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Abstract

An N-gram language model aims at capturing
slatistical syntactic word order information from
corpora. Although the concept of language models
has been applied extensively to handle a variety of
NLP problems with reasonable success, the standard
model does not incorporate semantic information,
and consequently limits its applicability to semantic
problems such as word sense disambiguation. We
propose a framework that integrates semantic
information into the language model schema,
allowing a system to exploit both syntactic and
semantic information to address NLP problems.
Furthermore, acknowledging the limited availability
of semantically annotated data, we discuss how the
proposed model can be learned without annotated
training examples. Finally, we report on a case study
showing how the semantics-enhanced language
model can be applied to unsupervised word sense
disambiguation with promising results.

1 Introduction

Syntax and semantics are two major aspects of
language use. Syntax refers to the grammatical
structure of a language whereas semantics refers to
the meaning of the symbols arranged with that
structure. To fully comprehend a language, a human
must understand its syntactic structure, the meaning
each symbol represents, and the interaction between
the two. In most languages, syntactic structure
convgys something about the semantics of the
symbols, and the semantics of symbols may constrain
valid syntactic realizations. As a simple example,
when we see a noun following a number in English
(e.g. ~one book™), we can infer that the noun is
countable. Conversely, if it is known that a noun is
countable, a speaker of English knows that it can
plausibly be preceded by a numeral. It is therefore
reasonable to assume that for a computer system to
successfully process natural language, it has to be
equipped with capabilities to represent and utilize
both the syntactic and semantic information of the
language simultaneously.

The n-gram language model (LM) is a powerful
and popular framework for capturing the word order
information of language, or fundamentally syntactic
information. It has been applied successfully to a
variety of NLP problems such as machine translation,
speech  reorganization, and optical character
recognition. As described in equation (1), an n-gram
language model utilizes conditional probabilities to

capture word order information, and the validity of a
sentence can be approximated by the accumulated
probability of the successive n-gram probabilities of
its constituent words W, ... Wi.

(1) validit W, W,...W;. )= nf::”“i‘ | g 1~¥ -

As powerful as a traditional n-gram LM can be, it
does not capture the semantic information of a
language. Therefore it has seldom been applied to
semantic  problems such as word sense
disambiguation (WSD), To address this limitation, in
this paper we propose to expand the formulation of a
LM to include not only the words in the sentences but
also their semantic labels (e.g. word senses). By
incorporating semantic information into g LM, the
semantic role labeling, and even more generally
machine translation and information extraction —
tasks that require both semantic and syntactic
information to be solved.

In the next section, we will present our semantics—
gnhanced  language model and  discuss  an
unsupervised method to learn it from yntagged text.
Section 3 discusses a case study in applying this
model for unsupervised WSD. We address the related
work in section 4 and conclude section 5.

2 Incorporating and Learning Semantics
in a Language Models

The first part of this section proposes a semantics-
enhanced language model framework while the
second part discusses how its parameters can be

_learned without annotated data,

2.1 A semantics-enhanced language model

Figure 1(a) is a general finite state representation
of a sentence of four words (WI..W4) connected
through a bigram LM. Each word can be regarded as
a state node and the transition probabilities between
states can be modeled as the n-gram conditional
probabilities of the involved states (here we assume
the transition probabilities are bigrams). In fact each
word in a sentence has a certain lexical meaning
(sense or semantic label, Si) as represented in Figure
1(b). Conceptually, for each word-based finite state
representation there is a dual representation in the
semantics (or sense) domain, as shown in I(c). A
semantics-based LM (or SLM) like 1(c) records the
order relations between meanings. Alternatively, one
can combine both representations into a hybrid
language model that captures both the word order
information and the word meaning, as demonstrated
in 1(d). 1(d) represents a word-sense LM (or WSLM).
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| asemantics-enhanced LM incorporating two types of
states: word symbols and their semantic labels. The
intuition behind WSLM is that when processing a
word, people first try to recognize its meaning (i.e.

| P(S.JW.)), and based on that Dpredict the next word

(Le. P(Wo|Sp)). Figure 1(¢) is the same as 1(d)
except that the bigram probabilities are replaced by
trigrams. It embodies the concept that the next word
to be revealed depends on the previous word together
with its semantic label, and the meaning of the
current word depends on not only the word itsell but
the meaning of the previous word.

