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ABSTRACT: Shewanella spp. are a group of facultative anaerobic bacteria widely distributed 
in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes 
of eight recently sequenced Shewanella species grown under the same condition in minimal 
med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different 

growth rates (0.23–0.29 h₃1) and produced different amounts of acetate and pyruvate during 
early exponential growth (pseudo-steady state), the relative intracellular metabolic flux 
distributions were remarkably similar. This result indicates that Shewanella species share 
similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: 
the maintenance of metabolic robustness is not only evident in a single species under genetic 
perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636–640), but also observed through 
evolutionary related microbial species. This remarkable conservation of relative flux profiles 
through phylogenetic differences prompts us to introduce the concept of metabotype as an 
alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display 
flexibility in the relative flux profiles when switching their metabolism from consuming lactate 
to consuming pyruvate and acetate.  

Introduction 
 
Shewanella spp. have received significant attention because of their versatile respiration and 

potential to engage in co-metabolic bioremediation of toxic metals, radionuclides, and halogenated 

organic compounds (Tiedje, 2002; Venka-teswaran et al., 1999). Shewanella can also be used in 

microbial fuel cell applications: via an electrode as a final electron acceptor, electricity can be 

harvested from biomass when they oxidize organic compounds (Fredrickson et al., 2008). In order 

to understand Shewanella metabolism and fully explore their bioremediation and bioenergy applica-

tions, we first reported the metabolic fluxes in the model species S. oneidensis MR-1 under 

different growth condi-tions (Tang et al., 2007a). Metabolite fluxes represent the integrated 

functional output of the underlying metabolic network (Sauer, 2006) since they link genes, proteins, 

and metabolites to macroscopic biological functions. In this article, we further investigated the 

variation of central metabolic flux distribution in phylogenetically different Shewanella species to 

reveal the robustness of metabolic regulation, a long-recognized important property of biological 

systems. Previous studies using other micro-organisms have examined metabolic robustness to 



pertur-bations in the form of mutations and environmental conditions (Blank et al., 2005; Fischer 

and Sauer, 2005). A relatively unstudied type of robustness, however, involves the change of 

metabolic fluxes across a clade of related species under similar environmental conditions. Recent 

sequencing of several of these Shewanella species gives us the opportunity to use the well-

characterized Shewanella oneidensis MR1 as a basis to study the variation of central metabolic flux 

profiles across wide phylogenetic differences (Table I) (Fredrickson et al., 2008). The results may 

advance our understanding of the metabolic flux regulation in all Shewanella species and provide 

guidelines for rational genetic engineering of Shewanella species to improve their potential 

application in bioremediation and fuel cells. 
 
 
Materials and Methods 
 
Culture Conditions and Analytical Methods for Metabolites 
 
The eight Shewanella species in this study (MR1, MR4, MR7, SB, CN, W3, ANA, PV4) were 
donated by the Shewanella Federation. E. coli K12 W3110 was obtained from The American Type 
Culture Collection (ATCC 27325). All species were cultured in the modified MR-1 defined medium 
(Tang et al. 2006) in shaking glass tubes (12 mL, duplicates) at 308C. The carbon source was [3-
13C] sodium L-lactate (98%, Cambridge Isotope, Andover, MA). The inoculum was prepared in LB 
medium overnight (optical density at a wavelength of 600 nm, OD600 > 1.5); the cultures were 
started with a 0.09% inoculation volume to minimize the inoculation effect. Total biomass growth 
in the minimal medium was monitored by measuring the OD600, based on the correlation between 
dried biomass and its corresponding OD600. The concentrations of lactate, acetate, and pyruvate in 
the medium were measured using enzyme kits (r-Biopharm, Darmstadt, Germany). The GC-MS 
protocol for isotopomer measurement has been described previously (Tang et al., 2007c). In brief, a 
10-mL culture at the early exponential phase (OD600 ¼ 0.3–0.5) was harvested and hydrolyzed. GC-
MS samples were prepared in tetrahydrofuran (THF) and N-(tert-butyldimethylsilyl)- N-methyl-
trifluoroacetamide (Sigma-Aldrich, St. Louis, MO). GC-MS was carried out using a gas 
chromatograph (HP6890 series, Agilent, Inc., Santa Clara, CA) equipped with a DB5 column (J&W 
Scientific, Inc., Folsom, CA) and a mass spectrometer (5973 Network, Agilent, Inc.). Two types of 
positively charged species from the mass spectrometer were used for flux analysis: unfragmented 
molecules [-57] and fragmented species that had lost one carboxyl group [-159]. Corrections due to 
the natural abundance of isotopes were applied using the publicly available tool for mass 
isotopomer data (Wahl et al., 2004). 
 
