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Learning Semantics-Enhanced Language Models Applied to 
nsupervised WSD 



Abstract 

An N-gram language model aims at capturing 
stati tical syntactic word order information from 
corpora. Although the concept of language models 
has been applied extensively to handle a variety of 
NLP problems with reasonable success, the standard 
model does not incorporate semantic information , 
and consequently limits its applicabi lity to semantic 
problems such as word sense disambiguation. We 
propose a framework that integrates semantic 
information into the language model schema, 
allowing a system to exploit both syntactic and 
semantic information to address NLP problems. 
Furthermore, acknowledging the limited availability 
of semantically annotated data, we discuss how the 
proposed model can be learned without annotated 
training examples. Finally, we report on a case study 
showing how the semantics-enhanced language 
model can be applied to unsupervised word sense 
disambiguation with promising results. 

Introduction 

Syntax and 'emantics are two major aspects of 
language use. Syntax refers to the grammatical 

capture word order information, and the validity of a 
sentence can be approximated by the accumulated 
probabil ity of the successive n-gram probabilities of 
its constituent words WI ... Wk. 

(1) validilj(W, W2·"Wk )= rrf' == I P(W; I W; - n + \".W; - I) 

As powerful as a traditional n-gram LM can be, it 
does not capture the semantic information of a 
language. Therefore it has seldom been applied to 
semantic problems such as word sense 
disambiguation (WSD). To address this limitation. in 
this paper we propose to expand th formulation of a 
LM to include not only the words in the sentences hut 
also their semantic labels (e.g. word senses). By 
incorporating semantic information into ~ LM, the 
framework " a.ppJ.i~~~le. ~o proble!ll~ .~u~l:t_ as WSp, 
semantic role labeling, and ven more generally 
machine translation and information extraction -
tasks that require both semantic and syntactic 
information to be solved. 

In the next section, we will present our semantic_-
Dh n d l angu~g~ model and ____ ~i.~~uss an 

unsupervi ed method to learn it from n d text. 
Section 3 discusses a case study in applying- this 
model for unsupervised WSD. We address the related 
work in section 4 and conclude section 5. 

structure of a language whereas semantics refers to 2 Incorporating and Learning Semantics 
in a Language Models the meaning o f the symbols arranged with that 

structure. To fully comprehend a language, a human 
must understand its syntactic structure, the meaning The first part of this section proposes a semantics-
each symbol represents, and the interaction between enhanced language model framework while the 
the PNO . In most languages, syntactic structure second part discusses how its parameters can be 
convGYs somet1!ing about the _ s~'!lan~i~~ _. ~f th.<: ... learned without annotated data. . 
symbols and the semantics of symbols may constrain 
valid syntactic realizations. As a simple example, 2.1 A semantics-enhanced language model 
when we see a noun following a number in English 
(e.g. "one book"), we can infer that the noun is 
countable. Conversely, if it is known that a noun is 
countable, a speaker of English knows that it can 
piau ibly be preceded by a numeral. It is therefore 
reasonable to assume that for a computer system to 
successfully process natural language, it has to he 
equipped with capabilities to represent and util ize 
both the syntactic and semantic infornlation of the 
language simultaneously. 

The n-gram language model (LM) is a powerful 
and popular framework for capturing the word order 
information of language, r fundamentally syntactic 
information. It has been applied successfully to a 
variety ofNLP problems such as machine translation, 
speech reorganization, and optical character 
recognition. As described in equation (1), an n-gram 
language model utilizes conditional probabilities to 