The major reason for the success of a LM-based
approach to NLP problems is its capability of
predicting the validity of a sentence. In 1(a), we can
say that a sentence “WIW2W3W4" is valid because
P(W2IW1)SP(W3|W2)*P(W4[W3) is relatively high.
Similarly given that the semantic labels of each word
in the senlence prc known, the probabilitics
P(S2|S1)*P(S3|S2)*P(S4|S3) can be applied to assess

the semantic validity of this sentence as wel| [

Furthermore, we can say that a word sequence
together with its semantic assignment (interpretation)
is valid based on a WSLM if the probability of
| P(S1W1)*P(W2|SI)*.. *P(W4|S3)*P(S4|W4) is
high. We can therefore use a semantics-enhanced LM
to rank possible interpretations for a word sequence.

2.2  Unsupervised Parameter Learning for a
Semantics-enhanced Language Model

The n-gram probabilities of a typical LM such as
the transition probabilities in Figure 1(a) can be
easily learned through counting term frequencies and
co-occurrences from large corpora. If there were
some large corpora with semantically annotated
words and sentences, we could learn the semantics-
enhanced LM such as 1(c) -1(e) directly through
frequency counting as well. Unfortunately, there is no
corpus containing a significant amount of
semantically annotated data available. To address this
problem. we discuss below an approach that allows
the system to approximate the n-gram probabilities of
the semantics-enhanced language models. Without
loss of generality, in the following we assume the
transition probabilities to be learned are all bigrams.

(v)
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representation of a sentence. (b) each word in the

sentence has a certain meaning (or semantic label),
(¢) a semantics-enhanced LM, which applies the
standard LM directly to semantics. (d) a hybrid LM
integrating word and sense information. (¢) like (d)
except that a trigram model is used.

2.2.1 Learning bigrams for SLM and WSLM

The problem setup is as follows: the system is
given a plain-text. unannotated corpus together with a
dictionary (assuming WordNet 2.1) that contains a
list of plausible semantic labels for each word. Using
these resources alone, the system must learn the n-
gram dependencies between semantic labels. Note
that every word in the WordNer dictionary has at
least one sense (or synset label), and each sense has a
unique 8-digit id representing its database location.
Different words can share synsets, indicating they
have senses in common. For example. the word
“result’ has four senses in the dictionary and one of
these (id=07192761) is shared by the word
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‘outcome’. The word ‘demonstrate” has four
meanings where one of them (id=00656725) also is
associated with the words “prove” and ‘show’, To
learm a SLM, one has to learn the conditional
probabilities of one sense following the other such as
P(S:=00656725|S,.,=07192761).

The first step of learning is to construct a sense-
based graph representation for the plain-text corpus
by connecting all the plausible senses of each word to
the senses-of the subsequent word'. For example,
Figure 2(a) is the sense-graph of the phrase “Existing
results demonstrate...” The graph shows there are 3,
4, 4 possible meanings for ‘existing”, ‘result’, and
*demonstrate’, respectively. The links in the graph,
based on the concept of a LM, can be modeled by the
n-gram (e.g. bigram) probabilities. If all the bigrams
between senses in the graph are known, then for each
plausible path of senses (where a path contains one
sense per word) we can generate its associated
probability, as in equation (2).