 
Algorithm for Flux Calculation and  
Isotopomer Modeling 
 
Biochemical pathways for the central carbon metabolism of Shewanella and E. coli were obtained 
from the genome database MicrobesOnline (Alm et al., 2005) (Fig. 1). The metabolic network 
includes the tricarboxylic acid (TCA) cycle (including the glyoxylate shunt), C1 metabolism, the 
Entner-Doudoroff (ED) pathway, gluconeogenesis, and the pentose phosphate (PP) pathway. Only a 
few reactions (the couples: 16–20, 15–19, 13–17, and 14–18, Fig. 1) were considered as reversible 
due to their significant impact on the isotopomer distribution. Reversible reactions in the pentose-
phosphate pathway were not included, since the total flux through the PP pathway in this study was 
very low (<5% of total carbon flow) and mainly for biomass production (Arauzo-Bravo and 
Shimizu, 2003; Zhao and Shimizu, 2003). The lactate uptake and outgoing metabolite fluxes (i.e., 



pyruvate and acetate) were measured directly via enzyme assays. The final values for these external 
fluxes were chosen by optimizing the error function (see below) within their measurement errors 
(see Table S-I). Similarly, the fluxes to biomass pools were not fixed by measurement values, but 
were loosely constrained by the MR-1 or Escherichia coli biomass compositions (Table S-I), which 
were optimized by the model using isotopomer information (Tang et al., 2007a). The upper and 
lower limits for each intracellular and extracellular flux are shown in Supplementary Table S-I (i.e., 
the optimal fluxes were forced to be within the range of their upper and lower limits). Metabolic 
fluxes for all reactions in Figure 1 were calculated by  
  

minimizing the error (or objective) 
function:   

    m      

   "ðvÞ 
¼ 

iP

¼1 
w1"1ðv
Þ   

(1)
 

    m    

" v v kj            Mij   ₃ NijðvÞ  2 (2) 

 1 u       
  ð Þ ¼ uX

j1 
dij      

   t ¼       
 
where the vector v were the unknown fluxes, Mij were the measured GC-MS data for the fraction of 
molecules with j labeled carbons for the ith amino acid or fragmented amino acid, Nij were the 
corresponding model-simulated MS data, dij were the corresponding data measurement errors, and 
m was the total number of MS measurements. Different weights wi were used for each amino acid 
depending on its relative importance for the fit. For example, histidine was given a weight of 0.0025 
because: (1) flux through pentose phosphate pathway (constrained by histidine) was minimal 
(mainly for biosynthesis) comparing to TCA cycle related pathways (constrained by other amino 
acids); (2) GC-MS signals for histidine were usually very weak and had high background noise 
(Antoniewicz et al., 2007); and (3) the histidine pathway is complicated since its biosynth-esis route 
is via both C1 metabolism and C5 metabolism, so a good fit for histidine is difficult. This is why it 
was given a lower weight in the fitting. The reactions serine ! glycine ! 5, 10-methyl-THF(C1 pool) 
were found to be highly reversible and the reversibility was growth rate dependent (Perrenoud and 
Sauer, 2005); thus, serine and glycine were given a weight of 0.25 because exchange dynamics not 
captured in the isotopomer measurement might be expected to distort the calculated flux values. 
The rest of the amino acids (glutamate, aspartate, alanine, and phenyalanine) were given a weight of 
1 since those amino acids clearly reflected their precursors’ labeling and had the isotopic steady 
state during the early growth period. The model did not include cofactor balances.  

The carbon labeling expected from a flux profile v was calculated via the cumomer method 
(Wiechert et al., 1999). The vector vind was formed by the 16 independent fluxes, obtained 
automatically from the reaction network (Supplementary data Table II) through Gaus-sian 
elimination, plus the unlabeled fractions of CO2 and C1, for a total of 18 independent variables. For 
each species, the minimization of the error function was performed through genetic algorithms 
(GA) (Goldberg, 1989). Variables being optimized were encoded using floating point numbers with 
the additional constraint that their values should belong to the [0,1] interval. The adapted operators 
used were tournament selection without replacement (s ¼ 4) (Goldberg, 1989; Sastry and Goldberg, 
2001), simulated binary crossover (SBX) (Deb and Agarwal, 1995; Deb and Kumar, 1995) with 

 
 
 



hc ¼ 10,   
crossover 

probabilit
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pc ¼ 
0.9, 

a   
polynomial

mutation (Deb, 2001) with h ¼ 20,and mutation
probability P ¼ 0.1. The GA was run for 325 iterations.  