Figure I (a) is a g neral fi nite state representation 
of a sentence of four words (W 1.. W 4) connected 
through a bigram LM . Each word can be regarded as 
a state node and the transition probabi lities between 
states can be modeled as the n-gram conditional 
probabilities of the involved states (here we assume 
the transition probabililie ar bigrams). In fact each 
word in a sentence has a certain lexical meaning 
(sense or semantic label, Si) as represented in Figure 
1 (b). Conceptually, for each word-based finite state 
representation there is a dual representation in the 
semantics (or sense) domain, as shown in I(c). A 
semantics-based LM (or SLM) like 1 (c) records the 
order relations between meanings. Alternative ly, one 
can combine both representations into a hybrid 
language mode l that capture ' both the word order 
infonnation and the word meaning, as demonstrated 
in 1 (d). I (d) represents a word-sense LM (or WS LM), 
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a ~emantics-enhanced LM inc~n>~~~!ing .tw0 9'J>es. ~f 
states: word symbols and their semantic labe ls . The 
intuition behind WSLM is that when processing a 
word, p ople first try to recognize its meaning ( i.e. 
P(SnIWn)), and based on that .pred ict the next word 
(i.e. P(Wn. 1ISn». Figure lee) is the same as I(d) 
except that the bigram probabilities are replaced by 
trigrams. It embodies the concept that the next word 
to be revealed depends on the previous word together 
with its semantic label and the meaning of the 

urrent word depends on not only the word itself but 
the meaning ofrhe previous word. 

A~rN1/·8 PfM~e P\"14rN3~~ 
(a) 

y "~'~ '<? "~~, 7 ""~~7 
o 0 G ~ 

(b) 

o P(57IS1)0 PIS3IS2J§ P(S4!S3JG 
(c) 

The major reason for the success of a LM-based 
approach to NLP problems is its capabil ity of 
predicting the validity of a sentence. In l(a), we c n 
say that a sentence "W I W2W3W4" is valid because 

P (W2IW I >.tf(W~.I~'2)-*P(W4LW~U~ r~J!lt.iveIL~i gJ} : .. (~ .~ .... -{::) r;;:}-: .. ~ .. 
imilarly given the semantic labels of each word ~ ~(:; ~ V 

in the sentence r knoWf!:, the p!~~~b~l i ties .~ .. PoWItS 1) t. P(W:l,s l-, .1. P(W4s:li.. ~ 
P(S21S 1 )*P(S3IS2),*P(S4IS3) can ~e .. aPJ*ed to as~e.ss ~ j 
the semantic validity of this sentence as wel~ . 0- ... 0 -.. G 
Furthermore, we can say that a word sequence 
together with its semantic assignment (interpretation) 
is valid based on a WSLM if the probability of 
P(SI IWl),FP(W2IS1 ),* ... *P(W4IS3)*P(S4IW4) .. ~s 
high. We can therefore use a semantics-enhanced LM 
to rank possible interpretations for a word sequence. 

2.2 Unsupervised Parameter Learning for a 
Semantics-enhanced Language Model 

The n-gram probabilities of a typical LM such as 
the transition probabilities in Figure 1 (a) can be 
easily learned through counting tenn frequenc ies and 
co-occurrences from large corpora. If there were 
some large corpora with semantically annotated 
words and sentences, we could learn the semantics­
enhanced LM such as I(c) - I(e) directly through 
frequency counting as well. Unfortunately, there is no 
corpus containing a sign ificant amount of 
semantically annotated data available. To address this 
problem. we discuss below an approach that allows 
the system t approximate the n-gram probabilities of 
the semantics-enhanced language models. Wilhout 
loss of generality, in the following we assume the 
transition probabi li ties Lo be learned are all bigrams. 

(d) 

~ e ·· .. ~ 7-y 
tl P(WljW1SI) 

~ 
PjW,,\\i2S2) 

., 
P\V/~ IWl") " ~ 1 

d:J-
a T T 

~ 54 

(e) 

,fig':l re .J..: .. la1 .... a ~.P~~!iL~!li.t~~~~a!e. big~~.~ .. !-:~L 
representation of a sentence. (b) eacb word in the 
sentence bas a certain meaning (or semantic label). 
(c) a semantics-enhanced LM, which applie the 
standard LM directly to semantics. (d) a hybrid LM 
integrating word and sense information. (e) like (d) 
except tha t a trigram model is used. 