12)  palidity{Existing=00965972 results=1124606,
demonstrate=021290541)=Pr(00965972|start)*

Pr(11246064|00965872)* Pr(02129054]11246064),

This probability reflects the cumulative validity of
each sense assignment for the sequence of words.
One can rank all the sense paths based on their
probabilities to find the optimal assignment of senses
to words._On the other hand, if the associated
probability for each path in the graph is given, we can
apply a technique called “fractional counting™ to
determine bigram probabilities. Fractional counting
counts the occurrence of each bigram in all possible
paths, where the count is weighted by the associated
probability of the path.

Unfortunately, without a sense-annotated corpus
neither the sense bigrams nor the path probabilities
can be known directly. However, since computing the
likelihood for cach path and gencrating the bigram
probabilities arc dual problems (i.e. one can be
generated if the other is known), it is possible to
apply the expectation-maximization (EM) algorithm
(Dempster et al. 1977) 1o approximate both numbers.

To perform the EM learning, the first step is to
initialize the probabilities of the bigrams. As will be
shown in our case study, the initialization can be
uniformly distributed or use certain preexisting
knowledge. In the maximization stage of the EM
algorithm, the system uses the initial bigram
probabilities to generate the associated probability of
each path, such as the one shown in equation (2). In

! Note that the WordNet dictionary contains only nouns, verbs,
adjectives and adverbs. Therefore we treat other words such as
stop words and proper nouns as having a single sense.

the expectation stage the system applies fractional
counting to refine the bigram probabilities. The E-
step and M-step continue to iterate until a local
optimum (i.e. a path that possesses a locally optimal
probability) is reached.

One potential problem for this approach is
efficiency. The total number of paths in the graph
grows exponentially with the number of words (i.c.
O(b"), where n is the number of words and b is the
average branching factor of nodes, ie. the average
number of senses per word). Therefore it is
computationally prohibitive for the system to
enumerate all paths and produce their associated
probabilities one by one to perform fractional
counting. Fortunately in this situation one can apply a
polynomial forward-backward algorithm (Baum
1972) for fractional counting. Rather than generating
all paths with their probabilities in the graph, we need
to know only the total probability of all the paths that
a link (bigram) occurs in,_This can be generated by
recording d.ynamic_allx_ lhr.sa.r_ll.lin,hm.as.mmm

robabiliti inni of the

probabilities from the link to the end (the {:efa value,}.' ¢

Since in our case the alpha and beta values are -
independent, it is possible 10 generate all n-grams '-,-

with polynomial time O(nb’) and space O(nb). A !

similar approach has been uised successfully jn other
unsupervised NLP problems such as decipherment | :

and machine translation (Cutting et al. 1992; Koehn
et al. 2000: Knight et al. 2006; Lin et al. 2006).

The simple example shown in Figure 2 describes
the intuition behind the method. Imagine the system

encounters  the  phrases  “Existing  results
demonstrate...”, “Existent outcomes show,..”,
“Existing outcomes prove...” in the corpus.

According to Figure 2 there is one common sense
00965972 for the words "existing’ and “existent’, a
common sense 07192761 for “results’ and
“outcomes’>, and a single common sense 00656725
for the words demonstrate, show, and prove. Based
on the minimum description length principle (or
Occam’s Razor), a reasonable hypothesis is that these
three senses should have higher chance to appear
successively compared with the other candidates,
since one can then use only three senses to “explain”
all the sentences.

* These two words also share sense /124606+4; for the
purposes of the example we will ignore this second sense, as
given these three phrases alone both senses are equally
probable and the choice 1s arbitrary.

the" e
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| Figure 2: Sense-based graph of word sequences
(a) Existing results demonstrate...(b) Existent
| outcomes show...(c) Existing outcomes prove...,

The proposed learning algorithm captures the spirit of
this idea. Assuming the initialization stage assigns
equal probability to each bigram and assuming all
senses listed in Figure 2 do not appear elsewhere in

| the corpus, then after the 1* iteration of EM,
00656725 will have a higher chance to follow

| 07192761 compared with others (e.g. gquation (3)).
This is because the system sees 00656725 following
07192761 more times than others in the fractional
counting stage.