 
In tournament selection without replacement and with tournament size s, s chromosomes 

(solutions to the optimization problem) are chosen at random without replacement and entered into 
a tournament against each other. The best (low error) individual in the group of chromosomes wins 
the tournament and is selected into a mating pool for evolving new solutions. In SBX, individuals in 
the mating pool are divided into random pairs and each pair undergoes recombination with a 
probability pc. For each pair participating in the crossover, each gene (or variable) undergoes a 
contracting or expanding crossover operation with a probability 0.5. Therefore, for each pair of 
chromosomes undergoing recombination, on average half of the genes are modified using either 
contracting or expanding crossover operations. The operations are designed to mimic crossover 
operator behavior on binary domains. The polynomial mutation is similar to SBX, and the only 
difference is in the computation of the polynomial probability. Instead of using genotypic distance 
between two parents as in SBX, the distance between a gene and its corresponding upper or lower 
bound, whichever is closer, is considered in computing the contracting and expanding probability 
distributions. In polynomial mutation, each gene (or variable) undergoes contracting or expanding 
operation with a probability p. The simulations were run until the error function did not decrease 
further with additional time steps and convergence was apparent. Supplementary files (Figs. S-1 
and S-2) showed the optimized flux results and final fits of isotopomer data for each strain in our 
flux distribution calculation.  

A Monte Carlo method was used to determine the confidence interval of all calculated fluxes 
(Zhao and Shimizu, 2003). The reliability of the results was gauged by changing the GC-MS data 
randomly within the measure-ment errors and running simulated annealing processes starting in the 
vicinity of the previously calculated optimum solution (Press et al., 1992) until the error function 
did not decrease any further and the processes converged (data not shown). The simulated 
annealing algorithm was used in statistic analysis of model results because this method was faster 
than genetic algorithm although less efficient in exploring the full flux space (hence the start point 
near the previously calculated optimum solution). Each of the individual simulated annealing 
processes performed 10,000 error function evaluations with an initial tempera-  
ture of Tini ¼ 3.0 and a final one of Tfin ¼ 0.05 (the scheme that showed the best results) and K ¼ 
100 cooling steps  
following an exponentially decreasing process for Ti. The initial independent flux vector vind was 
chosen to be that of the solution v for each species found through genetic algorithms with a random 
noise of maximum value d ¼ 0.05 added to each flux component so that the final solution was not 
trivially close to the original solution. This procedure was repeated 100 times, and the standard 
deviation for fluxes obtained (vi) was determined as usual: 
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Results and Discussion 



 
Although we tested 11 sequenced Shewanella spp., only eight of them were able to grow 
aerobically in a minimal lactate medium under 308C (the 11 Shewanella spp. listed in Fig. 2). The 
flux analysis experiments involved eight Shewanella spp. and E. coli W3110 grown in minimal 
medium containing 30 mM [3-13C] lactate (Table I and Fig. 3a). The doubling times during the 
early exponential growth phases for all Shewanella spp. ranged from 2.3 to 2.9 h (3.2 h for E. coli 
as a comparison). In early exponential phase, Shewanella produced a significant amount of pyruvate 
and acetate, while E. coli excreted only acetate (Fig. 3b). Shewanella spp. grew faster in early log 
phase (OD600 < 0.5) than during the late log phase when it transitioned from growth on lactate to the 
less energetically favorable carbon sources pyruvate and acetate.  

We calculated the flux distributions for all Shewanella spp. and E. coli (lactate uptake flux, v1, 
was normalized to 1) and confidence intervals were calculated as described in Materials and 
Methods Section (Table II). The fits of the isotopomer data for flux calculations in all strains 
(supplementary Fig. S-2) showed a good agreement between predicted and measured isotopomer 
data with the exception of histidine (given a lower weight in the fitting), the labeling of which could 
not be predicted accurately due to isotopomer measurement uncertainty and the confounding effects 
of C1 metabolism for histidine synthesis not taken into account in the model.  

