
Solidification, growth mechanisms, and associated properties of Al-Si and

magnesium lightweight casting alloys

by

Timothy Al Hosch

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Materials Science and Engineering

Program of Study Committee:
Ralph E. Napolitano, Major Professor

Iver Anderson
Kai-Ming Ho
Rohit Trivedi

Ersan Üstündag

Iowa State University

Ames, Iowa

2010

Copyright c© Timothy Al Hosch, 2010. All rights reserved.

ii

DEDICATION

I would like to dedicate this thesis to my family, major professor, committee members, and

everyone else who helped to provide the general impetus to create such a document.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . xix

INTRODUCTION . 1

Introduction . 1

Dissertation Organization . 5

Literature Review . 6

Eutectic Solidification Theory . 6

Growth Mechanisms of Al-Si Eutectic Alloys 24

Interfacial Anisotropy . 30

Interface Stability . 34

References . 41

ANALYSIS OF THE HIGH GROWTH-RATE TRANSITION

IN AL-SI EUTECTIC SOLIDIFICATION 48

Abstract . 48

Introduction . 49

Experimental methods and findings . 52

Analysis and discussion . 53

Conclusions . 62

References . 64

iv

THE EFFECT OF THE FLAKE-FIBER TRANSITION IN SILICON

MORPHOLOGY ON THE TENSILE PROPERTIES OF

AL-SI EUTECTIC ALLOYS . 68

Abstract . 68

Introduction . 69

Experimental . 70

Results and Discussion . 71

Summary and Conclusions . 75

References . 76

MORPHOLOGICAL INSTABILITY OF SILICON DURING

DIRECTIONAL SOLIDIFICATION OF AN AL-SI EUTECTIC ALLOY 83

Abstract . 83

Introduction . 83

Experiments . 85

Instability Analysis . 86

Model Results . 92

Discussion . 92

Conclusions . 94

References . 95

METALLURGICAL ANALYSIS OF FLOW-LINE INDICATIONS IN

MG-BASED ALLOY CASTINGS . 114

Abstract . 114

Introduction . 114

Scope . 115

Test Specimens . 115

Microstructural Analysis . 116

Alloy WE43B . 118

Alloy EV31A . 120

v

Alloy ZE41 . 123

Tension Testing and Fracture Analysis . 127

Conclusions . 131

ADDITIONAL ANALYSES OF THREE-DIMENSIONAL

MICROSTRUCTURES . 136

Introduction . 136

Liquid structure quantification using a minimum spanning tree analysis 136

Minimum Spanning Tree . 137

Algorithm . 137

Structures . 140

Results and Analysis . 142

Conclusion . 145

Local microstructure characterization through use of the radial distribution function 161

Calculation of the RDF . 162

Results . 163

Calculation of the critical diameter function in an Al-Si alloy 163

References . 166

CONCLUSION . 168

APPENDIX . 171

vi

LIST OF TABLES

Table 1 Reported Al-Si eutectic growth parameters from length scale (λ) mea-

surements. 51

Table 2 Reported transition velocities. 52

Table 1 Temperature gradients measured in the present Bridgman-type direc-

tional solidification apparatus. 71

Table 2 Results of tension tests performed on Al-Si eutectic samples solidified

at different velocities. 75

Table 1 Definition of symbols. *Composition parameters converted from wt%

silicon to mol/m3 for calculation of gradient. 100

Table 1 Nominal compositions of test specimens, provided by Wellman Dynamics.116

Table 2 EDS analysis of alloy WE43B. 119

Table 3 EDS analysis of alloy EV31A (sample A). (Values in wt. percent.) . . 122

Table 4 EDS analysis of alloy ZE41 (sample 3B). (Values in wt. percent.) . . . 124

Table 5 Summary of tensile results for all samples. 130

Table 1 Percentage deviation range over which each MST statistic category is

most similar for the ideal structures versus the MD simulated structures.143

vii

LIST OF FIGURES

Figure 1 Phase diagram of the Al-Si system.(4) 4

Figure 2 Schematic of eutectic solidification. The periodic arrangement of phases

minimizes average diffusion distance, thus maximizing the efficiency of

solute transport. 7

Figure 3 Shape of (a) nonfaceted and (b) faceted interfaces. From Kurz and

Fisher.(5) . 8

Figure 4 Comparison of structure in a regular eutectic (left) and irregular eu-

tectic (right). The regular eutectic displays a relatively constant phase

spacing and morphology while the irregular eutectic structure contains

extreme variation in local spacing and features. Images from England.(6) 8

Figure 5 Schematic of a lamellar fault, as proposed by Jackson and Hunt.(7) Rel-

ative motion of the lamellar fault to the right will increase the average

spacing of the system, while motion to the left will decrease the average

spacing. 10

Figure 6 Planar interface morphology assumed in the calculation of the planar

diffusion solution. 14

Figure 7 Phase diagram showing definition of several pertinent constants. 14

Figure 8 Interface morphology assumed for the calculation of capillary under-

cooling showing definition of S and θ. 15

viii

Figure 9 Schematic showing the relation between spacing and total undercool-

ing. The main undercooling contributor at low spacings is the capil-

lary undercooling, while the diffusional undercooling dominates at large

spacings. Regular eutectics tend to grow at or near the extremum point

(minimum undercooling) while irregular eutectics grow at larger spacing

values. 18

Figure 10 Interface morphologies assumed by (a) Jackson and Hunt(7), (b) Sato

and Sayama(14), and (c) Fisher and Kurz(15). 21

Figure 11 Schematic of small angle (top) and large angle (bottom) branching

mechanisms in eutectic silicon. Small angle branching involves a succes-

sion of displacement twins which create a branched arm and then cause

it to diverge from the initial eutectic flake at a small, arbitrary angle.

Large angle branching is possible when a silicon tetrahedron attaches

to the {111} surface of a silicon flake in orientation A. The attached

tetrahedron will be in orientation B, and may then form a new orienta-

tion (C) by twinning. If a second twin of orientation B forms on C, it

will produce a self-perpetuating groove which allows TPRE growth in

another direction. Adapted from Shamsuzzoha and Hogan(25). 27

Figure 12 Schematic Wulff constructions: (a) The Wulff construction for the de-

termination of the equilibrium shape from the γ-plot (b) The reverse

Wulff construction for determining the γplot from an equilibrium shape

(c) The reverse Wulff construction performed on a body of missing ori-

entations yields only a minimum γ-plot. From Miller and Chadwick(58) 33

ix

Figure 13 Schematic of constitutional supercooling. Solidification in a binary alloy

system is proceeding from left to right along the x axis with solute being

rejected into the melt. As the composition of the liquid decreases with

distance ahead of the interface, the equilibrium melting temperature

increases. If the effect of the compositional profile on the equilibrium

melting temperature is greater than the actual temperature gradient ex-

perienced during solidification, there will exist a region of constitutional

supercooling (shaded region) where the liquid is at a lower temperature

than its melting point. This region of liquid is thermodynamically un-

stable. 36

Figure 14 Amplification rate behavior of the stability of a perturbation of specified

wavelength on a planar interface. 41

Figure 1 Typical silicon morphology after directional solidification of an Al-Si

eutectic alloy in a temperature gradient of 7–14 K/mm over a velocity

range from 10 to 950 µm/s. The Al-rich phase has been chemically

removed. 54

Figure 2 Schematic demonstrating the calculation of the parallel and random line

spacing measurements. The λ|| measurement is determined by drawing

lines perpendicular to parallel silicon plates while the λL measurement

involves the generation of random lines over the eutectic area. 55

Figure 3 Graph of three different spacing parameters. The λL measurement re-

flects the average spacing considering all possible line orientations. The

λ|| measurement indicates the average spacing perpendicular to parallel

silicon particles. The λA measurement is effectively an inverse parti-

cle density function, indicating that particles become more numerous

within a constant volume at high velocities. Error bars represent the

95% confidence interval of the mean. 56

x

Figure 4 Graph of the average particle aspect ratio for the range of velocities

studied. The aspect ratio displays distinct transition points near 135

µm/s and 880 µm/s, which are near the visually observed onset and

conclusion velocities of the flake to fiber transition. Error bars represent

the 95% confidence interval of the mean. 57

Figure 5 Details of the quench modification process in an Al-13wt% Si alloy. At

velocities from 10 to 250 µm/s the transition is evident in the breakup

of plates, with rodlike structures evolving within the envelope of the

plate. At higher velocities, the next stage of the transition becomes

evident as out-of-plane rod growth begins around 500 µm/s (shown by

arrows) and a shift to rod dominance occurs by 950 µm/s. 61

Figure 6 Occurrence of morphological instability of plate faces in a sample grown

at 950 µm/s. 62

Figure 1 Comparison of the ultimate tensile strength measured in the present

study and the aspect ratio and spacing results (λA) reported in (6). The

tensile strength increases significantly with increasing solidification rate

throughout the velocity range studied. Note the transition in slope of

the tensile strength data that occurs at 250 µm/s. Similarly, the aspect

ratio data display a transition in slope near 125 µm/s. The spacing is

seen to decrease continuously with increasing solidification velocity. . . 80

Figure 2 Al-Si eutectic structures after directional solidification at velocities of

20, 250, and 950 µm/s (6). These structures represent flake (left), mixed

flake/fiber (center), and fiber (right) morphologies, respectively. 81

Figure 3 The stress-strain behavior of samples directionally solidified at 20, 80,

and 600 µm/s. The velocities represent predominantly flake (20 and 80

µm/s) and predominantly fibrous (600 µm/s) morphologies, respectively. 81

Figure 4 (a) Low, (b) intermediate, and (c) high magnification images of tension

test specimen fracture surfaces solidified at 20, 250, and 1000 µm/s. . . 82

xi

Figure 1 Al-Si interface schematic demonstrating both the development of in-

plane (right) and out-of-plane (left) silicon protrusions. Both types of

protrusion formation may develop separately, together, or not at all.

The type of instability that forms on any given plate will be governed

by the local flake growth conditions, which are widely variable and

difficult to predict due to the inherent irregularity of the Al-Si structure. 99

Figure 2 Images showing examples of in-plane silicon plate instability. This in-

stability leads to the development of in-plane protrusions which are

shown in (a) and indicated by white arrows, and eventually results in

the development of in-plane rod structures, as shown in (b) and (c).

Images are from an Al-20 wt% Si alloy (a, b) and an Al-7 wt% Si alloy

(c) and were solidified at 200 µm/s (a) and 50 µm/s (b, c). All samples

prepared by deep etching in a 2.5%HCl-1.5%HNO3-1%HF reagant. . . 101

Figure 3 Observed out of plane instability formations in an Al-7 wt% Si alloy (c)

and Al-20 wt% Si alloy (a, b, d-f): a) Columnar instability, b) Columnar

instability with additional row instability, c) Grid instability, d) Sepa-

rate grid and columnar instabilities on same plate, e) Advanced grid in-

stability displaying interconnecting bands, and f) instability formation

at multiple levels of advancement. Solidification velocities include 50

µm/s (b), 100 µm/s (d, e), 200 µm/s (a), and 1000 µm/s (c, f). Samples

were prepared by deep-etching in a 2.5%HCl-1.5%HNO3-1%HF reagent

(a-e) or NaOH solution (f). 102

Figure 4 Comparison of in-plane protrusion spacings measured on a hypoeutectic

(7 wt%) and hypereutectic (20 wt%) Al-Si alloy. Error bars represent

the 95% confidence interval of the mean. 103

Figure 5 Comparison of out-of-plane protrusion spacings measured on a hypoeu-

tectic (7 wt%) and hypereutectic (20 wt%) Al-Si alloy. Error bars

represent the 95% confidence interval of the mean. 104

xii

Figure 6 Comparison of protrusion spacings in an Al-20 wt% Si alloy for in-plane

and out-of-plane protrusions. Error bars represent the 95% confidence

interval of the mean. 105

Figure 7 Al-Si interface shapes as specified by Magnin and Kurz (MK) (20) and

Guzik and Kopycinski (GK) (21) for two different silicon contact angles.

Calculated at 1000 µm/s. 106

Figure 8 Comparison of a planar interface composition contour map and the

Al-Si interface shape. 107

Figure 9 The marginal instability spacing calculated as a function of x in front of

the silicon phase for both the Magnin-Kurz and Guzik-Kopycinski inter-

face shapes. Calculations are for a solidification velocity of 1000 µm/s

and a silicon phase contact angle of 85◦. Also shown is the marginal sta-

bility spacing calculated using the average composition gradient ahead

of the silicon phase. 108

Figure 10 Near-equilibrium silicon shapes of an Al-20 wt% Si alloy held at 592

◦C for 125 hours. Silicon particles approximate an octahedral shape,

with triangular facets consistent with faceting on {111} silicon planes.

Particles were extracted after rapid quenching and deep-etching in a

2.5%HCl-1.5%HNO3-1%HF reagent. 109

Figure 11 Comparison of experimental silicon protrusion spacings and calculated

minimum and maximum instability spacings with multiple values of

anisotropy. Calculated values are based on the Magnin-Kurz(20) inter-

face shape at a silicon phase contact angle of 85◦. 110

Figure 12 Effect of anisotropy and wetting angle on the calculated minimum and

maximum instability wavelengths at a 1000 µm/s solidification velocity.

Results were obtained using the Magnin-Kurz (20) interface shape. . . 111

Figure 13 Effect of alloy composition on calculated marginal and maximum am-

plification rate instability spacings. 112

xiii

Figure 14 Planar interface stability range as a function of perturbation wavelength

and solidification velocity. Inside the unstable region perturbations will

grow with time and destabilize the planar interface. Higher anisotropy

serves to decrease the extent of the instability range to a minor degree. 113

Figure 1 X-ray radiographs of the six tensile specimens showing flowline indica-

tions. 117

Figure 2 X-ray radiographs of the six coupon specimens showing flowline indica-

tions. 118

Figure 3 Representative microstructures of the test alloys (backscattered electron

images): (a) WE43B (left), (b) EV31A (middle), and (c) ZE41 (right). 119

Figure 4 EDS linescan showing the variation in Zr content in the WE43B alloy

(V19). 120

Figure 5 Optical micrographs of alloy WE43B with corresponding microhardness

and composition profiles. 121

Figure 6 Backscattered electron image (left) of EV31A (sample A) and corre-

sponding dot maps, showing Nd-rich grain boundary particles (center)

and Zr-rich intragranular plates (right). 123

Figure 7 A high-magnification secondary electron image, showing a colony of

Zr-rich fine plate precipitates in alloy EV31A (sample A). 124

Figure 8 Optical micrograph showing the structure of alloy EV31A and corre-

sponding microhardness measurements. Note that the scale of the mi-

crohardness measurements is compressed when compared with that of

the optical image. Only the flow line location is consistent. 125

Figure 9 Electron backscattered image (top) for alloy ZE41 (sample 3A) and

corresponding dot maps showing the distribution of elements in the

different phases. 126

xiv

Figure 10 Optical micrographs for alloy ZE41 (sample 3B) demonstrating a clear

change in grain size across the sample. This change coincides with the

location of the flow line, which is roughly in the middle of the upper

image. 127

Figure 11 Microhardness and grain size measurements for alloy ZE41 (sample 3B).

There is a noticeable change in grain size at the flow line, though this

change in grain size does not significantly affect the measured hardness. 128

Figure 12 Microhardness, grain size, and composition measurements for alloy ZE41

(sample 3A). There is no noticeable change in hardness, grain size, or

composition across the sample. 129

Figure 13 Uniaxial tension test results for all specimens. 130

Figure 14 Representative fracture surfaces of alloy WE43B (samples V17B and

V17C). 131

Figure 15 Representative fracture surfaces of alloy EV31A (samples C and I). . . 132

Figure 16 Representative fracture surfaces of alloy ZE41 (samples 1 and 2). . . . 133

Figure 17 Representative fracture surfaces observed after fracture by three-point

bending with a pre-machined groove at the flow-line location. The

appearance of the fracture surface is similar to the tensile specimen

fracture surfaces for all three test alloys. 134

Figure 1 Example of a minimum spanning tree constructed between a set of 11

points. 138

Figure 2 Schematic of PointGrid structure, which separates points into individ-

ual grid boxes based upon their location. 140

Figure 3 Pseudocode for the PointGrid algorithm used for calculation of the MST.141

Figure 4 MST segment length mean comparison for ideal and MD simulated

BCC and FCC structures. 146

Figure 5 MST angle mean comparison for ideal and MD simulated BCC and

FCC structures. 146

xv

Figure 6 MST junction frequency comparison for ideal and simulated BCC struc-

tures. Solid lines represent ideal structures while dashed lines are MD

simulated structures. 147

Figure 7 MST junction frequency comparison for ideal and simulated FCC struc-

tures. Solid lines represent ideal structures while dashed lines are MD

simulated structures. 147

Figure 8 MST junction length comparison for ideal and simulated BCC struc-

tures. Solid lines represent ideal structures while dashed lines are MD

simulated structures. 148

Figure 9 MST junction length comparison for ideal and simulated FCC struc-

tures. Solid lines represent ideal structures while dashed lines are MD

simulated structures. 148

Figure 10 Segment length mean versus standard deviation of different structures.

The CuZr structures are simulated using MD at temperatures from

100–1800 K, BCC MD are simulated from 1000–2200 K, and FCC MD

structures are simulated from 200–1400 K. The rest of the structures

were generated with 0–50% noise added. 149

Figure 11 Segment angle mean versus standard deviation of different structures.

The CuZr structures are simulated using MD. 150

Figure 12 Schematic of packing arrangement adopted to approximate an icosahe-

dral structure. 151

Figure 13 Normalization length, segment length mean, and angle mean MST

statistics obtained from a MD simulated CuZr structure quenched from

1800 K to a range of temperatures. Clear transition points are evident

in the data, though the actual transition temperature value includes

temperatures of 650 K (in black), to 700 K (in red), and 750 K (in

orange). 151

xvi

Figure 14 MST segment length mean from a MD simulated CuZr structure with-

out length scale normalization. The data display the same transition

in slope at 700 K noted in the normalized data, though the data also

display increased scatter. 152

Figure 15 MST segment length standard deviation versus mean of a MD simulated

CuZr structure. The glass transition around 700 K is fairly faint but

noticeable. 152

Figure 16 MST angle standard deviation versus mean of a MD simulated CuZr

structure. The glass transition is readily apparent at 750 K, with the

angle standard deviation versus mean relationship showing significantly

different trends above and below this temperature. 153

Figure 17 MST junction type frequency of a MD simulated CuZr structure. Junc-

tion frequency decreases with junction type number from J1 up through

J5. Additionally, the dominance of J1-type junctions increases at lower

temperatures at the expense of J2 frequency. 154

Figure 18 MST segment length separated by junction type for a MD simulated

CuZr structure. The glass transition at 700 K is only readily apparent

in the J3-type junctions. The J3 junction data are shown separately

at the right for clarity. The transition does not show up at all for J1

or J2 junctions, and may be faintly apparent if at all in the J4 and J5

junction types. 154

Figure 19 MST segment length separated by segment type and showing only the

first three J3-type segments for a MD simulated CuZr structure. The

glass transition near 700 K shows up in all three segment types. This

transition does not show up in any segments not containing a J3 junction.155

xvii

Figure 20 Frequency of MST segment types separated by junction atoms in a MD

simulated CuZr structure. Copper to copper segments are significantly

more frequent than zirconium to zirconium connections, which is likely

due to the larger zirconium atom. 156

Figure 21 Length of MST segment types separated by junction atoms in a MD

simulated CuZr structure. Due to atom size, Zr-Zr segments are the

longest, followed by CuZr, and Cu-Cu segments are the shortest. Note

the transition in the Cu-Cu data and the increase in Zr-Zr segment

length at lower temperatures. 157

Figure 22 Frequency of MST segment types separated by junction atoms in a

MD simulated CuZr structure of varying composition at 300 K. With

increasing fraction of copper the prevalence of Zr-Zr segments plunges

to near 0 at 50% copper. 158

Figure 23 Length of MST segment types separated by junction atoms in a MD

simulated CuZr structure of varying composition at 300 K. Length of

Zr-Zr segments increases linearly until disappearing above 57 atomic

%Cu, while the length of CuZr segments begins to increase rapidly

above 57% copper. 159

Figure 24 MST angle mean as a function of temperature in a MD simulated CuZr

structure. The angles between copper atoms display a similar trend

with temperature as the overall MST data, while the angles between

zirconium atoms do not appear to display any meaningful trend. . . . 160

Figure 25 Schematic of pixel distance frequency around a central pixel. Each box

represents a pixel of an image, and the numbers in each pixel represent

the square of the distance between that pixel and the central pixel.

Each distance occurs four times, except for 5, which occurs eight times. 164

xviii

Figure 26 Example calculation of the radial distribution function (RDF) demon-

strating its effectiveness in determining average local spacing. The three

peaks of the RDF function in this example correspond to the concentric

circles drawn around the object being measured. 164

Figure 27 Cumulative probability distributions for the average spacing around a

silicon particle for a range of solidification velocities. 165

Figure 28 Relationship of spacing versus velocity for the average particle spacing

determined at three different cumulative probability values. 165

Figure 29 Critical diameter as a function of velocity. The measurement contains

significant scatter and it is difficult to determine an overall trend. . . . 166

xix

ABSTRACT

Continually rising energy prices have inspired increased interest in weight reduction in

the automotive and aerospace industries, opening the door for the widespread use and devel-

opment of lightweight structural materials. Chief among these materials are cast Al-Si and

magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous mi-

crostructure in lieu of the intrinsic flake structure, a process which is incompletely understood.

The local solidification conditions, mechanisms, and tensile properties associated with the flake

to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman

type gradient-zone directional solidification. Resulting microstructures are examined through

quantitative image analysis of two-dimensional sections and observation of deep-etched sec-

tions showing three-dimensional microstructural features. The transition was found to occur

in two stages: an initial stage dominated by in-plane plate breakup and rod formation within

the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth

leads to the formation of an irregular fibrous structure. Several microstructural parameters

were investigated in an attempt to quantify this transition, and it was found that the particle

aspect ratio is effective in objectively identifying the onset and completion velocity of the flake

to fiber transition. The appearance of intricate out-of-plane silicon instability formations was

investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measure-

ments of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid

Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found

to improve prediction of the instability length scale.

Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a

1/3 lower density and increased machinability. Magnesium castings often contain additions of

xx

heavier elements, such as zinc, zirconium, and rare earth elements, which significantly improve

high temperature performance. However, additions of these elements can lead to macroseg-

regational effects in castings, which are detectable by radiographic scans. The effect of these

flow-line indications on alloy mechanical properties is not well quantified. An examination

of these flow-line indications and their effects on mechanical properties in three magnesium-

based casting alloys was performed here in order to determine the best practice for dealing

with affected castings. Preliminary results suggest the flow-lines do not measurably impact

bulk material properties.

Three additional methods of characterizing three-dimensional material structures are also

presented: a minimum spanning tree analysis is utilized to quantify local structure in Cu-Zr

liquid phase simulations obtained from molecular dynamics; the radial distribution function is

applied to directionally solidified Al-Si structures in an attempt to extract local spacing data;

and the critical diameter measurement is also defined and applied to irregular eutectic Al-Si

structures.

1

INTRODUCTION

Introduction

Continually rising energy prices have inspired increased interest in weight reduction in the

automotive and aerospace industries, opening the door for the widespread use and development

of lightweight structural materials. Among the most common of these materials are alloys based

upon the elements aluminum and magnesium. Both aluminum and magnesium are known

for having high corrosion resistance, low density, and high relative abundance. Although

extremely soft and ductile as pure metals, aluminum and magnesium can achieve significant

strength levels when alloyed. Magnesium alloying additions often target improved strength and

high temperature resilience through solid solution and precipitation hardening, often requiring

heat treatments post casting. Aluminum, however, may be alloyed with silicon, forming the

irregular eutectic Al-Si, which is commonly used in the as-cast condition, eliminating the need

for extensive post-cast processing. Both alloys present intriguing possibilities as light-weight

structural materials, with properties that depend strongly on the mechanisms occurring during

the solidification process.

Al-Si irregular eutectic alloys are used for their superior castability, excellent corrosion

resistance, low density, and good mechanical properties. The superior castability attributed

to eutectic alloys are related to their relatively low solidification temperatures and small or

nonexistent mushy zones (see Fig. 1). The excellent corrosion resistance is from surface

passivation due to the strongly adherent oxide layers inherent to both aluminum and silicon.

Similarly, both elements possess low density (ρAl = 2.7g/cm3, ρSi = 2.3g/cm3) leading to

the corresponding lightweight nature of Al-Si alloys. While the traditional flake morphology

2

observed in pure Al-Si castings imparts poor mechanical properties, a significant improvement

in strength and ductility is obtained with microstructural modification, which generally involves

adding trace impurity elements to the alloy to elicit the growth of a more desirable fibrous

morphology. Typical mechanical properties for Al-Si alloys range from 120-280 MPa tensile

strength and elongations from 2-12%(1–3), allowing for the use of Al-Si alloys in numerous

automotive and aerospace applications.

Most applications for aluminum casting alloys are based on the A300 series of aluminum

alloys (from the Aluminum Association numbering system) which consist of aluminum alloyed

with silicon and small amounts of copper or magnesium. A common alloy of this series is

the A356 alloy, which contains 7% Si, 0.25% Cu, and 0.35% Mg. This alloy finds significant

use in engine block castings, alloy wheels, and various other automotive and aircraft fittings.

A drawback to this and other hypoeutectic Al-Si alloys is their mediocre wear resistance.

In many applications this can be countered by the use of a wear liner made of cast iron or

some other material around the lightweight hypoeutectic Al-Si body. An alternative is the

use of hypereutectic Al-Si alloys which contain large primary silicon particles that significantly

improve wear resistance. The development of hypereutectic alloys such as A390 which contains

17% silicon has allowed the production of full aluminum engine blocks without the need for

liners. The performance of these industrial alloys depends strongly on both alloy composition

and microstructural modification.

Microstructural modification in Al-Si alloys is the process by which the eutectic silicon

microstructure is transformed from a bulky flake structure to a fine fibrous structure with

an attendant improvement in both strength and ductility. In pure Al-Si castings the typical

microstructure is one with large interconnected silicon plates which is predictably not favorable

for mechanical properties. This microstructure may be altered to a finer fibrous morphology

with additions of trace impurity elements such as sodium and strontium or with an increase in

solidification velocity, known as impurity modification and quench modification, respectively.

Quench modification and impurity modification occur by fundamentally different mechanisms,

as ascribed to by different respective structures on the microscopic scale: quench modified

3

fibers are microscopically smooth and globular, while impurity modified fibers are microfaceted

with a high twin density. Impurity modification is the most common modification procedure

used in foundries due to the ability to achieve relatively uniform microstructures throughout a

bulk casting. However, the use of impurity modification is associated with significant adverse

effects such as increased porosity, hot tearing, and poor surface finish. The use of quench

modification to achieve a fibrous structure may avoid these drawbacks, though the onset and

degree of quench modification as a function of melt conditions are not well understood which

limits the prediction of eutectic microstructure at different locations within a casting.

Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefits of a

1/3 lower density (1.7–1.9 g/cm3) and increased machinability. While magnesium alloys often

cost more than Al-Si alloys, their extreme weight saving benefits are of use in high-demand

applications such as aeroengines, helicopter transmissions, and racing and high performance

cars. The alloys that will be focused on here are WE43B, EV31A, and ZE41. These alloys

include additions of heavier metals, such as zinc, zirconium, and rare earth elements, which

significantly improve high temperature performance. However, the addition of these heavier

elements can also lead to the development of segregational flow lines in castings, which are de-

tectable in x-ray radiographs of cast sections. The effects of these flowlines on the mechanical

properties of the alloy are not well understood, therefore requiring castings that contain flow-

lines to be discarded, which raises the overall cost of producing these alloys. More thorough

characterization of the effects of these flowlines on tensile properties could allow for a more

economic treatment of affected castings.

The primary advantage of Al-Si and magnesium casting alloys in commercial applications

is weight reduction when compared to alternative material options. Weight reduction in auto-

motive applications leads to a direct improvement in vehicle fuel efficiency, which is becoming

increasingly important due to rising energy costs and stricter fuel economy requirements. As

a result, utilization of weight-reducing alloys is expected to increase in the near future. The

efficient adoption of Al-Si alloys to new applications requires a detailed knowledge of the solidi-

fication patterns of the alloy system, allowing for rapid and adequate prediction of the eutectic

4

Figure 1 Phase diagram of the Al-Si system.(4)

microstructure throughout the casting. However, solidification models of Al-Si alloys are in-

complete and lacking in the area of microstructure prediction. Specifically, the occurrence of

the flake to fiber transition in terms of applied melt conditions is not well understood. A more

complete understanding of the solidification process in Al-Si alloys based upon the response

of the system to extrinsic melt parameters is required in order to facilitate the adaptation

of the alloy to the numerous applications that would benefit from the inherent advantages of

the Al-Si system. Additionally, increased knowledge of the effects of segregational flowlines

on tensile properties in heavy metal containing magnesium alloys is required to determine the

best practice for dealing with flowline-containing castings.

5

Dissertation Organization

This dissertation is written in an alternate format and consists of one published paper and

three original manuscripts. References are presented separately following each chapter, and

table and figure numbering is also reset between chapters. A general introduction and literature

review are contained in this, the first chapter, and a general conclusion is presented in the last

chapter. Additional material includes a chapter containing three methods of microstructural

characterization not covered in the complete manuscripts, and an appendix listing the computer

code used in the calculation methods presented within this document.

Following the literature review are three manuscripts dealing with the Al-Si system. First,

in “Analysis of the high growth-rate transition in Al-Si eutectic solidification”, an in-depth

investigation of the flake to fiber transition (quench modification) in a eutectic composition Al-

Si alloy is made, with an emphasis on elucidating the growth mechanisms occuring during the

transition, and searching for quantitative measurement parameters that can be used to identify

the flake to fiber transition. Following that, in “The effect of the flake-fiber transition in silicon

morphology on the tensile properties of Al-Si eutectic alloys”, the flake to fiber transition

is investigated with regards to its effect on bulk tensile properties and fracture behavior,

with correlations made between observed tensile properties and the predicted morphology

based upon the quantitative measurement parameters specified in the first paper. Then, in

“Morphological instability of silicon during directional solidification of an Al-Si eutectic alloy”,

observations are made regarding the appeareance of extensive out-of-plane silicon instability

formations, and a perturbed interface instability analysis is adapted to the Al-Si system in an

attempt to model the length scale behavior of protrusion formation with the goal of highlighting

some of the basic mechanisms operating during the Al-Si flake to fiber transition.

Following the three manuscripts concerning the Al-Si system is a manuscript dealing with

magnesium casting alloys, “Metallurgical analysis of flow-line indications in Mg-based alloy

castings”, where the effects of segregational flowlines in magnesium alloys WE43B, EV31A,

and ZE41 are investigated. The investigation includes determination of microstructure, chem-

ical composition, tensile properties, and microhardness. After this is a special chapter, “Addi-

6

tional analyses of three-dimensional microstructures”, which presents three additional methods

for microstructural characterization, namely the minimum spanning tree, radial distribution

function, and critical diameter. These methods are grouped together as they have not been

incorporated into a complete manuscript.

Literature Review

Eutectic Solidification Theory

A eutectic reaction involves the isothermal transformation of a homogeneous liquid solution

to two separate solid phases. Solidification of a eutectic alloy proceeds via the formation of

a diffusion couple with the two solid phases growing in close proximity in an alternating

arrangement which allows for the most efficient transport of solute (Fig. 2). The ideal phase

arrangement will then be either a regularly spaced array of lamellae or rods depending on the

respective volume fraction of the phases. Eutectic systems which adopt this phase arrangement

are aptly termed regular eutectics due to their relatively invariant microstructural features.

However, large variations in the interfacial properties of the components of a eutectic can cause

the system to deviate wildly from this idealized form of regular growth.

The ability of a eutectic alloy to grow in a regular manner depends on the interface charac-

teristics of its constituent phases. Crystal structures that consist of mostly isotropic bonding

tend to form atomically rough or diffuse interfaces due to the lack of a strongly preferred crys-

tallographic surface orientation. These rough interfaces, also known as nonfaceted interfaces,

contain many steps and ledges at the surface that allow for easy attachment of atoms migrating

from the liquid phase. Conversely, crystal structures with highly directional bonding tend to

form an atomically smooth interface with facets along preferred crystallographic orientations,

Fig. 3. The atomically smooth interface does not allow for easy attachment of atoms from

the liquid, as individual atoms that attach to a smooth interface will significantly increase the

number of broken bonds locally contributing to an unfavorable high energy situation. Such

atoms are likely to jump back to the liquid, restricting the growth of the solid in that direction.

Migration of faceted interfaces requires the activation of a ledge-step propagation mechanism

7

Figure 2 Schematic of eutectic solidification. The periodic arrangement of

phases minimizes average diffusion distance, thus maximizing the

efficiency of solute transport.

whereby individual growth steps are generated normal to the surface and easy atomic attach-

ment at the step interface ensues until the superficial layer is complete. This mechanism is

much more restrictive than the continuous growth of a rough interface, ultimately limiting the

ability of the faceted material to adjust its growth direction to accommodate changing melt

conditions during solidification. Accordingly, small local variations in extrinsic melt parame-

ters, such as temperature or composition, will not elicit a concomitant ameliorating response

in the faceted material, preventing the attainment of the idealized regular structure. Instead,

the structure of a eutectic consisting of both a nonfaceted and a faceted component is irregular,

exhibiting widely variant local morphologies and spacings, Fig. 4.

8

Figure 3 Shape of (a) nonfaceted and (b) faceted interfaces. From Kurz

and Fisher.(5)

Figure 4 Comparison of structure in a regular eutectic (left) and irregular

eutectic (right). The regular eutectic displays a relatively con-

stant phase spacing and morphology while the irregular eutectic

structure contains extreme variation in local spacing and features.

Images from England.(6)

9

Regular Eutectic Growth

Significant success has been obtained in modeling the growth of regular eutectic sys-

tems. Jackson and Hunt(7), building upon the work by Zener(8), Brandt(9), Tiller(10), and

Hillert(11), developed a comprehensive theory for the growth of lamellar and rod eutectic sys-

tems. They proposed that fine adjustments to the eutectic spacing are attained via motion

of lamellar faults (Fig. 5) while catastrophic microstructural changes can occur through the

formation of instabilities.

Contributions to Undercooling The energy required to drive the solidification process

is manifested as an undercooling, or departure from equilibrium. In general, the undercooling

at the solid-liquid interface can be considered as a sum of three energy barriers: a diffusive

barrier, a capillary barrier, and a kinetic barrier.

∆TTot = ∆TDiff + ∆TCap + ∆TKin (1)

The kinetic barrier arises from the difficulty of a migrating atom to find a suitable attachment

site on the surface of the solid phase. This barrier is often ignored to simplify undercooling

calculations as atomic attachment to a rough interface as is found in the components of a

regular eutectic is not a limiting process. Therefore, the interplay between solute diffusion

and interfacial energy minimization are considered as the primary processes determining the

growth characteristics of the eutectic microstructure. The diffusive barrier, also known as

the constitutional undercooling, arises from the compositional departure from the eutectic

composition on the interface.

∆TDiff = m
(
CE − C(x)

)
(2)

where m is the slope of the liquidus line, CE is the eutectic composition, and C(x) is the

composition with respect to point x on the interface. The capillary barrier depends on the

surface free energy and interfacial curvature.

∆TCap =
Γ

r(x)
(3)

10

Figure 5 Schematic of a lamellar fault, as proposed by Jackson and

Hunt.(7) Relative motion of the lamellar fault to the right will

increase the average spacing of the system, while motion to the

left will decrease the average spacing.

where Γ is the Gibbs-Thompson coefficient and r(x) is the radius of curvature with respect

to point x on the interface. Although the individual undercooling contributions from the

diffusive and capillary barriers vary across the interface, their sum is constant. Therefore, the

average interfacial composition and curvature are sufficient to determine the total interfacial

undercooling.