| (3)Pr(00656725(07192761) > Pr(00913977/07192761) _

This approach works because there are situations
in which multiple words can be used to express a
given meaning, and people tend not to choose the

same word repeatedly. The svstem can take
advantage of this to learn information about senses
that tend to go together from the shared senses of
these varied words, as formalized in the semantics-
enhanced LM. The same approach can be applied to
learn the parameters in a WSLM as well. The only
difference is that the words are included in the graph
as single-sense nodes. Figure 3 is the graph
presentation of a WSLM.

JFigure 3: The graph generated for the WSLM.
Such 2 network has the format word1=>sensel=>
word2->sense2...etc

3 Case Study: Unsupervised Word Sense
Disambiguation using SLM and WSLM

In this section, we describe a case study on
applying the SLM and WSLM to perform an all-
words word sense disambiguation task. Since both
language models are trained without sense-annotated
data, this task Js an unsupervised WSD task.

3.1 Background

Unsupervised WSD aims at determining the senses
of words in a text without using a sense-annotated
corpus for training. The methods employed generally
fall into two categories, one for all-words, token-
based WSD (i.e. assign each token a sense in its
individual sentential context) and the other to find

most frequent sense- of each unique token in the text™ -

as a whole (following a “one sense per discourse”
assumption), The motivation to focus on the second
type of task is that assigning the most frequent sense
to every word turns out to be a simple heuristic that
outperforms most approaches (Hoste et al. 2002). The
following  paragraphs  describe  the  existing
unsupervised WSD methods, _

Banerjee and Pedersen proposed a method that
exploits the concept of gloss overlap for WSD
(Banerjee et al. 2003). It assumes the sense whose
gloss definition looks most similar (i.e. overlap
strongly) with the glosses of surrounding content
words is the correct one, Mihalcea’s graph-based

" algorithm (Mihalcea 2003) first constructs a weighted
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sense-based graph’, where weights are the similarity

between senses (e.g. gloss overlap). Then it applies.

PageRank to jdentify prestigious senses as the correct

Jnterpretation. Galley and McKeown also propose a

graph-based approach called lexical chains that
regards a sense to be dominant if it_has more strong
connections with its context words (Galley et al.
2003). The strength of connection is determined by
the type of relation as well as the distance between
the words in the text. Navigli and Velardi propose a
conceptually similar but more knowledge-intensive
approach called structural semantic interconnections
(SSI) (Navigli et al. 2005). For each sense. the
method first constructs the semantic graphs
consisting of collocation information (extracted from
annotated corpora), WordNet relation information,
and domain labels. Using these graphs. the algorithm
iteratively chooses senses with strong connectivity to
the relevant senses in the semantic graph as the
correct ones. McCarthy et al. propose a method to
determine the most frequent senses for words
(McCarthy et al. 2004). In their framework, the
distributionally similar neighbors of each word are
determined, and a sense of a word is regarded as
dominant if it is the most similar to the senses of its
distributionally similar neighbors.

Although the above methods try to tackle the
unsupervised WSD problem from different angles,
they do share a common theme of identifying the
sense that is semantically the most “similar”™ or
“related” to the context or neighbor words as the
correct one. The WordNet or other dictionary
relations as well as their similarity measure play
important roles in the disambiguation. While we are
not arguing the legitimacy of this strategy, we believe
there is another type of information that a system can
benefit from to determine the sense of words, namely
the word and sense order information encoded in a
LM. Based on this alternative strategy even the non-
content words such as stop words (ignored in existing
approaches) can be helpful. Considering the sentence
“He went into the bank beside the river”. most of the
above approaches will likely choose the “river bank™
(bank#2) sense for bank instead of the correct
“financial institute"” (bank#l) sense, because the
former sense is semantically closer to the only other
function word “river”. However, even without other
context information, it is not hard for an English
speaker to realize the financial bank is more likely to

