddle. The following lemma attributed to Uzawa from [12, Lemma
5.3.1] provides sufficient conditions for u € U to be an optimal primal
solution:

Lemma 1. Any u € U is a primal optimal point if there exists a A > 0
such that u € Uy,
c(u) <0

and
Aici(u) =0 foralli=1,...,m .

The second condition is the feasibility of u the third one is called comple-
mentary slackness.



The next lemma shows that without any assumptions on ¢ and ¢ the
dual function has some remarkable properties.

Lemma 2. The dual ¢ : R™ — RU {+oc} is convez and for u € Uy we
have —c(u) € OY(N), where OY(A) denoles the subdifferential of ¥ at A.

Proof. Since ¢ is a pointwise supremum of affine functions it is convex.
Moreover, U # @ implies 9(A\) = sup,¢y L(u, A) > —oo for all A. Finally,
for N € R™ and u € Uy, we obtain

P(N) > L, N) = L{u, A) + X e(u) — N e(u) = p(N) —e(u) - (N = N). O

Given the Lagrangian L of the problem (3) the corresponding dual
problem is defined by

inf w(N). (6)

Note that this a convex optimization problem by Lemma 2. We define
the feasibility region of the dual to be (R*)™ and any A > 0 is called a
(dual) feasible point. Now, for any primal feasible # and any dual feasible
A we have ¢(u) < p(u) — X - e(u) = L(u, A) < ¥(\) and hence we obtain

Y(A) = p(u) >0, ueC,A>0 . (7)
Let us write
g'i= sup p(u)
u€U, c(u)<0
o= )

for the values of the primal and dual problem, respectively. Then ¢* — *
is the smallest possible gap in (7) and is called the duality gap. However,
in this work we also need the gap for arbitrary primal-dual pairs, i.e. for
not necessarily feasible u € U and A € R™ we consider

gap(u, A) = Y(A) — p(u) . (8)
The following lemma computes gap(u, A) for semi-saddles.
Lemma 3. For all semi-saddles (u, \) € Uy x R™ we have
gap(u,\) = =\ -¢(u) .

Proof. We have gap(u, \) = 9(\) —¢(u) = L(u, \) —p(u) = =A-c(u). O



Now note that for (u,A) € (UyNC) x (R*)™ we have ¢(u) > 0 and
A > 0 and hence Lemma 3 shows that gap(u, A) = 0 is equivalent to the
complementary slackness condition of Lemma 1. This fact leads to the
following simple and natural optimality bounds:

Definition 1 (Forward Gap). The forward gap of a feasible u € U is
defined by -
G(u) :=inf{-A-c(u) | A >0, u€U}. 9)
Definition 2 (Backward Gap). The backward gap of a feasible A is
defined by .
G(A) :==inf{-\-c(u) | u € Uy,c(u) <0}. (10)
Furthermore, for any feasible primal © € U we define its suboptimality
to be
Ap(u) == 9" — p(u)

and analogously for any feasible dual A we define its suboptimality to be
An(/\) = 't,t')()\) — Yt .
The following simple lemma shows that the gaps control suboptimality:

Lemma 4. Suppose that u and X are feasible. Then we have
Ap(u) < G(u) and Ap(\) < G(N).

Proof. Using (7) we obtain Ap(u) = p*—¢(u) < ¥(N)—¢(u) = gap(u, X)
for all N > 0 satisfying u € U)s. Similarly, for v’ € Uy N C we have
Ap(A) = ¥(A) = ¥* < P(N) — (') = gap(u', A). By Lemma 3 we then
obtain the assertion. O

2.1 Forward gap and dual optimality

The forward gap is of particular utility if we have a closed formulation of
{A>0:u € U,}. In this section we illustrate this for the forward gap of
the dual problem. To that end we write (6) as a maximization problem
by changing 1) to —. The corresponding Lagrangian is then

L\ p) = =¥\ +p- X .

Since ¥ is convex we observe that A € U, := argmaxyegm L2 (N, p) if
and only if 0 € t?,\(-—LD(,\,p)) = 9¥(A\) — p which occurs if and only if



p € dY(A). In other words we have U, = {A € R™ : p € d¢(\)}. Since
this implies
{pn=>0|Ae€ U} =pA)N(RY)™

we see that the forward gap of (6) can be computed by
G\ =inf {u-A|pedp(r), p>0} (11)
The following two results establish important properties of (11).