Diffusion Fick’s Laws

The diffusion of atoms plays a major role in many phase transitions, including the problem

of directional solidification, where both solute and heat diffusion are important processes. In

its simplest form diffusion can be envisioned as a random jump process. Consider the case of

interstitial diffusion: the motion of an individual atom depends on the frequency of making

successful jumps into unoccupied lattice positions. The probability of making a successful

jump decreases with increasing composition. Therefore, if a composition gradient exists in a

11

material atomic jumps will be more successful in the direction leading down the composition

gradient. This is the essence of Fick’s first law of diffusion, which states:

J = −D∂C
∂x

(4)

where J is the flux in atoms/m2 and D is the diffusivity in m2/s. This equation accounts for

steady state diffusion where the concentration profile of the diffusing species is not changing

with time. However, a time dependent concentration model is often more appropriate. This

can be obtained by applying a mass balance criterion based upon the difference of atomic flux

into and out of an area:

∂C

∂t
= −∂J

∂x

Fick’s law can be substituted for the flux to obtain:

∂C

∂t
= − ∂

∂x

(
−D∂C

∂x

)
which is known as Fick’s second law. A common assumption is that the diffusion coefficient

does not vary with composition, or:

∂C

∂t
= D

∂2C

∂x2

This equation can also be stated in three dimensions,

∂C

∂t
= D

∂2C

∂x2
+D

∂2C

∂y2
+D

∂2C

∂z2
(5)

Directional Growth Equation

Fick’s second law, Eq. 5, gives a useful relation for the diffusion of species through a

single point in a material with time. However, solidification problems require the description

of diffusion along a moving interface. To accommodate the interface motion, Eq. 5 must be

transformed from a stationary coordinate system to one that is moving with the interface, at

velocity V . The relation between a stationary coordinate system, (y′, z′), and a coordinate

system moving in the z direction with velocity V , (y, z), is:

(x, y, z) = (x′, y′, z′ − V t) (6)

12

The following relations can be derived from Eq. 6:

∂z

∂z′
= 1,

∂2z

∂z′2
= 1

which leads to: (
∂2C

∂z2

)(
∂z2

∂z′2

)
=
∂2C

∂z′2
=
∂2C

∂z2
(7)

Therefore, applying the coordinate transformation in Eq. 6 to Eq. 5 leaves the right hand

side of the equation unchanged. As the coordinate system advances, conservation of mass is

obtained by subtracting the rate of solute influx from the diffusion equation, giving:

∂C

∂t
→ ∂C

∂t
− V ∂C

∂z

Finally, considering that composition in the x direction is constant and overall composition is

unchanging with time at steady state, the diffusion equation becomes:

−V ∂C
∂z

= D
∂2C

∂y2
+D

∂2C

∂z2

Rearranging terms leads to the traditional form of the directional growth equation:

D
∂2C

∂y2
+D

∂2C

∂z2
+
V

D

∂C

∂z
= 0 (8)

Planar Diffusion Solution

In order to model the complex processes occurring during solidification several simplifying

assumptions are made. The present consideration involves a lamellar eutectic with a constant

phase spacing. The material is assumed to be uniform in one direction (x axis) and is under-

going unidirectional solidification with the interface advancing at a constant velocity in the z

direction. The interface is also assumed to be at steady state, which implies that all diffusion

profiles and phase morphologies are independent of time. Further, the interface morphology is

defined as planar, and boundary conditions are defined so that the composition approaches a

constant value at some distance ahead of the interface and the composition gradient is zero in

the middle of each phase. The applicable boundary conditions for the advancement of a planar

interface at steady state are then:

C = CE + C∞ at z =∞
∂C

∂x
= 0 at x = Sα and x = 2Sα + Sβ

13

where Sα and Sβ are half-phase widths as defined in Fig. 6, CE is the eutectic composition,

and C∞ is the difference between the eutectic composition and the actual composition far from

the interface. The conservation of matter at the interface requires:(
∂C

∂z

)
z=0

= −V C
α
0

D
Sα ≤ x < 2Sα(

∂C

∂z

)
z=0

=
V Cβ0
D

2Sα ≤ x < 2Sα + Sβ

where Cα0 and Cβ0 are defined in Fig. 7. A solution to the directional growth equation with

the given boundary parameters was presented by Jackson and Hunt(7):

C = CE + C∞ +B0 exp

(
−V
D
z

)
+
∞∑
n=1

Bn cos

(
2πn

λ
(x− Sα)

)
exp

(
−2πn

λ
z

)
(9)

where:

B0 = Cα0 fα − C
β
0 fβ

Bn =
λ

(nπ)2

V

D
C0 sin(nπfα)

This solution is valid when:

4πn

λ
� V

D

The average composition in the liquid in front of the α phase is obtained by integrating

Eq. 9 over the interval 0 to Sα and dividing by Sα:

C̄α = CE + C∞ +B0 +
1

Sα

∫ Sα

0

∞∑
n=1

Bn cos
2πn

λ
dx

which yields:

C̄α = CE + C∞ +B0 +
λ

fα

V

D
C0P

where P is a function of the phase fraction and is given by:

P =
∞∑
n=1

(
1

πn

)3

sin2 (πnfα)

Similarly, for the β phase:

C̄β = CE + C∞ +B0 −
λ

fα

V

D
C0P

14

Figure 6 Planar interface morphology assumed in the calculation of the

planar diffusion solution.

Figure 7 Phase diagram showing definition of several pertinent constants.

15

Figure 8 Interface morphology assumed for the calculation of capillary un-

dercooling showing definition of S and θ.

Curvature To obtain the capillary undercooling of the interface, a curved interface

shape is assumed as shown in Fig. 8. If the origin is taken to be the center of a lamellae,

where the slope of the interface is 0, the average curvature can be calculated by integration of

the lamellae shape:

κ̄ =
1

S

∫ S

0
κ(x)dx

The definition of curvature states:

κ =
− d2y
dx2(

1 +
(
dy
dx

)2
) 3

2

The integral can be solved to yield:

κ̄ =
1

S
sin θ

where S and θ are defined in Fig. 8.

16

Total Undercooling The average composition and curvature of the interface can be

used to determine the diffusive and capillary undercoolings:

∆TαDiff = mα

(
C∞ +B0 +

λ

fα

V

D
C0P

)
(10a)

∆T βDiff = mβ

(
−C∞ +B0 +

λ

fβ

V

D
C0P

)
(10b)

∆TαCap =
Γα sin θα
Sα

(10c)

∆T βCap =
Γβ sin θβ
Sβ

(10d)

The total undercooling is then obtained by substituting the undercooling from the individual

contributions, Eq. 10, into Eq. 1. Then, the fact that the undercooling ahead of each phase is

equal leads to the well known undercooling relation:

∆T = K1V λ+
K2

λ
(11)

where:

K1 =
mPC0

fαfβD

K2 = 2m

(
Γα sin θα
fαmα

+
Γβ sin θβ
fβmβ

)
A schematic of this undercooling relation is shown for a fixed velocity in Fig. 9. At small spac-

ings, the undercooling is dominated by the capillary term, while at large spacings the diffusive

term dominates. However, an additional condition is needed to discern the actual operating

spacing-undercooling state chosen by the system. Zener(8) proposed for regular eutectics that

growth occurs at the extremum, or minimum undercooling, an assertion supported by Jackson

and Hunt(7). This condition makes the calculation of the following undercooling relationships

possible by taking the derivative of the undercooling with respect to λ and setting equal to 0:

λ2V =
K2

K1

∆T 2

V
= 4K1K2

∆Tλ = 2K2

17

Jackson and Hunt also solved the diffusion equation for the case of a rod eutectic. The deriva-

tion is similar to that for lamellar growth except the solution is obtained using a cylindrical

Bessel function series instead of a circular cosine series. The solution for rod growth yields the

same relation as Eq. 11 except the constants are defined as:

K1 =
2mC0M

fβD

K2 = 4m
√
fα

(
ΓRα sin θRα
fαmα

+
ΓRβ sin θRβ

(1− fα)mβ

)

where:

M =

∞∑
n=1

1

γ3
n

J2
1fαγn
J2

0γn

The regular eutectic system is thus seen as operating under a minimum undercooling cri-

terion whereby small spacing adjustments are continually made to conform to minor changes

in the local solidification conditions. Furthermore, major changes to the local solidification

conditions may give rise to catastrophic changes due to instabilities. In both cases the result is

the maintenance of the steady state lamellar or rod interface with a relatively constant phase

spacing. Jackson and Hunt’s model has been found to work well for prediction of regular

eutectic growth, though its application to irregular eutectics requires some consideration.

Irregular Eutectic Growth

The modeling of irregular eutectic growth contains a number of additional difficulties that

are not present for regular eutectics. These include i) the assumption that kinetic undercooling

is negligible is not necessarily true for irregular eutectic systems, ii) irregular eutectics grow

with a significantly nonisothermal interface which drastically complicates any exact mathe-

matical analysis of the growth front, and iii) irregular eutectics display a widely variable local

spacing and flake orientation which does not conform to a the minimum undercooling criterion.

These issues must be addressed in order to develop new models or extend existing models for

regular eutectics to adequately characterize irregular eutectic growth.

The contribution of kinetic undercooling was addressed by Steen and Hellawell(12) for the

Al-Si system. In order to estimate the kinetic undercooling for an Al-Si alloy, they used Jack-

18

Figure 9 Schematic showing the relation between spacing and total un-

dercooling. The main undercooling contributor at low spacings

is the capillary undercooling, while the diffusional undercooling

dominates at large spacings. Regular eutectics tend to grow at or

near the extremum point (minimum undercooling) while irregular

eutectics grow at larger spacing values.

19

son’s model for the free energy change upon addition or subtraction of a monolayer from a

smooth crystal face(13) and estimated the kinetic undercooling to be ≈1% of the total under-

cooling at a growth rate of 1 mm/s, and therefore negligible. This indicates that treatment of

the kinetic undercooling may not be necessary to obtain adequate growth models of irregular

eutectic systems such as Al-Si.

The lack of an isothermal interface significantly complicates the calculation of the diffusion

solution for irregular eutectic growth. One of the first attempts to treat an isothermal interface

was that of Sato and Sayama(14) who postulated that if a depression forms at the center of

the major phase then only the parts of the major phase interface that remain isothermal with

the minor phase need to be modeled. Their interface morphology assumption is shown in Fig.

10b. This assumption altered the concentration field ahead of the interface as well as the

average interface curvature. The result is an equation similar to Eq. 11 with different constant

values, which can yield up to 50% higher total undercooling for Al-Si than the Jackson-Hunt

analysis(15).

The operating state of irregular eutectics does not follow the simple minimum undercool-

ing criterion. In addition to estimating the kinetic undercooling of an Al-Si alloy, Steen and

Hellawell(12) also estimated the value of interfacial undercooling, and also found it to be sig-

nificantly smaller than the total undercooling, which indicates that constitutional undercooling

is the primary contributor to the total undercooling. This result supports the experimental

observations that irregular eutectics display a larger average spacing than regular eutectics

solidified under comparable conditions, as the operating point of the undercooling-spacing re-

lationship is far to the right in irregular eutectics (Fig. 9) where most of the undercooling is

due to the constitutional term.

Instead of the minimum undercooling criterion, the irregular eutectic system can be en-

visioned as operating within a range of local spacings which is stabilized by the difficulty of

the faceted phase to change growth directions. Implementation of this operating range along

with the concept of a nonisothermal interface has led to several modifications to the regular

eutectic model. A stability criterion was developed by Fisher and Kurz(15) that describes the

20

operating state of an irregular system in terms of a minimum and maximum local spacing

which define the bounds of the eutectic growth. With this criterion, converging fibers are ex-

pected to grow until interfacial effects cause one of the fibers to halt its growth, while diverging

fibers are expected to grow until increased local supersaturation causes branching of one of

the fibers. Branching was assumed to occur as a result of a depression in the faceted phase

interface due to a Mullins and Sekerka(16) type instability (to be discussed in detail later). As

two fibers diverge, they are expected to thicken laterally to maintain relative phase fraction.

The interface instability is assumed to occur when the minor phase width reaches 1.5 times

the minimum stable perturbation wavelength, or 2Sβ = 1.5λcrit. The value of 1.5 was chosen

since the phase width approaches the instability condition from below. Further, by assuming

thermal conductivities and temperature gradients of the solid and liquid are similar, that the

partition coefficient, k, is equal to 0, and that the temperature gradient does not have much

of an effect on the wave stability, they arrived at the relation:

λcrit = 2π

√
Γ

mGc
(12)

where m is the slope of the liquidus line, Γ is the Gibbs-Thompson coefficient, and Gc is the

composition gradient in front of the liquid. The maximum eutectic spacing, λbranch, is then:

λbranch =
3λcrit
2fβ

(13)

The maximum (branching) spacing is then obtained by substituting Eq. 12 into Eq. 13, which

can then be substituted into Eq. 11 to obtain a new undercooling-spacing relation:

∆T =
K3V√
Gc

+K4

√
Gc (14)

where:

K3 =
3πPC0

√
mΓβ

fαf2
βD

K4 =
2fβm

3/2

3π
√

Γβ

(
Γα sin θα
fαmα

+
Γβ sin θβ
fβmβ

)
It was also noted that the composition gradient is proportional to velocity, which allows for

the substitution
√
Gc = K

√
V . With this change, Eq. 14 can be restated as:

∆T 2

V
= K5

21

Figure 10 Interface morphologies assumed by (a) Jackson and Hunt(7), (b)

Sato and Sayama(14), and (c) Fisher and Kurz(15).

This gives the same relationship as the Jackson-Hunt analysis(7) without using the minimum

undercooling criterion, though it should be noted that Eq. 12 is not generally true and Gc is

also a function of λ.

Fisher and Kurz(15) incorporated their stability criterion into a coherent growth model

along with considerations for a nonisothermal interface and the corresponding effect of the

temperature gradient on the irregular interface. They assumed the temperature gradient is

uniform and is a linear function of position in the melt. In this manner, the temperature of

the interface is a simple function of position in the melt, or interface shape. This approach

considers the depressed portion of the major phase in the analysis, unlike the corresponding

treatments from Jackson and Hunt(7) and Sato and Sayama(14). This coupling condition was

satisfied at the bottom of the major phase depression and in an average fashion along the

non-depressed portion of the interface (0 to Sα + w in Fig. 10c). However, their treatment

resulted only in a numerical solution to the growth problem which is difficult to handle and

ultimately impractical.

Magnin and Kurz(17) developed a model for irregular eutectic growth similar to that of

Fisher and Kurz(15) except solvable by analytical means rather than numerical. In this model

a nonisothermal condition was adopted over the entire interface which allows for an analytical

solution rather than numerical. The nonisothermal coupling condition equates the average

22

undercooling in front of each phase, or:

∆T̄ =
1

Sα

∫ Sα

0
[∆TDiff(x) + ∆TCap(x) +GI(x)] dx =

1

Sβ

∫ 0

−Sβ
[∆TDiff(x) + ∆TCap(x) +GI(x)] dx

where I is a cubic function representing the shape of the interface.

Magnin and Kurz(17) used the planar diffusion model of Jackson and Hunt(7) to calculate

constitutional undercooling and calculated the capillary undercooling from the curvature of I.

This led to a modified version of the Jackson and Hunt undercooling equation:

∆T = K1λV +
K2

λ
+ F

where K1 and K2 are the same constants in the Jackson and Hunt analysis and F is a correction

factor that reflects the nonisothermal nature of the assumed interface, given by:

F = −mG

(
δα
2 −

λfα tan θα
24

|mα|
+

δβ
2 −

λfβ tan θβ
24

mβ

)
where δ is the depression depth of each phase and is given by:

δi =
2f2
i

48Γi + f2
i λ

2G

[(
|mi|C0

D

(
Πi −

P

fi

)
V − fi tan θi

24
G

)
λ3 − 2Γi

fi
(2 tan θi + sin θi)λ

]
i = α, β

and Π depends on the phase fraction as shown:

Πi =
∞∑
n=1

1

(nπ)2 sin (nπfi) i = α, β

The correction imposed by the gradient term F is only significant at very low solidification

velocities (< 0.1µm/s). This was later rationalized to be due to the small scale of observed

thermal fluctuations in the interface when compared with the diffusion length.(18) In order

to determine the system operating point, Magnin and Kurz used a characteristic depression

depth to determine the point of branching rather than a simple stability criterion as used by

Fisher and Kurz(15). In order to describe the operating range, they introduced a parameter,

φ, which relates the average spacing to the minimum spacing:

φ =
λ̄

λex
=
λex + λbr

2λex

Experimental observations allowed the determination of a depression depth range over which

branching always occurs which was found to be between the point where the depression begins

23

at the center of the faceted phase (curvature = 0) and the point where the depression center

reaches the level of the three phase junction. The operating range parameter φ was then

theoretically predicted to be:

φ =
1

2
+

[(
fβπβ
P
− 1

)(
fα + fβ

mβΓα sin θα
|mα|Γβ sin θβ

)]− 1
2

The parameter φ is effectively constant at normal growth rates (> 0.1µm/s), therefore irregular

eutectic growth can be described by the following relations:

λ2V = φ2K2

K1

∆T 2

V
=

(
φ+

1

φ

)2

K1K2

λ∆T =
(
φ2 + 1

)
K2

Magnin and Trivedi(19) presented a modified form of the Jackson and Hunt(7) eutectic

growth theory in which they accounted for the densities of the eutectic phases and imposed a

three-phase junction equilibrium criterion in lieu of the Jackson and Hunt isothermal interface

assumption. Noting that the Jackson and Hunt theory is only valid for eutectic phases of equal

density, the following density correction to the C0 term was derived:

C∗0 =
ρα(Ce − C0

α) + ρβ(C0
β − Ce)

ρ̄

This value is substituted for C0 in Eq. 11 to obtain the modified result. The density correction

factor plays a major role in eutectics such as Fe-C, but has less of an effect when applied to

eutectic systems that contain components with similar densities, such as Al-Si.

Magnin, Mason, and Trivedi(18) found that experimentally determined spacings and un-

dercoolings correspond well to a point on the theoretically determined λ-∆T graph to the

right of the extremum. The experimental and theoretical results were obtained independently

which is provided as justification for the use of the average operating range parameter, φ, as

a physical growth mechanism rather than an arbitrary fitting parameter. A parameter, η, was

defined as the operating range extent, specifically:

η =
λbranch − λmin

λ̄

24

The variable spacings within irregular eutectic structures were suggested to be a result of locally

different velocities with significant local departures from steady state rather than locally variant

undercoolings. It was also suggested that the minimum spacings observed in irregular eutectics

are larger than the extremum spacing value, contrary to general belief.

Growth Mechanisms of Al-Si Eutectic Alloys

While the periodic and relatively predictable growth characteristics of regular eutectic

alloys allow for accurate predictions of final eutectic morphology, the inherent anisotropy and

unpredictability present in irregular eutectics give rise to a diverse array of growth mechanisms,

morphologies, and properties which vastly increases their commercial applicability. Among

the most industrially useful of these alloys is Al-Si, whose high strength to weight ratio, good

corrosion resistance, and excellent melt fluidity contribute to its wide use in high performance

castings. In order to obtain these desirable properties the conditions of alloy solidification must

be carefully controlled. Specifically, the intrinsic structure of a pure Al-Si alloy obtained at low

solidification rates is a coarse flake morphology which imparts poor mechanical properties, while

the superior mechanical strength of an industrial Al-Si alloy is obtained through modification of

the intrinsic structure. Modification involves the transformation of the silicon flake structure to

a globular or fibrous morphology with an attendant 50% improvement in tensile strength and

threefold improvement in ductility.(1–3; 20) This microstructural alteration may be obtained

via impurity additions to the melt or high rate solidification, processes known as impurity

modification and quench modification, respectively. The mechanisms leading to both forms

of modification appear to be fundamentally different and are incompletely understood. Any

attempts to understand the complex processes occurring during modification must first begin

with a thorough understanding of the solidification behavior of the unmodified alloy.

Normal (Unmodified) Al-Si Growth

In normal Al-Si alloys, the anisotropic nature of silicon prevents continuous growth; instead

the silicon solidifies in the form of flakes with broad faces parallel to {111} directions and

25

containing multiple {111} twin traces.(21) Growth of the silicon plates must occur by a ledge-

step mechanism whereby the presence of growth ledges leads to continuous lateral propagation

of atomic planes resulting in stepwise plate growth perpendicular to the plane of the plate.

The origin of sufficient growth ledges on the relatively low energy {111} silicon planes may

be due to the presence of multiple twins which give rise to self-perpetuating re-entrant edges

and grooves as described in the twin plane re-entrant edge mechanism (TPRE), identified by

Wagner(22) and Hamilton and Seidensticker(23). Alternatively, the presence of intrinsic steps

on the silicon plane face may override the TPRE mechanism due to the relatively large average

spacing between silicon twins, making the TPRE mechanism incidental to plate growth.(24)

Regardless, multiple twinning is important in that it allows a single nucleation event to give

rise to a wide range of orientations in the resulting microstructure through branching.

Branching of eutectic silicon is possible via both large angle and small angle branching

modes, illustrated in Fig. 11.(25; 26). Large angle branching involves the formation of a new

twin orientation on the face of a growing plate. Once two parallel twin planes are present on

the side branch then propagation via TPRE growth can occur at a 70.5◦ angle to the original

growth direction (the angle between separate {111} planes). In the small angle branching mode,

successive twinning leads to progressive displacement of two growing regions of a single plate,

allowing the branches to diverge at an arbitrary angle based on the spacing of each new twin.

Another possible mechanism for the development of adjacent silicon particles with slightly

differing orientations is the fragmentation of the growing silicon phase. Such a fragmentation

mechanism was suggested to occur for the Fe3C phase in white cast iron.(11) The Fe3C phase

was found to fragment at the growing interface with such fragments forming new plates after

presumably rotating randomly in the liquid, thus forming a so-called broomlike morphology.

The similarity between this morphology and the Al-Si flake morphology prompted Fredriksson

et al. and Hillert(27; 28) to suggest a similar event occurs in Al-Si. Of course, in order to form a

new plate via the TPRE mechanism the initial fragment must contain two parallel twin planes.

The fragmentation possibility was questioned by Dahle et al. (29) who noted the silicon ductile

to brittle transition is around 550◦C(30) and questioned the origin of the stresses capable of

26

fracturing the phase at the melt front.

Impurity-Modified Al-Si Growth

The most common commercial modification practice used today is impurity modification(26;

31–33). A number of elements have been found to induce some modifying effect when added to

the Al-Si melt, though the most commonly used elements are sodium, strontium, and antimony.

The first and most potent modifier element used was sodium, but its high vapor pressure at

the Al-Si melt temperature makes it hard to retain in solution and therefore difficult to add

in specific amounts. Sodium also tends to aggressively attack mold materials, and adding too

much can result in a phenomenon called overmodification in which bands of primary aluminum

are formed which degrade mechanical properties of the casting.(27) Strontium does not have

as pronounced a modifying effect as sodium, but it is free from the vaporization and over-

modification problems of sodium. Unfortunately, strontium modified alloys have a tendency

toward excessive gas pickup and porosity formation in castings. Antimony additions yield a

refined flake structure without as significant of benefits as the former additives, but antimony

modification has a near permanent effect on the melt and may be more useful in large castings

where microstructural homogeneity is desired.

The modified structures produced by sodium and strontium addition are finer than the

corresponding flake structure and consist of microfaceted fibers with a large twin density, with

twin spacings as low as 5 nm.(26) This twin density leads to a structure which appears smooth

at low magnifications but is actually faceted on a fine scale. The microstructural changes associ-

ated with impurity modification of castings are attended by a depression in eutectic nucleation

and growth temperature(33–37), reduction in eutectic colony nucleation frequency(37), and a

flattening of the growth interface (particularly with sodium modification)(38–40).

The most likely mechanism of impurity modification is thought to be from growth restric-

tion of the silicon phase by selective adsorption of impurity atoms onto fast growing silicon

faces(41). Lu and Hellawell(26) noted that common modifying agents share similar atomic

radii and proposed that adsorbed modifier elements promote twinning by displacing a {111}

27

Figure 11 Schematic of small angle (top) and large angle (bottom) branch-

ing mechanisms in eutectic silicon. Small angle branching

involves a succession of displacement twins which create a

branched arm and then cause it to diverge from the initial eu-

tectic flake at a small, arbitrary angle. Large angle branching is

possible when a silicon tetrahedron attaches to the {111} sur-

face of a silicon flake in orientation A. The attached tetrahedron

will be in orientation B, and may then form a new orientation

(C) by twinning. If a second twin of orientation B forms on C,

it will produce a self-perpetuating groove which allows TPRE

growth in another direction. Adapted from Shamsuzzoha and

Hogan(25).

28

monolayer growth step to the next alternative stacking sequence. The increased incidence of

twinning would then be responsible for the microfaceted fibrous shape of the eutectic, while

the large undercooling observed in modified eutectic growth may be required to overcome the

added twin boundary energy(42).

The altered nucleation frequency observed in modified eutectic growth may also play a

role in its ultimate morphology. Crosley and Mondolfo(43) identified AlP particles as potent

nuclei for eutectic silicon and suggested the modifying action of Na depends in part on the

neutralization of these potent nuclei. The nucleation potential of AlP was verified by Dahle(33)

who examined the AlP-silicon interface using high resolution transmission electron microscopy

(TEM) imaging and found no lattice mismatch between the two. The effect of melt impurities

was demonstrated by McDonald et al. (37) who found significant flake refinement and growth

temperature depression in Al-Si alloys prepared from ultra high purity components rather than

lower purity components. Additionally, the nucleating potential of iron-containing compounds

was investigated by Shankar(44–46) who also found significant nucleation and growth temper-

ature depression in a higher purity alloy versus a less pure alloy. Interestingly, they found

eutectic flake refinement occurred in an alloy with ultra low iron content compared with an

alloy of higher iron content but similar phosphorous content, indicating the flake refinement

was not simply a result of phosphorous interactions. A recent study by Cho et. al.(47) de-

tected decreased eutectic nucleation frequency in an Al-Si alloy of 1.1 wt% iron versus one of

0.5 wt% iron, suggesting that the iron content serves to nucleate on and passivate free AlP

particles. They noted a similar effect in strontium-containing alloys, supporting the idea that

the modifying effect of strontium may be related to AlP passivation, in addition to the growth

restriction mentioned previously. The effect of iron on eutectic silicon grain nucleation was

also reported previously by Dinnis et. al.(48).

The widespread commercial use of impurity modification has led to numerous efforts to

characterize the transformed structure. Many of these attempts have been focused on defining

and measuring a quantitative parameter that describes the degree of microstructural modi-

fication, or the silicon modification level. Early methods of determining silicon modification

29

level were based on subjectively characterizing the microstructure as compared to the standard

American Foundry Society (AFS) Chart for Microstructure Control, which can be combined

with thermal analysis observations to allow fast modification level estimation(36). Drawbacks

to this method include the lack of objectivity when working with the microstructure chart

and a decrease in resolution of thermal analysis at higher cooling rates. Recently, computer

image analysis technology has been applied to increase the objectivity and accuracy of these

measurements. Jiang et al. (49) used an image analysis system to objectively determine Al-Si

modification level with increasing strontium additions. Particle length, width, and perimeter

were found to correlate well with changing levels of structure modification. Hernandez and

Sokolowski(50) expanded this technique to work on hypereutectic alloys and also found particle

perimeter to effectively differentiate modification level.

Despite the significant advantages afforded by impurity modification, there are some sig-

nificant drawbacks to its use. The volatility and reactive nature of sodium makes it difficult

to obtain uniformly modified structures, while strontium contributes to porosity in castings.

Other deleterious effects of impurity modification include hot tearing, poor surface finish, and

recycling restrictions from the use of different modifying elements which do not mix well(31; 33).

Quench-Modified Al-Si Growth

An alternative to impurity modification is to elicit structure refinement via increased cooling

rates, a process known as quench modification(21). Quench modification yields a fine fibrous

structure that is microscopically smooth and infrequently twinned, thus differentiating it from

the microfaceted impurity modified structure.(24; 51) The transition from the growth of silicon

as bulky, faceted plates to smooth, globular fibers has been observed to occur over a wide range

of velocities (Table 2), though specific descriptions of the flake to fiber transition mechanism

in the literature are lacking. Khan and Elliott(52) found the transition to be accompanied

by a significant drop in undercooling and suggested fibrous growth is then a departure from

the normal, stepwise growth of broad faceted flakes toward continuous growth of a nonfaceted

phase, thereby resembling aspects of a regular eutectic.

30

Interfacial Anisotropy

The importance of interfacial energy and anisotropy are evident upon examination of the

irregular nature of the Al-Si eutectic structure. To aid in the understanding of anisotropic

effects on Al-Si solidification, a more thorough understanding of the determination of surface

free energy and anisotropy is useful.

There are several different techniques utilized in the measurement of interfacial free energy.

The first method to be utilized, and potentially the simplest is the nucleation method(53; 54).

The undercooling required for homogeneous nucleation of a solid within a liquid is strongly

dependent on the solid-liquid interfacial energy barrier. The average system interfacial energy

can then be determined indirectly from the undercooling required for homogenous nucleation.

Of course, heterogeneous nucleation sites are almost impossible to eliminate and will inevitably

influence the measured nucleation undercooling. Therefore, nucleation experiments effectively

determine a lower limit for the interfacial free energy.

Another useful technique for the determination of interfacial free energy utilizes the shape

of the grain boundary at the three-phase junction. There are two separate approaches with

regard to this technique. One method is to measure the dihedral angle of the grain boundary

triple point(55; 56). The grain boundary energy must then be independently determined to

obtain interfacial energy. Another, more recent method involves the use of the interfacial grain

boundary groove shape.(57) An advantage of this method is that the interfacial energy can be

determined independent of the grain boundary energy.

While the nucleation undercooling and grain boundary groove shape methods yield useful

results for the average interfacial free energy of a system, they are not effective in obtaining

the relationship between interfacial energy and orientation, or the anisotropy. A more useful

technique to obtain the interfacial energy anisotropy is the equilibrium shape method(57–59).

In this method, droplets of one phase immersed in another are allowed to approach equilibrium

and the resulting particle shapes are analyzed to determine the interfacial energy as a function

of orientation.

The relation between the shape of a particle in equilibrium and its interfacial free energy was

31

described by Wulff in 1901(60): “When a crystalline body is in its equilibrium shape, free from

interfacial constraints and not acted upon by external body forces, there exists a point whose

perpendicular distances from the surfaces of the body are in proportion to their free energies

per unit area.” This point coincides with the geometric center of the body for non-polar

crystal structures. Effectively, the larger the surface energy of a particular crystallographic

orientation, the farther away its surface will be from the center of the crystal. This leads to

the relation:

γ1

γ2
=
r1

r2

where γ is the surface energy of a specific crystallographic orientation and r is the corresponding

distance of that surface from the center of the body.

If the variation of the surface energy with orientation (the γ-plot) is known for a crystal

structure then the equilibrium shape of the crystal can be reconstructed using the Wulff con-

struction, which states: “If planes be drawn normal to the radius vectors of the polar gamma-

plot where they intersect its surface, then the envelope formed by points which can be reached

from the origin without crossing any of these planes is geometrically similar to the equilibrium

shape.” The schematic shown in Fig. 12 demonstrates the determination of the equilibrium

shape from a corresponding γ-plot, the reverse Wulff construction for the determination of a

γ-plot from an equilibrium shape, and the issues encountered when an equilibrium shape con-

tains sharp edges. While the equilibrium shape can be uniquely determined from the γ-plot,

the reverse is not always true, as high energy crystallographic orientations are not necessarily

present in the equilibrium shape of a particle. Missing orientations are generally only present

when the anisotropy exceeds a certain value, so this permits measurement of interfacial free

energy over all orientations for most low-anisotropy metallic systems. Examination of the

Wulff construction further reveals that the equilibrium shape of a particle is always convex.

In order to simplify the relation between the equilibrium shape and its corresponding γ-

plot, a two-dimensional slice of the crystal may be considered. The surface energy-anisotropy

32

relation on a cross-section of indices {hkl} can then be expressed as:

γhkl(θ)

γ0
= 1 +

k∑
m=2

εhklm cosmθ

where m is the degree of rotational crystal symmetry for each mode about the section plane

normal and θ is the angular deviation from the cross-section normal, < hkl >. For a cubic

metal, it is often assumed that γ(θ) is taken on a {100} plane (common direction of growth

for cubic metals) and is dominated by the m = 4 term (four fold symmetry around the {100}

axis). This leads to:

γ(θ) = γ0 (1 + ε4 cos 4θ) (15)

An important parameter to consider is the intrinsic resistance of the interface to curvature.

This resistance to curvature is known as the interfacial stiffness and is defined as:

γ̃ ≡ γ(θ) + γ′′(θ) (16)

where γ′′(θ) is the second derivative of the interfacial free energy with respect to θ and is

calculated as follows:

∂γ(θ)

∂θ
= −4γ0ε4 sin 4θ

∂2γ(θ)

∂θ2
= −16γ0ε4 cos 4θ

Solving Eq. 16 for γ(θ), substituting into Eq. 15, and rearranging terms gives a relation for

the stiffness as a function of anisotropy and crystallographic orientation:

γ̃(θ) = γ0 (1− 15ε4 cos 4θ) (17)

Comparison of Eq. 15 and Eq. 17 indicates that the stiffness is significantly more anisotropic

than the interfacial energy, and thus is more easily detected in experiment. It is seen from

Eq. 17 that when the anisotropy parameter, ε4, exceeds ≈ 0.067 then the equation predicts

negative stiffness. This is a physical impossibility, and in reality manifests itself as missing

orientations, as described earlier.

As it measures the resistance of a surface to curvature, the stiffness influences the selection

of growth morphology in an evolving structure rather than strictly the free energy. The stiffness

33

Figure 12 Schematic Wulff constructions: (a) The Wulff construction for

the determination of the equilibrium shape from the γ-plot (b)

The reverse Wulff construction for determining the γplot from an

equilibrium shape (c) The reverse Wulff construction performed

on a body of missing orientations yields only a minimum γ-plot.

From Miller and Chadwick(58)
.

is closely related to the Gibbs-Thompson coefficient, which is generally stated as:

Γ =
γ̃

∆Sf

However, the Gibbs-Thompson coefficient is usually stated as an average value over all crystal

orientations, in which case the anisotropy term from Eq. 17 cancels out (the average value

of cos θ from 0 to 2π is equal to 0), and then the average stiffness is equal to the average, or

isotropic value of the surface free energy. Consequently, the Gibbs-Thompson parameter is

often stated as the average surface free energy over the entropy of fusion, Γ = γ/∆Sf . The use

of the stiffness parameter in the Gibbs-Thompson coefficient is only important when considering

the interfacial behavior of individual crystallographic directions in a material demonstrating

anisotropic effects.

34

Interface Stability

Pure Metals

The interface shape during solidification of pure metals is governed by the competing effects

of surface energy minimization and heat flow. Surface energy tends to flatten the interface in

order to reduce overall interfacial area while the effect of heat diffusion depends on the direction

of heat flow across the interface. During directional solidification, or in the columnar zone of

a casting, the latent heat of solidification is conducted away through the solid as the liquid

ahead of the interface is at a higher temperature than the solid. In this case, if a perturbation

forms at the solid interface protruding into the liquid it will increase the temperature gradient

in the liquid and decrease the temperature gradient in the solid. This will cause more heat

to flow into the tip from the liquid than out of it into the solid, and the temperature of

the tip will rise and cause it to melt back toward the planar interface. In the reverse case

of a perturbation causing a depression in the solid phase, the temperature gradient will be

decreased in the liquid and increased in the solid, causing less heat to flow into the depression

than out of it, lowering the depression temperature and causing it to solidify and advance

toward the planar interface. In both cases the planar interface is stabilized and no dendritic

structures will develop. The opposite situation occurs in equiaxed solidification where a free

crystal grows into an undercooled melt. In this case, latent heat of solidification causes the

temperature of the solid crystal to rise and heat is then conducted away through the liquid. In

this case, the temperature gradient in the solid is essentially zero, and any solid perturbation

extending into the liquid phase will cause the tip to experience a higher negative temperature

gradient, eject more heat, and cause it to grow faster into the melt. The initially spherical

precipitate will then form a dendritic structure. Of course, there are no segregation effects

in a pure metal system and the dendritic growth form is subsequently not detectable. The

temperature gradient criterion for instability of a planar interface in pure metals is thus G < 0.

35

Metal Alloys

Constitutional Supercooling Criterion The stability of a planar interface for alloy

solidification requires the additional consideration of solute effects. After some solidification

time, the diffusion profile ahead of the interface will become constant with respect to the mov-

ing interface which signifies that steady state has been achieved. In the case of a general alloy

system where solute is rejected into the melt (such as in the Al-Si system, Fig. 1) there will be

a compositional maximum in the liquid at the interface. Composition ahead of the interface

will then decay exponentially with distance to the initial alloy composition. This region of dis-

turbed solute profile is the diffusional boundary layer. The stability of the interface is influenced

by the shape of this boundary layer due to compositional effects on the equilibrium melting

temperature. For the present alloy system, the maximum liquid composition corresponds to

the minimum equilibrium melting temperature. Ahead of the interface the equilibrium melting

temperature increases with the decrease in composition, while the actual liquid temperature

increases as a linear function of the imposed temperature gradient. If the compositional gra-

dient ahead of the interface is great enough (corresponding to a thin boundary layer or high

solidification velocity) then it is possible for the equilibrium melting temperature to increase

faster than the actual liquid temperature. There will then be a volume of liquid ahead of the

interface which is at a lower actual temperature than its equilibrium melting point–it is super-

cooled (Fig. 13). This is known as a region of constitutional supercooling(61). In this volume,

there is a driving force for the development and amplification of perturbations contributing to

the breakdown of the planar interface.

The condition of constitutional supercooling requires that the equilibrium temperature

gradient is greater than the actual temperature gradient of the liquid at the interface. The

equilibrium temperature gradient is obtained by multiplying the composition gradient and the

change of liquidus temperature with composition (slope of the liquidus line). The criterion for

the occurrence of constitutional supercooling in alloys is thus G < mGc.

36

Figure 13 Schematic of constitutional supercooling. Solidification in a bi-

nary alloy system is proceeding from left to right along the x

axis with solute being rejected into the melt. As the composi-

tion of the liquid decreases with distance ahead of the interface,

the equilibrium melting temperature increases. If the effect of

the compositional profile on the equilibrium melting tempera-

ture is greater than the actual temperature gradient experienced

during solidification, there will exist a region of constitutional

supercooling (shaded region) where the liquid is at a lower tem-

perature than its melting point. This region of liquid is thermo-

dynamically unstable.

37

Perturbed Interface Model The constitutional supercooling criterion approach for the

determination of interface stability includes several drawbacks: it does not take into account

capillarity effects, only the competition between thermal and solutal effects are considered; it

does not give any indicator of the scale of perturbations which are expected to destabilize a

planar interface; and it does not take account of the temperature gradient in the solid. Mullins

and Sekerka(16) approached the problem of interface stability by calculating the stability of

an infinitesimal sinusoidal perturbation introduced into a planar interface. The sinusoidal

perturbation can be considered to represent a component of a Fourier series which generalizes

the treatment to the appearance of any possible disturbance. In this case, the interface is

stable only if there is no perturbation of any wavelength that will increase in amplitude with

time. The derivative of the perturbation amplitude with respect to time is the parameter that

must be considered.

Consider a coordinate system attached to a planar interface moving with velocity V . A

perturbation is introduced into the interface with the mathematical form of:

z = δ(t) sinωy

where δ is the wave amplitude and ω = 2π/λ. In order to determine whether the perturbation

will grow and destabilize the planar interface, the velocity of the interface at all points, V (y),

must be determined. This is accomplished by considering the local thermal and diffusion fields

at the interface given appropriate boundary conditions. The present solution assumes local

equilibrium at the interface, treats the surface as isotropic, and requires steady state conditions.