* The graph is similar to Figure 1(c), except that it ignores the
words with single sense such as the stop words, which we
believe 1o be useful in disambiguation.

be the correct one, since people do not usually go into

a river bank. A somewhat accurate SLM can guide

the system to make this decision since it shows

Such information can be learned in an unsupervised
manner if the system gets a chance 1o see other
similar sentences such as "he went into a banking-
company” (where banking-company has bank#]
sense in WordNet 2.1). Also consider the sentence
“The tank has an empty tank"™. Again it is not trivial
for the previously described algorithms to realize
these two fanks have different meanings since their
frameworks (explicitly or implicitly) imply or result
in one sense per sentence. However, an accurate
semantics-enhanced language model can tell us that
the tank as container sense has higher chance to
follow the word empty while the tank as the army

‘tank sense has higher chance to be followed by has.

3.2 System Design and Experiment setup

We applied both bigram SLM and WSLM to
perform unsupervised WSD. Our WSD system can
be divided into three stages. The first stage is the
initialization stage. In SLM, we need to initialize
P(Si.1|Sy) and in WSLM there are two types of
probabilities to be initialized: P(S,/Wy) and
P(WiafSy). We designed four different ways to
initialize the LMs with or without the preliminary
knowledge. The second stage is the learning stage,
using the EM algorithm together with forward-
backward training to learn the bigrams. The final
stage is the decoding stage., in which the learned
bigrams are utilized to identify the senses of words in
their sentential context that optimize the total
probability. Using the dynamic programming method,
the overall time complexity for the system is only
linear to the number of words and quadratic to the
average number of senses per word.

We tested our system on SemCor (SC) data, which
is a sense-annotated corpus that contains a total of
778K words (where 234K have sense_annotations).
We use SemCor and British National Corpus (BNC)
sampler data (1.1 million words) for training”. The
experimental setup is as follows: we first determine
the baseline performance on the WSD task using only
the initial knowledge (i.e. without applying language
models). Then we train a semantics-enhanced LM
based on the initialization and use it 10 perform

* The annotated senses in SemCor were not used for training.
Log probabilities are used throughout the training and
decoding stage to prevent overflow.
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decoding. Our model is evaluated by checking how
much the leamed LM can improve the accuracy.

3.3 Initializing without knowledge

In the first two types of initialization no external
knowledge other than the unannotated corpus and the
sense dictionary is exploited. The baseline for this
case is a random sense assignment for all-words
WSD (ie. disambiguation of all word tokens) in
SemCor, resulting in 17% accuracy on the test set.

The first initialization simply assigns equal
probability to all bigrams. As shown in Table |
(Uniform initialization), the results go up to 32.3%
for SLM and 28.8% for WSLM after training on a
corpus consisting of the SemCor texts plus texts from
the BNC Sampler.

Grioni Baseline (%) | SLM | WSLM
Initialization| Corpus without LM | (%) | (%)

Uniform SC 171 31.8| 27.7

Uniform | SC+BNC 171 32.3| 288
Graph freq SC 171 35.1| 34.0
Graph freq | SC+BNC 17.1 36.0| 34.6

Table 1: The results for all-words unsupervised
WSD on SemCor using SLM and WSLM based on
uniform and node-frequency initialization.

Jhe second initialization is based on the node
occurrence frequency in the sense graph. That is.
Pr(S1(S2)oc gf(S1) for SLM and Pr(S1|{W 1)< gf(S1)
for WSLM®, where of(S1) represents the frequency
of a node SI in the sense graph, or its graph
frequency (for example, in Figure 2 “00965972°
appears three times). The intuition behind this
initialization is that a sense should have a higher
chance to appear if it occurs in multiple words that
frequently occur in the 1ext. Again, to count the node
frequency we do not need any extra knowledge since
the graph itself can be generated based on only the
corpus and the dictionary. This initialization
improves the accuracy to 36.0% for SLM and 34.6%
for WSLM. These initializations tell us that the
learned syntactic order structure can tell us much
about the senses of the words in context. in the
absence of additional external knowledge.