2.2.1 Learning bigrams for SLM and WSLM 

The problem setup is as fo llows: the system is 
given a plain-text, unannotated corpus together wilh a 
dictionary (assuming WordNet 2.1) that contains a 
list of plausible semantic labels fo r each word. Using 
these r sources alone, the system must learn the n­
gram dependencies between semantic labels. Note 
that every word in the WordNet dictionary has at 
least one sense (or synset label), and each sense has a 
unique 8-digi t id representing its database location. 
Different words can share synsets, indicating they 
have senses in common. For example. the word 
'result' has four senses in the dictionary and one of 
these (id=07 192761 ) is shared by the word 
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· outcome' . The word ' demonstrate' has four 
meanings where one of them (id=00656725) also is 
associated with the words ' prove' and ·show' . 0 

learn a SLM. one has to learn the conditional 
probabilities of one sense following the other such as 
P(Si;=00656725IS~_ , =07192761). 

The first step of learning i to conslruct a sense~ 

based graph representation for the plain~text corpus 
by connecting all the plausible senses of each word to 
the senses ,of the subsequent word I . For example, 
Figure 2(a) i the sense-graph o f the phrase 'Existing 
results demonstrate ... " The graph shows there are 3, 
4, 4 possible meanings for 'existing' , ' result" and 
'demonstrate ' , respectively. The links in the graph, 
based on the concept of a LM, can be modeled by the 
n-gram (e.g. bigram) probabil ities . If all the bigrams 
between senses in the graph arc known, then for each 
plausible path of senses (where a path contains ne 
sense per word) w can generate its associated 
probability, as in equation (2). 
£2) _ ..validity..t ~xisti!l~O~~5972y-es~'-~s.= 112~§.o6. 

p em_onstrate=021290541 )=.rr(009~597_2 I start) *' 
Pr(11246064 1 00965872)*Pr(02129054 1 11246064~ 

This probability reflects the cumulative valid ity of 
each sense assignment for the sequence of word . 
One can rank all the sense paths based on their 
probabilities to find the optimal assignment of senses 
to words.-..J)n the other hand. if the associate~ 
probability for each path in the graph is gi ven. we can 
apply a technique called "fractional counting" to 
determine bigram probabilities. Fractional counting 
counts the occurrence of each bigram in all possible 
paths where the count is weighted by tbe associated 
probability of the path. 

Unfortunately, without a sense-annotated corpus 
neither the sen e bigrams nor the path probabilitie_ 
can be known directly . However, since computing th 
likelihood for each path and generating the bigran1 
probabilities arc dual probl ms (i,e. one can be 
generated if the other is known), it is possible to 
apply the expectation-maximization (EM) algorithm 
(Dempster et al. 1977) to approximate both numbers. 

To perform the EM learning, the first step is to 
in itiauze the probabilities of the bigrams. As will be 
shown in our case study, the init ial izat ion can be 
uniformly distributed or use certain preexisting 
knowledg . In the maxim ization stage of the EM 
algorithm. the system uses the initial bigram 
probabilities to generate tlle associated probabil ity o f 
each path, uch as the one ' hown in equation (2). In 

I Not that the WordNet dictionary con tains on ly nouns, verbs, 
adject ives and adverbs. Therefore we treat o th er words such as 
stop words and proper no uns as having a sing le _ ense, 

the expectation stage the system applies fractional 
co unting to refine the bigram probabilities. he E­
step and M-step continue to iterate until a local 
optimum (i.e. a path that possesses a locally optimal 
probabi lity) is reached. 

One potential problem for th is approach is 
efficiency. The total number of paths in the graph 
grows expon ntially with the number or words (i.e, 
O(bn

), where n is the number of words and b is the 
average branching factor of nodes. i.e. the average 
number of senses per word). Therefore it is 
computationally prohibitive for the system to 
enumerate all paths and produce their associated 
probabilities one by one to perform fractional 
counting. Fortunately in this situation one can apply a 
polynomial forward-backward algorithm (Bawn 
1972) for fractional counting. Rather than generating 
all paths with their probabilities in the graph, we need 
to know only the total probability of all the paths that 
a link (bigram) occurs in....... III ca!1 be g~ne!at.~~I by 

. reco~~ti_~g dyn,!-!n icl!tLY_.9 ea h link t a umul e j 
probabiliti from th beginnin of the gmph (~he'" 

Elp~a " y_alue) ,to the lin and th a cumulat 
probabihtit: ' from t e Imk to 'hI! nd (th .. be.1a value,), 
Since in our case the alpha and beta values are 
independent. it is possible to generate all n-grams 
w ith ,polynomial time O(nb2