This means that once a perturbation becomes stable and begins to grow in amplitude the

assumption of steady state is no longer valid and the analysis breaks down. Therefore, only

the scale of the initial planar interface breakdown can be obtained directly from the instability

analysis while the resultant macrostructural scale can only be inferred.

The thermal and diffusion fields ahead of the interface under steady state are given by

38

forms of the directional growth equation, Eq. 8:

∂2C

∂y2
+
∂2C

∂z2
+
V

D

∂C

∂z
= 0 (18)

∂2TS
∂y2

+
∂2TS
∂z2

+
V

DS

∂TS
∂z

= 0 (19)

∂2TL
∂y2

+
∂2TL
∂z2

+
V

DL

∂TL
∂z

= 0 (20)

where TL and TS represent the temperatures in the liquid and solid, respectively, while DL

and DS are the respective liquid and solid thermal diffusivities.

The temperature at the interface (melting temperature) is influenced by the local compo-

sition and the effect of curvature. The corresponding boundary condition is:

Ti = Tm −mCi − Γω2δ sinωy (21)

where Γ is the Gibbs-Thompson coefficient and values at the interface are denoted with i.

The velocity calculated at the interface is also required to be consistent between the heat

flow and solute flow constraints, which leads to:

V (y) =
κSG

i
S − κLGiL
∆Hf

=
DGic

Ci(k − 1)
(22)

whereGS andGL are the temperature gradients with respect to the z axis in the solid and liquid

respectively, Gc is the composition gradient in the z direction, and κ denotes the conductivity

of the solid and liquid.

Appropriate solutions to Eqs. 18–20 are:

C = C∞ +
GcD

V

[
1− exp

(
−V z
D

)]
+ δ(b−Gc) sinωy exp(−bcz) (23)

TL = Ti +
GLDL

V

[
1− exp

(
−V z
DL

)]
+ δ(a−GL) sinωy exp(−bLz) (24)

TS = Ti +
GSDS

V

[
1− exp

(
−V z
DS

)]
+ δ(a−GS) sinωy exp(−bSz) (25)

39

where:

bc =
V

2D
+

[(
V

2D

)2

+ ω2

] 1
2

bL =
V

2DL
+

[(
V

2DL

)2

+ ω2

] 1
2

bS =
V

2DS
+

[(
V

2DS

)2

+ ω2

] 1
2

and a and b are constants. These contants can be determined by substituting Eqs. 23–25 into

Eqs. 21 and 22 and rearranging.

Finally, the local velocity of the interface is assumed to be:

V (y) = V + δ̇ sinωy

where δ̇ = δ(t)
dt and V (y) is given by Eq. 22. Performing this substitution and equating like

coefficients leads to the central stability result:

δ̇

δ
=
V ω

(
−2Γω2 [bc − (V p/D)]− (G′L +G′S) [bc − (V p/D)] + 2mGc [bc − (V/D)]

)(
G′S −G′L

)
[bc − (V p/D)] + 2ωmGc

where:

G′L = (κL/κ̄)G

G′S = (κS/κ̄)G′

κ̄ =
κS + κL

2

p = 1− k

This equation can be simplified by assuming the temperature gradients and thermal conduc-

tivities of the solid and liquid phases are equal. This leads to:

δ̇

δ
=

V

mGc

(
−Γω2 [bc − (V p/D)]−G [bc − (V p/D)] +mGc [bc − (V/D)]

)
A plot of this equation is shown in Fig. 14. The most important aspect of this equation is when

the amplification of the perturbation amplitude is equal to 0, the case of marginal stability.

40

This is true for:

Γω2 [bc − (V p/D)]−G [bc − (V p/D)] +mGc [bc − (V/D)] = 0 (26)

In the case that this quantity is less than 0 the perturbation amplitude shrinks and the per-

turbation will eventually die out. Conversely, in the case the amplification rate is positive, the

perturbation will grow in magnitude and cause the breakdown of the planar interface. The

equation indicates that the stability of the planar interface is determined by three factors,

namely the effect of capillarity, the thermal field, and the solute field. The first two terms have

a negative sign, indicating the effects of surface energy and a positive thermal gradient are to

stabilize the planar interface. The solute term, on the other hand, has a positive contribution

to perturbation stability, thus tending to destabilize the planar interface.

Further examination of the individual effects on planar stability is beneficial. From the

relation between the first two terms of Eq. 26, it is apparent the temperature gradient must

be similar in scale to Γω2 in order to have a significant effect on the overall stability. However,

given the small scale eutectic structures typically operate under, the temperature gradient often

turns out to be insignificant in the development of planar instabilities. Consider the case of an

Al-Si irregular eutectic over common solidification velocities (10–1000 µm/s) and reasonable

temperature gradients (1–10 K/mm). The maximum corresponding microstructural length

scale is about 10 µm while the Gibbs-Thompson coefficient is about 2× 10−7 m-K. This gives

Γω2 = 80000 K/m, compared to a max gradient of G = 10000 K/m. This implies a maximum

gradient contribution around 12% under the most favorable circumstances. Furthermore, it

will be shown that planar silicon instabilities in this alloy operate at higher velocities and

at smaller length scales than the eutectic spacing. Under these scenarios, the effect of the

temperature gradient compared to capillarity is much less than one percent and may be safely

ignored. Removing the temperature gradient from Eq. 26 and rearranging yields:

mGc
Γ

bc − V/D
bc − V p/D

=

(
2π

λ

)2

Another observation from the Al-Si system is that p ≈ 1. Applying this simplification yields a

41

Figure 14 Amplification rate behavior of the stability of a perturbation of

specified wavelength on a planar interface.

simple relationship for the case of marginal stability:

λ = 2π

√
Γ

mGc

This is the same relation as given by Fisher and Kurz(15). It represents the point at which

instability wavelengths of increasing magnitude first become stable. Finally, noting that if the

composition gradient is proportional to velocity, then the equation above can be rearranged to

obtain λ2V = constant.

References

[1] Nabil Fat-Halla. Structure, mechanical properties and fracture of aluminum alloy a-356

modified with aluminum-strontium (al-5sr) master alloy. Journal of materials science,

22(3):1013, 1987.

[2] N. Fat-Halla. Structural modification of aluminum-silicon eutectic alloy by strontium and

its effect on tensile and fracture characteristics. Journal of materials science, 24(7):2488,

1989.

42

[3] Mahmoud Fouad Hafiz, Nabil K. Fat-Halla, and Sherif B. Moshref. The effect of casting

parameters on the modification process of a commercial hypoeutectic aluminum-silicon

alloy. Zeitschrift fr Metallkunde, 81(1):70, 1990.

[4] J. L. Murray and A. J. McAllister. The al-si (aluminum-silicon) system. Bulletin of Alloy

Phase Diagrams, 5(1):74, 1984.

[5] W. Kurz and D. J. Fisher. Fundamentals of Solidification. Trans Tech Publications Ltd,

Enfield, NH, fourth revised edition edition, 1998.

[6] L. G. England. High-rate growth-mode transitions in al-si eutectics. Master’s thesis, Iowa

State University, 2004.

[7] K. A. Jackson and J. D. Hunt. Lamellar and rod eutectic growth. Transactions of the

Metallurgical Society of AIME, 236(8):1129, 1966.

[8] C. Zener. Kinetics of the decomposition of austenite. AIME Transactions, 167:550–595,

1946.

[9] W. H. Brandt. Solution of the diffusion equation applicable to the edgewise growth of

pearlite. Journal Of Applied Physics, 16(3):139–146, 1945.

[10] W. A. Tiller. Liquid Metals and Solidification. ASM, Cleveland, 1958.

[11] M. Hillert and H. Steinhuser. The structure of white cast iron. Jernkontorets Annaler,

144:520–559, 1960.

[12] H. A. H. Steen and A. Hellawell. The growth of eutectic silicon - contribution to under-

cooling. Acta Metallurgica, 23:529–535, 1975.

[13] K. A. Jackson. Mechanism of growth. In Liquid Metals and Solidification, pages 174–186.

ASM, 1958.

[14] T. Sato and Y. Sayama. Completely and partially co-operative growth of eutectics. Journal

of Crystal Growth, 22:259–271, 1974.

43

[15] D. J. Fisher and W. Kurz. A theory of branching limited growth of irregular eutectics.

Acta Metallurgica, 28(6):777, 1980.

[16] W. W. Mullins and R. F. Sekerka. Stability of a planar interface during solidification of

a dilute binary alloy. Journal of Applied Physics, 35:445–451, 1964.

[17] P. Magnin and W. Kurz. An analytical model of irregular eutectic growth and its appli-

cation to fe - c. Acta Metallurgica, 35(5):1119–1128, 1987.

[18] P. Magnin, J. T. Mason, and R. Trivedi. Growth of irregular eutectics and the aluminum-

silicon system. Acta metallurgica et materialia, 39(4):469, 1991.

[19] P. Magnin and R. Trivedi. Eutectic growth: A modification of the jackson and hunt

theory. Acta Metall Mater, 39(4):453–467, 1991.

[20] Mahmoud Hafiz and Toshiro Kobayashi. Tensile properties influencing variables in eutectic

al-si casting alloys. Scripta metallurgica et materialia, 31(6):701, 1994.

[21] M. G. Day and A. Hellawell. Microstructure and crystallography of aluminum-silicon eu-

tectic alloys. Proceedings - Royal Society. Mathematical, physical and engineering sciences,

305(1483):473, 1968.

[22] R. S. Wagner. On the growth of germanium dendrites. Acta Metallurgica, 8(1):57–60,

1960.

[23] D. R. Hamilton and R. G. Seidensticker. Propagation mechanism of germanium dendrites.

Journal of Applied Physics, 31:1165–1168, 1960.

[24] Shu Zu Lu and Angus Hellawell. Growth mechanisms of silicon in aluminum-silicon alloys.

Journal of Crystal Growth, 73(2):316, 1985.

[25] M. Shamsuzzoha and L. M. Hogan. Crystal morphology of unmodified aluminum-silicon

eutectic microstructures. Journal of Crystal Growth, 76(2):429, 1986.

44

[26] Shu Zu Lu and A. Hellawell. The mechanism of silicon modification in aluminum-silicon

alloys: impurity induced twinning. Metallurgical transactions. A, Physical metallurgy and

materials science, 18A(10):1721, 1987.

[27] H. Fredriksson, M. Hillert, and N. Lange. Modification of aluminum-silicon alloys by

sodium. Journal of the Institute of Metals, 101(Nov):285, 1973.

[28] M. Hillert. Discussion of ”eutectic solidification of al-si alloys”. Metallurgical and Materials

Transactions; A; Physical Metallurgy and Materials Science, 34A(11):2688, 2003.

[29] A. K. Dahle, S. D. McDonald, and K. Nogita. Authors’ reply to discussion of ”eutec-

tic solidification of al-si alloys”. Metallurgical and Materials Transactions; A; Physical

Metallurgy and Materials Science, 34A(11):2690–2693, 2003.

[30] Y. B. Xin and K. J. Hsia. A technique to generate straight through thickness surface cracks

and its application to studying dislocation nucleation in si. Acta Materialia, 44(3):845–

853, 1996.

[31] M. Garat, G. Laslaz, S. Jacob, P. Meyer, P. H. Guerin, and R. Adam. State-of-art use of

sb-, na- and sr-modified al-si casting alloys. Transactions of the Amercian Foundrymen’s

Society, 100:821–832, 1992.

[32] D. C. Jenkinson and L. M. Hogan. Modification of aluminum-silicon alloys with strontium.

Journal of Crystal Growth, 28(2):187, 1975.

[33] A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis, and L. Lu. Eutectic modification

and microstructure development in alsi alloys. Materials Science and Engineering A,

413-414:243–248, 2005.

[34] R. C. Plumb and J. E. Lewis. The modification of aluminum-silicon alloys by sodium.

Journal of the Institute of Metals, 86:393–400, 1958.

[35] C. B. Kim and R. W. Heine. Fundamentals of modification in the aluminum-silicon system.

Journal of the Institute of Metals, 92:367, 1963.

45

[36] N. Tenekedjiev and J. E. Gruzleski. Thermal analysis of strontium treated hypoeutec-

tic and eutectic aluminum-silicon casting alloys. Transactions of the Amercian Foundry

Society, 99:1–6, 1991.

[37] Stuart D. McDonald, Kazuhiro Nogita, and Arne K. Dahle. Eutectic nucleation in al-si

alloys. Acta Materialia, 52(14):4273–4280, 2004.

[38] S. C. Flood and J. D. Hunt. Modification of aluminum-silicon eutectic alloys with sodium.

Metal science, 15(7):287, 1981.

[39] M. D. Hanna, Shu Zu Lu, and A. Hellawell. Modification of the aluminum-silicon sys-

tem. Metallurgical transactions. A, Physical metallurgy and materials science, 15A(3):459,

1984.

[40] Q. F. Hamed, R. Elliott, and P. S. Cooper. Solidification characteristics of sodium and

strontium modified aluminum-silicon casting alloys. Light Metals, pages 1391–1397, 1992.

[41] V. L. Davies and J. M. West. Factors affecting the modification of the aluminum-silicon

eutectic. Journal of the Institute of Metals, 92:175–180, 1963.

[42] L. M. Hogan and H. Song. Interparticle spacings and undercoolings in aluminum-silicon

eutectic microstructures. Metallurgical transactions. A, Physical metallurgy and materials

science, 18A(4):707, 1987.

[43] P. B. Crosley and L. F. Mondolfo. The modification of aluminum-silicon alloys. Modern

casting, 49(3):89, 1966.

[44] Sumanth Shankar, Yancy W. Riddle, and Makhlouf M. Makhlouf. Nucleation mecha-

nism of the eutectic phases in aluminum-silicon hypoeutectic alloys. Acta Materialia,

52(15):4447–4460, 2004.

[45] S. Shankar, Y. W. Riddle, and M. M. Makhlouf. The role of iron in the nucleation of

eutectic silicon in aluminum-silicon hypoeutectic alloys. Solidification of Aluminum Alloys,

pages 103–109, 2004.

46

[46] Sumanth Shankar, Y. W. Riddle, and M. M. Makhlouf. Eutectic solidification of

aluminum-silicon alloys. Metallurgical and Materials Transactions; A; Physical Metal-

lurgy and Materials Science, 35A(9):3038, 2004.

[47] Y. H. Cho, H. C. Lee, K. H. Oh, and A. K. Dahle. Effect of strontium and phosphorus

on eutectic al-si nucleation and formation of -al5fesi in hypoeutectic al-si foundry alloys.

Metallurgical and Materials Transactions; A; Physical Metallurgy and Materials Science,

39(10):2435, 2008.

[48] C. Dinnis, J. A. Taylor, and A. K. Dahle. Interactions between iron, manganese, and the

al-si eutectic in hypoeutectic al-si alloys. Metallurgical and Materials Transactions; A;

Physical Metallurgy and Materials Science, 37A(11):3283, 2006.

[49] H. Jiang, J. H. Sokolowski, M. B. Djurdjevic, and W. J. Evans. Recent advances in auto-

mated evaluation and on-line prediction of al-si eutectic modification level. Transactions

of the Amercian Foundry Society, 108:505–510, 2000.

[50] Francisco C. Robles Hernandez and Jerry H. Sokolowski. Novel image analysis to deter-

mine the si modification for hypoeutectic and hypereutectic al-si alloys. Journal of Metals,

57, 2005.

[51] L. M. Hogan and M. Shamsuzzoha. Crystallography of the flake-fiber transition in the

aluminum-silicon eutectic. Materials forum, 10(4):270, 1987.

[52] S. Khan and R. Elliott. Quench modification of aluminum-silicon eutectic alloys. Journal

of Materials Science, 31(14):3731–3737, 1996.

[53] D. Turnbull. Formation of crystal nuclei in liquid metals. Journal of Applied Physics,

21:1022–1027, 1950.

[54] D. Turnbull and R. E. Cech. Microscopic observation of the solidification of small metal

droplets. Journal of Applied Physics, 21:804–810, 1950.

47

[55] M. E. Glicksman and C. L. Vold. Determination of absolute solid-liquid interfacial free

energies in metals. Acta Metallurgica, 17:1–11, 1969.

[56] J. W. Taylor. An evaluation of interface energies in metallic systems. Journal of the

Institute of Metals, 86:456–463, 1958.

[57] R. E. Napolitano, S. Liu, and R. Trivedi. Experimental measurement of anisotropy in

crystal-melt interfacial energy. Interface Science, 10(2-3):217–232, 2002.

[58] W. A. Miller and G. A. Chadwick. Equilibrium shapes of small liquid droplets in solid-

liquid phase mixtures - metallic hcp and metalloid systems. Proceedings Of The Royal So-

ciety Of London Series A-Mathematical And Physical Sciences, 312(1509):257–266, 1969.

[59] R. E. Napolitano and S. Liu. Three-dimensional crystal-melt wulff-shape and interfacial

stiffness in the al-sn binary system. Physical Review B, 70(21):11, 2004.

[60] G. Wulff. On the question of the rate of growth and dissolution of crystal surfaces. Z.

Krystall., 34:449–530, 1901.

[61] W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers. The redistribution of solute

atoms during the solidification of metals. Acta Metallurgica, 1:428–437, 1953.

48

ANALYSIS OF THE HIGH GROWTH-RATE TRANSITION

IN AL-SI EUTECTIC SOLIDIFICATION

A paper published in the Journal of Materials Science

T. Hosch, L. G. England, and R. E. Napolitano

Abstract

The local solidification conditions and mechanisms associated with the flake to fiber growth

mode transition in Al-Si eutectic alloys are investigated here using Bridgman-type gradient-

zone directional solidification. Resulting microstructures are examined through quantitative

image analysis of two-dimensional sections and observation of deep-etched sections showing

three-dimensional microstructural features. Several microstructural parameters were investi-

gated in an attempt to quantify this transition, and it was found that the particle aspect ratio

is effective in objectively identifying the onset and completion velocity of the flake to fiber

transition, while traditional spacing parameters are not effective indicators of the transition.

For a thermal gradient of 7–14 K/mm, the transition was found to occur in two stages, ap-

pearing over velocity regimes from 0.10 to 0.50 mm/s and from 0.50 to 0.95 mm/s. The initial

stage is dominated by in-plane plate breakup and rod formation within the plane of the plate,

while the second stage is characterized by the onset of out-of-plane silicon rod growth, leading

to the formation of an irregular fibrous structure. The boundary between the two stages is

marked by widespread fibrous growth and the disappearance of the remnant flake structure,

indicating a transition in the structural feature that governs the relevant diffusion length, from

inter-flake spacing to inter-rod spacing.

49

Introduction

The alloys based on the Al-Si eutectic system are among the most versatile for use in net

shape castings, offering an extensive range of properties suitable for a broad scope of engi-

neering applications calling for high strength to weight ratio, good corrosion resistance, and

excellent castability. While the intrinsic flake silicon morphology observed in conventional

Al-Si castings imparts relatively poor mechanical properties, ductility and strength are sig-

nificantly improved through modification practices, where the silicon flake structure is refined

to a globular or fibrous morphology. Typical effects of modification on Al-Si cast alloys in-

clude a 50% improvement in tensile strength and a threefold improvement in ductility.(1–5)

These enhanced properties are most commonly achieved through impurity modification,(6–9)

a practice where trace amounts of certain alloying additions (Na or Sr) induce a high density

of {111} twins,(7) giving rise to a microfaceted growth structure which allows local response

to the evolving diffusion field and the formation of a fibrous morphology. However, in addi-

tion to increased costs and recycling limitations, impurity modification is also associated with

deleterious effects such as porosity, hot tearing, and poor surface finish.(6; 9) An alternative is

to elicit a similar structural refinement and morphological transition through increased cool-

ing rates, a practice known as quench modification.(10; 11) Quench modification yields a fine

fibrous structure that is microscopically smooth, with a low density of incidental twins, clearly

differentiating it from the microfaceted impurity modified structure. However, the local in-

terface conditions and mechanisms that lead to quench modification during solidification are

not yet fully understood, thus limiting reliable prediction and effective employment of quench

modification in certain casting applications. More effective utilization of this growth mode

transition for property enhancement requires better description of the transition itself in terms

of quantitative microstructural parameters, enabling consistent identification of the transition

and reliable determination of the prevailing local growth conditions.

To date, there have been many attempts to characterize the Al-Si eutectic microstructure.

In particular, microstructural changes during impurity modification have been characterized

with some success. Early methods of determining silicon modification level were based on

50

manual microscopic assessment of the microstructure, which can be combined with thermal

analysis observations to allow quick estimation of modification level.(12) Drawbacks to this

method include a lack of objectivity when assessing modification level and a decrease in reso-

lution of thermal analysis methods at higher cooling rates. Recently, computer image analysis

technology has been applied to increase the objectivity and accuracy of these measurements.

Jiang et al.(13) used two-dimensional image analysis to objectively determine the Al-Si modi-

fication level with increasing Sr additions. Particle length, width, and perimeter were found to

correlate well with changing levels of structure modification. Hernandez and Sokolowski(14)

expanded this technique to work on hypereutectic alloys and also found particle perimeter to

effectively differentiate modification level.

The microstructural changes associated with the quench modification transition have not

been characterized as thoroughly as those associated with impurity modification. Average

interphase spacing has been measured by several investigators over a range of solidification

velocities, as shown in Table 1, but such spacing parameters contain only indirect morphologi-

cal information and do not adequately reflect the changing growth mode behavior throughout

the flake to fiber transition. Due to the lack of appropriate quantitative parameters that

indicate the transition, previous estimates of the velocity for the quench modification tran-

sition (Table 2) are based on qualitative analysis of structure, and results vary significantly.

With no established method for objective identification of the flake-fiber transition, processing-

map boundaries indicating the conditions which give rise to flake or fibrous morphologies are

not well defined, and growth-mode prediction based on local solidification parameters is not

reliable. A preliminary analysis(15) verified that the flake to fiber transition occurs over a

wide velocity range, and suggested that new microstructural parameters may be able to indi-

cate the transition. In the work presented here, we (i) quantitatively characterize the Al-Si

microstructure over different velocities of solidification using a few selected microstructural

parameters, and (ii) qualitatively analyze the process of quench modification to examine more

closely the microstructural mechanisms associated with the growth mode transition indicated

by the quantitative measurements.

51

Table 1 Reported Al-Si eutectic growth parameters from length scale (λ)

measurements.

Year Gradient Velocity Measurement Aa ma

K/mm µm/s

Day and Hellawell(10) 1968 3–10 4–14 λb 22 -0.56

Fredriksson, Hillert, and Lange(16) 1973 30 4–400 λb 46 -0.61

Toloui and Hellawell(17) 1976 0.7 20–400 λ||, λA 46 -0.41

1.5 20–400 λ||, λA 35 -0.42

4.5 20–400 λ||, λA 28 -0.43

8 20–400 λ||, λA 25 -0.45

15 20–400 λ||, λA 23 -0.48

Elliott, Glenister(18) 1980 0.8 5–170 λb 26 -0.33

Atasoy(19) 1984 12 10–474 λ|| 25 -0.34

Hogan and Song(20) 1987 11 10–200 λ|| 23 -0.45

Liu, Zhou, and Shang(21) 1990 9–11 5–200 λ|| 25 -0.46

Magnin, Mason, and Trivedi (22) 1991 8 0.1–500 λ||
c 34 -0.5

Khan and Elliott(23) 1996 12.2 28–875 λ||, λA 32 -0.47

7.6 28–875 λ||, λA 30 -0.43

Wolczynski, Billia, and Rabczak(24) 1996 8 3–70 λ|| 19 -0.50

0.8 10–165 λ|| 24 -0.30

Cuprys, Major, and Wolczynski(25) 2000 4 300–790 λ||, λA 22 -0.47

10 300–790 λ||, λA 15 -0.4

Napolitano and England(15) 2004 7.5 10–1200 λA 37 -0.52

7.5 10–1200 λL 56 -0.49

Guzik and Kopycinski(26) 2006 10.5 0.3–11 λ||
d 17 -0.35

Current Study 7–14 10–2000 λ|| 27 -0.53

7–14 10–2000 λA 48 -0.55

7–14 10–2000 λL 55 -0.52

a All parameters given as λ = AV m.
b Unspecified linear intercept method.
c Selected eutectic regions for intercept analysis not restricted to areas where lamellae were

strictly parallel.
d Lines for spacing determination were drawn parallel to the growth interface.

52

Table 2 Reported transition velocities.

Gradient, K/mm Velocity, µm/s

Steen and Hellawell(27) 11 400–800

23 160–200

Jenkinson and Hogan(8) 9-40 480–1000

Toloui and Hellawell(17) 8 800–1000

Atasoy(19) 12 395–570

Khan and Elliott(23) 8-12 505–807

Napolitano and England(15) 7.5 100–1000

Experimental methods and findings

Alloy test specimens of an Al-13wt% Si alloy were fabricated by vacuum-arc-melting the

pure constituents (<10 ppm impurities) on a water-cooled copper hearth, casting into 8 mm

billets, swaging to 5 mm diameter rods, and cutting to lengths of 300 mm.

Directional solidification experiments were performed in a Bridgman-type furnace over a

range of velocities from 10 µm/s to 2000 µm/s. The temperature gradient during solidification

was measured using a thermocouple embedded in a separate sample and ranged from 7 K/mm

at 10 µm/s to 14 K/mm at 1000 µm/s. Test specimens were contained in an alumina tube of

5.5 mm inner diameter and 8.0 mm outer diameter. Samples were grown over a distance of

50 mm and then quenched to 25◦C in a water-cooled bath containing a Ga-In-Sn alloy. Cross

sections were taken from each sample 10 mm behind the final quenched interface to obtain

a representative eutectic structure and prepared for metallographic analysis. Characteristic

microstructures observed over the range of velocities are shown in Fig. 1. Early stages of the

flake to fiber transition can be seen at velocities as low as 20 to 50 µm/s, though the images

suggest that the transition occurs primarily over the velocity range of 100 to 950 µm/s.

Specimens to be used for the determination of interflake spacing were polished and etched

with a 2.5%HCl-1.5%HNO3-1%HF reagent for 10–30 seconds for SEM analysis. Selected spec-

imens were deep etched by suspending in an ultrasonic bath with the etchant for one hour.

Three conventional spacing metrics were determined from eutectic cross sections. The spacing

between parallel flakes, λ||, was measured using intercept lines perpendicular to selected silicon

53

flakes observed to be approximately parallel. The random line spacing, λL, was determined

using intercept lines oriented randomly. An area-based spacing parameter, λA, was calculated

as:

λA =
√
A/N

where N is the number of particles that are observed on a two-dimensional analysis area, A. A

schematic demonstrating the parallel and random line spacing measurements is shown in Fig.

2. The conventional spacing parameter results are shown in Fig. 3 as a function of velocity.

All spacing parameters closely followed a λ2V = constant relationship.

The average particle aspect ratio was also used to characterize the silicon structure. This

is defined as the ratio of the largest caliper dimension of a particle to the smallest dimension

perpendicular to the maximum. The aspect ratio as a function of velocity is displayed in Fig.

4. The data show three distinct regimes marked by abrupt transitions in slope at the velocities

135 µm/s and 880 µm/s. These velocities bound the transition range, within which both flake

and fiber morphologies are readily observed.

Analysis and discussion

Qualitative inspection of the microstructures shown in Fig. 1 reveals that the flake to

fiber transition occurs gradually (with velocity) and in somewhat overlapping but distinct

stages. In the lowest studied velocities of 10 and 20 µm/s, the microstructure consists of large

silicon plates. The plate structure is generally unbroken, though there are isolated instances

where individual plates or groups of plates have begun to break up. This is not entirely

unexpected given the inherently large variation in local spacings and solidification conditions

of irregular eutectic alloys. In the 50 and 100 µm/s structures, there appears to be only slight

if any deviation from the broad plate structure. Indeed, if one ignores scale, it is difficult to

differentiate between the microstructures in this range, indicating the flake to fiber transition

has not yet begun. However, a significant change is seen from 100 to 250 µm/s. At 250

µm/s, the plate structure has degraded significantly, leaving a dispersion of skeletal plates

and various rodlike structures within the plane of the plate, indicating the beginning of the

54

Figure 1 Typical silicon morphology after directional solidification of an

Al-Si eutectic alloy in a temperature gradient of 7–14 K/mm over

a velocity range from 10 to 950 µm/s. The Al-rich phase has been

chemically removed.

55

Figure 2 Schematic demonstrating the calculation of the parallel and ran-

dom line spacing measurements. The λ|| measurement is deter-

mined by drawing lines perpendicular to parallel silicon plates

while the λL measurement involves the generation of random lines

over the eutectic area.

56

Figure 3 Graph of three different spacing parameters. The λL measure-

ment reflects the average spacing considering all possible line ori-

entations. The λ|| measurement indicates the average spacing

perpendicular to parallel silicon particles. The λA measurement

is effectively an inverse particle density function, indicating that

particles become more numerous within a constant volume at high

velocities. Error bars represent the 95% confidence interval of the

mean.

57

Figure 4 Graph of the average particle aspect ratio for the range of veloc-

ities studied. The aspect ratio displays distinct transition points

near 135 µm/s and 880 µm/s, which are near the visually ob-

served onset and conclusion velocities of the flake to fiber tran-

sition. Error bars represent the 95% confidence interval of the

mean.

flake to fiber transition. Another important event is noted at 500 µm/s. For the first time,

out-of-plane rod growth is seen. Several examples of rods growing out of flat plate faces are

evident, as well as instances of extended rod growth mixed with the eroding plate structure.

Whereas at 250 µm/s rods were beginning to evolve within the plane of the plate, by 500

µm/s growth has become possible outside of the plane of the plate as well. The conversion to

rod dominated growth continues through 700 µm/s, and is generally complete by 950 µm/s.

The microstructure at 950 µm/s contains little to no remnant plate structure and is instead

dominated by rod growth which is weakly aligned with the growth direction. From these

observations, the flake to fiber transition is said to occur in two stages: an initial stage which

begins between the velocities of 100 and 250 µm/s and involves breakup of the broad plate

structure and in-plane rod formation, and a final stage which begins near the velocity 500

µm/s and involves the initiation of out-of-plane rod growth and continues until the transition

to rod-dominated growth is complete by 950 µm/s.

Evolving microstructural features of the eutectic with increasing velocity are representative

58

of the intrinsic growth mechanisms being selected. Higher magnification images of the evolving

eutectic structures are shown in Fig. 5. The sequence of morphologies observed upon growth

from 20 to 250 µm/s suggests that the transition involves a selection phenomenon based on the

hierarchy of interfacial properties. In particular, it is important to note the manner of plate

breakup at these velocities. The appearance of gaps, holes, and other convoluted formations

within otherwise well defined plate structures indicates that, while growth is still generally

confined to within the {111} plane of the plate, multiple in-plane growth directions are op-

erative. In effect, growth is becoming more nearly isotropic in the plane of the plate. This

progression leads to the development of increasingly thin skeletal plates and, ultimately, the

formation of rodlike structures within the plane of the plate. Additionally, it becomes apparent

at 500 µm/s that out-of-plane growth sites are active at select locations in the structure. For

example, it is seen in Fig. 5 that silicon protrusions begin to form on plate faces by 500 µm/s

and grow approximately perpendicular to the plate face. These isolated instances could be a

result of locally higher eutectic spacings and subsequently increased local solute gradient. Sili-

con protrusion formation occurs along with an increased incidence of extended fibrous growth,

both of which dominate the microstructure by 950 µm/s, as shown in Figs. 1 and 5. A more

extensive example of protrusion formation is visible in Fig. 6. Here, silicon fingers grow out of

plate faces at a defined spacing. As the remnant plate structure disappears in the eutectic, it

becomes difficult to determine whether predominant rod growth is truly three-dimensional in

nature or remains confined within the {111} silicon planes. However, with substantial out-of-

plane protrusion formation on crystal facets at velocities as low as 500 µm/s, it is reasonable

to assert that localized morphological instability plays a vital role in the onset and completion

of the flake to fiber transition.

If the operative flake to fiber transition mechanism involves the activation of additional

growth sites with increasing solidification velocity, then one would expect the predominant

silicon fiber growth axis to change with velocity as well. Favored in-plane growth directions

would be prevalent at low velocities, while additional in-plane and ultimately out-of-plane fi-

brous growth directions would become common with increasing velocity. The crystallographic

59

orientation of quench modified silicon fibers has been studied to some extent. At lower veloc-

ities, Lu and Hellawell(11) and Shamsuzzoha and Hogan(28) found a tendency for plates to

elongate in <211> directions and Lu and Hellawell similarly noted that quench modified fibers

assumed a general growth direction of approximately <211>. Steen and Hellawell(27) observed

the occurrence of <211> fiber growth, but reported the most common growth direction was

<110>. Jenkinson and Hogan(8), meanwhile, found the dominant fiber axis to be consistently

<100>. While a relationship between velocity and fiber orientation was not reported by these

authors, the variable orientation results support the possibility of fiber growth in multiple

directions with a predominant growth direction that evolves with changing velocity as is con-

sistent with the present findings. Furthermore, the observation of dominant <100> growth in

the study by Jenkinson and Hogan is significant in that it represents an out-of-plane growth

direction, proving that out-of-plane growth may increase to the extent that it dominates the

quench modified microstructure.

The evolution of silicon morphology with increasing velocity is governed by distinct levels

of silicon interfacial energy. At low velocities (and low undercoolings), the faceted, microscop-

ically smooth morphology of flake silicon is preferred.(29) Increased undercooling at higher

velocities precipitates the activiation of additional in-plane growth directions leading to the

formation of in-plane rod structures, and, at the highest velocities, the activation of out-of-

plane growth directions in select locations leads to the formation of rod-type silicon protrusions

approximately perpendicular to plate faces. The appearance of these fibrous growth structures

eventually dominates the eutectic structure, completing the flake to fiber transition. It should

be noted that an earlier study by Khan and Elliott(23) reported a discrete decrease in under-

cooling above 500 µm/s. While this result does not appear to be consistent with the present

observation of a gradual flake to fiber transition occurring over a wide range of velocities be-

ginning below 250 µm/s, it may be indicative of the onset of out-of-plane growth defining

the beginning of the second stage of the transition. The erosion of the plate structure and

subsequent onset of out-of-plane growth will contribute to a change in the intrinsic length

scale. While the evident microstructural morphology changes gradually, it is possible that a

60

relatively abrupt change in the dominant diffusion length scale from interplate to interfiber

distances corresponds to a sudden decrease in local undercooling.

The conventional spacing parameters examined closely follow a λ2V = constant relation-

ship and differ only by a constant multiplier, as shown in Fig. 3. As expected, the parameters

do not indicate the flake to fiber transition in any way and, hence, do not reflect the evolving

silicon microstructure. The spread in spacing values between different parameters is similar

to the spread in previously reported spacing results. Due to the spread in magnitude of the

results, the degree to which any of the spacing parameters approximate the true average inter-

fiber diffusion distance during solidification is in doubt. Each of the three parameters has its

drawbacks. The subjective, selective nature of the λ|| measurement suggests it is not an accu-

rate representation of the whole microstructure. The λA method suffers from the difficulty of

determining which particles are separate, especially in the flake structure. Finally, the λL re-

sults will be biased upwards due to a reliance on random alignments that do not coincide with

the minimum distance between two adjacent particles. Furthermore, all the spacing param-

eters employed suffer from the limitations of the two-dimensional microstructure projections

they are based on.

Unlike the spacing parameters, the aspect ratio data shown in Fig. 4 indicate a transition

with changing velocity. The initial abrupt change in slope of the graph occurs at about 135

µm/s, indicating the data may be reflecting the onset of the flake to fiber transition, which was

determined to occur between 100 and 250 µm/s. This behavior is reasonable, given that the

transition involves the conversion of high aspect ratio broad flakes to low aspect ratio skeletal

plates and rod structures. Furthermore, the data show a second and opposite slope change near

880 µm/s, which is attributed to the end of the flake to fiber transition where the conversion

to rods is largely complete and the aspect ratio ceases to drop. The transitions shown by the

aspect ratio data are useful in that they define objective measures for determining the onset

and completion velocities of the flake to fiber transition, allowing consistent identification of

the transition.

61

Figure 5 Details of the quench modification process in an Al-13wt% Si

alloy. At velocities from 10 to 250 µm/s the transition is evident

in the breakup of plates, with rodlike structures evolving within

the envelope of the plate. At higher velocities, the next stage of

the transition becomes evident as out-of-plane rod growth begins

around 500 µm/s (shown by arrows) and a shift to rod dominance

occurs by 950 µm/s.

62

Figure 6 Occurrence of morphological instability of plate faces in a sample

grown at 950 µm/s.

Conclusions

1. Qualitative observations suggest the flake to fiber transition occurs within two overlap-

ping but distinct intervals, defined below.

(a) 100–500 µm/s: This stage is characterized by a rapid increase in the in-plane

breakup of broad silicon plates to skeletal plate and rodlike structures. This oc-

currence signifies the activation of additional in-plane growth directions due to in-

creased undercooling.

(b) 500–950 µm/s: This stage begins with the onset of out-of-plane silicon growth,

leading to fibrous rod structures and three-dimensional growth. There is also a

marked increase in incidences of silicon morphological instabilities growing out of

sheer plate faces. This stage terminates with the completion of the flake to fiber

transition.

63

Furthermore, despite descriptions of flake to fiber onset and completion velocities, a

range of silicon growth mechanisms are present at all velocities studied (10–2000 µm/s),

and the flake to fiber transition, as reported, simply reflects those velocities at which

the dominant growth mechanism changes. Al-Si eutectic growth may, therefore, be more

aptly described with a model that incorporates flake, fiber, and other mechanisms of

growth at all velocities in this range.

2. The appearance of out-of-plane silicon protrusions midway through the flake to fiber

transition suggests that the occurrence of three-dimensional out-of-plane silicon growth

is vital to the formation of the modified fibrous microstructure. The flake to fiber transi-

tion may then be said to involve a transition from the primarily two-dimensional growth

of eutectic silicon as bulky plates at low velocities to primarily three-dimensional growth

of eutectic silicon as globular fibers at high velocities. A salient feature of this transforma-

tion is the change from flake-dominated diffusion distances to fiber-dominated diffusion

distances.