Lemma 5. Given a feasible A > 0. The minimum value E?(A) in (11) s
Jfinite and attained.

Proof. The objective function A-p and the constraint set {u > 0|\ € U,}
have no direction of recession in common. Moreover {u > 0|A € U,} =
Ay (A) N (R*T)™ is closed and convex and hence we obtain the assertion
by [16, Theorem 27.3]. 0

Theorem 1. If A > 0 satisfies ?;’(,\) = 0, then A is optimal for (6). On
the other hand if A > 0 is optimal for (6) and ri(dom) Nri((R*)™) # 0
then (_}"(A) = 0, where r1 A denotes the relative interior of a set A.

Proof. The first assertion follows directly from Lemma 4. For the second
suppose that A > 0 is optimal for (6). We write (6) as an unconstrained
maximization of the function —¥(A) — 1(g+)m(A) where we note that for
A > 0 we have 91(g+yn(A) = {#<0| A\ > 0= p; =0}. Since A > 0
is optimal it follows that 0 € A(¥(A) + 1(g+)m(})). However, by [16,
Thm. 23.8] the assumptions imply that (¥(X) + Lgiym(A)) = 0v(N) +
91 (g+ym(A) so that we conclude that there exists a u € dy(A) such that

jt > 0 and y; = 0 for all 4 such that A; > 0. This implies 8(/\) =0. O

2.2 Backward gap and the duality gap

Suppose we have a feasible dual variable A and we ask for the best possible
associated primal v € Uy. A simple calculation reveals, that for each
feasible primal u and each feasible dual A we have

YT =" < P(A) — p(u) = gap(u, A)

and therefore the duality gap is obviously a lower bound on the backward
gap:
P —p" < G(N) .



To calculate the backward gap of a given A recall that Lemma 2 implies
that {—c(u) | u € Uy} C 9¢(A). Since d¢(A) is convex it then follows
that

Cy = {c(u) |luelUy} .

satisfies — co C'y C dy¥(A). The reverse inclusion will prove to be extremely
useful so we recall the following definition from [3, Def. 2.3.1]:

Definition 3. We say the filling property holds for A, iff
—coCy =(A) . (12)

If in addition C) is convexr we say, that the strict filling property holds
for A.

We will present some conditions under which the strict filling property
holds in Section 2.4. We end this section by the following theorem which
shows the importance of the (strict) filling property for the connection
between the primal and dual problemns. Since this theorem is not needed
in the following we omit its elementary proof.

Theorem 2. Assume the filling property holds for a given X > 0. Then A
is an optimal dual solution iff there exist s < m+1 feasible primal points
wy,...,us € Uy and vy, ..., a5 > 0 such that Y, _, o =1,

Zarc(u,.) <0, and A,—Zarci(ur) =0 foralli=1,...,m .
=1

r=1

Moreover if the strict filling property holds for an optimal A, then the
duality gap is 0 and the solutions of the primal problem are given by the
feasible u € Uy, for which gap(u,\) = 0. Since (u,A) € Uy x (R*)™ the
latter is equivelent to complementary slackness.

2.3 Relation between the gaps

Given a dual feasible point for which only approximate optimality can be
guaranteed, our main question in this work is how this can be translated
into approximate optimality guarantees for “associated” primal points.
Fortunately, using forward and backward gaps as optimality bounds, the
answer is quite simple, as the following theorem shows:



Theorem 3. Let A > 0 be a dual point for which the strict filling property
holds. Then we have

G\ =G .

In addition there exists a feasible @ € Uy such that —\ - ¢(d) = 8(/\)
Moreover, i is an optimal solution of

sup {p(u) | u € Uy, c(u) <0}.