) and pace O(nb). -\ . 
'milar ?pproach has been d~successfully n other 

unsupervised NLP problems such as decipherment 
and machine translation (Cuning et al. 1992; Koehn 
et a1. 2000; Knigh t et al. 2006; Lin et al. 2006)_ 

The simple example shown in Figure describes 
the intuit ion behind the method. Imagine the system 
encounters the phrases "Existing results 
demonstrate , .. ", ""Ex istent outcomes show .. . " , 
"Existing outcomes prove .. ." in the corpus. 
According to Figure 2 there is one common sense 
00965972 for the words ' existing' and 'existent' , a 
common sense 07192761 fo r 'results ' and 
'outcomes , 2 and a single common sense 00656725 
for the words demon 'trate, show, and prove. Based 
on the minimum description length principle (or 
Occam's Razor), a reasonable hypothesis is that these 
three senses should have higher chance to appear 
successively compared with the other candidates, 
since one can then use only three enses to "explain" 
al ! the sentences. 

2 Thes two words al so share :;ense 11 2-l60(i-l: for the 
purposes o f the example we will ignore this second sense, as 
given these three phrases alone both senses are equally 
probabl and the choice is arbitrary 

1 Deleted: , which 

Fonnatted: Font Bold 

Fonnatted: Font: Bold , Italic 

Fonnatted: Font: Bold 

Deleted: 

Deleted: ~ 

r Deleted: 

---------------------.--------~ Fonnatted: Font: 80ld 

r Fonnatted: Indent: FIrst line: 11.35 
pt 

Deleted: 

Fonnatted: Font: Italic 

Deleted: (the accumulated probabilities 
!Tom the beginning 

Fonnatted: Indent First line: 11 ,35 
pt 

Deleted: (the accumulated probabili ties 
(0 rhe end 

f Deleted: for each link 

T Fonnatted: Font: Italic 

Deleted: only 

I Deleted: 

Deleted: S 

Deleted: appl_ie_d_~~ ___ ...oo{ 

Deleted: to 



I demons tr ate I 

(a ) 

I Existent I I o utcomes I 

exIstIng resultant 

same word repeatedly . The system can take 
advantag o f this to learn information about senses 
that tend to go together from the shared senses of 
these varied words, as forma lized in the semantics­
enhanced LM. The same approach can be applied 
learn the parameters in a WSLM as well. The only 
difference is that the words are included in the graph 
as single-sense nodes. Figure 3 is the graph 
presentation of a W LM. 

l)g~r:~ _ ~_:_ Th~. ~!:'!l.ph ge'!~_r:a!~~ for the WS~~._ 
Such network has the format word 17sense17 
word27sense2 ... etc 

3 Case Study: Unsupervised Word Sense 
Disambiguation using SLM and WSLM 

In this section, we describe a case study on 
applying the SLM and WSLM to perform an al1-
word word sense disambiguation task. Since both 
language models are trained without sense-annotated 
data. this task _~!1 __ l!1)sl!pervised WSD tas~ . 

3.1 Background 

Unsupervised WSD aims at detenn ining the senses 
of words in a text without u ing a sense-annotated 
corpus for training. The methods employed generally 
fall into two categories, one for all-words, token­
based WSD (i.e. assign each token a sense in its 
individual sentential context) and the other to find 

Figure 2: Sense-based grapb of ..word ~~que!l_ces 
(a) Existing results demonstrate ... (b) Existent 
outcomes show ... (c) Existing outcomes prove .. .. 

,,-most -~r-equ€nt -sense- of-each- uniqlle token in the -text 
as a whole ( following a "one sense per discourse" 
assumption). The-motivation to' focus on the second 
type of task is that assigning the most frequent sense 
to every word turns out to be a simple heuristic that 
outperforms most approaches (Hoste et al. 2002). The 
fo llowing paragraphs describe the existing 
unsupervised WSD methods" __ 