3. None of the conventional spacing parameters are effective in indicating the flake to fiber

transition. Therefore, more descriptive parameters must be included in any model meant

to describe the microstructure and growth modes present in the silicon eutectic.

4. The relationship between average particle aspect ratio and solidification velocity objec-

tively defines a velocity for both the beginning and end of the flake to fiber transition.

Stages of the transition are indicated by abrupt changes in the slope of the aspect ratio

versus velocity relationship. In this manner, the beginning of the flake to fiber transition

in the Al-Si eutectic alloy was determined to be 135 µm/s, and the end was determined

to be 880 µm/s. While this range compares well with the qualitative assessment based on

morphology, it is a more objective measure of the flake to fiber transition and, therefore,

more suitable for use in the prediction of solidification microstructure.

64

Acknowledgements

This work was made possible by support from the National Science Foundation (NSF),

Division of Materials Research, under Award No. 0237566. The authors would also like to

thank P. Matlage for experimental assistance.

References

[1] Nabil Fat-Halla. Structure, mechanical properties and fracture of aluminum alloy a-356

modified with aluminum-strontium (al-5sr) master alloy. Journal of materials science,

22(3):1013, 1987.

[2] N. Fat-Halla. Structural modification of aluminum-silicon eutectic alloy by strontium and

its effect on tensile and fracture characteristics. Journal of materials science, 24(7):2488,

1989.

[3] Mahmoud Fouad Hafiz, Nabil K. Fat-Halla, and Sherif B. Moshref. The effect of casting

parameters on the modification process of a commercial hypoeutectic aluminum-silicon

alloy. Zeitschrift fr Metallkunde, 81(1):70, 1990.

[4] Mahmoud Hafiz and Toshiro Kobayashi. Tensile properties influencing variables in eutectic

al-si casting alloys. Scripta metallurgica et materialia, 31(6):701, 1994.

[5] M. Zuo, X. F. Liu, and Q. Q. Sun. Effects of processing parameters on the refinement of

primary si in a390 alloys with a new al-si-p master alloy. Journal of Materials Science,

44(8):1952–1958, 2009.

[6] M. Garat, G. Laslaz, S. Jacob, P. Meyer, P. H. Guerin, and R. Adam. State-of-art use of

sb-, na- and sr-modified al-si casting alloys. Transactions of the Amercian Foundrymen’s

Society, 100:821–832, 1992.

[7] Shu Zu Lu and A. Hellawell. The mechanism of silicon modification in aluminum-silicon

alloys: impurity induced twinning. Metallurgical transactions. A, Physical metallurgy and

materials science, 18A(10):1721, 1987.

65

[8] D. C. Jenkinson and L. M. Hogan. Modification of aluminum-silicon alloys with strontium.

Journal of Crystal Growth, 28(2):187, 1975.

[9] A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis, and L. Lu. Eutectic modification

and microstructure development in alsi alloys. Materials Science and Engineering A,

413-414:243–248, 2005.

[10] M. G. Day and A. Hellawell. Microstructure and crystallography of aluminum-silicon eu-

tectic alloys. Proceedings - Royal Society. Mathematical, physical and engineering sciences,

305(1483):473, 1968.

[11] Shu Zu Lu and Angus Hellawell. Growth mechanisms of silicon in aluminum-silicon alloys.

Journal of Crystal Growth, 73(2):316, 1985.

[12] N. Tenekedjiev and J. E. Gruzleski. Thermal analysis of strontium treated hypoeutec-

tic and eutectic aluminum-silicon casting alloys. Transactions of the Amercian Foundry

Society, 99:1–6, 1991.

[13] H. Jiang, J. H. Sokolowski, M. B. Djurdjevic, and W. J. Evans. Recent advances in auto-

mated evaluation and on-line prediction of al-si eutectic modification level. Transactions

of the Amercian Foundry Society, 108:505–510, 2000.

[14] Francisco C. Robles Hernandez and Jerry H. Sokolowski. Novel image analysis to deter-

mine the si modification for hypoeutectic and hypereutectic al-si alloys. Journal of Metals,

57, 2005.

[15] R. E. Napolitano and L. G. England. High-rate growth-mode transitions in al-si eutectics.

Solidification of Aluminum Alloys, pages 445–451, 2004.

[16] H. Fredriksson, M. Hillert, and N. Lange. Modification of aluminum-silicon alloys by

sodium. Journal of the Institute of Metals, 101(Nov):285, 1973.

66

[17] B. Toloui and A. Hellawell. Phase separation and undercooling in aluminum-silicon eu-

tectic alloy - the influence of freezing rate and temperature gradient. Acta Metallurgica,

24(6):565, 1976.

[18] R. Elliott and S. M. D. Glenister. The growth temperature and interflake spacing in

aluminum-silicon eutectic alloys. Acta Metallurgica, 28(11):1489, 1980.

[19] O. Atasoy. Effects of unidirectional solidification rate and composition on interparticle

spacing in aluminum-silicon eutectic alloys. Aluminium, 60(4):275, 1984.

[20] L. M. Hogan and H. Song. Interparticle spacings and undercoolings in aluminum-silicon

eutectic microstructures. Metallurgical transactions. A, Physical metallurgy and materials

science, 18A(4):707, 1987.

[21] Junmin Liu, Yaohe Zhou, and Baolu Shang. Lamellar eutectic stable growth - ii. experi-

ment on al-si eutectic. Acta metallurgica et materialia, 38(7):1321, 1990.

[22] P. Magnin, J. T. Mason, and R. Trivedi. Growth of irregular eutectics and the aluminum-

silicon system. Acta metallurgica et materialia, 39(4):469, 1991.

[23] S. Khan and R. Elliott. Quench modification of aluminum-silicon eutectic alloys. Journal

of Materials Science, 31(14):3731–3737, 1996.

[24] W. Wolczynski, B. Billia, and K. Rabczak. Interlamellar spacing in al-si eutectic growth

controlled by temperature gradient. Materials science forum, 215(Solidification):323, 1996.

[25] R. Cuprys, B. Major, and W. Wolczynski. Transition of flake into fiber structure in

eutectic al-si. Materials science forum, 329(Solidification):161, 2000.

[26] E. Guzik and D. Kopycinski. Modeling structure parameters of irregular eutectic growth:

modification of magnin-kurz theory. Metallurgical and Materials Transactions; A; Physical

Metallurgy and Materials Science, 37A(10):3057, 2006.

[27] H. A. H. Steen and A. Hellawell. Structure and properties of aluminum-silicon eutectic

alloys. Acta Metallurgica, 20(3):363, 1972.

67

[28] M. Shamsuzzoha and L. M. Hogan. Crystal morphology of unmodified aluminum-silicon

eutectic microstructures. Journal of Crystal Growth, 76(2):429, 1986.

[29] L. Li, Y. D. Zhang, C. Esling, Z. H. Zhao, Y. B. Zuo, H. T. Zhang, and J. Z. Cui.

Formation of feathery grains with the application of a static magnetic field during direct

chill casting of al-9.8wtJournal of Materials Science, 44(4):1063–1068, 2009.

68

THE EFFECT OF THE FLAKE-FIBER TRANSITION IN SILICON

MORPHOLOGY ON THE TENSILE PROPERTIES OF

AL-SI EUTECTIC ALLOYS

A paper submitted to Materials Science and Engineering A

T. Hosch and R. E. Napolitano

Abstract

The combined and separate effects of microstructural scale and silicon phase morphology

on the mechanical properties of Al-Si eutectic alloys are investigated here. The Bridgman-type

gradient-zone directional solidification method is employed to produce as-cast structures char-

acteristic of the full range of practical (i.e. casting) growth velocities, and the corresponding

mechanical properties are characterized by uniaxial tension testing. The results are analyzed in

light of previously reported microstructural changes associated with the flake-fiber or “quench

modification” transition. Both tensile strength and elongation were found to increase with

solidification rate, as expected, based on the corresponding refinement of the eutectic struc-

ture. However, the flake-fiber transition was found to have a particular relevance here with

regard to each of these properties. The velocity dependence of the tensile strength was found

to become more severe at a pulling speed of approximately 250 µm/s, corresponding to the

transition from a flake-dominant to a fiber-dominant structure, as we have previously detailed.

The elongation was found to exhibit a maximum at approximately 600 µm/s, corresponding

to completion of the flake-fiber transition. In addition, the overall variability of tensile proper-

ties was observed to decrease significantly with the transition to the fibrous structure. These

69

results emphasize the importance of understanding and controlling the flake-fiber transition

that occurs with increasing solidification rate in Al-Si eutectic alloys.

Introduction

Al-Si eutectic alloys are some of the most commercially important casting alloys, with nu-

merous aerospace and automotive applications that take advantage of the corrosion resistance,

excellent castability, and high strength-to-weight ratio intrinsic to aluminum alloys. The high

strength-to-weight ratio contributes to a significant weight-saving potential for these alloys,

making them of increasing importance considering recent rapidly rising energy prices and the

subsequent focus on energy efficiency. The irregular nature of the Al-Si eutectic gives rise to

a diverse array of microstructural features that can be controlled through adjusting various

solidification parameters. In particular, the mechanical properties of the casting may be im-

proved via microstructural modification, a process in which a refined fibrous silicon structure

is obtained in lieu of a coarse flake structure. Modification in the Al-Si system was recently

reviewed by Hegde and Prabhu (1). In short, microstructural modification may be obtained by

additions of trace impurity elements (2–5) or increased solidification velocity (6–9). In either

case, the goal of modification is to improve the mechanical properties of the alloy.

The mechanical property benefits of microstructural modification in the Al-Si system arise

from both the decreasing scale of the eutectic silicon microstructure and the beneficial effects of

the transition to a fibrous silicon morphology. Early investigations by Justi and Bragg (10; 11)

and later by Telli and Kisakürek (12) found that both hardness and strength increase with

decreasing eutectic scale for the flake silicon morphology. Subsequent investigations found that

the relationship between hardness and strength varied significantly based on the underlying

silicon morphology involved (13–16), highlighting the contribution of silicon morphology sep-

arate from the microstructural scale. Indeed, the beneficial effect on tensile strength arising

from the fibrous morphology obtained from impurity modification has been well characterized

by a number of researchers (17–23). Additionally, both scale and morphology have been ob-

served to improve fracture toughness in the Al-Si system, as exemplified in a study by Hafiz

70

and Kobayashi (24), where a fibrous silicon structure displayed increased toughness compared

to a flake structure, though the toughness of both structures improved with decreased scale as

well.

The specific effect that the flake-fiber transition has on Al-Si tensile properties, apart from

the beneficial effects of the decreasing microstructural scale at higher solidification velocities,

has not been well characterized to date due to a number of issues. First, the flake-fiber

transition itself had not been well quantified in the literature until recently, making it difficult

to correlate mechanical properties with underlying microstructural features. However, a recent

study by the present authors has detailed the significant microstructural changes that occur

during modification of the pure binary alloy with increasing velocity (6). In particular, it

was found that the microstructural changes that occur during the flake-fiber transition may

be described as occuring in distinct but overlapping stages in the velocity range of 100-1000

µm/s. Further, the velocity at which the morphological changes associated with the flake-

fiber transition occurs was identified using a quantitative metric, the average particle aspect

ratio, which facilitates comparison of bulk material properties with internal microstructural

features. The second issue affecting the correlation of the flake-fiber transition with changes

in mechanical properties is the lack of mechanical property data from within the specific

velocity range of the transition; in general, the tensile properties of only a few points within

the transition regime have been measured, limiting the possibility of capturing any transition-

specific behavior. The present study addresses this limitation by examining the tensile behavior

of an Al-Si eutectic alloy at multiple solidification velocities throughout the high growth-rate

flake-fiber transition. The seperate contributions of microstructural scale and morphology to

the tensile strength are investigated by considering the distinct Al-Si morphology regimes that

have been recently identified.

Experimental

Directional solidification experiments were performed with an Al-12 wt%Si alloy in a

Bridgman-type gradient-zone furnace using pulling velocities (V) of 20, 80, 250, 600, and

71

Table 1 Temperature gradients measured in the present Bridgman-type

directional solidification apparatus.

V (µm/s) G (K/mm)

10 7

50 10

100 10

500 10

700 10

1000 14

1000 µm/s. This range of V was chosen to emphasize the microstructural transition. The

temperature gradient (G), imposed during directional solidification, was measured using a

thermocouple embedded in a test sample at several solidification velocities, as listed in Table

1. Samples were melted in an alumina crucible of 5.5 mm inner diameter and 8.0 mm outer di-

ameter, solidified over a distance of 125 mm, and then quenched to 25◦C in a water-cooled bath

containing a Ga-In-Sn alloy. Sample sections approximately 6.3 cm (2.5 inches) in length were

machined into tension test specimens with a 3.2 cm (1.25 inch) gauge length, 3.65 mm inner

diameter, and 5.5 mm outer diameter in accordance with ASTM Standard E8. Four tension

test specimens for V=20 µm/s and V=80 µm/s, three for V=250 µm/s, and two for V=600

µm/s and V=1000 µm/s were obtained from the directionally solidified samples. For each of

these specimens, tension testing was performed to fracture in displacement control mode with

a crosshead speed of 0.2 mm/min. Strain measurements were taken using an extensometer.

Results and Discussion

Tension test results are reported in Table 2. The results indicate that ultimate tensile

strength (UTS) is significantly affected by solidification velocity, monotonically increasing by

37% with solidification rate over the full range, from 162MPa at 20 µm/s to 222 MPa at

1000 µm/s. Elongation increases rapidly to a maximum of 23.8% at 600 µm/s, but shows a

significant decrease at 1000 µm/s.

One of the most significant trends noted in the tension test data with increasing velocity

72

is the increase in UTS. It is generally understood that the average eutectic spacing varies as

V −1/2, and this dependency has been clearly shown to hold for Al-Si eutectics (see, for example

(25; 26)), with a range of proportionality constants arising from the various difficulties and

methods associated with characterizing an irregular eutectic structure, as we have previously

reviewed (6). This decrease in microstructural scale is expected to increase strength, which

is observed here. Indeed, the 37% overall increase in tensile strength throughout the range

of velocities studied is consistent with previous reports of mechanical property variation with

directional solidification velocity (12; 13). The salient point to make here, however, is that

there are two distinct regions with different velocity dependence, as indicated by the UTS

data, shown in Fig. 1. The intersection of the superimposed trend-lines reveals a transition in

tensile behavior at approximately V=250 µm/s, with the higher velocity regime exhibiting a

stronger temperature dependence.

The bimodal UTS behavior is compared with our previously reported measurements of sil-

icon aspect ratio and eutectic spacing (6) in Fig. 1, and the essential nature of the flake-fiber

microstructural transition is illustrated by the sequence shown in Fig. 2 (6). The change in

slope of the aspect ratio versus velocity relationship above 100 µm/s signifies the onset of the

morphological transition, where the broad flakes that dominate the structure at lower growth

rates begin to show a tendency to break up into finger-like features within the skeletal plate

structure (6). Over the same velocity range, the average interparticle spacing in the alloy is

seen to decrease continuously, indicating that the microstructural scale is not sensitive to the

morphological transition but is, rather, related to the characteristic lengths associated with

diffusion and capillarity.1 Therefore, it can be ascertained that the monotonic structural refine-

ment arising from increasing growth velocity, while contributing to a corresponding increase

in strength, is not responsible for the discontinuity in the UTS observed at approximately 250

µm/s. The present mechanical testing results can be seen as reflecting the concordant effects

of both the decreasing microstructural scale and the transition in silicon morphology. Each of

1While the characteristic microstructural length is not specifically sensitive to the specific morphology, the
measurement of such a characteristic length is quite sensitive. Indeed, the methods used for such measurement
must be carefully chosen in accord with the prevailing structure if the measurement is intended to be generally
representative.

73

these structural changes exerts an important influence on tensile strength, but it is apparent

that the transition in UTS behavior at 250 µm/s arises as a result of the increasing fibrous

character of the microstructure. It should also be noted that while the flake-fiber transition

exhibits an onset velocity of approximately 100 µm/s (6), the transition in tensile strength

behavior observed presently occurs at 250 µm/s. This velocity is consistent with the identified

division between the first and second stages of the flake-fiber transition, where out-of-plane rod

growth and a truly fibrous morphology begins to dominate the structure (6). The coincident

observation of an increased velocity dependence of the UTS suggests that a certain degree of

fibrous dominance is required before bulk properties are affected by the transition.

Another effect on UTS with changing velocity can be noted in the stress-strain curves

shown in Fig. 3. In addition to the increase in strength with increasing solidification velocity,

the stress-strain curves for 20 µm/s reveal significant variability, particularly with respect to

elongation and UTS. This finding cannot be attributed to the effects discussed above, as there

should be no differences in either scale or morphology among the different samples solidified

at 20 µm/s. However, this variable strength behavior may be explained by the coarseness of

the microstructure in comparison to the sample dimensions. At 20 µm/s, though the average

interflake spacing is only 5-10 µm, which is small compared to the sample dimensions of 3.65

mm, it is not unusual for high aspect ratio silicon flakes to extend in length many times the

eutectic spacing. Therefore, it would be possible for a specific large silicon flake to be oriented

in a particularly undesirable orientation such that it significantly affects the observed fracture

behavior and the measured tensile properties, given the current sample dimensions. Indeed,

this seems to be the case, as large planar features are observed on the fracture surface for

the V=20 µm/s specimen, as shown in Fig. 4. These large flat areas appear to be the result

of fracture along the broad face of a silicon flake. This result highlights the importance of

obtaining a modified or refined silicon microstructure, especially in any thin-section areas of a

casting.

In light of the flake-induced fracture discussed above, we expect that the flake-fiber transi-

tion will give rise to an increase in elongation. Indeed, the test results in Table 2 reveal such a

74

behavior, where sample ductility improves with solidification velocity up to a maximum at 600

µm/s. Above this velocity, the transition to fibrous-structure dominance is generally complete,

and additional increases in velocity are accompanied by little benefit to elongation but a con-

tinued increase in strength, arising from continued refinement. Additionally, the stress-strain

curves shown in Fig. 3 demonstrate a marked decrease in fracture elongation variability with

increased solidification velocity. The improved fracture reproducibility appears to be associ-

ated with the transition to a fibrous structure. This has been observed previously by Steen

and Hellawell (27).

Specimen fracture surfaces, shown in Fig. 4, provide a more detailed account of the inter-

action of sample microstructure and tensile properties. The three velocities shown, 20, 250,

and 1000 µm/s, represent a flake structure, a flake/fiber transitional structure, and a fibrous

structure, respectively. At low magnifications, the widely different microstructural scale and

morphology obtained from these three solidification velocities is evident. As mentioned pre-

viously, the 20 µm/s surface is scarred with flat fracture planes likely corresponding to broad

faces of large silicon flakes. It is clear from the intermediate magnification images that neither

the 250 µm/s nor the 1000 µm/s specimens display such large, flat fracture features. However,

apart from the lack of large fracture planes, the rough appearance of the 250 µm/s fracture

surface seems more like the 20 µm/s sample than the 1000 µm/s sample. Indeed, the rounded,

dimpled surface of the 1000 µm/s sample does not appear to contain any fracture features

associated with the flake morphology. At high magnifications, the mixed flake/fiber character

of the 250 µm/s sample becomes clear as a broad flake fracture plane is seen alongside some

limited areas of dimpled fibrous fracture. The high magnification image of the 1000 µm/s frac-

ture also displays an interesting fracture morphology, which may be the result of fracture along

fibers oriented parallel to the fracture surface. In any case, it is clear that the dimpled fibrous

morphology provides more desirable fracture behavior than the irregular flake structure, which

contributes to the appearance of large, flat fracture planes in the structure.

75

Table 2 Results of tension tests performed on Al-Si eutectic samples solid-

ified at different velocities.

V (µm/s) UTS (MPa) El (%)

20 162 ± 13 9 ± 4

80 179 ± 5 15 ± 6

250 190 ± 11 18 ± 4

600 207 ± 3 24 ± 1

1000 222 ± 4 13 ± 3

Summary and Conclusions

In addition to the expected increase in strength arising from the structural refinement that

accompanies higher solidification velocity, the change in eutectic structure associated with the

flake-fiber morphological transition has several distinct effects on the mechanical properties of

an Al-Si cast alloy, as summarized below:

• The UTS increases monotonically with solidification velocity from 20 to 1000 µm/s, but

the contribution from the flake-fiber transition gives rise to a discontinuous increase in

the velocity dependence, which is associated with the increasing influence of the fibrous

silicon morphology above 250 µm/s.

• Elongation to fracture increases with solidification velocity to a maximum at 600 µm/s,

indicating an end to the effects of the flake-fiber transition, which is nearly complete at

that velocity.

• The reproducibility of tensile behavior improves significantly at velocities corresponding

to the flake-fiber transition.

The benefits of the fibrous morphology outlined herein emphasize the importance of un-

derstanding and controlling the high growth-rate flake-fiber transition that occurs in Al-Si

alloys. Proper casting design depends both on the effective prediction of microstructure as

a function of solidification parameters, which was examined in our previous study (6), and

on strong knowledge of the relationship between alloy microstructure and corresponding me-

chanical properties, which we have addressed in the present study. While the transition to

76

a modified structure in Al-Si alloys may be in may ways a gradual transition, the discrete

microstructural and mechanical changes associated with the formation of a modified structure

confer additional importance upon precisely controlling solidification microstructure in high

performance castings.

Acknowledgements

This work was made possible by support from the National Science Foundation (NSF),

Division of Materials Research, under Award No. 0237566.

References

[1] S. Hegde and K. N. Prabhu. Modification of eutectic silicon in al-si alloys. Journal of

Materials Science, 43(9):3009–3027, 2008.

[2] M. Garat, G. Laslaz, S. Jacob, P. Meyer, P. H. Guerin, and R. Adam. State-of-art use of

sb-, na- and sr-modified al-si casting alloys. Transactions of the Amercian Foundrymen’s

Society, 100:821–832, 1992.

[3] Shu Zu Lu and A. Hellawell. The mechanism of silicon modification in aluminum-silicon

alloys: impurity induced twinning. Metallurgical transactions. A, Physical metallurgy and

materials science, 18A(10):1721, 1987.

[4] D. C. Jenkinson and L. M. Hogan. Modification of aluminum-silicon alloys with strontium.

Journal of Crystal Growth, 28(2):187, 1975.

[5] A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis, and L. Lu. Eutectic modification

and microstructure development in alsi alloys. Materials Science and Engineering A,

413-414:243–248, 2005.

[6] T. Hosch, L. G. England, and R. E. Napolitano. Analysis of the high growth-rate transition

in al-si eutectic solidification. Journal of Materials Science, 44(18):4892–4899, 2009.

77

[7] M. G. Day and A. Hellawell. Microstructure and crystallography of aluminum-silicon eu-

tectic alloys. Proceedings - Royal Society. Mathematical, physical and engineering sciences,

305(1483):473, 1968.

[8] Shu Zu Lu and Angus Hellawell. Growth mechanisms of silicon in aluminum-silicon alloys.

Journal of Crystal Growth, 73(2):316, 1985.

[9] R. E. Napolitano and L. G. England. High-rate growth-mode transitions in al-si eutectics.

Solidification of Aluminum Alloys, pages 445–451, 2004.

[10] S. Justi and R. H. Bragg. Vickers hardness measurements of unidirectionally solidified al-

si eutectic alloy grown at different rates. Metallurgical Transactions a-Physical Metallurgy

and Materials Science, 7(12):1954–1957, 1976.

[11] S. Justi and R. H. Bragg. Tensile properties of directionally solidified al-si eutectic. Met-

allurgical Transactions a-Physical Metallurgy and Materials Science, 9(4):515–518, 1978.

[12] A. I. Telli and S. E. Kisakurek. Effect of antimony additions on hardness and tensile

properties of directionally solidified al-si eutectic alloy. Materials Science and Technology,

4(2):153–156, 1988.

[13] F. Vnuk, M. Sahoo, R. Vandemerwe, and R. W. Smith. Hardness of al-si eutectic alloys.

Journal of Materials Science, 14(4):975–982, 1979.

[14] F. Yilmaz and R. Elliott. The microstructure and mechanical-properties of unidirectionally

solidified al-si alloys. Journal of Materials Science, 24(6):2065–2070, 1989.

[15] A. Ourdjini, F. Yilmaz, Q. S. Hamed, and R. Elliott. Microstructure and mechanical-

properties of directionally solidified al-si eutectic alloys with and without antimony. Ma-

terials Science and Technology, 8(9):774–776, 1992.

[16] S. Khan, A. Ourdjini, Q. S. Hamed, M. A. A. Najafabadi, and R. Elliott. Hardness

and mechanical property relationships in directionally solidified aluminum-silicon eutectic

78

alloys with different silicon morphologies. Journal of Materials Science, 28(21):5957–5962,

1993.

[17] N. Fatahalla, M. Hafiz, and M. Abdulkhalek. Effect of microstructure on the mechanical

properties and fracture of commercial hypoeutectic al-si alloy modified with na, sb and

sr. Journal of Materials Science, 34(14):3555–3564, 1999.

[18] Nabil Fat-Halla. Structure, mechanical properties and fracture of aluminum alloy a-356

modified with aluminum-strontium (al-5sr) master alloy. Journal of materials science,

22(3):1013, 1987.

[19] N. Fat-Halla. Structural modification of aluminum-silicon eutectic alloy by strontium and

its effect on tensile and fracture characteristics. Journal of materials science, 24(7):2488,

1989.

[20] Mahmoud Fouad Hafiz, Nabil K. Fat-Halla, and Sherif B. Moshref. The effect of casting

parameters on the modification process of a commercial hypoeutectic aluminum-silicon

alloy. Zeitschrift fr Metallkunde, 81(1):70, 1990.

[21] Mahmoud Hafiz and Toshiro Kobayashi. Tensile properties influencing variables in eutectic

al-si casting alloys. Scripta metallurgica et materialia, 31(6):701, 1994.

[22] M. F. Hafiz and T. Kobayashi. A study on the microstructure-fracture behavior relations

in al-si casting alloys. Scripta metallurgica et materialia, 30(4):475–480, 1994.

[23] M. Zuo, X. F. Liu, and Q. Q. Sun. Effects of processing parameters on the refinement of

primary si in a390 alloys with a new al-si-p master alloy. Journal of Materials Science,

44(8):1952–1958, 2009.

[24] M. F. Hafiz and T. Kobayashi. Fracture toughness of eutectic al-si casting alloy with

different microstructural features. Journal of Materials Science, 31(23):6195–6200, 1996.

[25] Y. Bayraktar, D. Liang, and H. Jones. The effect of growth velocity and temperature

79

gradient on growth characteristics of matrix eutectic in a hypereutectic aluminium-silicon

alloy. Journal of Materials Science, 30(23):5939–5943, 1995.

[26] M. Gunduz, H. Kaya, E. Kadirli, and A. Ozmen. Interflake spacings and undercoolings

in al-si irregular eutectic alloy. Materials Science and Engineering A, 369(1-2):215–229,

2004.

[27] H. A. H. Steen and A. Hellawell. Structure and properties of aluminum-silicon eutectic

alloys. Acta Metallurgica, 20(3):363, 1972.

80

Figure 1 Comparison of the ultimate tensile strength measured in the

present study and the aspect ratio and spacing results (λA) re-

ported in (6). The tensile strength increases significantly with

increasing solidification rate throughout the velocity range stud-

ied. Note the transition in slope of the tensile strength data that

occurs at 250 µm/s. Similarly, the aspect ratio data display a

transition in slope near 125 µm/s. The spacing is seen to de-

crease continuously with increasing solidification velocity.

81

Figure 2 Al-Si eutectic structures after directional solidification at veloci-

ties of 20, 250, and 950 µm/s (6). These structures represent flake

(left), mixed flake/fiber (center), and fiber (right) morphologies,

respectively.

Figure 3 The stress-strain behavior of samples directionally solidified at

20, 80, and 600 µm/s. The velocities represent predominantly

flake (20 and 80 µm/s) and predominantly fibrous (600 µm/s)

morphologies, respectively.

82

Figure 4 (a) Low, (b) intermediate, and (c) high magnification images of

tension test specimen fracture surfaces solidified at 20, 250, and

1000 µm/s.

83

MORPHOLOGICAL INSTABILITY OF SILICON DURING

DIRECTIONAL SOLIDIFICATION OF AN AL-SI EUTECTIC ALLOY

A paper to be submitted to Acta Materialia

T. Hosch and R. E. Napolitano

Abstract

The final stage of the high growth-rate flake to fiber transition in Al-Si eutectic alloys

gives rise to the development of intricate out-of-plane protrusion formations in the silicon

phase. The growth mechanims behind these formations are investigated here in directionally

solidified Al-7wt% Si and Al-20wt% Si alloys by adapting a Mullins-Sekerka type perturbed

interface stability analysis to the system, which incorporates the effects of the irregular Al-Si

interface shape and the anisotropy of the solid silicon/liquid Al-Si interface. Measurements of

silicon equilibrium shape particles were conducted to provide an estimate of system anisotropy.

The stability analysis was found to be effective in predicting the length scale behavior of silicon

plate breakup throughout the flake to fiber transition, and it was concluded that out-of-plane

silicon protrusion formation is vital to the formation of a modified fibrous structure at high

solidification rates.

Introduction

Alloys based on the Al-Si eutectic system are widely used in lightweight shape-casting

applications, offering a range of mechanical properties coupled with low density, good corrosion

resistance, and excellent castability. In addition, heat-treatable Al-Si casting alloys arising from

84

additions of Mg and/or Cu provide high specific strengths desirable for lightweight structural

or mechanical applications. The typical tensile strength of Al-Si casting alloys with a flake

silicon microstructure ranges from 120 to 180 MPa with limited ductility. However, the tensile

strength of Al-Si casting alloys can be improved roughly 50% with better than a threefold

increase in ductility by the use of “modification” practices, which alter the structure of the

silicon phase from the normal coarse-flake morphology to a fine fibrous morphology.(1–5)

In practice, this structural modification of the silicon is achieved either through the addition

of trace amounts of modifying elements such as strontium (impurity modification)(6–9) or by

employing rapid cooling to force an increased solidification velocity (quench modification)(10–

13). The impurity modification has been shown to result from the role of impurity atoms on

the growth kinetics of the Si interface, where growth at twin-plane edges becomes the dominant

mechanism(7) and also by suppression of eutectic nucleation(14). This produces a fine fibrous

structure, highly twinned on the nanometer scale. While impurity modification is widely used

in commercial modification practices due to its reproducibility, its use is also associated with

a range of drawbacks, such as hot-tearing, porosity, and recycling limitations.(6; 9) Alterna-

tively, quench modification may be used to obtain structural refinement while avoiding these

drawbacks. Differing from the impurity modified alloys, which are heavily twinned and faceted

on a very fine scale, quench modified structures are characterized by a low twin density and

a microscopically smooth fibrous structure(12; 15). However, the quench-modification transi-

tion has been observed to occur gradually, over a wide velocity range(10), and the governing

mechanisms are not completely understood, thus limiting our ability to effectively employ this

morphological transition in the design of cast components.

Reported findings from a recent investigation of quench modification(10) reveal that the

flake to fiber transition exhibits multiple stages, characterized by in-plane plate breakup at

lower velocities and out-of-plane silicon rod formation at higher velocities. This hierarchical

progression of plate breakup appears to be governed by the highly anisotropic silicon crystal

structure which favors the development of low-energy high-stiffness {111} planes and strongly

restricts growth of silicon out of the plane of the plate. However, the mechanism behind the

85

destabilization of the silicon plate structure is not well understood, limiting our ability to

predict the modification transition. In the work presented here, we employ a linear stability

analysis to the flake-type silicon phase in the advancing Al-Si eutectic front in an attempt

explain the plate breakup and out-of-plane rod development characteristic of the flake to fiber

transition. Comparisons between the developed model and experiment are made with respect

to solidification velocity, alloy composition, interfacial anisotropy, and instability length scale.

Experiments

Directional solidification experiments were performed with an Al-7 wt% Si and Al-20 wt% Si

alloy in a Bridgman-type furnace over a range of growth velocities from 20 µm/s to 1000 µm/s.

Compositions were chosen to allow for comparison of a strongly hypoeutectic and strongly

hypereutectic alloy. The axial temperature gradient during solidification was measured using

a thermocouple embedded in a test sample and ranged from 7 K/mm at 10 µm/s to 14 K/mm

at 1000 µm/s. Samples were grown over a distance of 100 mm and then quenched to 25◦C in a

water-cooled bath containing a Ga-In-Sn alloy. Cross sections were obtained from each sample

10 mm behind the final quenched interface to obtain a representative eutectic structure and

prepared for metallographic analysis. Specimens were polished and deep-etched by suspending

in either a 2.5%HCl-1.5%HNO3-1%HF reagent or NaOH solution for one hour in an ultrasonic

bath.

The Al-Si interface morphology and associated in-plane and out-of-plane instability devel-

opment that we consider is shown schematically in Fig. 1. Morphological instabilities that

develop parallel to the front edge of the advancing silicon plate can lead to the formation of

in-plane protrusions, as shown in Fig. 2a, while more advanced formations can be seen in Fig.

2b-c, where protrusions have developed into in-plane rod structures. Similarly, instabilities

developing on the sides of silicon plate faces are responsible for the formation of out-of-plane

protrusions, a number of which are shown in Fig. 3. Characterization of silicon plate breakup

was performed by measuring the average spacing of both the observed in-plane and out-of-plane

silicon protrusions at each solidification velocity.

86

The majority of in-plane silicon plate breakup was found to occur at a similar scale for each

solidification velocity, as shown in Fig. 2a. The predominance of this characteristic protru-

sion scale in the microstructure allowed for the measurement of an in-plane silicon protrusion

spacing at all compositions and velocities studied. Measured in-plane protrusion spacings are

shown in Fig. 4. Out-of-plane silicon protrusions, as shown in Fig. 3, were observed to occur in

a wide variety of formations and at velocities as low as 50 µm/s, but were much more common

at velocities of 500 µm/s and above. Measured out-of-plane protrusion spacings are shown in

Fig. 5. Both out-of-plane and in-plane protrusion spacings follow a spacing relationship near

λ2V = constant, the microstructural scaling relationship. Alloy composition did not appear to

be a significant factor on protrusion spacing for either protrusion type. However, out-of-plane

silicon protrusion spacings were on average 1/3 larger than in-plane protrusion spacings at

each velocity, as shown in Fig. 6.

Instability Analysis

The regular nature of protrusion spacing observed in both alloys studied, along with the

microstructural scaling, suggests the mechanism behind protrusion formation may be related

to a Mullins-Sekerka type instability.(16) Mullins and Sekerka described the stability of an ad-

vancing planar solid-liquid interface by considering the behavior of an infinitesimal sinusoidal

perturbation on the interface. We examine here whether the stability of interfacial perturba-

tions plays a governing role in the morphology of silicon that develops as the plate structure

breaks down in favor of a general rod structure. The central result obtained by Mullins and

Sekerka gives the wavelength dependent amplification rate of a perturbation as

δ̇

δ
=

V

mGc

(
−Γω2 [bc − (V p/D)]−G [bc − (V p/D)] +mGc [bc − (V/D)]

)
(1)

87

where

bc =
V

2D
+

[(
V

2D

)2

+ ω2

] 1
2

δ̇ =
δ(t)

dt

ω = 2π/λ

p = 1− k

This result assumes the temperature gradients and thermal conductivities of the solid and

liquid phases are equal. Descriptions of parameter symbols and material constants used in

the present study can be found in Table 1. The composition gradient, Gc, must be calculated

based upon the local diffusion field ahead of the interface.

Calculation of the diffusion profile in the Al-Si system is difficult due to the complex shape

of the growth front, which we will now consider. The shape of an irregular eutectic interface

has been modeled in a variety of forms by different researchers.(17–21) The shapes we will

focus on here are those developed by Magnin and Kurz (MK) (20) and Guzik and Kopycinksi

(GK) (21).1 Both interface shapes are calculated as functions of phase contact angle and phase

depression/protrusion depth. Magnin and Kurz use a cubic function for the interface shape,

while Guzik and Kopycinski use a biquadratic function. The two approaches are shown in Fig.

7 for two different silicon contact angles. The GK equation yields a larger depression depth

in the aluminum phase and a larger protrusion in the silicon phase for a silicon contact angle

of 65◦, while the silicon phase shape and protrusion depth are fairly similar for an 85◦ silicon

contact angle. The effective composition gradient was calculated in the direction normal to

the interface. Thus, for a composition field C(x, z), the composition gradient is

GC(x, z) =
∂C(x, z)

∂x
cosφ+

∂C(x, z)

∂z
sinφ (2)

where φ is the angle between the x-axis and the interface normal, as shown in Fig. 7. The

1Note that Guzik and Kopycinski presented incorrect interface and depression depth equations for the alu-
minum (α) phase. The correct relations based upon their boundary conditions are graphed here in Fig. 7 and
presented in the text as Eqs. 5 and 8.