3.4 Initializing based on Distributional and
WordNet Similarity Score

The EM algorithm is known for its sensitivity to
the initialization for unsupervised NLP tasks (see
examples in (Knight et al. 2006)). Therefore how our

3 Pr(W2(S1) is uniformly distributed for WSLM

LM is initialized can affect the final results
significantly. As we have described_it, Jhe LM for
WSD does not take advantage of lexical semantic
information, which has been shown to be useful by
other systems such as SSI and McCarthy’s method.
Fortunately, an important advantage of our
framework is that it is possible to incorporate existing
knowledge by using it to initialize the model. We
therefore performed an  experiment exploiting
McCarthy's sense scores (here called M-score) to
initialize the bigram probabilitics, and then applying
our EM learning engine 10 refine the model with the
hope of improving the final results. For example, for
WSLM. we assign initial P(Sk|Wk) e« M-
score(Sk,Wk), and for SML, we initialize
P(Sk+1|Sk) o M-score(Sk.Wk)+M-score(Sk+1,
Wk+1). We use Lin's distributional similarity score
(Lin 1998) together with Jiang and Cornath’s
WordNet similarity measure (Jiang et al. 1998) 1o
generate an M-score for the senses ol nouns and
verbs®. The baseline in this case is established by
choosing the senses with the highest M-score, which
reaches 45.1% for all words WSD in SemCor. As
shown in Table 2, our system can improve the WSD
results by 3-4%. This experiment demonstrates how
our framework allows one to take advantage of both
the syntactic (L.M) and semantic (distributional
WordNet similarity). information to get improved
results for an unsupervised WSD task.

3.5 Initializing based on Sense Order

The final initialization assigns initial bigram
probability based on the frequency order of senses
provided in WordNet. Specifically, we initialize the
bigram Pr(WI#x|W2#y) frequency as 1/{x+y+l),
assuming x and y represents the rank of the senses
based on their frequency as defined in WordNet. For

I

example, in SLM Pr(bank#2|into#1)= _'+]+]=lr4.

given bank#2 represents the 2nd most frequent sense
of bank and into#1 represents the most frequent sense

of into. For WSLM, Pr(bank#2Jbank)= ﬁ=|13

(the word does not contribute to the initialization).
The baseline uses WordNet sense frequency order to
assign the most frequent sense to each 1oken, which
reaches 69% accuracy on all words WSD for
SemCor, This accuracy is regarded as the upper

* Only scores for verbs and nouns are produced here since
Jiang&Conrath similarity does not gencrate similarity scores
for other parts of speech.

* The senses for the words that do not have M-score are
chosen randomly.
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bound for predominant sense assignment. Afier using
the refined LM model learned by EM to perform
WSD, the WSLM result goes up to 71% (See table
2). This result shows that by adding word and sense
order information to WordNet sense frequency order,
we are able to perform slightly better than the upper
bound of the predominant sense assignment. This
result is encouraging in that as we know there is no
other existing unsupervised WSD system that can
surpass this upper bound.

i Baseline (%) | SLM | WSLM
Initialization| Corpus without LM | (%) | (%)
M-Score SC 451 48.2 | 48.3
M-Score |SC+BNC 45.1 48.4 | 48.6
WNOrder SC 69.2 69.7 | 71.2
WNOrder | SC+BNC 69.2 69.3| 711

Table 2: The results for all-words unsupervised
WSD on SemCor using SLM and WSLM based on
M-score and WordNet synset order initialization.