In the early exponential phases, all Shewanella spp. showed similar intracellular flux profiles. The 

TCA cycle was not the main carbon metabolism route (fluxes <40% of lactate uptake), as much of 

the lactate was excreted as acetate (30–50% of lactate uptake) and pyruvate (10–20% of lactate 

uptake). S. oneidensis MR4 and S. oneidensis MR7 produced the most acetate and pyruvate, 

consistent with their highest growth rates among all tested Shewanella species. In contrast, E. coli 

W3110 excreted a large amount of acetate (47% of lactate uptake) and no pyruvate in the early 

growth phases. 
 

Despite growth under aeration, Shewanella species had limited flux through the TCA cycle, 
resulting in lactate not being fully oxidized and accumulation of acetate, which is known to inhibit 
growth (Tang et al., 2007b). Acetate production from Shewanella MR-1 could be enhanced by 
oxygen uptake constraints (i.e., under low dissolved oxygen culture condition) during fast growth 
(Tang et al., 2007b). If the cells were to maximize their growth rate, one would expect acetyl-CoA 
to be fully oxidized rather than excreted as acetate, as this would produce a higher yield of ATP-
equivalents per acetyl-CoA than the excretion of acetate or pyruvate. The observation that cells 
excreted a large fraction of the lactate as pyruvate and acetate can be explained by recent reports 
that metabolism is only truly geared towards biomass yield maximization under carbon scarcity in 
continuous cultures; rather, it has been proposed that exponentially growing cells regulate their 
metabolism to achieve a combination of maximizing overall ATP yield and minimizing the overall 
fluxes through the metabolic network (i.e., minimal enzyme usage) (Schuetz et al., 2007). Thus, 
‘‘overflow’’ of acetate and pyruvate significantly reduces fluxes through central pathways and, 
hence, enzyme usage in the metabolic network.  

Grown on lactate, the Shewanella species and E. coli had low flux through the pentose phosphate 
pathway which was mainly for biomass production (<3% of lactate uptake). The fluxes through the 
ED pathway, which allows cells to synthesize glucose-6-phosphate, were minimal. Two 
anapleurotic reactions appeared to be active in all Shewanella species and E. coli (malate $ 
pyruvate; phosphoenolpyruvate $ oxaloacetate). Fluxes through the two reactions were around 10–
20% of the lactate uptake for all species. The glyoxylate shunt also had measurable flux in all 
species (less than 10% of the lactate uptake); this pathway reduces the amount of acetyl-CoA being 
com-pletely oxidized by the TCA cycle and saves carbon substrate for biosynthesis (Zhao and 
Shimizu, 2003). 



 
The lack of constancy over time in key amino acid labeling profiles in all Shewanella species 

(using MR-1 as an example) and E. coli (Fig. 4) attests to a change in flux distribution from the 

early to the late phase of exponential growth, consistent with the change of the carbon sources from 

lactate to pyruvate and acetate. When the isotopomer data from proteinogenic amino acids in the 

late phase biomass were used in our isotopomer model, the calculated MR1 and E. coli flux profiles 

showed an increase in fluxes through the TCA cycle, specific anapleurotic reactions (PEP ! OAA), 

and the glyoxylate shunt (Table II). The increased flux through the TCA cycle resulted from the 

depletion of lactate and subsequent substitution by the previously excreted acetate as the primary 

carbon source. Previously, it has been shown using metabolic flux analysis that S. oneidensis MR-1 

and E. coli grown under severe carbon-limited conditions had increased flux through the glyoxylate 

shunt or anapleurotic reactions (Fischer and Sauer, 2003; Sauer et al., 1999; Tang et al., 2007a). In 

the late growth phase, gluconeogenesis (necessary for biosynthesis of nucleotides and amino acids) 

also increased. These results indicate that there is a shift from the early phase dominated primarily 

by metabolite (i.e., pyruvate and acetate) excretion and energy production towards the late phase 

where carbon metabolism becomes more complete. Taken together, these data demonstrate the 

flexibility of Shewanella to alter its growth strategy and underlying metabolism in accordance with 

carbon source availability, that is, Shewanella spp. central metabolism tends to maximize 

conversion of a favorable carbon substrate (lactate) to two less energetically favorable substrates 

(pyruvate and acetate), which can be utilized later (E. coli only excreted acetate in the exponential 

growth phase). From an evolutionary view, such metabolism under unlimited growth may enable 

cells to compete with other organisms by quickly consuming favorable carbon sub-strates and 

excreting less favorable carbon sources, some of which may be inhibitory to other organisms 

competing in the same environment. 
 