88

value of φ can be determined from

φ(x) = arctan

(
−1
dI(x)
dx

)
(3)

where I(x) is the interface shape equation given by either MK or GK. Differentiating I(x)

from MK gives

dI(x)

dx
= −

(
48δβ
λ3
Ef

3
β

+
12 tan θβ
λ2
Ef

2
β

)
x2 −

(
24δβ
λ2
Ef

2
β

+
8 tan θβ
λEfβ

)
x− tan θβ (4a)

−Sβ ≤ x < 0

dI(x)

dx
=

(
48δα
λ3
Ef

3
α

+
12 tan θα
λ2
Ef

2
α

)
x2 −

(
24δα
λ2
Ef

2
α

+
8 tan θα
λEfα

)
x+ tan θα (4b)

0 ≤ x < Sα

and the corresponding equation from GK is

dI(x)

dx
=

(
64δβ
λ4
Ef

4
β

−
16 tan θβ
λ3
Ef

3
β

)
(x+ Sβ)3 +

(
−

16δβ
λ2
Ef

2
β

+
2 tan θβ
λEfβ

)
(x+ Sβ) (5a)

−Sβ ≤ x < 0

dI(x)

dx
= −

(
64δα
λ4
Ef

4
α

+
16 tan θα
λ3
Ef

3
α

)
(x− Sα)3 +

(
16δα
λ2
Ef

2
α

+
2 tan θα
λEfα

)
(x− Sα) (5b)

0 ≤ x < Sα

where λE represents the eutectic spacing and δα and δβ are the depressions of the α and β

phases, respectively. Note that δβ will be negative for a protruding silicon phase in the MK

analysis, while δβ is defined to be positive for a protruding silicon phase by GK. For the present

model, the eutectic spacing was estimated as

λE = 3.9 · 10−8 V −0.5 (6)

which was obtained by fitting the experimental relation, λA =
√
A/N , as defined in (10), to

a λ2V = constant relation. The volume fraction of each phase at eutectic composition was

calculated assuming a density of solid aluminum of 2.56 g/cm3 at 580 ◦C (22) and a density of

89

solid silicon of 2.31 g/cm3 at 580◦C. The depression depths in the MK solution are given by

δi =
2f2
i

48Γi + f2
i λ

2
EG

[(
|mi|C0

D

(
Πi −

P

fi

)
V − fi tan θi

24
G

)
λ3
E −

2Γi
fi

(2 tan θi + sin θi)λE

]
(7)

i = α, β

and the depression depths in the GK solution are

δβ =
15f2

β

7Gλ2
Ef

2
β + 240Γβ

[(
mβC0V

D

(
Πβ −

P

fβ

)
+
Gfβ tan θβ

30

)
λ3
E +

2ΓβλE
fβ

(tan θβ + sin θβ)

]
(8a)

δα =
15f2

α

7Gλ2
Ef

2
α + 240Γα

[(
|mα|C0V

D

(
Πα −

P

fα

)
− Gfα tan θα

30

)
λ3
E −

2ΓαλE
fα

(tan θα + sin θα)

]
(8b)

with

Πi =
∞∑
n=1

1

(nπ)2 sin (nπfi), i = α, β

P =
∞∑
n=1

1

(nπ)3 sin 2 (nπfα)

Ideally, the composition field, C(x, z), should be derived based on the complex Al-Si in-

terface morphology, rather than the commonly used planar interface morphology solution pre-

sented by Jackson and Hunt.(17) However, Magnin et al.(23) noted that a reasonable ap-

proximation of the interface composition in an irregular eutectic alloy is given by the planar

interface diffusion solution. This is due to the scale of variation in the interface position being

significantly smaller than the diffusion distance at common solidification rates. Therefore, the

composition field ahead of the Al-Si interface may be reasonably estimated using the planar

diffusion solution, and the composition gradient is obtained from Eq. 2, which effectively su-

perimposes the interface shape over the composition field, as shown in Fig. 8. According to

the planar diffusion solution, the values of the composition gradients in the x and z directions

90

taken at z = 0 are equal to

∂C

∂x
(x, z = 0) =

−2V C0

πD

∞∑
n=1

1

n
sin (nπfα) sin

(
2nπ

λE
x− nπfα

)
(9a)

∂C

∂z
(x, z = 0) =

−V B0

D
+
−2V C0

πD

∞∑
n=1

1

n
sin (nπfα) cos

(
2nπ

λE
x− nπfα

)
(9b)

with

B0 = Cα0 fα − C
β
0 fβ (10)

where Cα0 and Cβ0 are phase diagram constants as defined in (17).

The wavelength amplification rate (Eq. 1) was used to determine two important instability

spacing parameters: the marginal and maximum instability. Marginal instability refers to the

smallest perturbation wavelength where the interface first becomes unstable, while maximum

instability refers to the perturbation wavelength of maximum amplification rate. One method

to obtain these instability parameters is to substitute the composition gradient (Eq. 2) into

Eq. 1 and solve for the marginal or maximum instability spacing as a function of x along

the interface ahead of the silicon phase. This is shown in Fig. 9 for both the MK and GK

equations. Alternatively, the average composition gradient in the liquid at the interface can

be calculated with

ḠC =
2

λE

∫ 0

−Sβ
GC(x, z = 0) dx (11)

Using this equation, a single average instability spacing can be obtained for a specified solidi-

fication velocity, which is also shown in Fig. 9. The marginal instability spacing at each point

ahead of the silicon phase varies less than 25% from its average value.

It is also useful to consider the effect of silicon interfacial anisotropy in the model. The

Gibbs-Thomson coefficient, Γ, can be expressed in terms of interfacial stiffness, Γ = γ̃(θ)
∆Sf

. The

interfacial stiffness, γ̃(θ), is often calculated from a simple model which employs a generic

parameter, ε4, to reflect four-fold interfacial anisotropy.(24; 25) This model states

γ̃(θ) = γ0 (1− 15ε4 cos 4θ) (12)

It can be seen that any value of ε4 greater than 0.067 predicts a negative interfacial stiffness,

which is not physically possible. Therefore, in the case of ε4 > 0.067, the equilibrium shape of

91

the system will be faceted. A similar model for interfacial anisotropy was employed recently by

other researchers investigating planar morphological stability.(26; 27) The effect of anisotropy

varies based upon the direction of growth with respect to crystallographic orientation (θ). For

the case of instability formation out of the plane of the silicon plate, it was assumed that growth

occurs in the direction of maximum stiffness, or θ = π
4 . In this case, the anisotropy-dependent

Gibbs-Thomson coefficient can be specified as

Γ = Γ0 (1 + 15ε4) (13)

Therefore, relatively small changes in the anisotropy parameter can significantly alter the

effective Gibbs-Thomson coefficient. A more exact model for the contributions of anisotropy

could be obtained using a three dimensional anisotropy model(28). However, the current model

is sufficient to demonstrate the potential effects of anisotropy, and was therefore chosen for

simplicity.

The anisotropy of the solid Si/liquid Al-Si interface has been previously investigated by

Sens et. al. (29) using a binary Al-95 wt% Si alloy. After heat treating for 500 hours at

600 ◦C and quenching, they observed {111} facet formation on the interface between the

solid silicon matrix and liquid Al-Si intragranular inclusions. Furthermore, by measuring the

distance between the center of inclusions and the inclusion peripheries they calculated the

ratio of maximum anisotropy (σ(001)/σ(111)) to be 1.11±0.02. The value of ε4 on a given plane

can be calculated with ε4 = ∆−1
∆+1 with ∆ = rmax

rmin
as specified in (30). Using ∆ = 1.11 gives

εmax4 = 0.05. An attempt was made to verify this estimate of solid Si/liquid Al-Si interfacial

anisotropy for the present study by holding a finely quenched Al-20 wt% Si alloy at 592 ◦C

for 125 hours. This produced rounded octahedral silicon shapes roughly 20 µm in extent with

faceting behavior consistent with {111} planar symmetry, as shown in Fig. 10. The <110> and

<100> directions were measured from the base (100) plane on all three particles shown and

the average value of ε100
4 = 0.086 was obtained. Additionally, for the top particle in Fig. 10,

the {111} distances were estimated, and a value of εmax4 = 0.17 was obtained. These measured

values represent lower bounds for the solid Si/liquid Al-Si interfacial anisotropy, since it is not

certain that the particles in Fig. 10 had reached equilibrium.

92

Model Results

Calculated instability spacings are shown in Figs. 11–13. Instability spacings are within the

same order of magnitude as experimentally measured protrusion spacings. As shown in Fig.

11, the wavelength of marginal stability predicted by the model assuming no silicon anisotropy

is ≈25% of experimentally observed protrusion spacings while the wavelength of maximum

instability is ≈40% of experimentally observed protrusion spacings. Calculated spacings scale

similarly with the microstructural scaling. It is also evident from these figures that increasing

anisotropy can significantly increase the instability wavelength. Additionally, as evident in

Fig. 12, the 85◦ silicon wetting angle results in ≈10% higher spacings than the 65◦ wetting

angle. Furthermore, there is little difference in the spacings obtained between the MK and

GK equations. Alloy composition is shown to not have a significant effect on instability length

scale in Fig. 13.

Discussion

From the present results, it can be asserted that the development of both in-plane and out-

of-plane silicon protrusions, as observed and characterized herein, is key to the progress of the

flake to fiber transition. The increase in out-of-plane protrusion formation noted at 500 µm/s

in both the hypoeutectic and hypereutectic alloys examined in this study parallels the onset of

out-of-plane silicon growth, denoted as the second stage of the flake to fiber transition, in the

eutectic alloy described by Hosch et al.(10) While a limited number of intricate out-of-plane

silicon protrusion formations were noted at velocities fully dominated by plate growth (Fig. 3b,

d, and e), this may be explained by the presence of wide local variations within the diffusion

field that are intrinsic to the irregular Al-Si structure. Further, the similarity of in-plane and

out-of-plane silicon protrusions, along with the appearance of in-plane protrusions at lower

velocities than out-of-plane protrusions, suggests in-plane plate breakup may be governed by

the same instability mechanism that controls out-of-plane rod formation though operating on

a different crystallographic plane. It is possible, therefore, that the different stages of the

Al-Si flake to fiber transition are manifestations of a similar instability mechanism operating

93

on different crystallographic orientations throughout the velocity range of the transition.

As evident in Figs. 11–13, the perturbed interface model accurately predicts the length

scale behavior of both in-plane plate breakup and out-of-plane plate breakup with respect

to the effects of solidification velocity, alloy composition, and expected material anisotropy.

Both experimental protrusion spacing and calculated perturbation wavelength approximate

a λ2V = constant relationship. Additionally, the lack of significant variation in protrusion

spacing between the two compositions studied, as shown in Figs. 4–5, is in agreement with

the small compositional effect on instability wavelength predicted by the perturbed interface

model over the present composition range (Fig. 13). The slightly higher observed in-plane

protrusion spacings for the hypoeutectic alloy shown in Fig. 4 may be a reflection of the effect

of composition. Finally, for perturbations developing in the maximum interfacial stiffness

direction, the model predicts increasing perturbation wavelengths with increasing anisotropy

which is in agreement with the experimental observation of larger out-of-plane protrusion

spacings in comparison to observed in-plane protrusion spacings. This is evident through

consideration of the silicon flake crystallography, from which a larger anisotropy (interfacial

stiffness) can be expected in directions normal to the plane of the plate as compared to in-plane

directions normal to plate edges. Correspondingly, perturbations perpendicular to the plane of

the plate that lead to out-of-plane protrusion formation will require a larger wavelength to be

stable than perturbations parallel to the plane of the plate that lead to in-plane plate breakup.

By predicting a maximum perturbation amplification wavelength ≈1/3 of experimentally

observed protrusion spacings while assuming no anisotropy, the perturbed interface model

reasonably predicts the length scale of protrusion formation throughout the velocity range

studied considering the model’s inherent limitations. The perturbed interface model assumes

steady state solidification conditions, an assumption which, by definition, breaks down once

a stable perturbation is formed which destabilizes the advancing planar interface. Therefore,

the final macroscopic protrusion spacing in the silicon structure can only be inferred from

the contributory microscopic perturbation wavelength, and in practice, significant coarsening

effects are operative during this phase of growth. As a result, the macroscopic protrusion length

94

scale that develops from microscopic perturbations is expected to be several times larger than

the wavelength of the destabilizing perturbations.(31–34) Furthermore, the value of the silicon

anisotropy coefficient for the solid silicon/liquid Al-Si interface has received limited study,

potentially lowering the accuracy of predicted instability wavelengths when considering the

significant influence of the anisotropy parameter (Fig. 11). The faceted nature of the silicon

structure indicates a strong effect of anisotropy, however, which has the effect of pushing the

predicted anisotropy wavelength closer to the observed protrusion length scale.

While the perturbed interface model adequately predicts the length scale behavior of in-

plane and out-of-plane silicon protrusions that lead to the flake to fiber transition, it does not

predict the onset of protrusion formation itself. Stable perturbation wavelengths were pre-

dicted for all experimental velocities, compositions, and anisotropy levels investigated herein,

while it is apparent from experimental observations that the frequency of occurrence of silicon

protrusions varies significantly with solidification velocity. In fact, it can be seen in Fig. 14

that the present perturbed interface model predicts a wavelength stability regime that extends

to velocities several orders of magnitude lower than those encountered in the present experi-

ment. Anisotropy is seen to have a mild effect on the size of the stability regime, with higher

anisotropy decreasing the extent of the unstable region when the maximum stiffness direc-

tion is assumed for protrusion growth. This effect could explain the development of in-plane

protrusions at lower velocities than out-of-plane protrusions assuming the in-plane directions

are associated with lower anisotropy, however the shift of the stability regime occurs below 1

µm/s, and thus does not associate favorably with the velocity range of the flake to fiber tran-

sition. Further study is needed to determine modeling constraints that predict the frequency

of instability formation in addition to the length scale, which would provide a more complete

description of the silicon microstructural transformation.

Conclusions

1. Out-of-plane silicon growth is vital to the formation of a modified fibrous structure at

high solidification rates.

95

2. The in-plane and out-of-plane silicon plate breakup associated with the flake to fiber

transition is initiated by a Mullins-Sekerka type instability.

3. The length scale of the instability mechanism responsible for silicon plate breakup and

out-of-plane rod formation is adequately predicted by the perturbed interface stability

model described herein.

4. The characteristic in-plane silicon plate breakup length scale is smaller than the corre-

sponding length scale of out-of-plane protrusions due to the expected larger interfacial

stiffness experienced by perturbations perpendicular to the plane of the plate, a phe-

nomenon that is accurately predicted by the perturbed interface stability model.

Acknowledgements

This work was made possible by support from the National Science Foundation (NSF),

Division of Materials Research, under Award No. 0237566.

References

[1] Nabil Fat-Halla. Structure, mechanical properties and fracture of aluminum alloy a-356

modified with aluminum-strontium (al-5sr) master alloy. Journal of materials science,

22(3):1013, 1987.

[2] N. Fat-Halla. Structural modification of aluminum-silicon eutectic alloy by strontium and

its effect on tensile and fracture characteristics. Journal of materials science, 24(7):2488,

1989.

[3] Mahmoud Fouad Hafiz, Nabil K. Fat-Halla, and Sherif B. Moshref. The effect of casting

parameters on the modification process of a commercial hypoeutectic aluminum-silicon

alloy. Zeitschrift fr Metallkunde, 81(1):70, 1990.

[4] Mahmoud Hafiz and Toshiro Kobayashi. Tensile properties influencing variables in eutectic

al-si casting alloys. Scripta metallurgica et materialia, 31(6):701, 1994.

96

[5] M. Zuo, X. F. Liu, and Q. Q. Sun. Effects of processing parameters on the refinement of

primary si in a390 alloys with a new al-si-p master alloy. Journal of Materials Science,

44(8):1952–1958, 2009.

[6] M. Garat, G. Laslaz, S. Jacob, P. Meyer, P. H. Guerin, and R. Adam. State-of-art use of

sb-, na- and sr-modified al-si casting alloys. Transactions of the Amercian Foundrymen’s

Society, 100:821–832, 1992.

[7] Shu Zu Lu and A. Hellawell. The mechanism of silicon modification in aluminum-silicon

alloys: impurity induced twinning. Metallurgical transactions. A, Physical metallurgy and

materials science, 18A(10):1721, 1987.

[8] D. C. Jenkinson and L. M. Hogan. Modification of aluminum-silicon alloys with strontium.

Journal of Crystal Growth, 28(2):187, 1975.

[9] A. K. Dahle, K. Nogita, S. D. McDonald, C. Dinnis, and L. Lu. Eutectic modification

and microstructure development in alsi alloys. Materials Science and Engineering A,

413-414:243–248, 2005.

[10] T. Hosch, L. G. England, and R. E. Napolitano. Analysis of the high growth-rate transition

in al-si eutectic solidification. Journal of Materials Science, 44(18):4892–4899, 2009.

[11] M. G. Day and A. Hellawell. Microstructure and crystallography of aluminum-silicon eu-

tectic alloys. Proceedings - Royal Society. Mathematical, physical and engineering sciences,

305(1483):473, 1968.

[12] Shu Zu Lu and Angus Hellawell. Growth mechanisms of silicon in aluminum-silicon alloys.

Journal of Crystal Growth, 73(2):316, 1985.

[13] R. E. Napolitano and L. G. England. High-rate growth-mode transitions in al-si eutectics.

Solidification of Aluminum Alloys, pages 445–451, 2004.

[14] Y. H. Cho, H. C. Lee, K. H. Oh, and A. K. Dahle. Effect of strontium and phosphorus

on eutectic al-si nucleation and formation of -al5fesi in hypoeutectic al-si foundry alloys.

97

Metallurgical and Materials Transactions; A; Physical Metallurgy and Materials Science,

39(10):2435, 2008.

[15] L. M. Hogan and M. Shamsuzzoha. Crystallography of the flake-fiber transition in the

aluminum-silicon eutectic. Materials forum, 10(4):270, 1987.

[16] W. W. Mullins and R. F. Sekerka. Stability of a planar interface during solidification of

a dilute binary alloy. Journal of Applied Physics, 35:445–451, 1964.

[17] K. A. Jackson and J. D. Hunt. Lamellar and rod eutectic growth. Transactions of the

Metallurgical Society of AIME, 236(8):1129, 1966.

[18] T. Sato and Y. Sayama. Completely and partially co-operative growth of eutectics. Journal

of Crystal Growth, 22:259–271, 1974.

[19] D. J. Fisher and W. Kurz. A theory of branching limited growth of irregular eutectics.

Acta Metallurgica, 28(6):777, 1980.

[20] P. Magnin and W. Kurz. An analytical model of irregular eutectic growth and its appli-

cation to fe - c. Acta Metallurgica, 35(5):1119–1128, 1987.

[21] E. Guzik and D. Kopycinski. Modeling structure parameters of irregular eutectic growth:

modification of magnin-kurz theory. Metallurgical and Materials Transactions; A; Physical

Metallurgy and Materials Science, 37A(10):3057, 2006.

[22] T. Magnusson and L. Arnberg. Density and solidification shrinkage of hypoeutectic

aluminum-silicon alloys. Metallurgical and Materials Transactions a-Physical Metallurgy

and Materials Science, 32(10):2605–2613, 2001.

[23] P. Magnin, J. T. Mason, and R. Trivedi. Growth of irregular eutectics and the aluminum-

silicon system. Acta metallurgica et materialia, 39(4):469, 1991.

[24] R. E. Napolitano, S. Liu, and R. Trivedi. Experimental measurement of anisotropy in

crystal-melt interfacial energy. Interface Science, 10(2-3):217–232, 2002.

98

[25] J. R. Morris and R. E. Napolitano. Developments in determining the anisotropy of solid-

liquid interfacial free energy. Jom, 56(4):40–44, 2004.

[26] Z. J. Wang, J. C. Wang, and G. C. Yang. Effects of surface tension anisotropy on interfacial

instability in directional solidification. Crystal Research And Technology, 44(1):43–53,

2009.

[27] M. W. Chen, M. Lan, L. Yuan, Y. Y. Wang, Z. D. Wang, and J. J. Xu. The effect

of anisotropic surface tension on the morphological stability of planar interface during

directional solidification. Chinese Physics B, 18(4):1691–1699, 2009.

[28] R. E. Napolitano and S. Liu. Three-dimensional crystal-melt wulff-shape and interfacial

stiffness in the al-sn binary system. Physical Review B, 70(21):11, 2004.

[29] H. Sens, N. Eustathopoulos, and D. Camel. Anisotropy of solid si-liquid (al,si) interfacial-

tension in the binary and sr-doped al-si eutectic alloy. Journal of Crystal Growth,

98(4):751–758, 1989.

[30] S. Liu, R. E. Napolitano, and R. Trivedi. Measurement of anisotropy of crystal-melt

interfacial energy for a binary al-cu alloy. Acta Materialia, 49(20):4271–4276, 2001.

[31] R. Trivedi and K. Somboonsuk. Pattern formation during the directional solidification of

binary systems. Acta Metall., 33(6):1061–1068, 1985.

[32] J. A. Warren and J. S. Langer. Prediction of dendritic spacing in a directional solidification

experiment. Phys. Rev. E., 47(4):2702–2712, 1993.

[33] W. Losert, B. Q. Shi, and H. Z. Cummins. Evolution of dendritic patterns during alloy

solidification: From the initial instability to the steady state. Proceedings of the National

Academy of Sciences of the United States of America, 95:439–442, 1998.

[34] W. Losert, B. Q. Shi, and H. Z. Cummins. Evolution of dendritic patterns during alloy

solidification: Onset of the initial instability. Proceedings of the National Academy of

Sciences of the United States of America, 95:431–438, 1998.

99

Figure 1 Al-Si interface schematic demonstrating both the development of

in-plane (right) and out-of-plane (left) silicon protrusions. Both

types of protrusion formation may develop separately, together,

or not at all. The type of instability that forms on any given

plate will be governed by the local flake growth conditions, which

are widely variable and difficult to predict due to the inherent

irregularity of the Al-Si structure.

[35] J. L. Murray and A. J. McAllister. The al-si (aluminum-silicon) system. Bulletin of Alloy

Phase Diagrams, 5(1):74, 1984.

[36] P. Magnin and R. Trivedi. Eutectic growth: A modification of the jackson and hunt

theory. Acta Metall Mater, 39(4):453–467, 1991.

100

Table 1 Definition of symbols. *Composition parameters converted from

wt% silicon to mol/m3 for calculation of gradient.

Symbol Description Value Units Ref/Eqn

bc instability constant – m−1 Eq. 1

B0 diffusion equation coefficient – wt%* Eq. 10

C liquid composition – wt%* Eq. 9

C0 phase diagram constant 98.38 wt%* (35)

Cα0 phase diagram constant 11 wt%* (35)

Cβ0 phase diagram constant 87.38 wt%* (36)

CE eutectic composition 12.6 wt%* (35)

D liquid interdiffusion coefficient 4.3 · 10−9 m2/s (36)

fα volume fraction of phase α 0.8622 – –

fβ volume fraction of phase β 0.1378 – –

G temperature gradient 7500 K/m –

Gc composition gradient – wt%/m* Eq. 2

ḠC average composition gradient – wt%/m* Eq. 11

I Al-Si interface position – m Eq. 4

k partition coefficient – – Eq. 1

m, mβ slope of the liquidus 15.7 K/wt%* (36)

mα slope of the aluminum liquidus -7.5 K/wt%* (36)

p function of partition coefficient – – Eq. 1

P function of volume fraction – – Eq. 7

Sf entropy of fusion – J/m3 K –

Si half width of phase i – m –

α denotes aluminum phase – – –

β denotes silicon phase – – –

δ perturbation amplitude – m Eq. 1

δ̇ rate of change of δ – m/s Eq. 1

δi depth of depression in phase i – m Eq. 7

ε4 interfacial anisotropy parameter 0–0.1 – –

γ0 silicon isotropic surface energy 1.7 · 10−7 J/m2 (36)

γ̃ silicon interfacial stiffness – J/m2 Eq. 12

Γ Gibbs-Thomson coefficient – m K Eq. 13

Γ0, Γβ isotropic Gibbs-Thomson coefficient 1.7 · 10−7 m K (36)

Γα Gibbs-Thomson coefficient 1.96 · 10−7 m K (36)

λ perturbation wavelength – m –

λE eutectic spacing – m Eq. 6

ω perturbation frequency – m−1 Eq. 1

φ angle from x-axis to interface normal – degrees Eq. 3

Π function of volume fraction – – Eq. 7

θ crystal growth direction 45 degrees –

θα wetting angle of phase α 30 degrees (36)

θβ wetting angle of phase β 65, 85 degrees (21)

101

Figure 2 Images showing examples of in-plane silicon plate instability. This

instability leads to the development of in-plane protrusions which

are shown in (a) and indicated by white arrows, and eventually

results in the development of in-plane rod structures, as shown

in (b) and (c). Images are from an Al-20 wt% Si alloy (a, b)

and an Al-7 wt% Si alloy (c) and were solidified at 200 µm/s (a)

and 50 µm/s (b, c). All samples prepared by deep etching in a

2.5%HCl-1.5%HNO3-1%HF reagant.

102

Figure 3 Observed out of plane instability formations in an Al-7 wt% Si

alloy (c) and Al-20 wt% Si alloy (a, b, d-f): a) Columnar in-

stability, b) Columnar instability with additional row instabil-

ity, c) Grid instability, d) Separate grid and columnar instabili-

ties on same plate, e) Advanced grid instability displaying inter-

connecting bands, and f) instability formation at multiple levels

of advancement. Solidification velocities include 50 µm/s (b),

100 µm/s (d, e), 200 µm/s (a), and 1000 µm/s (c, f). Samples

were prepared by deep-etching in a 2.5%HCl-1.5%HNO3-1%HF

reagent (a-e) or NaOH solution (f).

103

Figure 4 Comparison of in-plane protrusion spacings measured on a hy-

poeutectic (7 wt%) and hypereutectic (20 wt%) Al-Si alloy. Error

bars represent the 95% confidence interval of the mean.

104

Figure 5 Comparison of out-of-plane protrusion spacings measured on a

hypoeutectic (7 wt%) and hypereutectic (20 wt%) Al-Si alloy.

Error bars represent the 95% confidence interval of the mean.

105

Figure 6 Comparison of protrusion spacings in an Al-20 wt% Si alloy for

in-plane and out-of-plane protrusions. Error bars represent the

95% confidence interval of the mean.

106

Figure 7 Al-Si interface shapes as specified by Magnin and Kurz (MK)

(20) and Guzik and Kopycinski (GK) (21) for two different silicon

contact angles. Calculated at 1000 µm/s.

107

Figure 8 Comparison of a planar interface composition contour map and

the Al-Si interface shape.

108

Figure 9 The marginal instability spacing calculated as a function of x

in front of the silicon phase for both the Magnin-Kurz and

Guzik-Kopycinski interface shapes. Calculations are for a solidi-

fication velocity of 1000 µm/s and a silicon phase contact angle of

85◦. Also shown is the marginal stability spacing calculated using

the average composition gradient ahead of the silicon phase.

109

Figure 10 Near-equilibrium silicon shapes of an Al-20 wt% Si alloy held

at 592 ◦C for 125 hours. Silicon particles approximate an oc-

tahedral shape, with triangular facets consistent with faceting

on {111} silicon planes. Particles were extracted after rapid

quenching and deep-etching in a 2.5%HCl-1.5%HNO3-1%HF

reagent.

110

Figure 11 Comparison of experimental silicon protrusion spacings and cal-

culated minimum and maximum instability spacings with mul-

tiple values of anisotropy. Calculated values are based on the

Magnin-Kurz(20) interface shape at a silicon phase contact angle

of 85◦.

111

Figure 12 Effect of anisotropy and wetting angle on the calculated min-

imum and maximum instability wavelengths at a 1000 µm/s

solidification velocity. Results were obtained using the Magn-

in-Kurz (20) interface shape.

112

Figure 13 Effect of alloy composition on calculated marginal and maximum

amplification rate instability spacings.

113

Figure 14 Planar interface stability range as a function of perturbation

wavelength and solidification velocity. Inside the unstable region

perturbations will grow with time and destabilize the planar

interface. Higher anisotropy serves to decrease the extent of the

instability range to a minor degree.

114

METALLURGICAL ANALYSIS OF FLOW-LINE INDICATIONS IN

MG-BASED ALLOY CASTINGS

A paper to be submitted to Journal of Cast Metals Research

T. Hosch and R. E. Napolitano

Abstract

Additions of heavy elements such as zinc, zirconium, and rare earth elements to magne-

sium casting alloys can significantly improve high temperature performance. However, these

elements can lead to macrosegregational effects in castings, which are detectable by radio-

graphic scans. The effects of these flow-line indications on alloy mechanical properties are

examined here in three magnesium-based casting alloys. Preliminary results found instances

of micromechanical effects as a result of the flow-line indications, though no evidence was found

to suggest that the flow-lines measurably impact bulk material properties.

Introduction

Many magnesium-based castings for aerospace applications have requirements for one hun-

dred percent radiographic inspection. A frequent observation resulting from such inspection is

an indication commonly known as a “flow line”, which is believed to be due to chemical inho-

mogeneities arising from solute partitioning and flow-induced segregation in the mushy zone.

Since the radiographic contrast of a flow-line indication depends on X-ray absorption, the re-

lationship between radiographic contrast and the magnitude of chemical segregation depends

strongly on the atomic number of the alloying elements present. Indeed, lighter elements such

115

as Al and Zn do not promote readily detectable flow lines. However, heavier elements, such

as Ce, Nd, Y, and other rare earths (ORE) give rise to strong flow-line contrast during radio-

graphic inspection. Despite the differences in the observable radiographic contrast associated

with similar levels of segregation, acceptability limits have not taken into account the specific

partitioning, density, and X-ray absorption characteristics of the segregating elements. This

calls into question the use of uniform acceptability limits with regard to the heavy elements

common in the newer generation Mg-based alloys. To examine this issue, the investigation

reported here is a preliminary study into the chemical and microstructural inhomogeneities

associated with flow line indications and their influence on the mechanical properties of the

cast material.

Scope

The investigation reported here includes the analysis of segregational flow lines, detected

by radiographic analysis, in three different cast magnesium alloys, WE43B, EV31A, and ZE41.

The purpose of this investigation is to characterize the chemical nature of the flow lines present

in each alloy and to examine their effect on the microstructure and mechanical properties of the

alloy. Microstructural analysis was performed using optical and scanning electron microscopy

(SEM). Microchemical analysis and measurement of chemical segregation was performed us-

ing energy dispersive spectroscopy (EDS). Mechanical properties were examined with local

microhardness measurements, uniaxial tension testing, and three-point-bend fracture analysis.

Test Specimens

Test samples of three alloy types were supplied by Wellman Dynamics1, with nominal

compositions as listed in Table 1. An undisclosed post-casting heat treatment was performed

for the WE43B alloy. The EV31 alloy was heat treated to a T6 condition, involving a solution

treatment at 520oC for 8 hours followed by a still air quench, a two-hour stress relief at 510oC

(after welding), a polymer quench, and a final aging treatment at 200oC for 16 hours. The

1Fansteel Corp., Creston, Iowa

116

ZE41 alloy was heat treated to a T5 condition, involving aging at 330oC for 2 hours. Each

test sample was cut from a thin (≈6 mm) section of a large (approximately 225 kg) casting,

shown by radiographic analysis to contain segregational flow lines. Radiographic flow line

indications for each test sample are shown in Figs. 1–2. For each alloy, a total of four specimens

were provided, including two flat “dog-bone” specimens, for uniaxial tension testing, and two

additional specimens for metallographic analysis. Specimen identification numbers (assigned

by Wellman Dynamics) are listed in Table 1.

Table 1 Nominal compositions of test specimens, provided by Wellman

Dynamics.

Alloy Mg Y Nd Zr Zn Gd ORE∗ Tension Metall.

WE43B Bal. 4.07 2.22 0.82 0.02 - 1.02 V17B/V17C V19/V36

EV31A Bal. - 2.88 0.68 0.36 1.48 0.17 C/I A/D

ZE41 Bal. - - 0.73 4.33 - 1.19 1/2 3A/3B

* ORE denotes total of other rare earth elements.

Microstructural Analysis

Metallographic analysis, scanning electron microscopy, and energy dispersive spectroscopy

were used to characterize the microstructure and chemical segregation patterns in the met-

allurgical test specimens in the vicinity of the observed flow-line indications. Representative

microstructures for each test alloy, as revealed by backscattered electron contrast, are shown

in Fig. 3. The microstructures of the three alloys each exhibit distinct features which per-

sist from the solidification process. For the WE43B alloy, the most distinctive features in

the microstructure are the light-colored areas indicating solute segregation on a scale con-

sistent with the dendritic morphology within the mushy zone. The EV31A alloy exhibits a

well-defined grain structure, evidence of the long high-temperature solution treatment that

was performed, permitting evolution of a grain structure from the dendritic structure of the

cast alloy. Within the well-defined grains, however, evidence of dendritic segregation during

solidification is clearly visible in the form of the spatial distribution of precipitates. For the

117

Figure 1 X-ray radiographs of the six tensile specimens showing flowline

indications.

118

Figure 2 X-ray radiographs of the six coupon specimens showing flowline

indications.

ZE41 alloy, which was subjected only to the intermediate-temperature two-hour aging treat-

ment, the grain boundary structure is not well established, and the remnants of the dendrite

arm structure remain distinctive. In the following sections, the microstructure of each alloy

is examined in more detail, with particular attention given to microsegregation profiles, phase

distribution, and other nonuniform microstructural features that may be associated with the

presence of the observed flow-lines.

Alloy WE43B

The most notable features in the WE43B structure in Fig. 3(a) are the small light areas

which are evenly dispersed throughout the structure (observed in both V19 and V36 speci-

mens). The EDS analysis results, summarized in Table 2, reveal significant Zr enrichment in

these lighter regions, with Zr content increasing to roughly seven times the nominal level in

the surrounding darker areas. The inhomogeneity of the Zr concentration is revealed by the

linescan shown in Fig. 4, where the zirconium content can be seen to increase mildly but

significantly within the lighter region. Indeed, the scale and pattern of the zirconium-enriched

119

Figure 3 Representative microstructures of the test alloys (backscattered

electron images): (a) WE43B (left), (b) EV31A (middle), and (c)

ZE41 (right).

regions throughout the sample suggests that the regions arise from dendritic segregation during

solidification.

Considering now the relationship between the structure, chemistry, and the observed flow-

line, we note that the flow-lines in samples V19 and V36 are readily visible upon inspection

of the optical micrographs, shown in Fig. 5. Moreover, the flow-lines are strongly correlated

with a visible change in the spatial distribution of the Zr-enriched regions. However, EDS

composition profiles, measured over a distance of several millimeters across the flow-line, do

not reveal any overall macroscopic variation in composition associated with this change in

segregation pattern, as shown in Fig. 5(a). Indeed, no significant compositional variation

across the flow-line region was detected.

Table 2 EDS analysis of alloy WE43B.

Dark Areas Light Areas

Elem. V19 V36 V19 V36

Mg 93.2 93.2 92.1 91.9

Y 4.0 3.8 3.5 3.3

Zr 0.3 0.4 2.2 2.8

Nd 2.5 2.5 2.2 2.0

Examining the influence of the structural variation further, microhardness profiles were

120

Figure 4 EDS linescan showing the variation in Zr content in the WE43B

alloy (V19).

measured across the sample surface to determine if the flow lines contributed to any deleterious

local mechanical effects. The results for sample V36, shown in Fig. 5(a) do not indicate any

significant variation in hardness across the flow-line. However, microhardness results for sample

V19, in Fig. 5(b) show a hardness difference of about 7 VHN from one side of the flow line to

the other. Here, the properties of the flow-line region itself are not affected, but the flow-line

serves as a boundary between regions with distinctly different properties.

Alloy EV31A

The EV31A alloy exhibits a grain structure that is well defined. Representative backscat-

tered electron images of the EV31A microstructure are shown in Fig. 3(b), indicating that

there are three distinct phases in the microstructure that are well resolved by the atomic-weight

sensitivity of the BSE contrast. First, there is the (dark) primary phase which grew dendrit-

ically from the liquid. Second, there is a blocky grain boundary allotriomorph morphology

with rather large particles, likely formed by coarsening and coalescence of the interdendritic

121

V36

V19

Figure 5 Optical micrographs of alloy WE43B with corresponding micro-

hardness and composition profiles.

122

phases during the high-temperature solution treatment. Finally, there is a distinct pattern of

intragranular precipitation at the center of the grains with precipitate free zones at the grain

peripheries. A cruciform pattern of these precipitates can be observed on the left side of Fig.

3(b), indicating clearly the cored segregation pattern that developed during primary dendritic

solidification. Phase compositions, measured by EDS analysis, are listed in Table 3. The dark

matrix phase is the Mg(hcp) primary solution phase, containing the indicated amounts of the

listed solute elements.

With respect to the primary solidification, none of the elements are particularly strong

partitioners, except for Zr which appears to have been much more concentrated in the Mg(hcp)

solution phase, prior to precipitation of the Zr-rich plates, than in the pre-existing liquid.

This segregation of Zr in the primary Mg(hcp) phase gives rise to the pattern of fine Zr-rich

plate precipitates observed in Fig. 3(b) and can be understood by considering the peritectic

invariant exhibited by the Mg-Zr binary system, where the solubility shifts from 0.6 wt.% in

the liquid to approximately 3.8 wt.% in the Mg(hcp) phase upon cooling through the peritectic

at 654oC (1209oF). During the low temperature aging treatment, however, the Zr solubility is

approximately 0.2 wt.%, consistent with the measured concentration in the matrix (Mg) phase.

It should also be noted that the resolution of the EDS microchemical probe is approximately

0.001 mm. Therefore, the composition values listed for the ultra-fine plate precipitates can be

considered to reflect the average composition in that area. The overall chemical segregation

and relative phase compositions are illustrated further by the chemical dot maps shown in

Fig. 6, where Nd-rich grain boundary particles and the increased Zr associated with the fine

intragranular precipitates are evident.

Table 3 EDS analysis of alloy EV31A (sample A). (Values in wt. percent.)

Element Overall Primary G.B. Ppt. 1 G.B. Ppt. 2 Plate Ppt.

Mg Bal. 95.0 62.6 65.0 87.2

Zn 0.36 0.3 1.7 1.5 2.0

Zr 0.68 0.2 0.2 0.2 5.1

Nd 2.88 2.8 33.4 31.6 3.4

Gd 1.48 1.7 2.1 1.7 2.2

123

Figure 6 Backscattered electron image (left) of EV31A (sample A) and cor-

responding dot maps, showing Nd-rich grain boundary particles

(center) and Zr-rich intragranular plates (right).