The proposed learning algorithm captures the spirit of 
this idea Assuming the initialization stage assigns 
equal probability to each bigram and assuming all 
senses listed in Figure do not appear Isewhere in 
the corpus, then after the I s t iteration of EM, 
00656725 will have a higher chance Lo follow 
07192761 compared with others (e.g . J;!~uation_ {3): _ 
This is bee au e the system sees 00656725 following 
07192761 more time than others in the fractional 
counting stage. 
J 3l Pr(00656725107J.92761) > Pr(00913977j07! ?2?61) 

Thi approach works be ause ther are situations 
in which multiple words can be used to express a 
given meaning, and people tend not to choose the 

Banerjee and Pedersen proposed a method that 
exploits the concept of gloss overlap for WSD 
(BanerJee--ei- af.--20(3). It a sumes the sense whose 
gloss definition looks most similar (i.e. overlap 
strongly) with the glosses of surrounding content 
words is the correct one . Mihalcea's graph-based 
algorithm (Mihaicea-20{)5 ) tirst constructs a weiglited" 
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sense-based graph3
, where weights are the similarity be the correct one, since people do not usually go into 

between senses (e.g . ..gloss overJ~). ~~~n it aJ?pJie~ ____ ~ riv_~~ _ ban_~: . ~. sOI1).e",,!~.at accI:II.a~e SLM c~ guid~ __ 
PageRank to if p'~~stjgipus s~l)~es ~~. ~~~ ~<?!!~C! _.tb~ ~y~!~~~ to ~*.~ thi ~ d~_~!~~<?g sJ~~~j! ~~~ws . 
'nl ret lion . GaJl~y and McKeown l!!so J?!O-pOS~ a . P(I},!nA#l lirz~o# lth.l?:#n~>P(bank#2 I into #lthe# l) . 
graph-based approach called lexical chains that Such infonnation can be learned in an unsupervised 
regards a sense to be dominant if .!Lhas more strong manner if the system gets a chance to see other 
connections with its context words (Galley et al. similar sentences such as "he went into a banking-
2003). The strength of connection is detennined by company" (where banking-company has bank#l 
the type of relation as well as the distance between sense in WordNet 2.1 ). Also consider the sentence 
the words in the text. Navigli and Velardi propose a "The tank has an empty tank" . Again it is not triv ial 
conceptually similar but more knowledge-intensive for the prev iously desc ribed algorithms to realize 
approach called structural semantic interconnections these two tanks have different meanings since their 
SSI) (Navigli et al. 2005). For each sense, the frameworks (explicitly or implicitly) imply or result 

method fIrst constructs the semantic graphs in one sense per sentence. Ilowevcr, an accurate 
consisting of collocation information (extracted from semantics~enhanced language model can tell u that 
annotated corpora), WordNet relation information. the tank as container sense has higher chance to 
and domain labels. Using these graphs. the algorithm follo w the word empty while the tank as the army 
iteratively chooses ;;e!l.~~s wi!!J ~trong conn.ec!!vity to . Jank sense has higher chance !9_ be follo_w.~~ ~)' has. 
the relevant senses in the semantic graph as the 
correct ones. McCarthy et al. propose a method to 
detennine the most frequent senses for word ' 
(McCarthy et a1. 2004). In their framework, the 
distributionally similar neighbors of each word are 
detennined, and a sense of a word is regarded as 
dominant if it is the most similar to the senses of its 
distributionally similar neighbors. 

Although the above methods try to tackle the 
unsupervised WSD problem from different angles 
they do share a common theme of identifying the 
sense that is semantically the most "similar" or 
"related" to the context or neighbor words as the 
correct one. The WordNet or other dictionary 
relations as well as their similarity measure play 
important roles in the disambiguation. Whil we are 
not arguing the legitimacy of this strategy, we believe 
there is another type of in formation that a system can 
benefit from to detennine the sense of words, namely 
the word and sense order infonnation encoded in a 
LM. Based on this alternative strategy even the non­
content words such as stop words (ignored in existing 
approaches) can be helpful. Considering the sentence 
"He went into the bank beside the river". most of the 
above approaches will likely choose the "river bank" 
(bank#2) sense for bank instead of the correct 
"financial institute " (bank#l) sense, because the 
fonner sense is semantically closer to the only other 
function word ·'river'·. However, even without other 
context information, it is not hard for an English 
speaker to realize the financial bank is more likely to 

' The graph is similar to Figure l (c). except that it ignores the 
words with smgle sense such as the stop words, which we 
believe to be usefu l in disambiguation. 