Proof. Since the strict filling property implies that the infima in (10) and
(11) range over the same set, we obtain equality of the gaps. Lemma 5
and the strict filling property then imply, that there exists feasible 4 € U,
such that H(A) = —A - ¢(e). Moreover, for (u,\) € Uy x R™ Lemma 3
shows @(u) — A - e(u) = ¥(A). Consequently, we see that for fixed A > 0
maximizing ¢ is equivalent to minimizing —A - ¢(-) and therefore (4) is
also the maximal value ¢ attains on {u € Uy | e(u) < 0}. o

2.4 Sufficient Conditions for Filling

We now show that for concave quadratic optimization problems the strict
filling property holds for any feasible dual point in the effective domain
of the dual function (see [19] for more general settings). To that end let
U be a Hilbert space, w € U, d € R™, Q : U — U be a nonnegative
selfadjoint operator such that Q : ker(Q)* — ker(Q)* has a continuous
inverse Q! and A : U — R™ be continuous and linear. Then the convex
quadratic problem

sup —l(Qu,u) + (w,u) (13)

uely 2

Au—d<0

is of the form (3) for ¢(u) := —1(Qu, u) + (w.u) and c(u) := Au - d. The
next lemma, which includes the linear programming case, shows that the
strict filling property holds:

Lemma 6. Consider the convexr quadratic programming problem (13).
Then the strict filling property holds for all X in the domain of the La-
grangian dual criterion function.

Proof. The associated Lagrangian is L(u,A) = —$(Qu,u) + (w.u) — X -
(Au—d) = —5(Qu,u) + (w — A*\,u} + X-d and its dual criterion function
is defined by (5). If w — A*) is not orthogonal to ker @ then it is easy
to see that ¥(A) = co. Now suppose that w — A*\ € (ker @)+ = img Q.



Then we can solve 0 - OuL(u,\) = —Qu + w — A*X for u and hence we
obtain

.= Q_l(w— A"X) +ker Q.
1

B(N) = 5(Q 7 w - A*N),w— AN} + A-d (14)

domv = ;{J)\ ER™ |w— AN €imgQ}.
The latter formula for dom % implies
() = AQTHA N —w) +d+ {u | A*p € imgQ}*
for all X € dom . Moreover, for A € domn ¥ we also obtain

~Cy ={ —c(u) |uelU,}
={d— Aul u € Q (w — A*)) + ker Q}
=d+AQ (A" —w) + Aker Q.

From Lemma 2 it suffices to show that (Aker Q)+ C {u|A*n € img Q} to
complete the proof. To that end suppose that g L Aker@. Then we have
(A*u, 2) = {u, Az) = 0 for all z € ker Q which implies A*p € img@. O

Let us denote the gradient of the dual criterion function (14) restricted
to its domain Dy

Vi(A) := AQ AN —w) +d. (15)

Using this notation the following corollary follows immediately from (15),
the definition of the backward-gap and Theorem 3:

Corollary 1. Given a dual feasible point A € dom, A > 0, we have

Gop(N) =G = _inf (A (V()) - Az) | VY(3) = Az 20} . (16)

3 Applications to SVM optimization

In this scction we we apply our results to SVMs. We begin by showing,
that in this case (16) is a generalization of the well known o-gap which has
been used in [5,11] both as stopping criterion for the dual problem and
as an important quantity in the construction of algorithms which possess
convergence rates. We then calculate the forward-gap for L1-SVMs in
Subsection 3.2. Finally, in Section 3.3 we show that the stopping criteria
used in MVP dual algorithms can directly be derived from this gap leading
to primal optimality guarantees.



3.1 The o-gap

Let A* denote an optimal solution to the dual problem (6). From the
convexity of 9 it then follows that (A) — ¥:(A*) < dP(A) - (A = A7).
Consequently o(A) := sup{0¥(A) - (A = A) | A € domw, A > 0} satisfies
P(A)—¢¥(A*) < o(A) and hence o can be used as a stopping criteria for the
dual. For quadratic convex programs the o-gap amounts to that defined
in [11], namely

oAy =sup{Vyp(A)-(A—p) | p>0,w—A"p L kerQ} . (17)

It was shown in [5] for L1-SVMs that iterative schemes which choose a
successor Ap+1 of A, that satisfies 99Y(An) - (An — Ant1) = 70(\,) converge
to optimal with a rate depending upon 7. This result was improved and
extended to general convex quadratic programming problems in [11]. Our
next results relate the o-gap to Ggp(A):