A detailed view of an intragranular precipitate colony in alloy EV31A is shown in Fig. 7,

revealing a high density of ultra-fine (100nm thickness) plates. Since the density, size, and

distribution of these precipitates are the principal factors governing the mechanical properties

of the cast alloy, it is important to determine whether the presence of the flow-line has any

significant effect on the precipitate distribution. Referring to Fig. 8, we note that the flow

line is difficult to detect visually. Indeed, the flow line is marked only by a slight increase in

the incidence of intergranular plate colonies. Another notable feature is the absence of grain

boundary precipitates within the flow line region which extends from the indicated boundary

out of the field of view to the left. The grain boundary precipitates are clearly apparent on the

right side of the flow-line. Microhardness measurements, taken across this flow-line boundary,

do not indicate any change in hardness across this boundary, as shown in Fig. 8(a). Similar

results were obtained for sample EV31A-D, as shown in Fig. 8(b).

Alloy ZE41

A representative backscattered electron image, showing the microstructure of the ZE41

alloys is shown in Fig. 3(c). There are two distinct phases identifiable in the microstructure,

based on the atomic-weight contrast of the backscattered electron image. First, there is the

primary dendritic phase, exhibiting a clear globular or secondary dendrite arm morphology.

This Mg solution phase has a low average molecular weight and appears dark in the image.

124

Figure 7 A high-magnification secondary electron image, showing a colony

of Zr-rich fine plate precipitates in alloy EV31A (sample A).

Second, there is an interdendritic phase which occupies a considerable portion of the interden-

dritic channels, appearing to be nearly continuous in some places. EDS measurements of phase

compositions are summarized in Table 4. The results indicate interdendritic precipitates are

extremely rich in Zn and Ce and strongly enriched in the other rare earth elements (La, Nd).

In addition, the etching pattern reveals a composition profile within the primary phase, where

the center of the dendritic regions are enriched in Zn and Zr. This is graphically illustrated by

the qualitative dot maps shown in Fig. 9.

Table 4 EDS analysis of alloy ZE41 (sample 3B). (Values in wt. percent.)

Element Primary Phase Interdendritic

Inner Outer Phase

Mg 91.9 95.5 38.7

Zn 5.0 3.9 39.0

Zr 3.1 0.5 0.2

La - - 6.2

Ce - - 13.2

Nd - - 1.1

Examining now the microstructural effects of the flow-line, Fig. 10 shows that there is a

125

Figure 8 Optical micrograph showing the structure of alloy EV31A and

corresponding microhardness measurements. Note that the scale

of the microhardness measurements is compressed when com-

pared with that of the optical image. Only the flow line location

is consistent.

126

Figure 9 Electron backscattered image (top) for alloy ZE41 (sample 3A)

and corresponding dot maps showing the distribution of elements

in the different phases.

127

Figure 10 Optical micrographs for alloy ZE41 (sample 3B) demonstrating

a clear change in grain size across the sample. This change

coincides with the location of the flow line, which is roughly in

the middle of the upper image.

significant change in grain size across the flow-line in alloy ZE41 (sample 3B). Quantitative

grain size measurements are shown in Fig. 11, where the grain size profile has been measured

using a circle-intercept method and plotted across the flow-line boundary. Fig. 11 shows, how-

ever, that the measured gradient in grain size does not correspond to any measurable variation

in microhardness (VHN) across this same region. Finally, we note here that composition and

grain size variation was not observed in the flow-line region of the other ZE41 sample (sample

3A), as shown in Fig. 12. Additional testing is required to more definitively quantify and

understand the direct correlation between the flow-line and structural/chemical gradients.

Tension Testing and Fracture Analysis

The mechanical properties of each alloy were investigated through standard uniaxial tension

testing, using a screw-driven load frame in displacement control with a constant crosshead

128

Figure 11 Microhardness and grain size measurements for alloy ZE41 (sam-

ple 3B). There is a noticeable change in grain size at the flow

line, though this change in grain size does not significantly affect

the measured hardness.

speed of 0.2 mm/min. Elongation was measured using an extensometer attached to the sample.

Two specimens of each alloy were tested, and the results are summarized in Fig. 13 and Table

5. Each tension specimen (provided by Wellman Dynamics) was sectioned from a casting so

that it contains a flow-line within the test gage length. However, in no case did any specimen

fracture at the indicated flow-line location. Images of the tensile specimen fracture surfaces

from the WE43B, EV31A, and ZE41 alloys are shown in Figs. 14, 15, and 16, respectively. Both

transgranular and intergranular fracture modes are observed, but no fracture surfaces exhibit

any variation in appearance that would indicate a change in fracture mechanism associated

with the presence of a flow-line. Some grain boundary precipitates are evident on the fracture

surface, however, which may suggest that the fracture behavior would be influenced by the

flow-line, which was shown in Fig. 8 to affect the distribution of grain boundary precipitates.

An additional test was performed to investigate effect of the flow-line on the local fracture

mechanism. Rectangular bars were cut from the “metallurgical analysis” specimens provided

by Wellman Dynamics. A small groove was machined into each specimen directly at the flow-

line location. Each specimen was then loaded to fracture in a three-point bend geometry,

forcing the fracture to occur at the flow line. Fracture surfaces from this test are shown in Fig.

129

Figure 12 Microhardness, grain size, and composition measurements for

alloy ZE41 (sample 3A). There is no noticeable change in hard-

ness, grain size, or composition across the sample.

130

Figure 13 Uniaxial tension test results for all specimens.

Table 5 Summary of tensile results for all samples.

Sample E (GPa) σ0.2 (MPa) UTS (MPa) EL (%)

WE43-V17B 46 165 225 3.2

WE43-V17C 45 180 230 1.9

EV31A-C 45 155 250 2.7

EV31A-I 47 170 255 2.3

ZE41-1 48 165 225 3.9

ZE41-2 42 160 235 5.8

131

Figure 14 Representative fracture surfaces of alloy WE43B (samples V17B

and V17C).

17. In all cases, there is no substantial difference between the flow line fracture surface and

the fracture surfaces from the tension specimen fracture surfaces shown in Figs. 14–16.

Conclusions

This investigation into the influence of “flow-lines” on the microstructure, chemical segre-

gation, and mechanical properties of Mg-based castings involved preliminary microstructural

analysis, measurement of the variation of local composition and microhardness, tension testing,

and a cursory examination of fracture surfaces. The results show that, in some cases, there may

be measurable variation in microstructural, microchemical, and micromechanical properties as-

sociated with the presence of a “flow-line”, as indicated by radiographic inspection. However,

132

Figure 15 Representative fracture surfaces of alloy EV31A (samples C and

I).

133

Figure 16 Representative fracture surfaces of alloy ZE41 (samples 1 and

2).

134

Figure 17 Representative fracture surfaces observed after fracture by three-

-point bending with a pre-machined groove at the flow-line lo-

cation. The appearance of the fracture surface is similar to the

tensile specimen fracture surfaces for all three test alloys.

135

there is no evidence to suggest that any of these effects would have a deleterious impact on the

macroscopic (bulk) mechanical properties of the alloy component. It must be clearly stated

here that this is a preliminary finding, and that more systematic and rigorous testing must be

performed before any general statements can be made definitively. Such work would include

more comprehensive tension test experiments, utilizing a larger statistical sampling of speci-

mens removed from bulk castings with clearly defined flow-line indications. Fracture toughness

(J −R curve and JIC) testing is also recommended for quantification of fracture behavior. In

such a research program, mechanical testing would be followed by (i) measurement of com-

position profiles using an electron probe micro-analyzer, (ii) phase identification using X-ray

diffraction, and (iii) microchemical analysis of fracture surfaces using energy/wavelength dis-

persive spectroscopy. An essential feature of this experimental work would be careful selection

of test castings and test specimen locations within the castings, based on X-ray inspection

methods and casting simulation. Finally, rigorous thermodynamic modeling is recommended

to facilitate computation of expected multicomponent solidification paths and the associated

segregation profiles. This systematic investigation could lead to an alloy-sensitive set of tol-

erances for radiographic flow-line indications that would make the necessary allowances for

the differences in X-ray absorption behavior associated with the different alloying elements in

Mg-based casting alloys. Indeed, the establishment of nonuniform tolerances is likely to emerge

as a critical issue in the development of new Mg-based casting alloys.

136

ADDITIONAL ANALYSES OF THREE-DIMENSIONAL

MICROSTRUCTURES

Tim Hosch

Introduction

This section details additional methods of characterization of three-dimensional microstruc-

tures that have not been incorporated into a complete manuscript.

Liquid structure quantification using a minimum spanning tree analysis

The arrangement of atoms in a liquid phase is significantly different than in solids, with

liquid structures generally displaying no long range order. However, recent experimental evi-

dence has suggested that liquid and supercooled metal structures may contain ordered atom

clusters in the form of icosahedral or other three-dimensional structures. Understanding the

structure of liquids and supercooled metals is important when dealing with glass forming sys-

tems, such as CuZr. However, it is difficult to measure the actual atomic arrangement of a

liquid in any real system due to the scales involved. A more feasible approach is to simulate

the behavior of a supercooled/liquid system using molecular dynamics. With this approach,

exact atomic positions can be simulated for systems of thousands of atoms. Molecular dynam-

ics simulations of liquid structures can then be compared to the structure of solid systems, or

idealized structures containing clusters of icosahedral or other three dimensional structures in

order to extract any underlying structural similarities. This section details initial attempts at

applying a minimum spanning tree analysis to liquid phase structures, solid phase structures,

137

and synthetic icosahedral structures in order to extract meaningful quantitative descriptions

of the liquid phase system.

Minimum Spanning Tree

The minimum spanning tree (MST) of a set of points is the set of lines that connects all

points to each other with the shortest (or lowest value) path possible, as shown in Fig. 1.

Common applications of the minimum spanning tree are forming a network or planning airline

routes, in which case the value of a connection between two points could be set equal to the

cost of connecting those two points, and then the minimum spanning tree would specify the

lowest cost method of connecting all points. The minimum spanning tree can also be applied to

atoms, in which case a connection between two atoms specifies a nearest neighbor link between

the two. In this manner, the minimum spanning tree of a set of atoms represents a measure

of local structure. This local structure can then be quantified through statistics obtained from

the minimum spanning tree, and these statistics will serve to describe to some extent the local

structure of a set of atoms.

Data to be obtained from a minimum spanning tree of atoms includes segment length,

angles between segments, junction type, and segment type. Junction type specifies the number

of connections there are to a specific atom in the minimum spanning tree, while segment

types specifies what two junctions an individual segment connects. For example, if atom A is

connected to three other atoms in a minimum spanning tree, then atom A will have a junction

type of 3, which will be referred to as J3 herein. Then, if one of the atoms connected to A,

called atom B, is not connected to any other atoms, then atom B will have a junction type of

1 and the segment between atom A and atom B has a segment type of 1-3, which is referred

to as S1 3 for the present analysis.

Algorithm

Brute force calculation of the MST of a set of points can take up to O(n3) time complexity,

which makes calculation of systems over a few thousand points prohibitively long, even on

138

Figure 1 Example of a minimum spanning tree constructed between a set

of 11 points.

modern processors. Therefore, the use of a more efficient algorithm for calculation of the

MST was required. Consider a graph of points (or vertices) with V number of vertices and

a set of possible connections between them known as edges, with number E. E is at most

V (V − 1)/2 if all connections between points are possible (a complete graph). In the case

where only a relatively small amount of points are connected, then two commonly used and

efficient algorithms for calculating the MST are Prim’s algorithm (1) and Kruskal’s algorithm

(2). Prim’s algorithm builds a spanning tree by starting with an arbitrary vertice and adds the

minimum value vertice to the tree one at a time. Kruskal’s algorithm starts with the minimum

weight edge and adds edges of minimum weight to the tree until complete. These algorithms

have time complexities near O(E log(V)), which is reasonable in cases of sparsely populated

graphs (E on the scale of V), but is significantly less efficient for a complete graph, where

E is on the scale of V 2. This is problematic for the present case, where we are concerned

with calculation of the minimum spanning tree of a set of points, because applying these

algorithms requires construction of a complete graph of all points. A more efficient approach

is to first calculate the Delaunay triangulation of the set of points, which generates a more

139

sparsely populated graph which may be used for efficient calculation of the MST by either

Prim’s or Kruskal’s algorithm. An example of an algorithm to efficiently calculate a Delaunay

triangulation in three dimensions is presented by Cignoni et. al. (3). However, implementation

of this algorithm was deemed more advanced and time consuming than necessary for the

present analysis. Therefore, an original, simple, and efficient algorithm for calculation of the

MST directly from a set of points was developed and is presented here.

The basis of the developed algorithm is the creation of a PointGrid, which is a data structure

that compartmentalizes points on the basis of their location. As shown in Fig. 2, points are

separated into grid boxes based upon their location. After creation of the PointGrid, and given

the coordinates of an arbitrary point, it is trivial to calculate which grid box the point lies in,

and which grid boxes are adjacent to the point. Each grid box can be checked in turn whether

it contains a point, and in this manner only a few neighboring points need to be checked to

determine the nearest neighbor of any point in the PointGrid. Determination of neighboring

points in a PointGrid thus does not depend on of the number of overall points.

Pseudocode for the operation of the PointGrid algorithm for calculation of the MST is

shown in Fig. 3. The basic process is to create two PointGrids, one containing points that

are not yet added to the MST (NonMSTGrid), and the other containing points that have

been added to the MST (MSTGrid). An arbitrary point is first added to the MST, then the

NonMSTGrid is searched to find the nearest neighbor points to the one just added to the MST.

Each point to point distance is called a segment. The segments between MST points and non

MST points are stored in a min binary heap and sorted by the length of the segment. The

FindNearest function in the PointGrid adds the segments between the point being searched

and its nearest neighbors in the grid. The points nearestPoint MST and nearestPoint NonMST

are then returned from the segment at the top of the binary heap (the shortest segment), and

nearestPoint NonMST is added to the MST if it has not already been added. After each

point is added, its neighbors in the NonMST PointGrid are added to the binary heap. Then,

after removing each segment from the top of the heap, the nearest neighbors to the point

in MSTGrid which was part of the segment are found and added to the heap. This process

140

Figure 2 Schematic of PointGrid structure, which separates points into

individual grid boxes based upon their location.

repeats until all points have been added to the MST. A full listing of the C++ code used to

calculate the MST is presented in Appendix A.

Structures

The MST was calculated for two types of structures in the present analysis: idealized

structures created for the analysis, and structures calculated using molecular dynamics (MD)

simulations.1 Additionally, an attempt to simulate noise was made in the calculation of ide-

alized structures. Noise was applied by calculating a random, normally distributed offset

distance along with two random angles to determine the offset direction. The offset distance,

r, was calculated as the inverse of the cumulative distribution function with a random number

chosen as the value, a mean of 0, and a standard deviation of x% of the average spacing of the

structure. The rotation angle, θ, was chosen randomly in the range 0 ≤ θ < 2π. The tilt angle,

φ, was calculated from φ = arcsin(R) where R is a random number from 0 to 1. This offset

was independently calculated and applied to each atom in the simulated structure for a range

1Molecular dynamics simulations were performed at Ames Laboratory

141

Figure 3 Pseudocode for the PointGrid algorithm used for calculation of

the MST.

of deviations from 0 to 50%. All structures were normalized to a similar volumetric length

scale using the formula: λnorm =
(
V
N

)1/3
where V = (x+ λmean) (y + λmean) (z + λmean), N is

the number of atoms in the structure, and x, y, and z are the respective maximum dimensions

of the system in each direction.

Idealized structures created for the calculation of MST include BCC, FCC, HCP, SC,

and a completely random structure. Additionally, an icosahedral structure was constructed by

stringing individual icosahedra in a simple cubic type arrangement. The top and bottom atoms

of adjacent icosahedra are shared, while a separation of one atomic distance is maintained on

the sides, shown in Fig. 12.

Structures simulated from MD include an FCC copper structure simulated at temperatures

over the range 200–1400 K, a BCC zirconium structure over the range 1000–2200 K, and a

CuZr system (50% Cu, 50% Zr by atomic percent) over the range 100–1800 K. The CuZr

system was rapidly quenched from 1800 K to each temperature in separate simulations and

undergoes a glass transition near 750 K. This allows for the comparison of liquid structures,

solid structures, and supercooled liquid (glass) structures.

142

Results and Analysis

Simulated BCC and FCC structures at deviations from 0 to 50% were compared to BCC

and FCC structures calculated from MD simulations. Comparisons were made between the

ideal and MD simulated structures for the MST mean segment length, mean angle, junction

type frequency, and junction type length and are shown in Figs. 4–9. The percent deviation

range over which the ideal structures most closely approximate the simulated MD structures

was estimated for each MST statistic and is listed in Table 1. While there is some variance in

agreement between the different measurements, the ideal results appear to agree most closely

with the MD simulated results from about 10–15% deviation. This suggests that the effect of

varying temperature on the atomic structure is somewhat similar to the effect of adding random

noise to the positions of atoms in an ideal structure, and in the present case the temperature

range of 200–1400 K for the copper FCC system and 1000–2000 K for the zirconium BCC

system is similar to a noise level of 10–15%.

Comparisons of the relationship between mean and standard deviation of both segment

lengths and segment angles for the ideal and MD simulated structures studied are shown in Figs.

10 and 11, respectively. In Fig. 10, it is apparent that the ideal and simulated structures display

a significantly different relationship between the mean and standard deviation of segment

length. The simulated structures are significantly below their ideal counterparts, and instead

are close to the location of the less closely packed simple cubic and icosahedral structures.

All structures approach the top left of the graph with increasing noise/temperature. In turn,

the completely random structure is at the top left of the graph and its MST behavior does

not change with applied noise (as the structure is already fully random). The mean-standard

deviation relation of segment angles in Fig. 11 displays significantly different behavior. In this

case, none of the simulated structures line up with the ideal structures. Instead, the standard

deviation of segment angles is much higher for the simulated structures. Again, all structures

generally approach the position of the randomized structure with increasing noise/temperature.

These results indicate that despite some similarities between simulated and ideal structures

there are also significant differences which can be detected by the MST analysis. Further, the

143

Table 1 Percentage deviation range over which each MST statistic category

is most similar for the ideal structures versus the MD simulated

structures.

Length Mean Angle Mean Junction Freq. Junction Length

FCC 9–14% 9–18% 18–22% 9–14%

BCC 12–14% 16–18% 0–10% 11–14%

MST analysis detects significant differences in the segment angle relationships between the

BCC, FCC, and CuZr structures, though differences in segment lengths are less pronounced

between each simulated structure.

Normalization length, segment length mean, and angle mean MST statistics for the MD

simulated CuZr system are shown in Fig. 13. From the results, an apparent transition is notable

around 700 K, which coincides closely to the glass transition temperature calculated for this

system. However, the temperature of the transition varies between the three measurements

presented in Fig. 13. The transition in normalization length occurs below 650 K, the transition

in segment length mean occurs at 700 K, and the transition in angle mean occurs at 750

K. The normalization length transition is related to the changing volume of the structure,

which is likely affected by differential thermal expansion values of the glassy versus liquid

structures. However, the transitions in MST angle and segment mean begin to appear before

the volume-induced normalization length transition, perhaps suggesting some local structural

rearrangement related to the glass transition is occurring before the difference in thermal

expansion becomes noticeable. The length scale normalization was removed from the segment

length mean results as shown in Fig. 14 in order to verify that the segment length transition is

not dependent on the normalization. The same transition is seen at 700 K, though overall the

data contains a greater degree of scatter due to slightly different structure volumes. It is also

interesting to note that despite decreasing volume at lower temperatures, the average MST

segment length increases with decreasing temperature. This is likely due to the decreased

randomness in the structure having a large effect on increasing the average MST segment

length.

144

The relationships between standard deviation and mean for both the segment length and

segment angle MST measurements are displayed in Figs. 15–16. The transition in the segment

length data in Fig. 15 is difficult to detect, though faintly visible as a slight transition in

slope in addition to a jump in mean segment length at and below 700 K. The transition in

segment angle data in Fig. 16, however, is very clear, and results in two disparate groupings of

data points. Above the transition at 750 K, the angle mean decreases slowly with decreasing

temperature, while below 750 K the angle mean displays a sudden decrease and begins to

increase with decreasing temperature. These changes in the angle of MST junctions seem to

reflect a difference in local atomic structure between the glassy and liquid states.

As shown in Fig. 17, the dominant junction frequency at all temperatures in the quenched

CuZr structure is J1, and the dominance of J1 increases at lower temperatures at the expense

of J2 frequency. When the segment length data are separated by junction type, the glass

transition only shows up strongly in J3-type junctions, as shown in Fig. 18. The transition is

not apparent in either J1 or J2-type junctions, and may be weakly present, if at all, in J4 and

J5-type junctions. Examination of segment length separated by segment type reveals similar

behavior for any segments containing a J3 junction, as shown in Fig. 19. Structural changes

associated with the glass transition appear to be localized to the J3-type junctions of the MST.

The MST segment frequency separated by atom type is displayed in Fig. 20 while the

corresponding segment lengths are shown in Fig. 21. It is apparent that Cu-Cu segments

display the glass transition noted previously in J3-containing segments while CuZr segments

do not. Interestingly, Zr-Zr segments seem to display an opposite transition around the glass

transition temperature, with segment lengths increasing more rapidly with decreasing temper-

ature. However, this could be a result of the decreasing frequency of Zr-Zr segments at lower

temperatures; near the glass transition temperature, the frequency of Zr-Zr segments drops

below 1%, and further decreases to near 0.1% at 100 K, which could reduce the amount to

which those segments reflect the true local structure. The effect changing segment frequency

has on segment length can be investigated by examining CuZr systems of varying %Cu, the

results of which are shown in Figs. 22 and 23. While the frequency of CuZr segments decreases

145

with increasing copper composition as shown in Fig. 22, the length of CuZr segments starts

to increase above a linear trend, shown in Fig. 23. The length of Zr-Zr segments, which also

decrease in frequency with increasing copper composition, does not appear to undergo a similar

nonlinear increase, though there is relatively limited data above 50% copper. These results

may then support the finding that diminishing segment frequency increases segment length.

Additionally, it can be seen in Fig. 24 that only the MST angles between copper atoms dis-

play a meaningful trend with temperature, while the angles between zirconium atoms do not

display such a trend. This is further support that, similar to the importance of J3-type MST

junctions, the glass transition is only displayed in copper MST junctions and not zirconium

junctions.

Conclusion

• The ideal structures used in the present analysis best approximate the MD simulated

structures when a range of 10–15% noise has been added. However, even at this level

of noise, the ideal structures are significantly different than the simulated structures, a

distinction which can be elucidated by the MST analysis applied herein.

• An MST analysis is effective in indicating the glass transition temperature in the CuZr

system by detecting differences in local atomic arrangement. These differences show up

in the MST junction angle and MST segment length. The transition is indicated by both

a slope change in the relation of segment length mean with CuZr system temperature,

and by a change in the behavior of the MST angle mean with temperature. Additionally,

the system volumetric length scale indicates the glass transition temperature, though at

a lower temperature than the MST transition indications.

• The important atoms in the MST analysis for detection of the CuZr glass transition

temperature are atoms of junction type J3 and segments of type Cu-Cu. A more in depth

investigation of the use of the MST analysis should focus on isolating these elements in

the CuZr structure in order to more fully quantify the glass transition and its effect on

the local atomic arrangement.

146

Figure 4 MST segment length mean comparison for ideal and MD simu-

lated BCC and FCC structures.

Figure 5 MST angle mean comparison for ideal and MD simulated BCC

and FCC structures.

147

Figure 6 MST junction frequency comparison for ideal and simulated BCC

structures. Solid lines represent ideal structures while dashed

lines are MD simulated structures.

Figure 7 MST junction frequency comparison for ideal and simulated FCC

structures. Solid lines represent ideal structures while dashed

lines are MD simulated structures.

148

Figure 8 MST junction length comparison for ideal and simulated BCC

structures. Solid lines represent ideal structures while dashed

lines are MD simulated structures.

Figure 9 MST junction length comparison for ideal and simulated FCC

structures. Solid lines represent ideal structures while dashed

lines are MD simulated structures.

149

Figure 10 Segment length mean versus standard deviation of different

structures. The CuZr structures are simulated using MD at

temperatures from 100–1800 K, BCC MD are simulated from

1000–2200 K, and FCC MD structures are simulated from

200–1400 K. The rest of the structures were generated with

0–50% noise added.

150

Figure 11 Segment angle mean versus standard deviation of different struc-

tures. The CuZr structures are simulated using MD.

151

Figure 12 Schematic of packing arrangement adopted to approximate an

icosahedral structure.

Figure 13 Normalization length, segment length mean, and angle mean

MST statistics obtained from a MD simulated CuZr structure

quenched from 1800 K to a range of temperatures. Clear transi-

tion points are evident in the data, though the actual transition

temperature value includes temperatures of 650 K (in black), to

700 K (in red), and 750 K (in orange).

152

Figure 14 MST segment length mean from a MD simulated CuZr structure

without length scale normalization. The data display the same

transition in slope at 700 K noted in the normalized data, though

the data also display increased scatter.

Figure 15 MST segment length standard deviation versus mean of a MD

simulated CuZr structure. The glass transition around 700 K is

fairly faint but noticeable.

153

Figure 16 MST angle standard deviation versus mean of a MD simulated

CuZr structure. The glass transition is readily apparent at 750

K, with the angle standard deviation versus mean relationship

showing significantly different trends above and below this tem-

perature.

154

Figure 17 MST junction type frequency of a MD simulated CuZr structure.

Junction frequency decreases with junction type number from J1

up through J5. Additionally, the dominance of J1-type junctions

increases at lower temperatures at the expense of J2 frequency.

Figure 18 MST segment length separated by junction type for a MD sim-

ulated CuZr structure. The glass transition at 700 K is only

readily apparent in the J3-type junctions. The J3 junction data

are shown separately at the right for clarity. The transition does

not show up at all for J1 or J2 junctions, and may be faintly

apparent if at all in the J4 and J5 junction types.

155

Figure 19 MST segment length separated by segment type and showing

only the first three J3-type segments for a MD simulated CuZr

structure. The glass transition near 700 K shows up in all three

segment types. This transition does not show up in any segments

not containing a J3 junction.

156

Figure 20 Frequency of MST segment types separated by junction atoms

in a MD simulated CuZr structure. Copper to copper segments

are significantly more frequent than zirconium to zirconium con-

nections, which is likely due to the larger zirconium atom.

157

Figure 21 Length of MST segment types separated by junction atoms in a

MD simulated CuZr structure. Due to atom size, Zr-Zr segments

are the longest, followed by CuZr, and Cu-Cu segments are the

shortest. Note the transition in the Cu-Cu data and the increase

in Zr-Zr segment length at lower temperatures.

158

Figure 22 Frequency of MST segment types separated by junction atoms in

a MD simulated CuZr structure of varying composition at 300

K. With increasing fraction of copper the prevalence of Zr-Zr

segments plunges to near 0 at 50% copper.

159

Figure 23 Length of MST segment types separated by junction atoms in a

MD simulated CuZr structure of varying composition at 300 K.

Length of Zr-Zr segments increases linearly until disappearing

above 57 atomic %Cu, while the length of CuZr segments begins

to increase rapidly above 57% copper.

160

Figure 24 MST angle mean as a function of temperature in a MD simulated

CuZr structure. The angles between copper atoms display a

similar trend with temperature as the overall MST data, while

the angles between zirconium atoms do not appear to display

any meaningful trend.

161

Local microstructure characterization through use of the radial distribution

function

The radial distribution function (RDF) is commonly used in systems of atoms to determine

how, on average, atoms are packed around each other. It describes the average density of

particles as function of distance away from a central particle. When averaged among all atoms

in a system, the RDF thus provides a measure of average system spacing. Calculation of the

RDF is done as:

g(r) =
dN

dV

V

N
(1)

where g(r) is the RDF, N is the total number of particles, and V is the volume of the system.

Similarly, in two dimensions the RDF is

g(r) =
dN

dA

A

N
(2)

where A represents the area of the system. In the case of two dimensions, a system may be

split up into concentric circular sections about a particular atom and a small distance apart,

dr. In this case, dA represents the difference in area between neighboring circular sections,

and dN represents the difference in atom count between the neighboring sections. Therefore,

dA = A1 −A0 (3)

A1 = π (r + dr)2 (4)

A0 = πr2 (5)

The expansion of A1 is

A1 = π
(
r2 + 2rdr + dr2

)
(6)

This gives

dA = π
(
2rdr + dr2

)
(7)

and the RDF is

g(r) =
dN

π (2rdr + dr2)

A

N
(8)

The value of dr can be arbitrarily chosen and is referred to as the “bin” size.

162

For the present analysis, instead of atoms, the RDF was applied to two dimensional mi-

crostructure sections of the irregular eutectic Al-Si system in an attempt to more accurately

calculate the average system spacing. Samples of Al-13wt% Si were directionally solidified

in a Bridgman-type furnace at velocities of 10 µm/s to 950 µm/s. Samples were sectioned

at least 10 mm behind the final quench interface to obtain a representative microstructural

sample, polished, and then imaged with either an optical microscope or SEM depending on

microstructural scale. Microstructural images were converted to black and white “masks” to

allow digital image processing and calculation of the RDF.

Calculation of the RDF

When calculating the RDF for the Al-Si system, there will be some noise added due to the

discretation of silicon particle positions into standard images containing pixels in a rectangular

grid. One influence of this discretation is that the frequency of certain pixel distances is higher

than others. Consider, for example, the calculation of the RDF around the central pixel of an

all white square image 5 pixels by 5 pixels in size. This is shown in Fig. 25, with each pixel

enlarged to a box and the square of the distance from the central pixel written inside each

pixel. It is seen that the frequency of the distance square 5 is twice that of any of the other

distances. Also, 4 pixels will be contained within a circle of diameter 1 around the center pixel

as compared to 8 pixels within a circle of diameter 2. This will cause the RDF to be fairly

jagged for short distances, though this effect will smooth out at larger distances.

The RDF was calculated individually for each silicon particle by calculating the distance

from each pixel in the silicon particle to the pixels of the surrounding silicon particles. As

shown in Fig. 26, the RDF is effective in determining the local spacing around a particle. The

three concentric circles in Fig. 26 determined by the RDF effectively pick out the locations of

nearby silicon particles. The average eutectic spacing around an object can then be determined

by measuring the location of the first peak in the RDF for that particle. This process was

performed for anywhere from 200 to 2000 objects for a particular solidification velocity in

order to obtain sufficient data to determine the distribution of local spacings in the irregular

163

structure.

Results

Cumulative probability distributions as a function of spacing for a range of solidification

velocities are shown in Fig. 27. The general relationship of decreased average particle spacing

with increased velocity is evident in the results, and is clearly shown in Fig. 28 as well for

three different cumulative probability levels. However, also clear from Fig. 27 is the large

range of spacings encountered in the structures. For example, the top 5% of spacings in the

250 µm/s structure are similar to the average spacing in the 50 µm/s structure, while the

bottom 5% of spacings in the 50 µm/s structure are similar to the average spacing in the

250 µm/s structure. With this inherent variation in the Al-Si structure, it is evident why the

flake to fiber transition occurs over a range of solidification velocities rather than at a discrete

velocity. In fact, if one were to assume that a modified fibrous structure begins to form when

local solidification conditions elicit a eutectic spacing of roughly 1.7 µm, then the spacing

distribution results presented in Fig. 27 would suggest that the microstructure is 5% modified

at 50 µm/s, 50% modified at 250 µm/s, and 95% modified at 950 µm/s, a progression which

reasonably approximates that which may be observed visually and quantitatively in the Al-Si

structure (see Hosch et. al.(4)).

Calculation of the critical diameter function in an Al-Si alloy

The critical diameter metric was described by England in (5) and Napolitano and England

in (6). The critical diameter is defined as the minimum diameter of an infinite cylinder aligned

along the growth direction which provides a representative measure of the overall volume

fraction of phases. More specifically, the critical diameter is the cylindrical diameter above

which the standard deviation of the volume fraction falls below 15% of the mean.

The critical diameter was recalculated here for a set of directionally solidified Al-13wt% Si

samples over a velocity range of 10 µm/s to 2000 µm/s. The critical diameter measurements

are shown in Fig. 29. A general relationship of df = 260V −0.6 in µm and µm/s was observed,

164

Figure 25 Schematic of pixel distance frequency around a central pixel.

Each box represents a pixel of an image, and the numbers in

each pixel represent the square of the distance between that

pixel and the central pixel. Each distance occurs four times,

except for 5, which occurs eight times.

Figure 26 Example calculation of the radial distribution function (RDF)

demonstrating its effectiveness in determining average local

spacing. The three peaks of the RDF function in this example

correspond to the concentric circles drawn around the object

being measured.

165

Figure 27 Cumulative probability distributions for the average spacing

around a silicon particle for a range of solidification velocities.

Figure 28 Relationship of spacing versus velocity for the average particle

spacing determined at three different cumulative probability val-

ues.

166

Figure 29 Critical diameter as a function of velocity. The measurement

contains significant scatter and it is difficult to determine an

overall trend.

though there appears to be a significant amount of variance in the critical diameter measure-

ments. Due to this variance, it is difficult to tell whether this measurement indicates a change

in morphology over the flake to fiber transition range.

References

[1] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical

Journal, 36:1389–1401, 1957.

[2] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.

[3] P. Cignoni, C. Montani, and Scopigno R. Dewall: A fast divide and conquer delaunay

triangulation algorithm in e d. Computer-Aided Design, 30(5):333–341, 1998.

[4] T. Hosch, L. G. England, and R. E. Napolitano. Analysis of the high growth-rate transition

in al-si eutectic solidification. Journal of Materials Science, 44(18):4892–4899, 2009.

167

[5] L. G. England. High-rate growth-mode transitions in al-si eutectics. Master’s thesis, Iowa

State University, 2004.

[6] R. E. Napolitano and L. G. England. High-rate growth-mode transitions in al-si eutectics.

Solidification of Aluminum Alloys, pages 445–451, 2004.

168

CONCLUSION

The recent push for increased energy efficiency in the automotive and aerospace industries

has placed extra importance on the continued development and application of lightweight struc-

tural materials such as irregular eutectic Al-Si and magnesium casting alloys. In this study,

the local solidification conditions, mechanisms, and tensile properties associated with the flake

to fiber growth mode transition in Al-Si eutectic alloys were investigated using bridgman type

gradient-zone directional solidification. Tensile testing highlighted the importance of obtain-

ing a modified silicon structure in Al-Si alloys, with an attendant increase in ductility, tensile

reproducibility, and tensile strength. The solidification mechanisms contributing to silicon

modification were investigated with quantitative image analysis of two-dimensional sections

and careful observation of deep-etched sections showing the three-dimensional microstructure.

The transition was found to occur in two stages: an initial stage occurring from 100–500 µm/s

that is dominated by in-plane plate breakup and rod formation within the plane of the plate,

and a second stage occurring from 500–950 µm/s where the onset of out-of-plane silicon rod

growth leads to the formation of an irregular fibrous structure. Several microstructural pa-

rameters were investigated in an attempt to quantify this transition, and it was found that the

particle aspect ratio is effective in objectively identifying the onset and completion velocity

of the flake to fiber transition. Furthermore, despite descriptions of flake to fiber onset and

completion velocities, a range of silicon growth mechanisms were found to be present at all

velocities studied (10–2000 µm/s), and the flake to fiber transition, as reported, simply reflects

those velocities at which the dominant growth mechanism changes.

The appearance of out-of-plane silicon protrusions midway through the flake to fiber tran-

sition suggests that the occurrence of three-dimensional out-of-plane silicon growth is vital

169

to the formation of the modified fibrous microstructure. Further investigation of these sil-

icon protrusions was performed by adapting a perturbed-interface stability analysis to the

Al-Si system. It was concluded that both in-plane and out-of-plane plate breakup is initiated

by a similar Mullins-Sekerka type instability though operating on a different crystallographic

plane. The characteristic in-plane silicon plate breakup length scale is smaller than the corre-

sponding length scale of out-of-plane protrusions due to the expected larger interfacial stiffness

experienced by perturbations perpendicular to the plane of the plate, a phenomenon that is

accurately predicted by the perturbed interface stability model. Furthermore, measurements

of silicon equilibrium shape particles suggested the minimum anisotropy of the solid Si/liquid

Al-Si system is on the order of ε001
4 ≈ 0.1, and incorporation of this silicon anisotropy into the

perturbed interface model was found to improve prediction of the instability length scale.

The benefit of the extreme lightweight nature of magnesium alloys comes at a cost of

decreased high temperature performance. Additions of heavier elements, such as zinc, zirco-

nium, and rare earth elements, can significantly improve the high temperature performance

of magnesium alloys, though this introduces additional problems, including the appearance

of segregational flow-lines. The effect of flow-line indications in WE43B, EV31A, and ZE41

alloys were investigated here in order to determine the severity of their effect on mechanical

properties. The results of a preliminary investigation show that, in some cases, there may be

measurable variation in microstructural, microchemical, and micromechanical properties asso-

ciated with the presence of a flow-line. However, there is no evidence to suggest that any of

these effects would have a deleterious impact on the macroscopic (bulk) mechanical properties

of the alloy component. Further studies are suggested that would allow for a more rigorous

and comprehensive determination of the effects of flow-line indications, as well as developing

a set of tolerances to guide the use and development of new magnesium-based casting alloys.

A minimum spanning tree (MST) analysis was found to be effective in determination of

some aspects of local atomic structure. A set of ideal structures generated with a normally

distributed noise parameter was found to best approximate molecular-dynamics simulated

structures when a range of 10–15% noise was added. However, even at this level of noise, the

170

ideal structures are significantly different than the simulated structures, a distinction which

was elucidated by the MST analysis. The MST analysis is also effective in detecting the glass

transition temperature in the CuZr system, as indicated by both a slope change in the segment

length as a function of temperature, and by a change in the behavior of the MST angle mean

as a function of temperature. The important atoms in the MST analysis for detection of the

CuZr glass transition temperature were found to be atoms with three nearest neighbors in the

MST (junction type J3) and segments of type Cu-Cu. A more in depth investigation of the use

of the MST analysis should focus on isolating these elements in the CuZr structure in order to

more fully quantify the glass transition and its effect on the local atomic arrangement.

