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Sound-speed tomography using first-arrival transmission ultrasound
for a ring array

Youli Quan**® and Lianjie Huang®

? Department of Geophysics, Stanford University, Stanford, CA 94305-2215
® Mail Stop D443, Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound
speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the
insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling
heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using
transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first-
arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a
ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference
scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical
breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array.
Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in
heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes
and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific
data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission
tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident
ultrasound using a ring array.

Keywords: First-arrival time, ring array, sound speed, time-of-flight, tomography, transmission ultrasound.

1. INTRODUCTION

Ring transducers have been used for whole-breast scanning."”® Ultrasound data acquired with a ring transducer can be
used for sound-speed tomography, attenuation tomography, diffraction tomography, and reflection imaging.'® Earlier
ring transducers employ a transmitter-receiver pair that is mechanically rotated to collect data at different angles. The
data acquisition using this configuration is very slow and seems impractical for clinic applications. Recent development
of ring transducer arrays allows much faster data acquisition.M A ring transducer array is usually composed of hundreds
to thousands of transducer elements arranged along a ring. A typical diameter of a ring array is 20 cm. When one
transducer in the array transmits, all transducers including the transmitter itself receive ultrasound transmission and
scattering signals. Experimental results from phantoms and voluntary patients using the ring transducers are available
from a number of research groups."® However, we still need to understand how accurate the transmission tomography
can be using data acquired using ring arrays.

In this paper, we conduct a comprehensive study on the reconstruction capability of a time-of-flight transmission
tomography method for a ring transducer array using computer-simulated data for different numerical breast phantoms.
We use a finite-difference time-domain wave-equation scheme to simulate ultrasonic-wave propagation through
computer-generated numerical breast phantoms within a ring array. We carry out the simulations using high-
performance computers. Simulations of ultrasonic-wave propagation and scattering can be easily performed for a large
number of well-controlled breast phantoms, and help understand the features of wavefields acquired by a ring transducer
array. The simulation can also be used to study the accuracy of time-of-flight transmission tomography for different
sizes and shapes of phantom breast tissues. We study the capability of a time-of-flight tomography method for
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reconstructing objects scanned by a ring array. The method properly accounts for ray bending during tomography
inversion by solving the eikonal equation using a finite-difference scheme. We also investigate the reconstruction
accuracy of the tomography method for objects having different perturbations from the surrounding medium. In addition,
we address some specific data processing issues related to time-of-flight tomography. In a companion paper,® we study
the reflection imaging using our sound-speed reconstruction results to further improve image resolution.

2. ULTRASONIC WAVE SIMULATION FOR THE RING TRANSDUCER ARRAY

We use the finite-difference method® to simulate acoustic-wave propagation in different numerical breast phantoms. A
ring array with 256 transducers used during simulations is shown in Fig. 1. Numerical breast phantoms are placed inside
the ring transducer and immersed in water. The ultrasound source S(¢) used in our simulations is

S() =[1-2(xf,1)* 1exp[-(,0)*], (1)

where ¢ is time and f, is the central frequency of the source. When one transmitter transmits, all transducers
simultaneously record ultrasound signals. We conduct 256 finite-difference simulations for each numerical phantom. If it
takes half an hour to run the finite-difference program for a transmitter on one computer, it would take about a week to
do a complete simulation for 256 transmitters, and would take months for tens of different numerical phantoms used to
study the imaging capability using a ring array. These simulations require super-computing capabilities. We use
computer clusters and a parallel finite-difference program for the simulations. Table 1 lists some of the modeling
parameters used in the finite-difference simulations. Figure 2 is a typical simulated dataset recorded with the ring array.
The direct wave is the main event seen in the data. Travel times (or time-of-flights) of the direct wave are picked and
used for sound-speed tomography. The reflection or scattering waves in the data can be used for reflection image
reconstruction studies. '
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Figure 1. Illustration of a ring array and a numerical breast phantom immersed in water. Arrows depict
ultrasonic-wave propagation from a transmitter. Color map shows the sound speed in m/sec.

Table 1. Parameters used in finite-difference simulations

Source central frequency (/) 0.5 MHz

Grid size of the model 0.1 mm
Time step 0.03 psec
Number of grids 2051 x 2051

Time signal length 150 psec
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Figure 2. Simulated ring-array data using the numerical breast phantom shown in Fig. 1. The arrival time of
the direct wave is used for sound-speed tomography and the reflected signals can be used for reflection
image reconstruction.