3.2 System Design and Experiment setup 

We applied both bigram SLM and WSLM to 
pertonn unsupervised WSD. OUI WSD system can 
be divided into three stages. The first stage is the 
initializat ion stage. In SLM, we need to initialize 
P(Sk+dSJ,.) and in WSLM there are two types of 
probabilities to be initialized: P(SI. IWk) and 
P(Wl;+ dSk). We designed four different ways to 
initialize the LMs with or without the prel iminary 
knowledge. The second stage is (he learning stage, 
using the EM algorithm together with forward­
backward training to learn the bigrams. The final 
stage is the decoding stage. in which the learned 
bigrams are utilized to identify the senses of words in 
their sentential context that optimize the total 
probability. Using the dynamic programming method, 
the overall time complexity for the system is on ly 
linear to the number of words and quadratic to the 
average number of senses per word. 

We tested our system on SemCor (SC) data. which 
is a sense-annotated corpus that contains a total of 
778K words (where 234K .}lave ·ense..JU1notati ns). 
We use ScmCor and British National Corpus (BNC) 
sampler data (1.1 million words) fo r training". The 
experimental setup is as follows: we first detennine 
the baseline performance on the WSD task using only 
the initial knowledge (i.e. without applying language 
models). Then we train a sernantics-enhanced LM 
based on the initialization and use it to perform 

4 The annotated senses in SemCor were not used for training 
Log probabil ities are used thro ughout the training and 
decoding stage to prevent o verflow. 
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: I 
decoding. Our model is evaluated by checking how 
much the learned LM can improve the accuracy. 

I 3.3 Initializing without knowledge 

In the first two types of initialization no external 
knowledge other than the unannotated corpus and the 
sense dictionary is exploited. The baseline for th is 
case is a random sense assignment for a ll-words 
WSD (i.e . disambiguation of all word tokens) in 
SemCor. resulting in 17% accuracy on the test set. 

The first initialization simply ass igns equal 
probabi lity to all bigrams. As shown in Table I 
(Uniform initialization). the results go up to 32.3% 
for SLM and 28.8% for WSLM after training on a 
corpus consisting o f the SemCor texts plus texts from 
th BNC S I e ampler. 

Initialization Corpus Baseline (%) SLM WSLM 
without LM (%) (%) 

Uniform SC 17.1 31 .8 27.7 

Uniform SC+8NC 17.1 32.3 28.8 
Graph freq SC 17.1 35.1 34.0 
Graph freq SC+8NC 17.1 36.0 34.6 

Table I: The results fo r all-words unsupervIsed 
WSD on SemCor using SLM and WSLM based on 
uniform and node-frequency initialization. 

~ - -- - - - - - - - -- - - - ~ --- - - --

The .. ~econd initialization is b~ed on the no~e 
occurrence frequency in the sense graph. That is, 
Pr(SIIS2)ocgf(SI ) for SLM and Pr(SIIWI ) ocgf(S 1) 
for WSLM5

, where gf(S I) represents the frequency 
of a node S I in the sense graph, or its graph 
f requency (for example, in . igure 2 '00965972 ' 
appears three times). The intuition behind thi s 
initialization is that a sense should have a higher 
chance to appear if it occurs in mu ltiple words that 
frequently occur in the text. Again, to count the node 
frequency we do not need any extra knowledge since 
the graph itself can be generated based on only the 
corpus and the dictionary. This initialization 
improves the accuracy to 36.0% for SLM and 34.6% 
for WSLM. These initializations tell u ' that the 
learned 'yntactic order structure can tell us much 
about the senses of the words in context, in the 
absence of additional extemaJ know ledge. 