It must be mentioned that the amino acid labeling profiles from the late exponential phase are an 

average of the protein synthesized in the early exponential phase—when the cells are essentially in 

steady-state growth using lactate as carbon sources—and late exponential phase, where the carbon 

sources switch to pyruvate or acetate. Thus, the flux results based on the isotopomer data in the late 

exponential phase must be interpreted as the ‘‘averaged’’ flux distribution through the multiple 

growth stages. This is not the case for the early exponential phase fluxes, where the sole carbon 

substrate lactate is metabolized and a ‘‘pseudo steady’’ state can be assumed at this growth stage 

(Sauer et al. 1999). However, comparing the ‘‘averaged’’ fluxes from late growth phase with the 

fluxes from the early growth phase, we could qualitatively observe the dynamic trend of central 

metabo-lism during Shewanella species growth, while at the same time avoiding a dynamic fluxes 

analysis which is compu-tationally demanding and beyond the scope of this article.  
Finally, despite different growth curves and extracellular metabolite production among the 

Shewanella species, the flux analysis results show very similar relative intracellular flux profiles for 

all the Shewanella species grown on lactate, that is, the differences in the values of most fluxes are 

within the measurement uncertainty (Table II). Even for E. coli, fluxes through the central 

metabolic pathways (not extracellular metabolites) appear to have regulation similar to the 

Shewanella species. Through the diversification of the Shewanella lineage, a single ancestral 

species evolved into multiple species that inhabit diverse environments through changes in gene 

content, gene function, regulation, etc. Hence, it is interesting that the metabolic flux profiles could 

be very similar given the evolutionary differences. This phenomenon implies that it may be useful 



to understand microbial communities as assemblages of different meta-bolic types (or 

‘‘metabotypes’’) in addition to phylotypes. Each metabotype would include sets of species, possibly 

phylogenetically different, that share a similar relative flux distribution for metabolizing the same 

carbon substrate. For example, when lactate is used as the carbon source, Shewanella species show 

a metabotype close to that of E. coli. In contrast, Shewanella species and Desulfovibrio vulgaris, 

another environmentally important organism, belong to completely different metabotypes for lactate 

metabolism (Supplementary Fig. S-3 provides a detailed comparison of metabotypes among 

Shewanella species, D. vulgaris (lactate as the carbon source), and E. coli) (Tang et al., 2007c; Zhao 

and Shimizu, 2003). 

 
Conclusion 
 
Our study on flux distributions in phylogenetically distant Shewanella species and E. coli reveals a 

remarkable similarity in the central carbon metabolism fluxes for these species. This fact prompts 

the introduction of the concept of a metabotype, which provides a different classification of 

organisms than phylotypes regarding the characterization of metabolic activity in a microbial 

community. Metabo-types depend on both carbon sources and phylotypes, and thus organisms with 

different phylotypes can have the same or similar metabotypes (e.g., Shewanella spp. vs. E. coli). 

The concept of a metabotype has several possible implications. First, it allows us to predict the 

central metabolism of close species (whose genome may not even be sequenced yet) by only 

studying one representative species. Second, it paves the way to model the metabolism of whole 

microbial ecosystems as the sum of a limited number of metabotypes instead of a myriad of 

phylotypes. Third, it provides a baseline for rational metabolic engineering of micro-organisms. 

Because a metabotype encompasses the set of fluxes that define organisms given a growth 

condition, one can imagine a scenario where a microbial chassis is selected on the basis of 

optimizing the flux leading to necessary precursor components. Furthermore, the metabotype 

concept may lead to quick and efficient transfer of constructs from an engineered species to another 

in the same metabotype that has a more suitable growth condition. On the other hand, and 

complementarily, we find that the Shewanella spp. display considerable flexibility in its central 

carbon metabolism fluxes when adapting to different carbon sources, which may be used as a 

competitive recourse. 
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Table I. Genetic/environmental characteristics and growth rates (in MR-1 minimal medium and 308C) for Shewanella spp.  
        