Lemma 7. For any feasible A € dom v such that Ggp(\) < oo we have
CT(/\) = GQP(/\) :

Proof. Lemma 6 ensures that the strict filling property holds for any dual
point A € domy = {\ | w— A*A L kerQ}. Let P : R™ — Aker @ denote
the orthogonal projection onto Aker (). Since the duality gap for linear
programming is zero (see for example [3][Cor. 2.3.6]) we have

Gop(N) = inf {A- (VH(A) — A2) | z € ker @, Vi (\) — Az > 0}
=—sup{A-n| n€R™, Pp=0,n < V(A)}+ A V(A)
—inf{p-VY\) | u20,v€R™, u+ Pv=A}+ X V().

Since (A — u) = Pv is equivalent w — A" L ker @ the right hand is
equivalent to the o-gap defined in (17) and the claim follows. O

The next corollary follows directly from Theorem 3 and Lemma 7:
Corollary 2. Let A be feasible such that w— A*\ L ker Q and a(\) < oc.
Let 2 optimize the gap Gop(\) defined in (16). Then @ == w — A*A + 2

is a o(\)-optimal solution of the primal problem, i.e

Ap(a) < a(A) .



3.2 L1-SVMs

To represent the L1-SVM optimization problem (1) as a quadratic pro-
gramming problem (13) we write U := H x R x Rf where H is the
RKHS associated with a kernel k. Recall that the canonical feature map
@ : X — H is given by &(x) = k(z,-), z € X, and that the reproducing
property states f(z) = (f,®(z)), f € H, z € X. We further write

~tn®(1) -~y —er

On
Idy 00 : y : ! -
Q:= U: 00),A4:= ~ye®P(xe) —ve —er | ’
02 00 0 0 —e e
—\o
O'H 0 —ep

where 0 denotes the zero vector in R¢ and e denotes the vector of all
1’s in R’ Let us solve (2) using Corollary 1. To that end let us write
A = (3) € R%*. Then elementary calculations show that the condition
w — A*A L ker Q amounts to

y-a=0 and o+ 3 = Ce. (18)
For feasible A satisfying (18) elementary calculations show that

’ZL s vik(z;, ) — 17

f :
> i1 @iysyik(zi, z5) — 1

Vo) = |, i _ [W[f](a)] < RY.
> i1 Ciyeyik(zi, xe) — 1
0
0

where W (a) is given as in (2). Since ker @ equals the last two components
of U = H xR xR it follows from (16) that the gap G ()) for the L1-SVM
is

(iglff) a- (VW(a)+b-y+&+7-¢&

st. VW(a)+b-y+£2>20,£>0.



fore the infimum above for fixed b is obtained by setting each & =

[~VW (a); — by;:] . If we use the equality v = [v]* — [-v]" where V|7 :=
A L

max (0, ») we conclude that G(X) = G(«) where

For feasible A € dom+ we have a; > 0 and 8 = C — o; > 0. There-

¢
G(n) = inf? (Z o; [VW(a); — by + (C — o) [bys — VW(a)ir“) .
i=1

(19)
Note, that G(«) can be computed solely in terms of the dual problem
since it is the forward gap on the dual. The connection to the backward
gap given in Theorem 3 however leads to a nice consequence:

Corollary 3. Letep > 0, let 0 < a < C-e be a vector satisfyingy o = 0,
and let b be an optimal solution of (19). Assume that a is e p-optimal in
the sense that G(a) = G(a) < ep. Define f = Zle yioa; ®(z;) and
& = [byi — VW(a)i]*,i = 1,..,L. Then (f,b,€) is a =p-optimal solution
of (1), i.e.

R(f,b,€) = R* < G(a) .

Recall that [4, Theorem 2] only showed that (f, f;, é) is a O(/Zp)-
optimal primal solution, and consequently the above corollary substan-
tially improves this earlier result.