3.4 Initializing based on Distributional and 
WordNet Similarity Score 

The EM algorithm i known for its sensitivity to 
the initialization for unsupervised NLP tasks (see 
examples in (Knight et al. 2006). Therefore how our 

5 Pr(W2IS I ) is umformly distri buted for WS LM 

LM is initialized can a f ect the fma results 
s ign ificantly. As we have described-.iI, _ LM for 
WSD does not take advantage of lexical semantic 
information, which has been shown to be useful by 
o ther systems such as SSI and McCarthy' s method. 
Fortunately, an important advantage of our 
framework is that it is possible to incorporate existing 
knowledge by using it to initialize the model. We 
therefore performed an experiment exploiting 
McCarthy's sense scores (here called M-score) to 
initialize the big ram probabilities. and then applying 
o ur EM learning engine to refine the modt: l with the 
hope of improving the final results . For example, for 
WSLM, we assign initial P( klWk) oc M­
score(Sk, Wk), and for SML, we initialize 
P(Sk+ lISk) ex M-score(Sk. Wk)+M-score(Sk+ I, 
Wk+ I ). We use Lin's distributional similarity cor 
(Lin 1998) together with Jiang and Comath ' s 
WordNet similarity measure (Jiang el al. 1998) to 
generate an M-score for the senses of noun ' and 
verb ,f' . The baseline in this case is established by 
choosing the senses with the highest M-score, which 
reaches 45. 1%7 fo r all words WSD in SemCor. As 
shown in Table 2. our system can improve the WSD 
results by 3-4%. This experiment demonstrates how 
our framework allows one to take advantage of both 
the ._syntacjjc .(LML .and .. ,Semanric (distributional 
WordNet simHanI)') infonnatiQl1 to. get improved 
results for an unsupervised WSD task. 

3.5 Initializing based on Sense Order 

The fi nal initialization assigns initial bigram 
probability based on the frequency order of senses 
provided in WordNet. Specifically. we initialize the 
bigram Pr(Wl #xIW2#y) frequency as I /( x+y+ I ), 
assuming x and y represents the rank of the senses 
based on their frequency as defmed in WordNet For 

exan1ple, in SLM Pr(bank#2Iinto# 1)= _ 1 _ _ 1/ 4 . 
2+1+ 1 

given bank#2 represents the 2nd most frequent sense 
o f bank and into# 1 represents the most frequent sense 

of into. For WSLM, Pr(bank#2Ibank)= _1- = I J3 
2+ 1 

(the word does not contribute to the initialization). 
The baseline uses WordNet sense frequency order to 
assign the most frequent sense to each token. which 
reaches 69% accuracy on all words WSD for 

emCor. This accu racy is regarded as the upper 

(, Onl) scores fo r verbs and nouns are produced here since 
Jiang&Conrath similarity does not gen rate similarity scores 
for other parts of speech. 
7 The s nses for the words that do not have M-score are 
chosen randomly. 
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bound for predominant sense assignment. A fier using 
the refined LM model learned by EM t perform 
WSD, the WSLM result goes up to 71% (See table 
2). This result shows that by adding word and sense 
order information to WordNet sense frequency order, 
we are able to perform slightly better than the upper 
bound of the pn;dominant sense assig_n£Dent. T.h~s 
result is encouraging in that as we know there is no 
other existing unsupervised WSD system that can 
surpass tho bo d lS upper un 

Initialization Corpus 
Baseline (%) SLM WSLM 
without LM (%) (%) 

M-Score SC 45.1 48.2 48.3 

M-Score SC+BNC 45.1 48.4 48.6 

WNOrder SC 69.2 69.7 71.2 

WNOrder SC+BNC 69.2 69.3 71.1 I 
Table 2: The results for all-words unsupervised 
WSD on SemCor using SLM and WSLM based on 
M-score and WordNet synset order initialization. 

3.6 Discussion 

The case study on applying semantics-enhanced 
LM to WSD reveals two important facts . The first is 
that ~yntac!!()_ order __ i!1lomlatipn for word~ and senses 
can benefit WSD. This conclusion to some extent 
echoes the concept of syntactic semantics (Rapaport 
2002), which claims that semantics are embedded 
inside syntax. The second conclusion is that the 
unsupervised learning method proposed in this paper 
does learn a sufficient anlount o f meaningful 
semantic order infoffilation to allow the system to 
improve disanlbiguation quality, and it is flexible 
enough to incorporate ex isting knowledge through 
different initializations. 