The radial distribution function (RDF) was found to effectively identify the average local

eutectic spacing around an individual silicon particle as defined on a two-dimensional mi-

crostructural section. The RDF was used to define the cumulative probability of a particular

eutectic spacing value as a function of solidification velocity. Comparison of the frequency of

eutectic spacings in different solidification velocities found 5% of eutectic spacings were below

an arbitrarily selected 1.7 µm at 50 µm/s, 50% were below it at 250 µm/s, and 95% were be-

low it at 950 µm/s, a progression which reasonably approximates the modified fraction of the

silicon microstructure. This microstructural variation can explain the wide range of velocities

over which the flake to fiber transition has been observed to occur in Al-Si eutectic alloys.

Calculation of the critical diameter, which is defined as the cylindrical diameter above which

the standard deviation of the volume fraction falls below 15% of the mean, was performed on the

Al-Si eutectic system over a velocity range of 10 µm/s to 2000 µm/s. A general relationship of

df = 260V −0.6 in µm and µm/s was observed, though there appears to be a significant amount

of variance in the critical diameter measurements. Due to this variance, it is difficult to tell

if this measurement truly indicates a change in morphology over the flake to fiber transition

range.

171

APPENDIX

This appendix provides a listing of the code used to generate many of the measurements

and results herein.

Minimum spanning tree

The following code was used to calculate the minimum spanning tree of a set of points.

Input files are required to be in a plain text file where each point is represented by a separate

line in the format lf lf [lf] [d] where lf is a long float (or double) specifying the point location,

and d is an integer specifying the type of the atom. The final two parameters are optional,

depending on whether the MST is two or three dimensional, but if the type specifier d is used,

then all three lf parameters must be used as well (i.e., two dimensional MST analysis with

atom type specification is not allowed).

The minimum spanning tree application was programmed in C++ and compiled using

Microsoft Visual Studio 2008 as a console application.

The current algorithm is highly optimized for point sets with a relatively uniform distri-

bution, which makes it optimal for atom systems. The algorithm does not handle adding the

final atoms to the MST efficiently, however. When, for example, only the last percent of atoms

are left to add to the MST, the algorithm severely slows down because it is still checking for

nearest neighbors from the now densely populated MST PointGrid to the sparsely populated

nonMST PointGrid. This could be improved by changing the algorithm near the end of MST

calculation to work from the few remaining unadded MST points instead of the large number

of added MST points.

172

Main

This is the code specifying the main function, or entry point, of the MST application.

// MST. cpp : Def ines the entry p o i n t f o r the c o n s o l e a p p l i c a t i o n .
#include ” s tda fx . h”
#include <cmath>
#include <c s t d l i b>
#include <c s td io>
#include <iostream>
#include <new>
#include <s t r i ng>
#include <vector>
#include ” po int . h”
#include ” p o i n t l i s t . h”
#include ” b r a n c h l i s t . h”
#include ”MSTcalc . h”
#include ”MST Settings . h”
#include <con io . h>
using namespace std ;
int MultiMST(MST Settings &s e t t i n g s) ;
vector<s t r i ng >∗ GetFileNames (s t r i n g fname) ;
int main (int argc , char ∗argv [])
{

p r i n t f (”−−\n Minimum Spanning
Tree Ca l cu l a t i on \n−−\n\n”) ;

s t r i n g appPath = argv [0] ;
int s t rPos = appPath . f i n d l a s t o f (”\\”) ;
appPath = appPath . subs t r (0 , s t rPos + 1) ;
MST Settings s e t t i n g s = MST Settings (appPath) ;
s e t t i n g s . ReadSett ings () ;
s e t t i n g s . V e r i f y S e t t i n g s () ;
MultiMST(s e t t i n g s) ;

ge t ch () ;
}
int MultiMST(MST Settings &s e t t i n g s)
{

s t r i n g a n a l y s i s = ” stats Combined ” ;
s t r i n g INPUT FILE = s e t t i n g s . d i r e c t o r y + ”MST FILENAMES. txt ” ;
vector<s t r i ng> ∗ s t r u c t u r e F i l e s = GetFileNames (INPUT FILE) ;
int numFiles = s t r u c t u r e F i l e s−>s i z e () ;
MSTcalc∗ mstCalc = new MSTcalc (a n a l y s i s . c s t r ()) ;
cout << ”\n∗∗∗ Beginning Ana lys i s ∗∗∗\n” ;
for (int i = 0 ; i < numFiles ; i++)
{

cout << ”\nAnalyzing f i l e ” << i + 1 << ” o f ” << numFiles << ” :\n” <<
s e t t i n g s . d i r e c t o r y << s t r u c t u r e F i l e s−>at (i) << ” . txt \n\n” ;

mstCalc−>ConstructMST (s e t t i n g s . d i r e c t o r y . c s t r () , s t r u c t u r e F i l e s−>at (i
) . c s t r () , s e t t i n g s . g r i dS i z e , s e t t i n g s . recalcMST) ;

}
delete mstCalc ;
cout << ”\ nAnalys i s f i n i s h e d .\n” ;

173

delete s t r u c t u r e F i l e s ;
return 0 ;

}
vector<s t r i ng >∗ GetFileNames (s t r i n g fname)
{

char BUFFER[2 5 5] ;
FILE ∗ fp ;
i f (f open s (&fp , fname . c s t r () , ” r ”) != 0)
{

p r i n t f (”\nCannot open input f i l e . Enter f i l e names to read in
MST FILENAMES in s e l e c t e d d i r e c t o r y .\n”) ;

return new vector<s t r i ng >;
}
vector<s t r i ng> ∗ s t rArray = new vector<s t r i ng >;
while (f g e t s (BUFFER, 255 , fp) != NULL)
{

i f (BUFFER[0] != ’ \\ ’ && BUFFER[1] != ’ \\ ’) // a l l o w commenting out o f
f i l e names us ing //

{
strArray−>push back (BUFFER) ;
i f (strArray−>back () . at (strArray−>back () . s i z e () − 1) == ’ \n ’)

strArray−>back () = strArray−>back () . subs t r (0 , strArray−>back () .
s i z e () − 1) ;

}
}
f c l o s e (fp) ;
return s t rArray ;

}

MST Settings

This class interfaces with the user to load, set up, and save settings pertaining to the

calculation of the MST.

// MST Settings . h
#ifndef MST SETTINGS H
#define MST SETTINGS H
#include <s t r i ng>
#include <iostream>
#include <c s t d l i b>
#include <c s td io>
using namespace std ;
class MST Settings
{
private :

s t r i n g appPath ;
s t r i n g GetDirectory () ;
s t r i n g GetDirectoryFromUser () ;
double GetGridSize () ;
double GetGridSizeFromUser () ;

174

bool GetYesNoFromUser (s t r i n g prompt) ;
void GetNewSettings () ;
bool CheckDirectory () ;

public :
MST Settings (void) {}
MST Settings (s t r i n g app l i ca t ionPath) : appPath (app l i ca t i onPath) {}
˜MST Settings (void) {}
s t r i n g d i r e c t o r y ;
double g r i d S i z e ;
bool recalcMST ; // S p e c i f i e s whether to ana lyze o l d mst f i l e s or

c r e a t e new ones
void ReadSett ings () ;
bool SaveSet t ings () ;
void V e r i f y S e t t i n g s () ;

} ;
#endif

// MST Settings . cpp
#include ”StdAfx . h”
#include ”MST Settings . h”
void MST Settings : : ReadSett ings ()
{

s t r i n g SETTINGS FILE = appPath + ”MST SETTINGS. txt ” ;
double g r id = −1;
bool r e c a l c = true ;
int recalcTemp = 1 ;
char BUFFER[2 5 5] ;
FILE ∗ fp ;
i f (f open s (&fp , SETTINGS FILE . c s t r () , ” r ”) == 0)
{

f g e t s (BUFFER, 255 , fp) ; // DIRECTORY
d i r e c t o r y = BUFFER;
f g e t s (BUFFER, 255 , fp) ; // GRID SIZE
i f (BUFFER != NULL)
{

s s c a n f s (BUFFER, ”%l f ” ,& gr id) ;
f g e t s (BUFFER, 255 , fp) ; // RECALCULATE MST
i f (BUFFER != NULL)

s s c a n f s (BUFFER, ”%d”,&recalcTemp) ;
}
f c l o s e (fp) ;

}
i f (! CheckDirectory ())
{

cout << ”\nLast d i r e c t o r y used : \”” + d i r e c t o r y . subs t r (0 , d i r e c t o r y .
l ength ()−1) + ”\” i s i n v a l i d .\ nPress ente r to cont inue . ” ;

d i r e c t o r y = GetDirectoryFromUser () ;
}
i f (g r id > 0 && gr id < 1000)

g r i d S i z e = gr id ;
else

g r i d S i z e = 1 . 6 ;
i f (recalcTemp == 0)

175

recalcMST = fa l se ;
SaveSet t ings () ;

}
bool MST Settings : : SaveSet t ings ()
{

s t r i n g SETTINGS FILE = appPath + ”MST SETTINGS. txt ” ;
FILE ∗ fp ;
i f (f open s (&fp , SETTINGS FILE . c s t r () , ”w”) != 0)
{

return fa l se ;
}
int recalcINT ;
i f (recalcMST)

recalcINT = 1 ;
else

recalcINT = 0 ;
f p r i n t f (fp , ”%s ” , d i r e c t o r y . c s t r ()) ;
f p r i n t f (fp , ”\n%f ” , g r i d S i z e) ;
f p r i n t f (fp , ”\n%d” , recalcINT) ;
f c l o s e (fp) ;
return true ;

}
void MST Settings : : V e r i f y S e t t i n g s ()
{

bool v e r i f y = fa l se ;
while (! v e r i f y)
{

s t r i n g r e c a l c S t r i n g ;
i f (recalcMST)

r e c a l c S t r i n g = ” Ca lcu la te New” ;
else

r e c a l c S t r i n g = ”Analyze Old” ;
cout << ”\n−−−−−−−−−−−−−−−−−−−−−\nCurrent MST S e t t i n g s :\n
−−−−−−−−−−−−−−−−−−−−−\n\ nDirectory :\ t ” <<

d i r e c t o r y . subs t r (0 , d i r e c t o r y . l ength () − 1) <<
”\nGrid S i z e :\ t ” << g r i d S i z e << ”\ nCalcu la t ion :\ t ” << r e c a l c S t r i n g

<< ”\n\n−−−−−−−−−−−−−−−−−−−−−\n\n” ;
v e r i f y = GetYesNoFromUser (”Are these s e t t i n g s ok?”) ;
i f (! v e r i f y)

GetNewSettings () ;
}
SaveSet t ings () ;

}
void MST Settings : : GetNewSettings ()
{

d i r e c t o r y = GetDirectory () ;
g r i d S i z e = GetGridSize () ;
cout << ”\n” ;
recalcMST = GetYesNoFromUser (”Do you want to c a l c u l a t e new MST f i l e s ? (Y

/N) ”) ;
}
// Asks user f o r d i r e c t o r y which con ta i ns MST FILENAMES. t x t and l o o p s

u n t i l a v a l i d d i r e c t o r y wi th such a f i l e i s found .

176

s t r i n g MST Settings : : GetDirectoryFromUser ()
{

bool dirFound = fa l se ;
s t r i n g dirName ;
c in . i gno re (1000 , ’ \n ’) ;
while (! dirFound)
{

cout << ”\nInput d i r e c t o r y which conta in s \”MST FILENAMES. txt \”\
nDirectory : ” ;

g e t l i n e (cin , dirName) ;
d i r e c t o r y = dirName ;
dirFound = CheckDirectory () ;
i f (! dirFound)
{

bool ana lyzeA l l = GetYesNoFromUser (”\nMST FILENAMES. txt not found ,
ana lyze a l l . tx t f i l e s in d i r e c t o r y ?”) ;

c in . i gnor e (1000 , ’ \n ’) ;
i f (ana lyzeAl l)
{

s t r i n g nameMaker = ”\”” + appPath + ”MST Namemaker CL” + ”\”” ;
s t r i n g arguments = ”\”” + d i r e c t o r y + ”\”” ;
s t r i n g command = nameMaker + ” ” + arguments ;
system ((”\”” + nameMaker + ” ” + ”\”” + d i r e c t o r y + ”\””) . c s t r ())

;
dirFound = CheckDirectory () ;
i f (! dirFound)

cout << ” Error c r e a t i n g MST FILENAMES. txt ” ;
}

}
}
return d i r e c t o r y ;

}
double MST Settings : : GetGridSize ()
{

i f (g r i d S i z e > 0 && g r i d S i z e < 1000)
{

char BUFFER[2 5 5] ;
cout << ”\n” ;
s p r i n t f s (BUFFER, ” Current g r id s i z e : %l f . \nUse t h i s g r id s i z e ? (Y/N

) ” , g r i d S i z e) ;
s t r i n g prompt = BUFFER;
i f (! GetYesNoFromUser (prompt))

g r i d S i z e = GetGridSizeFromUser () ;
}
else

g r i d S i z e = GetGridSizeFromUser () ;
return g r i d S i z e ;

}
double MST Settings : : GetGridSizeFromUser ()
{

bool s izeFound = fa l se ;
double s i z e = −1;
s t r i n g s i z e S t r i n g ;

177

c in . i gno re (1000 , ’ \n ’) ;
cout << ”\nGrid s i z e i s s p e c i f i e d as a f r a c t i o n o f average spac ing .\n” ;
cout << ”Use sma l l e r g r id s i z e s f o r uni formly d i s t r i b u t e d s t ruc tu r e s ,\

nand l a r g e r g r id s i z e s f o r more v a r i a b l e s t r u c t u r e s .\n” ;
while (! s izeFound)
{

cout << ” Input new gr id s i z e (1.5−15 recommended , 1 . 6 d e f a u l t) : ” ;
g e t l i n e (cin , s i z e S t r i n g) ;
s s c a n f s (s i z e S t r i n g . c s t r () , ”%l f ” ,& s i z e) ;
i f (s i z e > 0 && s i z e < 1000)

sizeFound = true ;
}
return s i z e ;

}
bool MST Settings : : GetYesNoFromUser (s t r i n g prompt)
{

bool re sponse = true ;
s t r i n g input = ”” ;
while (input != ”Y” && input != ”N” && input != ”y” && input != ”n”)
{

p r i n t f (”%s ” , prompt . c s t r ()) ;
c in >> input ;
input = input . subs t r (0 , 1) ;

}
i f (input == ”N” | | input == ”n”)

re sponse = fa l se ;
return re sponse ;

}
// Analyzes the s u p p l i e d s t r i n g to see i f i t i s a v a l i d d i r e c t o r y , and i f

not c a l l s GetDirectoryFromUser ; r e t u r n s a v a l i d d i r e c t o r y
s t r i n g MST Settings : : GetDirectory ()
{

i f (d i r e c t o r y == ””) // No d i r e c t o r y in s e t t i n g s f i l e , make user en t er
a v a l i d one

{
cout << ”No d i r e c t o r y found . You must input a v a l i d d i r e c t o r y . Press

Enter to cont inue . ” ;
d i r e c t o r y = GetDirectoryFromUser () ;

}
else
{ // Previous d i r e c t o r y found in s e t t i n g s f i l e , ask user i f they want to

en ter a d i f f e r e n t one
s t r i n g prompt = ”\nLast d i r e c t o r y used : \”” + d i r e c t o r y . subs t r (0 ,

d i r e c t o r y . l ength ()−1) + ”\”\nUse t h i s d i r e c t o r y ? (Y/N) ” ;
i f (! GetYesNoFromUser (prompt))

d i r e c t o r y = GetDirectoryFromUser () ;
}
return d i r e c t o r y ;

}
bool MST Settings : : CheckDirectory ()
{

bool dirOK = fa l se ;
i f (d i r e c t o r y . l ength () > 0)

178

{
i f (d i r e c t o r y . subs t r (d i r e c t o r y . l ength ()−1) == ”\n”) // Remove n u l l

t e rminat ion i f necessary
d i r e c t o r y = d i r e c t o r y . subs t r (0 , d i r e c t o r y . l ength ()−1) ;

i f (d i r e c t o r y . l ength () > 0 && d i r e c t o r y . subs t r (d i r e c t o r y . l ength ()−1)
!= ”\\”)

d i r e c t o r y . append (”\\”) ;
}
s t r i n g fName = d i r e c t o r y + ”MST FILENAMES. txt ” ;
FILE ∗ fp ;
i f (f open s (&fp , fName . c s t r () , ” r ”) == 0)
{

dirOK = true ;
f c l o s e (fp) ;

}
return dirOK ;

}

MSTcalc

This class performs calculation and analysis of MST files.

// MSTcalc . h
#ifndef MSTCALC H
#define MSTCALC H
#include ” b r a n c h l i s t . h”
#include ” p o i n t l i s t . h”
#include ” PointGrid . h”
#include <iostream>
#include <cmath>
#include <s t r i ng>
#include <map>
#include <vector>
#include <ctime>
using namespace std ;
const stat ic int BUFFER SIZE = 256 ;
struct MeanAndStdDev
{

double mean ;
double stdDev ;
MeanAndStdDev () : mean (0) , stdDev (0) {}
MeanAndStdDev(double mn, double stdD) : mean(mn) , stdDev (stdD) {}

} ;
class MSTcalc
{
private :

b r a n c h l i s t ∗branches ;
map<point , vector<point>> ne ighborPo ints ;
map<p o i n t l i s t ∗ , bool> inMST ;
map<s t r i ng , map<double , double>> junctFreqMap ;
map<s t r i ng , map<pair<int , int>, double>> segFreqMap ;

179

map<s t r i ng , map<double , MeanAndStdDev>> junctMnStdMap ;
map<s t r i ng , map<pair<int , int>, MeanAndStdDev>> segMnStdMap ;
map<s t r i ng , map<int , double>> junctPtTypeFraction ; //

Fract ion o f each type o f j u n c t i o n (atomic f r a c t i o n)
map<s t r i ng , map<pair<int , int>, double>> segPtTypeFraction ; //

Fract ion o f each p o i n t type (AA’ s vs AB’ s vs BB’ s)
map<s t r i ng , map<int , MeanAndStdDev>> mnStdOnePtTypeMap ; //

l e n g t h mn−s t d s t o r e d by one pt type
map<s t r i ng , map<pair<int , int>, MeanAndStdDev>> mnStdTwoPtTypeMap ;

// l e n g t h mn−s t d s t o r e d by n e i g h b o r i n g pt t y p e s
map<s t r i ng , map<int , MeanAndStdDev>> mnStdPtTypeAngMap ; //

ang le mn−s t d s t o r e d by one pt type
map<s t r i ng , map<int , MeanAndStdDev>> junctMnStdOnePtTypeMap ; //

j u n c t# mn−s t d s t o r e d by one pt type
map<s t r i ng , map<int , map<double , double>>> junctFreqOnePtTypeMap ;

// j u n c t f r e q s t o r e d by one pt type
map<s t r i ng , map<pair<int , int>, map<pair<int , int>, double>>>

segFreqTwoPtTypeMap ; // how many 12 ’ s , 23 ’ s , e t c are t h e r e f o r AA’ s ,
AB’ s , BB’ s

map<s t r i ng , map<pair<int , int>, map<pair<int , int>, MeanAndStdDev>>>
segMnStdTwoPtTypeMap ; // mean and s t d o f l e n g t h s o f segment t y p e s
se para ted by pt type

map<double , bool> junctTypes ;
map<pair<int , int>, bool> segTypes ;
map<int , bool> ptTypes ;
map<pair<int , int>, bool> ptPairTypes ;
vector<int> pointTypes ;
po int p t l i s tD imens i on s ;
int s t a r t i n g P o i n t s ;
double normLength ;
bool mult iAna lys i s ; // i n d i c a t e s t h a t a combined s t a t i s t i c s f i l e named

a n a l y s i s F i l e shou ld be saved
bool f i r s tRun ;
bool multiTypes ;
char sampleName [BUFFER SIZE] ;
char analysisName [BUFFER SIZE] ;
char i n F i l e [BUFFER SIZE] ;
char mstFi le [BUFFER SIZE] ;
char s t a t F i l e [BUFFER SIZE] ;
char a n a l y s i s F i l e [BUFFER SIZE] ;
char ana lFreqF i l e [BUFFER SIZE] ;
char analTypeFi le [BUFFER SIZE] ; // l e n g t h s / a n g l e s s e g r e g a t e d by p o i n t

type
void ConstructMST (p o i n t l i s t ∗unmarked) ;
void ConstructMSTnew (p o i n t l i s t ∗unmarked , double g r i d S i z e) ;
bool Cr ea t e F i l e s (const char∗ d i r e c to ry , const char∗ sampleName , bool

newAnalysis) ;
void AnalyzeMST () ;
void FindNeighborPoints () ;
void GetTypes () ;
void AnalyzeLengths () ;
void AnalyzeAngles () ;
void OutputResults () ;

180

double CalcMean (const double ∗doubleArray , int numElements) const ;
double CalcStdev (const double ∗doubleArray , double mean , int numElements

) const ;
template <class T>
map<T, double>∗ CalcFreq (const vector<T> &dataArray) const ;

public :
MSTcalc (void) : f i r s tRun (true) , mu l t iAna lys i s (fa l se) , branches (NULL) {}
MSTcalc (const char∗ analysisName) : f i r s tRun (true) , mu l t iAna lys i s (true) ,

branches (NULL)
{ s t r c p y s (this−>analysisName , BUFFER SIZE , analysisName) ;}
˜MSTcalc (void) ;
bool ConstructMST (const char∗ d i r e c to ry , const char∗ sampleName , double

g r idS i z e , bool newAnalysis) ;
} ;

#endif

// MSTcalc . cpp
#include ”StdAfx . h”
#include ”MSTcalc . h”
MSTcalc : : ˜ MSTcalc (void)
{

i f (mul t iAna lys i s)
{

OutputResults () ;
junctFreqMap . c l e a r () ;
segFreqMap . c l e a r () ;

}
}
// Constructs the r e l e v a n t f i l e names based on the input in format ion and

checks t h a t the f i l e s can be opened
bool MSTcalc : : C r e a t eF i l e s (const char ∗ d i r e c to ry , const char ∗sampleName ,

bool newAnalysis)
{

s t r c p y s (this−>sampleName , sampleName) ;
s p r i n t f s (i n F i l e , BUFFER SIZE , ”%s%s . txt ” , d i r e c to ry , sampleName) ;
s p r i n t f s (mstFile , BUFFER SIZE , ”%smst %s . txt ” , d i r e c to ry , sampleName) ;
s p r i n t f s (s t a t F i l e , BUFFER SIZE , ”%s s t a t s %s . txt ” , d i r e c to ry , sampleName

) ;
FILE∗ ofp ;
i f (f i r s tRun)
{

f i r s tRun = fa l se ;
i f (mul t iAna lys i s)
{

s p r i n t f s (a n a l y s i s F i l e , BUFFER SIZE , ”%s%s . txt ” , d i r e c to ry ,
analysisName) ;

s p r i n t f s (ana lFreqFi l e , BUFFER SIZE , ”%s%s Freq . txt ” , d i r e c to ry ,
analysisName) ;

i f (f open s (&ofp , a n a l y s i s F i l e , ”w”) != 0) // c l e a r s a n a l y s i s F i l e
on f i r s t run f o r subsequent appending

{
p r i n t f (”\nCannot open output f i l e <%s>.\n” , a n a l y s i s F i l e) ;
pe r ro r (” Error : ”) ;

181

return fa l se ;
}
f p r i n t f (ofp , ” Mult ip l e MST a n a l y s i s r e s u l t s compi la t ion \n\ nFi l e \

tVolume\tNorm−Length\ tLength Norm−Std Dev .\ tLength Norm−Mean\ t ”) ;
f p r i n t f (ofp , ”Angle (Deg) Std Dev .\ tAngle (Deg) Mean\tJType Std Dev .\

tJType Mean”) ;
f c l o s e (ofp) ;
i f (f open s (&ofp , ana lFreqFi l e , ”w”) != 0) // c l e a r s a n a l F r e q F i l e
{

p r i n t f (”\nCannot open output f i l e <%s>.\n” , ana lFreqF i l e) ;
return fa l se ;

}
f c l o s e (ofp) ;
i f (multiTypes)
{

s p r i n t f s (analTypeFile , BUFFER SIZE , ”%s%s Type . txt ” , d i r e c to ry ,
analysisName) ;

i f (f open s (&ofp , analTypeFile , ”w”) != 0) // c l e a r s ana lTypeFi le
{

p r i n t f (”\nCannot open output f i l e <%s>.\n” , analTypeFi le) ;
return fa l se ;

}
f c l o s e (ofp) ;

}
}

}
i f (newAnalysis)
{

i f (f open s (&ofp , i n F i l e , ” r ”) != 0)
{

p r i n t f (”\nCannot open input f i l e <%s>.\n” , i n F i l e) ;
return fa l se ;

}
f c l o s e (ofp) ;

}
char readType [BUFFER SIZE] ;
i f (newAnalysis)

s t r c p y s (readType , BUFFER SIZE , ”w”) ;
else

s t r c p y s (readType , BUFFER SIZE , ” r ”) ;
i f (f open s (&ofp , mstFile , readType) != 0)
{

p r i n t f (”\nCannot open f i l e <%s>.\n” , mstFi le) ;
return fa l se ;

}
f c l o s e (ofp) ;
i f (f open s (&ofp , s t a t F i l e , ”w”) != 0)
{

p r i n t f (”\nCannot open output f i l e <%s>.\n” , s t a t F i l e) ;
return fa l se ;

}
f c l o s e (ofp) ;
i f (mul t iAna lys i s && (fopen s (&ofp , a n a l y s i s F i l e , ”a”) != 0))

182

{
p r i n t f (”\nCannot open output f i l e <%s>.\n” , a n a l y s i s F i l e) ;
return fa l se ;

}
f c l o s e (ofp) ;
return true ;

}
// Constructs the MST f o r the data in the s u p p l i e d f i l e and saves output

to o u t F i l e . Returns t r u e i f c o n s t r u c t i o n was s u c c e s s f u l , f a l s e
o t h e r w i s e .

bool MSTcalc : : ConstructMST (const char ∗ d i r e c to ry , const char ∗sampleName ,
double g r idS i z e , bool newAnalysis)

{
i f (! C r ea t e F i l e s (d i r e c to ry , sampleName , newAnalysis))

return fa l se ;
i f (! newAnalysis)
{

branches = new b r a n c h l i s t (mstFi le) ;
i f (branches−>countPts () < 1)

return fa l se ;
}
else
{

f p r i n t f (stdout , ”Reading po in t s from f i l e .\n”) ;
p o i n t l i s t ∗ unmarked = new p o i n t l i s t (i n F i l e) ; // Create p o i n t l i s t from

i n F i l e
f p r i n t f (stdout , ”Removing d u p l i c a t e s .\n”) ;
unmarked−>remdup () ; // Remove d u p l i c a t e p o i n t s
i f (unmarked−>count () < 1)

return fa l se ;
ConstructMSTnew (unmarked , g r i d S i z e) ;
unmarked = NULL; // a l l p o i n t s in unmarked are d e l e t e d in

ConstructMST , so c l e a r the remnant p o i n t e r here
f p r i n t f (stdout , ”\ nPr int ing b r a n c h l i s t to f i l e . . . ”) ;
branches−>p r i n t a l l (mstFi le) ;

} // the MST b r a n c h l i s t i s now s t o r e d in branches
AnalyzeMST () ;
branches−>de l () ; // c l ean up
ne ighborPo ints . c l e a r () ;
p t l i s tD imens i on s = point () ;
return true ;

}
// Optimized method to c a l c u l a t e MST which depends on an a s s o c i a t i v e g r i d

array to r a p i d l y i d e n t i f y p o t e n t i a l n e i g h b o r i n g atoms
void MSTcalc : : ConstructMSTnew (p o i n t l i s t ∗unmarked , double g r i d S i z e)
{

c l o c k t startTime = c lock () ;
f p r i n t f (stdout , ” Creat ing PointGrid .\n”) ;
inMST . c l e a r () ;
p o i n t l i s t ∗nonMSTpts = unmarked ;
p t l i s tD imens i on s = nonMSTpts−>maxDimensions () ;
int numPts = nonMSTpts−>count () ;
f loat rootnum = (f loat)pow(numPts , 1 . 0 / 3 . 0) ;

183

int ptsPerS ide = (int) ((f loat) (pow(numPts , 1 . 0 / 3 . 0)) + 0 .99999) ;
double avgSpacing = (ptsPerS ide − 1) / max(max(p t l i s tD imens i on s . x ,

p t l i s tD imens i on s . y) , p t l i s tD imens i on s . z) ∗ g r i d S i z e ;
p o i n t l i s t ∗ inMSTpts = new p o i n t l i s t (nonMSTpts) ;
PointGrid nonMSTGrid = PointGrid (nonMSTpts , avgSpacing) ; // c r e a t e

nonMSTGrid wi th a l l p o i n t s in i t
p o i n t l i s t ∗ f i r s t P t c p y = new p o i n t l i s t (nonMSTpts) ;
nonMSTGrid . RemovePoint (∗nonMSTpts) ; // remove the f i r s t MST p o i n t

from the g r i d
nonMSTpts = nonMSTpts−>removeLocal (nonMSTpts) ; // remove f i r s t p o i n t

from l i s t , i t w i l l be d e l e t e d by nonMSTGrid
map<point , p o i n t l i s t ∗> ptToBrMap ;
map<point , p o i n t l i s t ∗> : : i t e r a t o r ptToBrIT ;
p o i n t l i s t ∗ currentPo int ;
b r a n c h l i s t ∗ currentBranch ;
f p r i n t f (stdout , ” Beginning t r e e c on s t r u c t i on .\n”) ;
inMST [inMSTpts] = true ; // add f i r s t MST p o i n t to

p o i n t l i s t map
int addedPts = 1 ;
int progres s Increment = max(numPts / 100 , 1) ;
branches = new b r a n c h l i s t (inMSTpts) ;
ptToBrMap [(po int) ∗ inMSTpts] = branches−>s t a r t ;
bool neighborsFound = nonMSTGrid . AddNearest (inMSTpts) ; // ana lyze

p o i n t s near the f i r s t MST p o i n t
while (addedPts < numPts && neighborsFound)
{

PointGrid : : Segment ∗mstCandidate = nonMSTGrid . PopClosest () ; // pt1 i s
from inMSTpts , pt2 i s from nonMSTGrid

i f (inMST . f i n d (mstCandidate−>pt2) == inMST . end ())
{ // i f mstCandidate i s not a l r e a d y in the MST then i t w i l l be the

next MST p o i n t . Must move p o i n t from nonMSTGrid to inMSTpts
inMST [mstCandidate−>pt2] = true ;
p o i n t l i s t ∗ptCpy = inMSTpts−>add (mstCandidate−>pt2) ; // s t o r e pt to

inMSTpts (c r e a t e s new p o i n t l i s t , so s t o r e t h i s to ptCpy)
nonMSTGrid . RemovePoint (mstCandidate−>pt2) ;
mstCandidate−>pt2 = ptCpy ; // r e s e t r e f e r e n c e in

segment to the new l o c a t i o n o f the p o i n t
addedPts++;
i f (addedPts < numPts)

nonMSTGrid . AddNearest (ptCpy) ; // Add the n e i g h b o r s f o r
the new MST p o i n t

currentPo int = ptToBrMap . f i n d ((po int) ∗mstCandidate−>pt1)−>second ;
i f (currentPoint−>next == NULL) // new MST p o i n t i s a t end o f a

branch
{

ptToBrMap [(po int) ∗mstCandidate−>pt2] = currentPoint−>add (
mstCandidate−>pt2) ;

}
else // new MST p o i n t i s a t s t a r t o f new branch
{

currentBranch = branches−>add (mstCandidate−>pt1) ;
ptToBrMap [(po int) ∗mstCandidate−>pt2] = currentBranch−>s t a r t−>add (

mstCandidate−>pt2) ;

184

}
i f ((addedPts−1)%progres s Increment == 0) // Progress update

f p r i n t f (stdout , ”Tree c on s t r u c t i o n i s %d percent complete \n” , (int)
(((double) addedPts /(double)numPts) ∗100)) ;

}
// I j u s t removed the n e a r e s t ne ighbor to pt1 , so must add i t s

n e i g h b o r s to the heap
i f (addedPts < numPts)

neighborsFound = nonMSTGrid . AddNearest (mstCandidate−>pt1) ;
delete mstCandidate ;

}
c l o c k t t imeDi f f = c l o ck () − startTime ;
f p r i n t f (s tde r r , ”Tree c on s t r u c t i o n i s complete in %f seconds .\n\n” , (

f loat) (t imeDi f f /1000 .0)) ;
f p r i n t f (s tde r r , ” Cleaning up memory . . . ”) ;
inMSTpts−>de l () ;
nonMSTpts−>de l () ;
inMST . c l e a r () ;

}
// Perform a n a l y s e s on the completed MST b r a n c h l i s t
void MSTcalc : : AnalyzeMST ()
{

i f (p t l i s tD imens i on s == point ()) // d e f a u l t p t l i s t D i m e n s i o n s v a l u e
i n d i c a t e s the dimensions have not been c a l c u l a t e d

pt l i s tD imens i on s = branches−>maxDimensions () ;
s t a r t i n g P o i n t s = branches−>countPts () ;
bool extendedInfo = fa l se ;
i f (s t a r t i n g P o i n t s > 999)

extendedInfo = true ;
i f (extendedIn fo) f p r i n t f (stdout , ”\nFinding neighbor po in t s . . . ”) ;
FindNeighborPoints () ;
i f (extendedIn fo) f p r i n t f (stdout , ”\nExamining po int types . . . ”) ;
GetTypes () ;
i f (extendedInfo) f p r i n t f (stdout , ”\ nCalcu la t ing segment l eng th s . . . ”) ;
AnalyzeLengths () ;
i f (extendedInfo) f p r i n t f (stdout , ”\ nCalcu la t ing segment angle ,

f requency , and junc t i on data . . . ”) ;
AnalyzeAngles () ;
f p r i n t f (stdout , ”\nMST s t a t i s t i c s output to :\n%s \n” , s t a t F i l e) ;

}
// Populate ne ig hborP o in t s map from branches b r a n c h l i s t
void MSTcalc : : FindNeighborPoints ()
{

ne ighborPo ints . c l e a r () ;
b r a n c h l i s t ∗ currentBr = branches ;
p o i n t l i s t ∗ currentPt = branches−>s t a r t ;
while (currentBr != NULL)
{

currentPt = currentBr−>s t a r t ;
while (currentPt−>next != NULL)
{

ne ighborPo ints [∗ currentPt] . push back (∗ currentPt−>next) ; // add next
p o i n t to curren t p o i n t n e i g h b o r s

185

ne ighborPo ints [∗ currentPt−>next] . push back (∗ currentPt) ; // add
curren t p o i n t to next p o i n t n e i g h b o r s

currentPt = currentPt−>next ;
}
currentBr = currentBr−>next ;

}
}
// F i l l s the v e c t o r pointTypes wi th the d i f f e r e n t t y p e s o f p o i n t s t h a t are

in the MST
void MSTcalc : : GetTypes ()
{

pointTypes . c l e a r () ;
multiTypes = fa l se ;
map<int , bool> pointTypeMap ;
for (map<point , vector<point >>:: c o n s t i t e r a t o r i t = ne ighborPo ints . begin

() ; i t != ne ighborPo ints . end () ; ++i t)
pointTypeMap [i t−> f i r s t . type] = true ;

for (map<int , bool> : : c o n s t i t e r a t o r i t = pointTypeMap . begin () ; i t !=
pointTypeMap . end () ; ++i t)

pointTypes . push back (i t−> f i r s t) ;
i f (pointTypes . s i z e () > 1)

multiTypes = true ;
}
// Analyze l e n g t h data and append standard d e v i a t i o n and mean data to

s t a t F i l e
void MSTcalc : : AnalyzeLengths ()
{

double∗ mstLengths = new double [s t a r t i ngPo in t s −1] ;
map<int , vector<double>> mstLengthsAllMap ;
map<pair<int , int>, vector<double>> mstLengthsMap ; // a l l o w s

s e g r e g a t i o n o f segment l e n g t h s by n e i g h b o r i n g p o i n t t y p e s
double currentLength = 0 ;
int numlengths = 0 ;
b r a n c h l i s t ∗ curbranch = branches ;
p o i n t l i s t ∗ cur rent ;
while (curbranch != NULL) // Create array o f l e n g t h s
{

cur rent = curbranch−>s t a r t ;
while (current−>next != NULL)
{

currentLength = current−>DistanceFrom (current−>next) ;
mstLengths [numlengths] = currentLength ;
i f (multiTypes)
{

int smallType = min (current−>type , current−>next−>type) ;
int bigType = max(current−>type , current−>next−>type) ;
mstLengthsMap [make pair (smallType , bigType)] . push back (

currentLength) ;
mstLengthsAllMap [current−>type] . push back (currentLength) ;
mstLengthsAllMap [current−>next−>type] . push back (currentLength) ;

}
numlengths++;
cur rent = current−>next ;

186

}
curbranch = curbranch−>next ;

}
double mean = CalcMean (mstLengths , numlengths) ;
double sigma = CalcStdev (mstLengths , mean , numlengths) ;
delete [] mstLengths ;
double s i z e , root ;
char s i z e S t r i n g [BUFFER SIZE] ;
i f (p t l i s tD imens i on s . z > 0)
{

s i z e = (pt l i s tD imens i on s . x+mean) ∗(p t l i s tD imens i on s . y+mean) ∗(
p t l i s tD imens i on s . z+mean) ;

// s i z e = p t l i s t D i m e n s i o n s . x ∗ p t l i s t D i m e n s i o n s . y ∗ p t l i s t D i m e n s i o n s . z ;
root = 1 . 0 / 3 . 0 ;
s t r c p y s (s i z e S t r i n g , BUFFER SIZE , ”Volume : ”) ;

}
else
{

s i z e = (pt l i s tD imens i on s . x+mean) ∗(p t l i s tD imens i on s . y+mean) ; // NOTE:
Seeing what i t does to not i n c l u d e the spac ing parameter in s i z e