3.3 Optimality criteria and maximal violating pairs

The most popular SVM algorithms are maximum-violating pair algo-
rithms (MVP), which are implemented for example in SVM#“9%t and SMO-
type algorithms. Often this selection strategy has been motivated directly
from Karush-Kuhn-Tucker (KKT) conditions on the dual [8-10], but there
has been no justification in terms of optimality guarantces. Let us first
introduce some notation to be able to formulate the stopping criterion
used in MVP algorithms. To that end recall the well known top-bottom
candidate definition of Joachims and Lin [7,9]:

Liop(a) :=={i | (s < C,ys = ~1) V (s > 0,y = +1)}

Toale) =i | o2 Co = 1) Ul SO gm0

Any pair (i,) € Tip(a) X Tpot(ar), such that 3, VW (a); > y; VW (a); is
called a wiolating pair, since it forces at least one of the summands in (19)



corresponding to i or j to be non-zero for any choice of b. For the maximal
violating pair define

{:= max y»VW(a); and b:= min VW (a);.
1€1mp(0t) ie!bot{a}

It is well known, that whenever £ < b the dual variable o is optimal.
Thhis lead to the heuristic dual stopping criterion t — b < £. We now show
that our results do also provide primal optimality guarantees:

Lemma 8. Given a final solution & of a MVP-algorithim which termi-
nated with accuracy €, i.e. t — b < ¢, then for any b € b t] the as-
sociated primal solution (f,b, (b)) defined by f := Zf_lu P(z;) and
&(b) := [by; — VW (a);]" is Cl- ¢ optimal, i.e.

R(f,b,€(d)) - R* < Cl-¢ .

Proof. Using the definition (20) the gap G(a) given in (19) can be com-
puted by

p( X wmOWeu-0Te X b-uIW@i")

1€ Trop () i€T50e(a)
1 VW(a);>b yi VW (a)i<b
(21)
where
= Q; if y; = +1 - yr = C—-a; ify;=+1
C—a; else a; else

Indeed note, that for any i € Jiep(cr) such that y; VW (a); < b we either
have i € Iy (@) too, and the contribution of index 7 is counted by the
second sum, or i is a top-only candidate, i.e. oy = 0 and y; = —1 or
a; = C and y; = 1. In both cases the contribution of index 7 to (19),
given by

a; [VW(a)i = by|™ + (C — ) [bys = VW ()]

is zero. Similar arguments hold for bottom-candidates with y; VW (a); >
b.

We now try to bound the terms in (21) for arbitrary b € [3, £]. Obviously
we have

WVW (@)~ < [[-8]" < [f-b]"  forieTm(a) and

by YW (a)* < [b- b} <[5-5]+ for i € Toa(a)



Since the two sums in (21) range over disjoint index-sets and ,u:"‘{_ L0
we conclude for any b € [b. ], that

Go) < Ot [i - Br
and the claim follows from Corollary 3. |
Remark 1. If we count the number
di= |{i | (i € Tp(e) AUTW (), > D)V (i € Tou(e) Ap VW ()i < D) ||

of indices which could indicate a violation if b is chosen in [B,ﬂ Then
Lemma 8 can be improved so the right hand side is Cd - =.

4 Conclusion and Open problems

We have presented a general framework for deriving primal optimality
guarantees from dual optimality bounds. We improve the results given
in [4] insofar as we can directly transformn dual in primal optimality guar-
antees without loosing by an order of O(1/€). In addition our results are
easily extensible to more general cases whenever the strict filling prop-
erty can be proven. The main advantage in the framework of support
vector opfimization is however the fact, that important dual optimality
bounds which are used in practice could directly be derived from the
abstract forward-backward gaps. This closes a main gap in analysis of
support vector machine algorithms since now optimality guarantees for
approximately optimal dual points can be transfered to generalization
guarantees for an associated classifier using the results from statistical
learning theory.

We point out, that using results from [19], the generalization of tight
relation of dual and primal problem even for approximately optimal points
should be straight forward but was beyond this work. The question if the
strict filling property is also a necessary condition for this relation is
however an open question.

We leave it as an objective for future research, whether the deeper
knowledge about the optimality bounds presented here can be used to ex-
tend known convergence guarantees from quadratic optimization to more
general optimization problems.
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Abstract:

We show that the stopping

criteria used in many support vector machine (SVM) algorithms working on the dual can
be interpreted

as primal optimality bounds which in turn are known to be important for the

statistical analysis of SVMs.

To this end

we revisit the duality theory underlying the

derivation of the dual and show that in many interesting cases

primal optimality bounds are the same as known dual optimality bounds.