Table 3 shows how different types of knowledge 
perform in WSD. We compare our system wi th two 
existing WSD systems on the all-nouns WSD task 
(that is, evaluating disambiguation perfonnance only 
on nouns in the corpus): Banerjee and Pedersen's 
gross overlap system and the SSt system (results as 
reported in (Brody et a1. 2006». The LM-based 
approach without preliminary knowledge performs 
right in between gross overlap and SSI approaches in 
predicting the nouns in SemCor. This is interesting 
and informative since the results demonstrate that by 
using only word order infonnation and no lexical 
semantic information (e.g. sense similarity), we still 
generate competitive WSD results . Moreover, as the 
bottom two lines of table 3 show, our system is 
capable of boosting performance when the lexical 
semantic information is added during ini tia lization. 

Comparing table 3 with previous tables, one can also 
infer that WSD on nouns is an easier task than on 

h f h ot er parts 0 speec . 

initialization Corpus SLM (%) WSLM 
(%) 

_ . t)-,} ifoll!l_ SC+~NC _ ~~~~ 32.~ 

gross overlap 36.5 

Graph freq SC+BNC 39.6 38 
f----. 

SSt 42.7 

M-Score SC+BNC 65.0 66.5 

WN order SC+BNC 75.3 77.4 

J'~b'-e ~; ~om.p!l_r:~~()!1 _l?etw~~!lJ:,~:~~~~~ _~p'pr_oac.b~s 
semantic approaches and semantics-enhanced LM 
approaches for all-nouns Unsupervised WSO 

"-
One advantage of our model is that it can 

incorporate . upervised information as well. A small 
anlouot of annotated data can be used to generate the 
initial rl-grams and to be refmed through EM. Fina Iy, 
the framework is flexible enough to be trained on a 
domain-specific corpus to obtain a SLM or WSLM 
specifically for that domain. 

4 Related Work 

There have been pre'lou etTorts jn n~o~== 
semantics into a language mode l. Brown et al. 
proposed a class-based language model that includes 
semantic classes J!L...1. LM (Brown et a1. 1992). 
Bellsgarda _~r~p'~_ses ~<? __ exp'!~i! latent . ~~.r!1_~ntic 
analysis to map ,words and their relationships with 
documents into a vector space (Bellegarda 2000). 
Chueh et al. propose, __ ~<? _ c~mbine ~err~anlic topic 
information with n-gram LM in thl. maximum 
entropy principle (Chueh et al. 2006). Griffiths et al. 
also proposes to integrate topic semantic information 
(Griffiths et aJ. 2004) into syntax based on_ Markov 
chain Monte Carlo method. 

The major difference between our model and h 
is that we propose to learn semantics the word 
level ~er lh .. n .at_ the document or topic level. 
Consequently the models are different in the 
parameters to be learned (,in the other models, ~h~ 

topic usually determines words to be used while in 
our model the words can determine senses), 
preliminary knowledge incorporation (e.g. Brown et 
al. used a fuIlY1f-c0l!n~~!ec! _,:v:ord-c1a~s. ~ap'p!l]g ,p.urin l , 

initialization) and most importantly, the Jipplications. 
~~~ _~y_stems were evaluat~d on w().r_q ~J_~~er!ng or 

document classification while we ~made the first 
attempt to 1ili...a semantic -el]hanced LM JQ a fine­
grained semantic analysis task. namely WSD" 
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5 Conclusion aod Future Work 

There are three major contributions in this paper. 
First we propose a framework that enables us to 
incorporate semantics into a language model. Second 
we show how uch model can be learned efficiently 
(O(nb2

) in time) in an unsupervised manner. Third we 
demonstrate how this model can be used to perform 
the WSD task and how additional knowledge can be 
exploited to improve the performance of the model 
on the task. Our experiments also suggest that WSD 
can be a suitable platform to evaluate th semantic 
language models. 

The furure directions are two: fold. In terms of the 
model itself, we would like to investigate how much 
the results can be improved based on higher n-grarn 
models (e.g. trigram) and investigate how other 
semantic information (e.g. WordNet hierarchy) can 
be incorporated into the model. In terms of 
applications we would like to investigate whether the 
model can be applied to other NL tasks that g nerally 
require both syntactic and semantic information such 
as information extraction summarization, and 
machine translation 
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