  GC content (%) Genome size (Mb) Ecotype Pathogen Temperature Growth rate (h₃
1
) 

MR1  46.0 4.97 Aquatic X Mesophile 0.23 ₃ 0.04 
MR4  48.0 4.71 Marine  Mesophile 0.28 ₃ 0.03 
MR7  49.5 4.80 Marine  Mesophile 0.29 ₃ 0.02 
SB2B  58.0 4.31 Fresh water  Mesophile 0.24 ₃ 0.04 
CN32  44.5 4.66 Aquatic/Soil X Mesophile 0.26 ₃ 0.05 
PV4  53.8 4.60 Marine  Psychrophile 0.24 ₃ 0.03 
ANA3  49.5 4.97 Soil  Mesophile 0.28 ₃ 0.06 
W3-18-1 45.0 4.71 Marine/Deep Sea  Psychrophile 0.27 ₃ 0.06 
 

     

           Figure 1. Central 

pathways of lactate metabolism in Shewanella and E. coli. The amino acids used for isotopomer models are boxed. Numbers denote the arbitrary flux indices used in 
modeling the pathways and circled numbers denote metabolite numbers (used for construction of reaction list in supplementary Table S-II). 6PG, 6-phosphogluconate; 
ACCOA, acetyl-coenzyme A; ACout, acetate outside the cell; ALA, alanine; ASP, aspartic acid; CIT, citrate; DAP, dihydroxyacetone phosphate; E4P, erythrose-4-
phosphate; C1, 5,10-Me-THF; F6P, fructose-6-phosphate; FUM, fumarate; G6P, glucose-6-phosphate; GLU, glutamate; GLY (boxed), glycine; GLY, glyoxylate; HIS, 
histidine; ICIT, isocitrate; LACT, lactate; LEU, leucine; LEUP, leucine precursor; MAL, malate; OA, oxaloacetate; OGA, 2-oxoglutarate; PEP, phosphoenolpyruvate; 
PGA, 3-phosphoglycerate; PHEP, phenyalanine precursor; PHE, phenyalanine; PYR, pyruvate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; Xu5P, xylulose-
5-phosphate; S7P, sedoheptulose-7-phosphate; SER, serine; SUCC, succinate; T3P, triose-3-phosphate; PYR, pyruvate. [Color figure can be seen in the online 
version of this article, available at www.interscience. wiley.com.] 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Phylogenetic relatedness of 11 sequenced Shewanella genomes. A maximum likelihood tree (PHYML) showing the evolutionary relationship between 

the Shewanella species is illustrated. The tree is based on a concatenated multiple sequence alignment of 100 single-copy genes present in all of the species. All 
nodes were consistent with 100 bootstraps. E. coli and Vibrio cholerae were used as the outgroups. Eight Shewanella species were studied, and the parenthesis 
includes the source of species, number of genes, and percent of unique genes not found by sequence homology in the other ten Shewanella genomes. The detailed 
information about all Shewanella strains can be found at the Shewanella federation website: www.shewanella.org. 
 

Figure 3. Growth kinetics of Shewanella oneidensis MR-1 and other species. a: Shewanella and E. coli growth kinetics (&) MR-4, (~) MR-7, (*) ANA-3, (^) PV-4, 

(^) SB2B, (&) W3-18-1, (*) CN-32, (~:) MR-1, (₃) E. coli W3110. b: Substrate consumption and product excretion kinetics in Shewanella species (using MR-1 as an 
example) and W3110. (&) lactate (MR-1), (^) acetate (MR-1), (*) pyruvate (MR-1), (&) lactate (E. coli W3110), (^) acetate (E. coli W3110). 
 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 
Labeling fraction of most abundant ion changes as a function of time showing the isotopomer 
shifting in proteinogenic amino acids during MR-1 and E. coli W3110 growth. M0, M1, M2. . . 

represent unlabeled, singly 
13

C labeled, and doubly 
13

C labeled mass ions, respectively, of a 
given amino acid. The constancy over time in key amino acid labeling profiles in all 
Shewanella species (using MR-1 as an example) and E. coli shows that an isotopomer 
steady state is reached in the early growth stage. A marked change in these same profiles 
indicates a shift in flux at later stages. a: Amino acids (precursors from gluconeogenesis and 
serine metabolism pathway) (&) Ser (M1 [-57], MR-1), (*) Gly (M1 [-57], MR-1), (^) Ala (M1 [-
57], MR-1), (&) Ser (M1 [-57], E. coli), (*) Gly (M1 [-57], E. coli), ^: Ala (M1 [-57], E. coli). b: 
Amino acids (precursors from TCA cycle) (&) Glu (M3 [-57], MR-1), (*) Asp (M2 [-57], MR-1), 
(^) Leu (M3 [-159], MR-1), (&) Glu (M3 [-57], E. coli), (*) Asp (M2 [-57], E. coli), (^) Leu (M3 [-
159], E. coli). c: Amino acids (precursors from gluconeogenesis and pentose phosphate 
pathway). (&) His (M1 [-57], MR-1), (^) Phe (M1 [-57], MR-1), (&) His (M1 [-57], E. coli), (^) 
Phe (M1 [-57], E. coli). 
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 Table  II.    Comparison of central carbon metabolism (flux/confidence interval) among the different Shewanella species and E. coli 
W3110. 
 