3. DATA ANYLYSIS AND TRAVEL-TIME PICKING

Before picking the travel-time of the direct wave for sound-speed tomography, let us take a closer look at the simulated
data. Figure 3a shows a model that contains only a low sound-speed object within the ring array. We use this simple
model to demonstrate some basic features of the ring array data. It can be seen from Fig. 3b that the forward scattering
can cause interference with the direct wave. For this model, the scattering energy is weak because the impedance contrast
between the circular object and water background is small. The scattering waves exhibit different patterns as the
transmitter location changes. For a more realistic model, e.g., the one shown in Fig. 1, the reflection and scattering waves
have much more complicated patterns as shown in Fig. 2.

The travel time of transmitted (or direct) wave is used to reconstruct the sound-speed distribution. We first generate
a reference dataset using water-only as the model, and then pick the travel-time difference between reference data and
study data. Figure 4 shows the comparison of reference data and study data shown in Fig. 3b. Figures 4a, b are signals
within the interference zone. Their travel times, amplitudes and waveforms are different from those of the reference
water data. We determine the travel-time difference (d7) using two different methods: crosscorrelation and first-break
picking. The absolute travel-time T of the data is then obtained using

r=L/C,,, +dT. 2)

waler

where L is the distance between transmitter and receiver, and C,,q. is the sound speed of water. Figure 4¢ shows the
signal recorded at a channel where there is no inference from the scattering.

Travel times picked using the two different methods are shown in Fig. 5. The crosscorrelation method needs to use a
certain length of the signal for data processing. Therefore, the scattering interference contained in the later part of
waveform may affect the correlation result. The influence is seen near channel 124 (see the blue arrow in Fig. 3 and Fig.
4b) where a small negative dT is detected. The circular object in Fig. 3 has a lower sound-speed than water, thus a
positive dT is expected for all travel time picks. The first break picking exhibits less or no influence caused by the later
scattering arrivals, For this reason, we use the first break picking to determine the travel times in this noise-free
simulation study. For noisy experimental data, however, the correlation method should be more robust and practical.
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Figure 3. A simple numerical phantom with a low sound-speed object (a), and the corresponding ring
transducer data for a transmitter (b). Three arrows with different colors indicate transducers and
corresponding signals of interest, where ultrasonic wave passes through the object (black), passes the
boundary (blug), and travels away from the object (red), respectively.
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Figure 4. An overlay of the simulated data in Fig.3(b) and a reference data in water. Shown in (a), (b) and (c)
are for the three different channels indicated in Fig. 3. The same color code as Fig.3 is used.
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Figure 5. Comparison of travel times of the direct wave picked using the crosscorrelation and
first break method for the data near those channels marked in Fig. 3.



4., TOMOGRAPHIC RECONSTRUCTION
4.1 Method

A regularized inversion method'® is used to sound-speed reconstruction. Because the sound-speed distribution is not
uniform, the ray (or beam) paths from transmitters to receivers are not straight lines. Therefore, we use bent rays in
sound-speed reconstruction. First-arrival travel times and bent ray paths are calculated by solving the eikonal equation
with a finite-difference method." The reconstruction using bent rays is a nonlinear problem that can be solved
iteratively. We start the iteration with a homogenous initial model that is divided into a uniform grid with M cells. The
eikonal solver gives first-arrival travel times and ray paths for a given sound-speed model. Let & be the travel-time
difference between the observed time and the calculated time, /; be the ray-path length in the jth cell, and As; be the
slowness perturbation of the jth cell. The slowness s is defined as the inverse of sound speed ¢, i.e., s=1/c. For the ith ray
path (or transmitter and receiver pair), we have a linear equation

M
&, =Y LAs,, 3)
/

where i=1,2,...,N; N is the total number of transmitter-receiver pairs to be used in reconstruction. Equation (3) can be
written as a matrix form

OoT =LJS. )

Solving equation (4) yields As; from 6T, and generates an updated model by adding the perturbation As; to the initial
model. Travel times and ray paths are then recalculated using the updated model during next iteration. The iteration
continues until the travel-time misfit JT is not significantly improved from previous iteration. We reduce the roughness
of the reconstructed model by applying regularization. Instead of solving equation (4), we actually solve a larger system
of equations

Cﬂ;lﬂgr ~ C;.”ZL

= s, (5)
-1C,8, | |ic,
where C,is the data covariance matrix, C, is a roughing matrix, A is a trade-off parameter, S, is the initial model of
current iteration, and 38 is the model perturbation to be solved. The updated slowness model is obtained from S = S, +
3S. This system is solved by the LSQR method."