3.6  Discussion

The case study on applying semantics-enhanced
LM to WSD reveals two important facts. The first is
that syntactic order information for words and senses
can benefit WSD. This conclusion to some extent
echoes the concept of syntactic semantics (Rapaport
2002), which claims that semantics are embedded
inside syntax, The second conclusion is that the
unsupervised learning method proposed in this paper
does learn a sufficient amount of meaningful
semantic order information to allow the system o
improve disambiguation quality, and it is flexible
enough to incorporate existing knowledge through
different initializations.

Table 3 shows how difterent types of knowledge
perform in WSD. We compare our system with two
existing WSD systems on the all-nouns WSD task
(that is, evaluating disambiguation performance only
on nouns in the corpus): Banerjee and Pedersen's
gross overlap system and the SSI system (results as
reported in (Brody et al. 2006)). The LM-based
approach without preliminary knowledge performs
right in between gross overlap and SSI approaches in
predicting the nouns in SemCor. This is interesting
and informative since the results demonstrate that by
using only word order information and no lexical
semantic information (e.g. sense similarity), we still
generate competitive WSD results. Moreover, as the
bottom two lines of table 3 show, our system is
capable of boosting performance when the lexical
semantic information is added during initialization.

Comparing table 3 with previous tables, one can also
infer that WSD on nouns is an easier task than on
other parts of speech.

Initialization | Corpus | SLM (%) V‘@'—)‘“
_Uniform | SC+BNC | 358 | 323 [ Deleted: -
gross overlap 36.5
Graph freq | SC+BNC 6 | 38
Ssl a2.7
M-Score | SC+BNC |  65.0 66.5
WN_order | SC+BNC | 753 77.4

semantic approaches and semantics-enhanced LM
approaches for all-nouns Unsupervised WSD

One advantage of our model is that it can
incorporate supervised information as well. A small
amount of annotated data can be used to generate the
initial n-grams and to be refined through EM. Finally,
the framework is flexible enough to be trained on a
domain-specific corpus to obtain a SLM or WSLM
specifically for that domain.

4 Related Work

There have been previous efforts jn Jncorporating, -

semantics into a language model. Brown et al.

proposed a class-based language model that includes
semantic classes jn_a LM (Brown et al. 1992).
Bellggarda proposes to exploit latent semantic

analysis to map words and their relationships with

documents into a vector space (Bellegarda 2000).
Chueh et al. proposg to combine semantic topic
information with n-gram LM using the maximum
entropy principle (Chueh et al. 2006). Griffiths et al,
also proposes to integrate topic semantic information
{Griffiths et al. 2004) into syntax based on_a Markov
chain Monte Carlo method.

The major difference between our model and Jhese
is that we propose to learn semantics gt _the word
level yather than at the document or topic level.
Consequently the models are different in the
parameters to be learned (in the other models, the
topic usually determines words to be used while in
our model the words can determine senses),
preliminary knowledge incorporation (e.g. Brown et
al. used a fully,connected word-class mapping during .
initialization) and most importantly, the applications.
Liher systems were evaluated on word clustering or
document classification while we have made the [irst
attempt to gpply a semantics-enhanced LM Jo a fine-
grained semantic analysis task, namely WSD,
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5 Conclusion and Future Work

There are three major contributions in this paper.
First we propose a framework that enables us to
incorporate semantics into a language model. Second
we show how such model can be learned efficiently
(O(nb?) in time) in an unsupervised manner. Third we
demonstrate how this model can be used to perform
the WSD task and how additional knowledge can be
exploited to improve the performance of the model
on the task. Our experiments also suggest that WSD
can be a suitable platform to evaluate the semantic
language models.

The future directions are two-fold. In terms of the
model itself, we would like to investigate how much
the results can be improved based on higher n-gram
models (e.g. trigram) and investigate how other
semantic information (e.g. WordNet hierarchy) can

be incorporated into the model. In terms of

applications we would like to investigate whether the
model can be applied to other NL tasks that generally
require both syntactic and semantic information such
as information extraction, summarization, and
machine translation,,
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