Flux no. MR1 MR4 MR7 SB CN W3 ANA PV4 E. coli MR1 late E. coli late 
          

TCA cycle þ lactate uptake (TCA)          
1 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 
2 0.72/0.15 0.90/0.15 0.90/0.12 0.82/0.18 0.74/0.12 0.86/0.15 0.83/0.14 0.89/0.13 0.94/0.16 0.86/0.18 1.07/0.23 
3 0.36/0.13 0.34/0.11 0.30/0.09 0.53/0.18 0.42/0.14 0.43/0.15 0.39/0.12 0.32/0.09 0.39/0.14 0.76/0.18 0.75/0.19 
4 0.36/0.13 0.34/0.11 0.30/0.09 0.53/0.18 0.42/0.14 0.43/0.15 0.39/0.12 0.32/0.09 0.39/0.14 0.76/0.18 0.75/0.19 
5 0.30/0.10 0.24/0.07 0.20/0.08 0.46/0.16 0.39/0.13 0.38/0.12 0.32/0.09 0.21/0.06 0.32/0.09 0.66/0.15 0.57/0.13 
6 0.28/0.09 0.23/0.07 0.19/0.08 0.45/0.17 0.38/0.13 0.36/0.13 0.31/0.10 0.20/0.06 0.30/0.09 0.65/0.16 0.56/0.13 
7 0.34/0.13 0.32/0.11 0.29/0.10 0.52/0.19 0.40/0.13 0.42/0.15 0.38/0.13 0.31/0.10 0.37/0.14 0.75/0.19 0.74/0.19 
8 0.34/0.13 0.32/0.11 0.29/0.10 0.52/0.19 0.40/0.13 0.42/0.15 0.38/0.13 0.31/0.10 0.37/0.14 0.75/0.19 0.74/0.19 
9 0.29/0.08 0.25/0.07 0.18/0.04 0.38/0.11 0.33/0.08 0.31/0.08 0.28/0.06 0.22/0.05 0.30/0.08 0.65/0.13 0.63/0.13 

Glyoxylate shunt (GSH)           

10 0.06/0.04 0.10/0.07 0.10/0.06 0.07/0.04 0.03/0.02 0.05/0.03 0.07/0.05 0.11/0.06 0.07/0.05 0.10/0.04 0.17/0.09 
11 0.06/0.04 0.10/0.07 0.10/0.06 0.07/0.04 0.03/0.02 0.05/0.03 0.07/0.05 0.11/0.06 0.07/0.05 0.10/0.04 0.17/0.09 

Reversible net fluxes and C1 metabolism (RN)         

12 0.02/0.03 0.01/0.03 0.01/0.03 0.02/0.02 0.02/0.03 0.02/0.03 0.02/0.03 0.02/0.02 0.02/0.03 0.03/0.02 0.02/0.03 
13 0.03/0.07 0.01/0.05 0.01/0.06 0.06/0.07 0.02/0.09 0.02/0.04 0.03/0.05 0.03/0.08 0.04/0.09 0.10/0.11 0.11/0.69 
14 0.03/0.05 0.01/0.06 0.01/0.07 0.03/0.04 0.02/0.05 0.03/0.05 0.02/0.04 0.02/0.03 0.02/0.03 0.05/0.05 0.02/0.06 
15 0.00/0.02 0.00/0.01 0.00/0.04 0.00/0.03 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.02 0.03/0.02 0.00/0.00 0.03/0.05 
16 0.00/0.03 0.00/0.04 0.00/0.04 0.00/0.02 0.00/0.03 0.00/0.04 0.00/0.04 0.00/0.04 0.00/0.04 0.00/0.03 0.00/0.04 

Reversible exchange (RE)          

17 0.01/0.05 0.00/0.03 0.00/0.04 0.04/0.06 0.00/0.08 0.00/0.01 0.01/0.03 0.01/0.06 0.02/0.08 0.07/0.09 0.09/0.69 
18 0.01/0.02 0.00/0.04 0.00/0.05 0.01/0.02 0.01/0.01 0.01/0.02 0.01/0.01 0.00/0.01 0.00/0.01 0.02/0.03 0.01/0.04 
19 0.08/0.04 0.10/0.06 0.14/0.07 0.16/0.07 0.11/0.05 0.13/0.06 0.12/0.05 0.11/0.05 0.13/0.07 0.12/0.04 0.17/0.09 
20 0.11/0.08 0.17/0.11 0.22/0.10 0.20/0.10 0.10/0.05 0.16/0.08 0.17/0.09 0.20/0.09 0.14/0.08 0.20/0.08 0.28/0.12 