4.2 Simple models

We first study reconstruction capability for simple objects. In Fig. 6, the objects with different sizes and shapes are
located at the center of the ring. The central location should be favorable for the sound-speed reconstruction. Under this
idealized condition, we investigate if we can reconstruct and resolve small objects. The two round objects have
diameters of 15 mm and 5 mm, respectively, and the square one has a side of 13 mm. From the reconstruction images in
Fig.6, we can see that the sound speeds of two larger objects are well reconstructed, and the smaller round object can be
identified. Using our simulated data with a central frequency of 0.5 MHz and a wavelength of approximately 3 mm, we
have difficulty to reconstruct the shape of the square and the absolute value of the sound speed of the smaller round
object. Figure 7 gives another example the object that is located off the center. The sound-speed reconstruction is also
accurate, though the difference shown in Fig. 7d seems larger than Fig. 6d.

We display the travel-time difference rather than the absolute time to visualize the travel-time picks. The time
difference is obtained by subtracting the travel time of the water-only reference data, and displayed in a transmitter-
receiver diagram. In Fig. 6b, the travel-time perturbation is a straight line, because the object is located at the center of
the ring transducer. If the object is off the center, the travel-time perturbation exhibits a sine-shaped cure, as shown in
Fig. 7b.

4.3 Numerical breast phantoms derived from in-vitro and in-vivo data

A ring transducer array has been used to collect data from phantoms and volunteers.®> We use an in-vitro data for an
experimental breast phantom and an in-vivo ultrasound breast data to reconstruct the sound-speed images, and use them



to derive two numerical breast phantoms shown in Figs. 8 and 10. The simulation study on these phantoms can in turn
help understand the ring transducer data and interpreting the reconstruction results. Figure 8 shows the simulation for
models derived from a phantom with four objects. One of the objects with an irregular shape is a tumor. We decompose
the phantom into different parts and study the effects of each part. Row 1 in Fig. 8 is a homogenous round target. In
Row 2, an irregular object with a higher sound speed is added. This higher sound-speed anomaly causes a lower travel-
time perturbation (see the dark blue belt in Column b.) It can be seen form Column c that the anomalous sound-speed is
reconstructed but not the shape. When a lower sound-speed object is added (see Row 3), a higher perturbation appears in
the travel-time pick diagram (see the yellow belt in Column b.) Row 4 gives the simulation for a complete phantom.
The main feature added here is a thin layer. Column ¢ shows the reconstruction of this layer. Figure 9 is a detailed
comparison between the actual sound-speed in Row | and its reconstruction through a cross line.

The numerical breast phantom in Fig. 1 (also shown in Fig. 10a) is derived from a sound-speed reconstruction result
of the in-vivo data set mentioned above. The simulated ultrasonic data for a transmitter is shown in Fig.2. Figure 10
shows the phantom, travel-time picks, and our sound-speed reconstruction of the phantom. The reconstruction shows the
most features in the phantom. Because the ray-based transmission tomography is a low-resolution technique. the
reconstructed image in Fig. 10(c) looks like a smoother version of the numerical phantom depicted in Fig. 10(a).
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Figure 6. Numerical phantoms with an object at the center. (a) Given models. The color map is the sound
speed (m/second). (b) The first-arrival travel time difference between water-only data and the study
data; the unit of the color map is time (microsecond). (¢) Reconstructed sound-speed images. (d)
Comparison between the actual and reconstructed sound-speeds along a line across the center.
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Figure 7. A numerical phantoms with an object off the center. (a) The phantom. (b) Travel-time perturbation. (c)
Reconstructed sound-speed. (d) A comparison between the actual and reconstructed sound-speeds.
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Figure 8. Simulation of a numerical phantom and its decomposition. Shown in (a) are the phantoms,

those in (b) are travel-time perturbations, and the images (c) are reconstructed sound-speeds.
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Figure 9. Cross-section comparison for the numerical phantoms shown in Row 1 in Fig. 8. The
difference between the correct one and the reconstruction is invisible except at the edges.
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Figure 10. Sound-speed tomography for a numerical breast phantom derived from an in-vivo data collected

using a ring array. (a) The numerical phantom. (b) The travel-time perturbation. (¢) The reconstructed
sound-speed image for the phantom.

5. CONCLUSIONS

The ring transducer array provides an ideal coverage for sound-speed transmission tomography. Our studies have
demonstrated that the time-of-flight transmission tomography can accurately reconstruct the sound speed for an object
larger than 5 wavelengths of the incident ultrasound. For objects with a size less than 2 wavelengths, the reconstruction
may indicate the existence of the object, but does not recover the absolute value of the sound speed. The algorithms, e.g.,
the finite-difference eikonal solver for bent-ray computation and the linear system solver LSQR, used in our tomography
reconstruction, are all computationally efficient. The computing time for a 5-iteration reconstruction was less than 3
minutes on a typical laptop computer, and was less than 1 minute on a state-of-the-art PC desktop.
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