Glycolysis (Gly)           

21 0.16/0.04 0.17/0.04 0.19/0.04 0.22/0.04 0.19/0.04 0.21/0.04 0.21/0.03 0.19/0.04 0.16/0.03 0.25/0.05 0.18/0.07 
22 0.05/0.06 0.05/0.05 0.03/0.04 0.04/0.05 0.06/0.06 0.05/0.06 0.06/0.04 0.06/0.03 0.04/0.05 0.11/0.05 0.03/0.07 
23 0.03/0.04 0.04/0.03 0.02/0.02 0.02/0.04 0.04/0.04 0.03/0.04 0.05/0.03 0.04/0.02 0.02/0.03 0.07/0.04 0.01/0.05 
24 0.01/0.01 0.02/0.01 0.01/0.01 0.00/0.01 0.02/0.01 0.01/0.01 0.02/0.01 0.01/0.01 0.01/0.01 0.03/0.01 0.00/0.02 
25 0.01/0.01 0.02/0.01 0.01/0.01 0.00/0.01 0.02/0.01 0.01/0.01 0.02/0.01 0.01/0.01 0.01/0.01 0.03/0.01 0.00/0.02 
26 0.01/0.01 0.02/0.01 0.01/0.01 0.00/0.01 0.02/0.01 0.01/0.01 0.02/0.01 0.01/0.01 0.01/0.00 0.03/0.02 0.00/0.01 

Pentose phosphate þ ED pathway (PPP)         
27 0.01/0.01 0.02/0.01 0.01/0.01 0.00/0.01 0.02/0.01 0.01/0.01 0.02/0.01 0.01/0.01 0.01/0.00 0.03/0.02 0.00/0.01 
28 0.00/0.01 0.00/0.01 0.00/0.01 0.01/0.02 0.00/0.01 0.00/0.01 0.01/0.01 0.01/0.01 0.00/0.01 0.00/0.01 0.00/0.01 
29 0.02/0.02 0.02/0.01 0.01/0.01 0.01/0.02 0.02/0.02 0.01/0.02 0.02/0.02 0.02/0.01 0.01/0.01 0.04/0.02 0.01/0.02 
30 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.02 0.01/0.01 
31 0.01/0.00 0.01/0.00 0.01/0.00 0.01/0.01 0.01/0.00 0.01/0.00 0.01/0.00 0.01/0.00 0.01/0.00 0.01/0.01 0.01/0.01 
32 0.01/0.00 0.01/0.00 0.01/0.00 0.01/0.01 0.01/0.00 0.01/0.00 0.01/0.00 0.01/0.00 0.01/0.00 0.01/0.01 0.01/0.01 
33 0.02/0.02 0.02/0.01 0.01/0.01 0.01/0.02 0.02/0.02 0.01/0.02 0.02/0.02 0.02/0.01 0.01/0.02 0.04/0.02 0.01/0.03 
34 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.01 0.00/0.01 

Amino acids and external (AM þ ext)          
35 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.02 0.01/0.01 
36 0.02/0.01 0.01/0.00 0.01/0.00 0.01/0.01 0.02/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.00 
37 0.20/0.03 0.08/0.03 0.11/0.02 0.13/0.03 0.14/0.02 0.06/0.03 0.11/0.02 0.08/0.02 0.02/0.02 0.06/0.03 0.01/0.03 
38 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.02 0.01/0.02 0.01/0.01 0.01/0.02 0.01/0.02 
39 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.02 0.01/0.01 
40 0.01/0.02 0.01/0.02 0.00/0.01 0.00/0.02 0.01/0.02 0.01/0.02 0.02/0.02 0.01/0.01 0.00/0.01 0.03/0.02 0.00/0.02 
41 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.02 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.02 0.01/0.02 
42 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.02 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.02 0.01/0.02 
43 0.29/0.02 0.46/0.03 0.48/0.02 0.21/0.03 0.29/0.03 0.37/0.03 0.35/0.03 0.45/0.02 0.47/0.02 0.01/0.03 0.14/0.03 

 

 

 