// s i z e = p t l i s t D i m e n s i o n s . x ∗ p t l i s t D i m e n s i o n s . y ;
root = 0 . 5 ;
s t r c p y s (s i z e S t r i n g , BUFFER SIZE , ”Area : ”) ;

}
double norm = pow(s i z e / s t a r t i ngPo in t s , root) ;
normLength = norm ;
// Store l e n g t h by p o i n t type data to memory f o r l a t e r f i l e output
s t r i n g sampleNameStr = s t r i n g (sampleName) ;
mnStdOnePtTypeMap [sampleNameStr] ;
map<s t r i ng , map<int , MeanAndStdDev>>:: i t e r a t o r mnStdAllIT =

mnStdOnePtTypeMap . f i n d (sampleNameStr) ;
mnStdTwoPtTypeMap [sampleNameStr] ;
map<s t r i ng , map<pair<int , int>, MeanAndStdDev>>:: i t e r a t o r mnStdIT =

mnStdTwoPtTypeMap . f i n d (sampleNameStr) ;
i f (multiTypes) // C a l c u l a t e mean and standard d e v i a t i o n o f l e n g t h s and

s t o r e by p o i n t type , i f t h e r e are d i f f e r e n t t y p e s
{

double tempMean , tempStd ;
for (map<int , vector<double>>:: c o n s t i t e r a t o r i t = mstLengthsAllMap .

begin () ; i t != mstLengthsAllMap . end () ; ++i t)
{

tempMean = CalcMean(& i t−>second [0] , i t−>second . s i z e ()) ;
tempStd = CalcStdev(& i t−>second [0] , tempMean , i t−>second . s i z e ()) ;
mnStdAllIT−>second [i t−> f i r s t] = MeanAndStdDev(tempMean/normLength ,

tempStd/normLength) ;
}
for (map<pair<int , int>, vector<double>>:: c o n s t i t e r a t o r i t =

mstLengthsMap . begin () ; i t != mstLengthsMap . end () ; ++i t)
{

tempMean = CalcMean(& i t−>second [0] , i t−>second . s i z e ()) ;
tempStd = CalcStdev(& i t−>second [0] , tempMean , i t−>second . s i z e ()) ;
mnStdIT−>second [i t−> f i r s t] = MeanAndStdDev(tempMean/normLength ,

tempStd/normLength) ;

187

}
}
FILE∗ ofp ;
i f (f open s (&ofp , s t a t F i l e , ”a”) != 0)
{

p r i n t f (”\nCannot open s t a t i s t i c s output f i l e <%s>.\n” , s t a t F i l e) ;
return ;

}
f p r i n t f (ofp , ”\n%s \ t \ t \ t \ t%f \n\n” , s i z e S t r i n g , s i z e) ; // Pr in t s Volume or

Area and the corresponding s i z e
f p r i n t f (ofp , ” (Not normal ized) Segment l ength s t a t i s t i c s :\n\ tStandard

dev i a t i on :\ t%f \n\tMean :\ t \ t \ t%f \n\n” , sigma/normLength , mean/
normLength) ;

i f (multiTypes)
{ // Print mean and s t d dev f o r a l l point−p o i n t t y p e s

for (map<int , MeanAndStdDev> : : c o n s t i t e r a t o r i t = mnStdAllIT−>second .
begin () ; i t != mnStdAllIT−>second . end () ; ++i t)

f p r i n t f (ofp , ” (Normalized) Type %d :\ tMean :\ t%f \ tStd Dev :\ t%f \n” , i t−>
f i r s t , i t−>second . mean/norm , i t−>second . stdDev) ;

for (map<pair<int , int>, MeanAndStdDev> : : c o n s t i t e r a t o r i t = mnStdIT−>
second . begin () ; i t != mnStdIT−>second . end () ; ++i t)

f p r i n t f (ofp , ” (Normalized) Type %d−%d :\ tMean :\ t%f \ tStd Dev :\ t%f \n” ,
i t−> f i r s t . f i r s t , i t−> f i r s t . second , i t−>second . mean , i t−>second .
stdDev) ;

}
f p r i n t f (ofp , ”\ tNormal i zat ion l ength :\ t%f \n\n” , norm) ;
f p r i n t f (ofp , ”\tNorm−Standard dev :\ t%f \n” , sigma) ;
f p r i n t f (ofp , ”\tNorm−mean :\ t \ t%f \n\n” , mean) ;
f c l o s e (ofp) ;
i f (mul t iAna lys i s) // Need to append data to o v e r a l l s t a t i s t i c s f i l e
{

i f (f open s (&ofp , a n a l y s i s F i l e , ”a”) != 0)
{

p r i n t f (”\nCannot open s t a t i s t i c s output f i l e <%s>.\n” , a n a l y s i s F i l e)
;

return ;
}
f p r i n t f (ofp , ”\n%s \ t%f \ t%f \ t%f \ t%f ” , sampleName , s i z e , norm , sigma/

normLength , mean/normLength) ;
f c l o s e (ofp) ;

}
}
// Analyze ang l e data and append standard d e v i a t i o n and mean data to

s t a t F i l e
void MSTcalc : : AnalyzeAngles ()
{

vector<double> ang l e s ;
vector<double> junct ionTypes ;
vector<pair<int , int>> segmentTypes ;
map<double , vector<double>> junctLengthsMap ;
map<pair<int , int>, vector<double>> segLengthsMap ;
ang l e s . r e s e r v e (s t a r t i n g P o i n t s ∗2) ;
junct ionTypes . r e s e r v e (s t a r t i n g P o i n t s) ;

188

segmentTypes . r e s e r v e (s t a r t i n g P o i n t s) ;
double pi = 3.1415926535897932384;
int counter = 0 ;
s t r i n g sampleNameStr = s t r i n g (sampleName) ;
mnStdPtTypeAngMap [sampleNameStr] ;
map<s t r i ng , map<int , MeanAndStdDev>>:: i t e r a t o r mnStdAngIT =

mnStdPtTypeAngMap . f i n d (sampleNameStr) ;
map<int , vector<double>> mstAnglesMap ; // s t o r e a n g l e s / j u n c t i o n s /

segments s e p a r a t e l y by p o i n t type
map<int , vector<double>> jTypeByPt ;
map<pair<int , int>, vector<pair<int , int>>> sTypeByPt ; // s t o r e 12 ’ s ,

23 ’ s s e p a r a t e l y by AA’ s , BB’ s . . .
map<pair<int , int>, map<pair<int , int>, vector<double>>> sTypeLenByPt ;

// map<ptType , map<segType , vec tor<l e n g t h s>>>
map<int , int> numPtTypeJunct ; // num A’ s , B ’ s , . . .
map<pair<int , int>, int> numPtTypeSeg ; // num AA’ s , AB’ s , BB’ s , . . .
map<point , bool> pointAnalyzed ;
for (map<point , vector<point >>:: i t e r a t o r i t = ne ighborPo ints . begin () ; i t

!= ne ighborPoints . end () ; i t ++)
{ // loop through a l l p o i n t s in ne ig hborP o in t s

int numNeighbors = i t−>second . s i z e () ;
int numNeighborsLess = numNeighbors − 1 ;
junct ionTypes . push back (numNeighbors) ;
map<int , vector<double>>:: i t e r a t o r angleMapIT = mstAnglesMap . f i n d (i t−>

f i r s t . type) ;
i f (multiTypes)
{

jTypeByPt [i t−> f i r s t . type] . push back (numNeighbors) ;
numPtTypeJunct [i t−> f i r s t . type]++;
i f (angleMapIT == mstAnglesMap . end ())
{

mstAnglesMap [i t−> f i r s t . type] ;
angleMapIT = mstAnglesMap . f i n d (i t−> f i r s t . type) ;

}
}
pointAnalyzed [i t−> f i r s t] = true ;
for (int i = 0 ; i < numNeighbors ; i++)
{

bool newSeg = fa l se ;
i f (pointAnalyzed . f i n d (i t−>second [i]) == pointAnalyzed . end ())

newSeg = true ; // Avoid doub le count ing segments
int smal lJunct , bigJunct , tempJunct , smallType , bigType ;
pair<int , int> junctPair , typePair ;
double d i s t ;
tempJunct = ne ighborPo ints [i t−>second [i]] . s i z e () ;
smal lJunct = min (tempJunct , numNeighbors) ; // Want the s m a l l e r

j u n c t i o n number to be f i r s t
bigJunct = max(tempJunct , numNeighbors) ;
i f (multiTypes)
{

smallType = min (i t−> f i r s t . type , i t−>second [i] . type) ;
bigType = max(i t−> f i r s t . type , i t−>second [i] . type) ;
typePair = make pair (smallType , bigType) ;

189

i f (newSeg)
numPtTypeSeg [typePair]++;

}
d i s t = i t−> f i r s t . DistanceFrom(& i t−>second [i]) ;
junctLengthsMap [numNeighbors] . push back (d i s t) ;
i f (bigJunct < 5) // Limit the segment t y p e s up to J4 , so on ly 12 ,

13 , 14 , 22 , 23 , 24 , 33 , 34 , 44 = 9 segments
{

i f (newSeg)
{

j unc tPa i r = pair<int , int>(smallJunct , b igJunct) ;
segmentTypes . push back (junc tPa i r) ;
segLengthsMap [junc tPa i r] . push back (d i s t) ;
i f (multiTypes && bigJunct < 4) // Limit segment t y p e s s t o r e d by

atom type to J3 , so on ly 5 segments
{

sTypeByPt [typePair] . push back (junc tPa i r) ;
sTypeLenByPt [typePair] [j unc tPa i r] . push back (d i s t) ;

}
}

}
for (int j = i +1; j < numNeighbors ; j++)
{

ang l e s . push back ((i t−> f i r s t . AngleBetween (i t−>second [i] , i t−>second
[j])) ∗180/ p i) ; // adds ang le to vec tor , c o n v e r t s to deg rees

i f (multiTypes)
angleMapIT−>second . push back (ang l e s . back ()) ;

}
}

}
double meanAng = CalcMean(& ang l e s [0] , ang l e s . s i z e ()) ;
double stdevAng = CalcStdev(& ang l e s [0] , meanAng , ang l e s . s i z e ()) ;
double meanJunct = CalcMean(&junct ionTypes [0] , junct ionTypes . s i z e ()) ;
double stdevJunct = CalcStdev(&junct ionTypes [0] , meanJunct ,

junct ionTypes . s i z e ()) ;
map<double , MeanAndStdDev> jMnStdTemp ;
for (map<double , vector<double>>:: c o n s t i t e r a t o r i t = junctLengthsMap .

begin () ; i t != junctLengthsMap . end () ; i t ++)
{

double mean = CalcMean(& i t−>second [0] , i t−>second . s i z e ()) ;
double stdDev = CalcStdev(& i t−>second [0] , mean , i t−>second . s i z e ()) ;
jMnStdTemp [i t−> f i r s t] = MeanAndStdDev(mean/normLength , stdDev/

normLength) ;
}
junctMnStdMap [sampleNameStr] = jMnStdTemp ;

map<pair<int , int>, MeanAndStdDev> sMnStdTemp ;
for (map<pair<int , int>, vector<double>>:: c o n s t i t e r a t o r i t =

segLengthsMap . begin () ; i t != segLengthsMap . end () ; i t ++)
{

double mean = CalcMean(& i t−>second [0] , i t−>second . s i z e ()) ;
double stdDev = CalcStdev(& i t−>second [0] , mean , i t−>second . s i z e ()) ;

190

sMnStdTemp [i t−> f i r s t] = MeanAndStdDev(mean/normLength , stdDev/
normLength) ;

}
segMnStdMap [sampleNameStr] = sMnStdTemp ;
map<double , double> ∗jMap = (CalcFreq (junct ionTypes)) ;
map<pair<int , int>, double> ∗sMap = (CalcFreq (segmentTypes)) ;
junctFreqMap [sampleNameStr] = ∗jMap ;
segFreqMap [sampleNameStr] = ∗sMap ;
i f (multiTypes)
{

// Point type j u n c t i o n and segment f r a c t i o n (#A’ s , B ’ s , then #AA’ s , #
AB’ s , #BB’ s)

for (map<int , int > : : c o n s t i t e r a t o r i t = numPtTypeJunct . begin () ; i t !=
numPtTypeJunct . end () ; ++i t)

junctPtTypeFraction [sampleNameStr] [i t−> f i r s t] = i t−>second / (double
) s t a r t i n g P o i n t s ;

segPtTypeFraction [sampleNameStr] ;
int numSegs = s t a r t i n g P o i n t s − 1 ;
map<s t r i ng , map<pair<int , int>, double>>:: i t e r a t o r segPtTypeIT =

segPtTypeFraction . f i n d (sampleNameStr) ;
for (map<pair<int , int>, int > : : c o n s t i t e r a t o r i t = numPtTypeSeg . begin

() ; i t != numPtTypeSeg . end () ; ++i t)
segPtTypeIT−>second [i t−> f i r s t] = i t−>second / (double) numSegs ;

// Angle mean and s t d by one p o i n t type
for (map<int , vector<double>>:: c o n s t i t e r a t o r i t = mstAnglesMap . begin

() ; i t != mstAnglesMap . end () ; ++i t)
{

i f (i t−>second . s i z e () > 0)
{

double tempMean = CalcMean(& i t−>second [0] , i t−>second . s i z e ()) ;
double tempStd = CalcStdev(& i t−>second [0] , tempMean , i t−>second .

s i z e ()) ;
mnStdAngIT−>second [i t−> f i r s t] = MeanAndStdDev(tempMean , tempStd) ;

}
}

}
// Junct ion f r e q and mean and s t d by one p o i n t type . This i s not

j u n c t i o n l en g t h , but j u s t the j u n c t i o n number a n a l y s i s .
junctMnStdOnePtTypeMap [sampleNameStr] ;
map<s t r i ng , map<int , MeanAndStdDev>>:: i t e r a t o r jMnStdPtTypeIT =

junctMnStdOnePtTypeMap . f i n d (sampleNameStr) ;
junctFreqOnePtTypeMap [sampleNameStr] ;
map<double , double> ∗jMap2 ;
map<s t r i ng , map<int , map<double , double>>>:: i t e r a t o r jFreqPtTypeIT =

junctFreqOnePtTypeMap . f i n d (sampleNameStr) ;
i f (multiTypes)
{

for (map<int , vector<double>>:: c o n s t i t e r a t o r i t = jTypeByPt . begin () ;
i t != jTypeByPt . end () ; ++i t)

{
double tempMean = CalcMean(& i t−>second [0] , i t−>second . s i z e ()) ;
double tempStd = CalcStdev(& i t−>second [0] , tempMean , i t−>second . s i z e

()) ;

191

jMnStdPtTypeIT−>second [i t−> f i r s t] = MeanAndStdDev(tempMean , tempStd)
;

jMap2 = CalcFreq (i t−>second) ;
jFreqPtTypeIT−>second [i t−> f i r s t] = ∗jMap2 ;

}
}
// Segment f r e q by type
segFreqTwoPtTypeMap [sampleNameStr] ;
map<s t r i ng , map<pair<int , int>, map<pair<int , int>, double>>>:: i t e r a t o r

sFreqPtTypeIT = segFreqTwoPtTypeMap . f i n d (sampleNameStr) ;
segMnStdTwoPtTypeMap [sampleNameStr] ;
map<s t r i ng , map<pair<int , int>, map<pair<int , int>, MeanAndStdDev>>>::

i t e r a t o r sMnStdPtTypeIT = segMnStdTwoPtTypeMap . f i n d (sampleNameStr) ;
map<pair<int , int>, double> ∗sMap2 ;
i f (multiTypes)
{

for (map<pair<int , int>, vector<pair<int , int>>>:: c o n s t i t e r a t o r i t =
sTypeByPt . begin () ; i t != sTypeByPt . end () ; ++i t)

{
sMap2 = CalcFreq (i t−>second) ;
sFreqPtTypeIT−>second [i t−> f i r s t] = ∗sMap2 ;

}
for (map<pair<int , int>, map<pair<int , int>, vector<double>>>::

c o n s t i t e r a t o r i t = sTypeLenByPt . begin () ; i t != sTypeLenByPt . end () ;
++i t)

{ // i t e r a t e through every p o i n t type
sMnStdPtTypeIT−>second [i t−> f i r s t] ;
map<pair<int , int>, map<pair<int , int>, MeanAndStdDev>>:: i t e r a t o r

sMnStdIT 2 = sMnStdPtTypeIT−>second . f i n d (i t−> f i r s t) ; // f i n d pt
type p a i r i t e r a t o r

for (map<pair<int , int>, vector<double>>:: c o n s t i t e r a t o r i t S e g = i t
−>second . begin () ; i t S e g != i t−>second . end () ; ++i t S e g)

{ // i t e r a t e through every segment type
double tempMean = CalcMean(&itSeg−>second [0] , i tSeg−>second . s i z e ()

) ;
double tempStd = CalcStdev(&itSeg−>second [0] , tempMean , i tSeg−>

second . s i z e ()) ;
sMnStdIT 2−>second [i tSeg−> f i r s t] = MeanAndStdDev(tempMean/

normLength , tempStd/normLength) ;
}

}
}
FILE∗ ofp ;
i f (f open s (&ofp , s t a t F i l e , ”a”) != 0)
{

p r i n t f (”\nCannot open s t a t i s t i c s output f i l e <%s>.\n” , s t a t F i l e) ;
return ;

}
f p r i n t f (ofp , ”\nSegment junc t i on ang le s t a t i s t i c s (degree s) : ”) ;
f p r i n t f (ofp , ”\n\ tStandard dev i a t i on :\ t%f ” , stdevAng) ;
f p r i n t f (ofp , ”\n\tMean :\ t \ t \ t%f \n\n” , meanAng) ;
f p r i n t f (ofp , ”\nSegment junc t i on number s t a t i s t i c s : ”) ;
f p r i n t f (ofp , ”\n\ tStandard dev i a t i on :\ t%f ” , stdevJunct) ;

192

f p r i n t f (ofp , ”\n\tMean :\ t \ t \ t%f \n\n” , meanJunct) ;
f p r i n t f (ofp , ” Junct Type\ tFreq\tMean Len\ tStdDev Len\n”) ;
for (map<double , double> : : c o n s t i t e r a t o r i t = jMap−>begin () ; i t != jMap
−>end () ; i t ++)

f p r i n t f (ofp , ”%d\ t%f \ t%f \ t%f \n” , (int) (i t−> f i r s t + 0 . 5) , i t−>second ,
junctMnStdMap [sampleNameStr] [i t−> f i r s t] . mean ,

junctMnStdMap [sampleNameStr] [i t−> f i r s t] . stdDev) ;
f p r i n t f (ofp , ”\nSeg Type\ tFreq\tMean Len\ tStdDev Len\n”) ;
for (map<pair<int , int>, double> : : c o n s t i t e r a t o r i t = sMap−>begin () ; i t

!= sMap−>end () ; i t ++)
f p r i n t f (ofp , ”%d %d\ t%f \ t%f \ t%f \n” , i t−> f i r s t . f i r s t , i t−> f i r s t . second ,

i t−>second , segMnStdMap [sampleNameStr] [i t−> f i r s t] . mean ,
segMnStdMap [sampleNameStr] [i t−> f i r s t] . stdDev) ;

f c l o s e (ofp) ;
i f (mul t iAna lys i s) // Need to append data to o v e r a l l s t a t i s t i c s f i l e
{

i f (f open s (&ofp , a n a l y s i s F i l e , ”a”) != 0)
{

p r i n t f (”\nCannot open s t a t i s t i c s output f i l e <%s>.\n” , a n a l y s i s F i l e)
;

return ;
}
f p r i n t f (ofp , ”\ t%f \ t%f \ t%f \ t%f ” , stdevAng , meanAng , stdevJunct ,

meanJunct) ;
f c l o s e (ofp) ;

}
delete jMap ;
delete sMap ;
i f (multiTypes)
{

delete jMap2 ;
delete sMap2 ;

}
}
// Outputs a l l g l o b a l a n a l y s i s r e s u l t s (Such as segment and j u n c t i o n

f requency)
void MSTcalc : : OutputResults ()
{

FILE ∗ ofp ;
i f (f open s (&ofp , ana lFreqFi l e , ”w”) != 0)
{

p r i n t f (”\nCannot open s t a t i s t i c s output f i l e <%s>.\n” , ana lFreqF i l e) ;
return ;

}
for (map<s t r i ng , map<double , double>>:: c o n s t i t e r a t o r i t = junctFreqMap .

begin () ; i t != junctFreqMap . end () ; i t ++)
for (map<double , double> : : c o n s t i t e r a t o r i t 2 = i t−>second . begin () ; i t 2

!= i t−>second . end () ; i t 2++)
{ // s t o r e a l l unique j u n c t i o n t y p e s from junctFreqMap i n t o junctTypes

junctTypes [i t2−> f i r s t] = true ;
}

for (map<s t r i ng , map<pair<int , int>, double>>:: c o n s t i t e r a t o r i t =
segFreqMap . begin () ; i t != segFreqMap . end () ; i t ++)

193

for (map<pair<int , int>, double> : : c o n s t i t e r a t o r i t 2 = i t−>second .
begin () ; i t 2 != i t−>second . end () ; i t 2++)

{ // s t o r e a l l unique segment t y p e s from segFreqMap i n t o segmentTypes
segTypes [i t2−> f i r s t] = true ;

}
vector<double> junctTypeVect ; // t h i s i s not implemented in the f i r s t

s e t o f s t a t s
for (map<double , bool> : : c o n s t i t e r a t o r i t = junctTypes . begin () ; i t !=

junctTypes . end () ; i t ++)
junctTypeVect . push back (i t−> f i r s t) ;

// JUNCTION TYPE
f p r i n t f (ofp , ”\nJunction type f r e q u e n c i e s : Junct ion type number i s

determined from number o f ne ighbor ing po in t s in the MST) \n”) ;
f p r i n t f (ofp , ” F i l e \ t ”) ;
// p r i n t j u n c t i o n type headings
for (map<double , bool> : : c o n s t i t e r a t o r i t = junctTypes . begin () ; i t !=

junctTypes . end () ; i t ++)
f p r i n t f (ofp , ”J%d Freq\ t ” , (int) (i t−> f i r s t + 0 . 5)) ; // Junct ion type

f r e q u e n c i e s
for (map<double , bool> : : c o n s t i t e r a t o r i t = junctTypes . begin () ; i t !=

junctTypes . end () ; i t ++)
f p r i n t f (ofp , ”J%d Len Std\ t ” , (int) (i t−> f i r s t + 0 . 5)) ; // Junct ion

type s t d dev
for (map<double , bool> : : c o n s t i t e r a t o r i t = junctTypes . begin () ; i t !=

junctTypes . end () ; i t ++)
f p r i n t f (ofp , ”J%d Len Mean\ t ” , (int) (i t−> f i r s t + 0 . 5)) ; // Junct ion

type mean
// p r i n t j u n c t i o n type data f o r a l l f i l e s
for (map<s t r i ng , map<double , double>>:: c o n s t i t e r a t o r j F i l e I T =

junctFreqMap . begin () ; j F i l e I T != junctFreqMap . end () ; j F i l e I T++)
{ // loop through a l l f i l e name s t a t i s t i c rows

f p r i n t f (ofp , ”\n%s \ t ” , jF i l e IT−> f i r s t . c s t r ()) ;
for (map<double , bool> : : c o n s t i t e r a t o r jTypeIT = junctTypes . begin () ;

jTypeIT != junctTypes . end () ; jTypeIT++)
{ // loop through a l l j u n c t i o n t y p e s and output f requency

map<double , double> : : c o n s t i t e r a t o r jFreqFound = jF i l e IT−>second .
f i n d (jTypeIT−> f i r s t) ;

i f (jFreqFound == jFi l e IT−>second . end ())
f p r i n t f (ofp , ”0\ t ”) ; // item not found , output 0

else
f p r i n t f (ofp , ”%f \ t ” , jFreqFound−>second) ; // item found , output

f requency
}
// J# l e n g t h s t d dev
for (map<double , bool> : : c o n s t i t e r a t o r jTypeIT = junctTypes . begin () ;

jTypeIT != junctTypes . end () ; jTypeIT++)
{ // loop through a l l j u n c t i o n t y p e s and output s t d dev and mean

map<double , MeanAndStdDev> : : c o n s t i t e r a t o r jMnStdFound =
junctMnStdMap [jF i l e IT−> f i r s t] . f i n d (jTypeIT−> f i r s t) ;

i f (jMnStdFound == junctMnStdMap [jF i l e IT−> f i r s t] . end ())
f p r i n t f (ofp , ”0\ t ”) ; // item not found , output 0

else

194

f p r i n t f (ofp , ”%f \ t ” , jMnStdFound−>second . stdDev) ; // item found ,
output s t d dev

}
// J# l e n g t h mean
for (map<double , bool> : : c o n s t i t e r a t o r jTypeIT = junctTypes . begin () ;

jTypeIT != junctTypes . end () ; jTypeIT++)
{ // loop through a l l j u n c t i o n t y p e s and output s t d dev and mean

map<double , MeanAndStdDev> : : c o n s t i t e r a t o r jMnStdFound =
junctMnStdMap [jF i l e IT−> f i r s t] . f i n d (jTypeIT−> f i r s t) ;

i f (jMnStdFound == junctMnStdMap [jF i l e IT−> f i r s t] . end ())
f p r i n t f (ofp , ”0\ t ”) ; // item not found , output 0

else
f p r i n t f (ofp , ”%f \ t ” , jMnStdFound−>second . mean) ; // item found ,

output mean
}

}
f p r i n t f (ofp , ”\n”) ;
// SEGMENT TYPE
f p r i n t f (ofp , ”\n\nSegment type f r e q u e n c i e s : (Segment type i s determined

from junc t i on type at both ends o f segment) \n\n”) ;
f p r i n t f (ofp , ” F i l e \ t ”) ;
// p r i n t segment type headings
for (map<pair<int , int>, bool> : : c o n s t i t e r a t o r i t = segTypes . begin () ; i t

!= segTypes . end () ; i t ++)
f p r i n t f (ofp , ”S%d %d Freq\ t ” , i t−> f i r s t . f i r s t , i t−> f i r s t . second) ; //

segment type f requency
for (map<pair<int , int>, bool> : : c o n s t i t e r a t o r i t = segTypes . begin () ; i t

!= segTypes . end () ; i t ++)
f p r i n t f (ofp , ”S%d %d Len Std\ t ” , i t−> f i r s t . f i r s t , i t−> f i r s t . second) ;

// segment type s t d dev l e n g t h
for (map<pair<int , int>, bool> : : c o n s t i t e r a t o r i t = segTypes . begin () ; i t

!= segTypes . end () ; i t ++)
f p r i n t f (ofp , ”%d %d Len Mean\ t ” , i t−> f i r s t . f i r s t , i t−> f i r s t . second) ;

// segment type mean l e n g t h
// p r i n t segment type data f o r a l l f i l e names
for (map<s t r i ng , map<pair<int , int>, double>>:: c o n s t i t e r a t o r sF i l e IT =

segFreqMap . begin () ; sF i l e IT != segFreqMap . end () ; sF i l e IT++)
{ // loop through a l l f i l e name s t a t i s t i c rows

f p r i n t f (ofp , ”\n%s \ t ” , sFi l e IT−> f i r s t . c s t r ()) ;
for (map<pair<int , int>, bool> : : c o n s t i t e r a t o r sTypeIT = segTypes .

begin () ; sTypeIT != segTypes . end () ; sTypeIT++)
{ // loop through a l l segment t y p e s

map<pair<int , int>, double> : : c o n s t i t e r a t o r sFreqFound = sFi le IT−>
second . f i n d (sTypeIT−> f i r s t) ;

i f (sFreqFound == sFi le IT−>second . end ())
f p r i n t f (ofp , ”0\ t ”) ; // item not found , output 0

else
f p r i n t f (ofp , ”%f \ t ” , sFreqFound−>second) ; // item found , output

f requency
}
// Segment type l e n g t h s t d dev
for (map<pair<int , int>, bool> : : c o n s t i t e r a t o r sTypeIT = segTypes .

begin () ; sTypeIT != segTypes . end () ; sTypeIT++)

195

{ // loop through a l l j u n c t i o n t y p e s and output s t d dev and mean
map<pair<int , int>, MeanAndStdDev> : : c o n s t i t e r a t o r sMnStdFound =

segMnStdMap [sFi l e IT−> f i r s t] . f i n d (sTypeIT−> f i r s t) ;
i f (sMnStdFound == segMnStdMap [sFi l e IT−> f i r s t] . end ())

f p r i n t f (ofp , ”0\ t0 \ t ”) ; // item not found , output 0
else

f p r i n t f (ofp , ”%f \ t ” , sMnStdFound−>second . stdDev) ; // item found ,
output segment l e n g t h s t d dev

}
for (map<pair<int , int>, bool> : : c o n s t i t e r a t o r sTypeIT = segTypes .

begin () ; sTypeIT != segTypes . end () ; sTypeIT++)
{ // loop through a l l j u n c t i o n t y p e s and output s t d dev and mean

map<pair<int , int>, MeanAndStdDev> : : c o n s t i t e r a t o r sMnStdFound =
segMnStdMap [sFi l e IT−> f i r s t] . f i n d (sTypeIT−> f i r s t) ;

i f (sMnStdFound == segMnStdMap [sFi l e IT−> f i r s t] . end ())
f p r i n t f (ofp , ”0\ t0 \ t ”) ; // item not found , output 0

else
f p r i n t f (ofp , ”%f \ t ” , sMnStdFound−>second . mean) ; // item found ,

output segment l e n g t h mean
}

}
f p r i n t f (ofp , ”\n”) ;
f c l o s e (ofp) ;
i f (! mu l t iAna lys i s)

return ;
// −−
// SEPARATE BY POINT TYPE
i f (f open s (&ofp , analTypeFile , ”w”) != 0)
{

p r i n t f (”\nCannot open s t a t i s t i c s output f i l e <%s>.\n” , analTypeFi le) ;
return ;

}
// CREATE HEADING VECTORS
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Store a l l the d i f f e r e n t t y p e s o f p o i n t in ptTypes
for (map<s t r i ng , map<int , double>>:: c o n s t i t e r a t o r i t =

junctPtTypeFract ion . begin () ; i t != junctPtTypeFract ion . end () ; i t ++)
for (map<int , double> : : c o n s t i t e r a t o r i t 2 = i t−>second . begin () ; i t 2 !=

i t−>second . end () ; i t 2++)
{ // s t o r e a l l unique j u n c t i o n t y p e s from junctFreqMap i n t o junctTypes

ptTypes [i t2−> f i r s t] = true ;
}

vector<int> ptTypeVect ;
vector<pair<int , int>> ptPairTypeVect ;

// Store d i f f e r e n t t y p e s o f p o i n t p a i r s in ptPairTypes
for (map<int , bool> : : c o n s t i t e r a t o r i t = ptTypes . begin () ; i t != ptTypes .

end () ; ++i t)
ptTypeVect . push back (i t−> f i r s t) ;

for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; ++i)
for (unsigned int j = i ; j < ptTypeVect . s i z e () ; ++j)

ptPairTypes [make pair (ptTypeVect [i] , ptTypeVect [j])] = true ;

196

for (map<pair<int , int>, bool> : : c o n s t i t e r a t o r i t = ptPairTypes . begin () ;
i t != ptPairTypes . end () ; ++i t)

ptPairTypeVect . push back (i t−> f i r s t) ;
// PRINT HEADINGS
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// POINT TYPE AND PAIR FRACTIONS
f p r i n t f (ofp , ”\nPoint type f r e q u e n c i e s :\n”) ;
f p r i n t f (ofp , ” F i l e \ t ”) ;
// p r i n t headings f o r p o i n t type f r e q u e n c i e s and mst l e n g t h and ang l e

data
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; ++i) // Point type

f requency heading
f p r i n t f (ofp , ”T%d Freq\ t ” , ptTypeVect [i]) ;

for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; ++i) // Point p a i r
type f requency heading

f p r i n t f (ofp , ”T%d %d Freq\ t ” , ptPairTypeVect [i] . f i r s t , ptPairTypeVect [
i] . second) ;

for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; ++i) // Point type
l e n g t h s t d dev

f p r i n t f (ofp , ”T%d Len Std\ t ” , ptTypeVect [i]) ;
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; ++i) // Point type

l e n g t h mean
f p r i n t f (ofp , ”T%d Len Mean\ t ” , ptTypeVect [i]) ;

for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; ++i) // Point p a i r
type l e n g t h s t d dev

f p r i n t f (ofp , ”T%d %d Len Std\ t ” , ptPairTypeVect [i] . f i r s t ,
ptPairTypeVect [i] . second) ;

for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; ++i) // Point p a i r
type l e n g t h mean heading

f p r i n t f (ofp , ”T%d %d Len Mean\ t ” , ptPairTypeVect [i] . f i r s t ,
ptPairTypeVect [i] . second) ;

for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; ++i) // Point type
ang le s t d

f p r i n t f (ofp , ”T%d Angle Std\ t ” , ptTypeVect [i]) ;
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; ++i) // Point type

ang le mean
f p r i n t f (ofp , ”T%d Angle Mean\ t ” , ptTypeVect [i]) ;

// PRINT DATA
// −−−−−−−−−−−−−−−−−−−−−−−−−−
// POINT TYPE AND PAIR FRACTIONS
for (map<s t r i ng , map<int , double>>:: c o n s t i t e r a t o r f i l e I T =

junctPtTypeFract ion . begin () ; f i l e I T != junctPtTypeFract ion . end () ; ++
f i l e I T)

{ // loop through a l l f i l e s
f p r i n t f (ofp , ”\n%s \ t ” , f i l e I T−> f i r s t . c s t r ()) ;
// Atom type f requency : T0 Freq
map<s t r i ng , map<int , double>>:: i t e r a t o r jTfracIT = junctPtTypeFract ion

. f i n d (f i l e I T−> f i r s t) ;
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<int , double> : : i t e r a t o r foundIT = jTfracIT−>second . f i n d (
ptTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != jTfracIT−>second . end ())

197

f p r i n t f (ofp , ”%f \ t ” , foundIT−>second) ; // Found i t
else

f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0
}
// Atom−Atom type f requency : T0 1 Freq
map<s t r i ng , map<pair<int , int>, double>>:: i t e r a t o r sTfracIT =

segPtTypeFraction . f i n d (f i l e I T−> f i r s t) ;
for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t p a i r t y p e s

map<pair<int , int>, double> : : i t e r a t o r foundIT = sTfracIT−>second .
f i n d (ptPairTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != sTfracIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT−>second) ; // Found i t

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0

}
// Atom type l e n g t h s t d dev : T0 Len Std
map<s t r i ng , map<int , MeanAndStdDev>>:: i t e r a t o r mSOneIT =

mnStdOnePtTypeMap . f i n d (f i l e I T−> f i r s t) ;
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<int , MeanAndStdDev> : : i t e r a t o r foundIT = mSOneIT−>second . f i n d (
ptTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != mSOneIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT−>second . stdDev) ; // Found i t

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0

}
// Atom type l e n g t h mean : T0 Len Mean
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<int , MeanAndStdDev> : : i t e r a t o r foundIT = mSOneIT−>second . f i n d (
ptTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != mSOneIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT−>second . mean) ; // Found i t

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0

}
// Atom−Atom type l e n g t h s t d dev : T0 1 Len Std
map<s t r i ng , map<pair<int , int>, MeanAndStdDev>>:: i t e r a t o r mSTwoIT =

mnStdTwoPtTypeMap . f i n d (f i l e I T−> f i r s t) ;
for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<pair<int , int>, MeanAndStdDev> : : i t e r a t o r foundIT = mSTwoIT−>
second . f i n d (ptPairTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != mSTwoIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT−>second . stdDev) ; // Found i t

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0

}
// Atom type l e n g t h mean : T0 1 Len Mean
for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

198

map<pair<int , int>, MeanAndStdDev> : : i t e r a t o r foundIT = mSTwoIT−>
second . f i n d (ptPairTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != mSTwoIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT−>second . mean) ; // Found i t

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0

}
// Angle s t d dev : T0 Angle Std
map<s t r i ng , map<int , MeanAndStdDev>>:: i t e r a t o r mSAngIT =

mnStdPtTypeAngMap . f i n d (f i l e I T−> f i r s t) ;
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<int , MeanAndStdDev> : : i t e r a t o r foundIT = mSAngIT−>second . f i n d (
ptTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != mSAngIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT−>second . stdDev) ; // Found i t

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0

}
// Angle mean : T0 Angle Mean
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<int , MeanAndStdDev> : : i t e r a t o r foundIT = mSAngIT−>second . f i n d (
ptTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != mSAngIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT−>second . mean) ; // Found i t

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0

}
}
// POINT TYPE JUNCTION−SEGMENT ANALYSIS
f p r i n t f (ofp , ”\n\nPoint type junc t i on a n a l y s i s :\n”) ;
f p r i n t f (ofp , ” F i l e \ t ”) ;
// p r i n t headings f o r j u n c t i o n and segment a n a l y s i s
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; ++i) // Point type

j u n c t i o n number s t d dev
f p r i n t f (ofp , ”J%d Std\ t ” , ptTypeVect [i]) ;

for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; ++i)
for (unsigned int j = 0 ; j < junctTypeVect . s i z e () ; ++j) // Point

type j u n c t i o n number f r e q
f p r i n t f (ofp , ”T%d J%d Freq\ t ” , ptTypeVect [i] , (int) (junctTypeVect [j]

+ 0 . 5)) ;
s t r i n g l im i t edSeg s [5] = {”1 2 ” , ”1 3 ” , ”2 2 ” , ”2 3 ” , ”3 3 ” } ;
pa ir<int , int> l im i t edSegPa i r s [5] = {make pair (1 , 2) , make pair (1 , 3) ,

make pair (2 , 2) , make pair (2 , 3) , make pair (3 , 3) } ;
for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; ++i)

for (int j = 0 ; j < 5 ; j++) // Segment f requency by p o i n t p a i r type
f p r i n t f (ofp , ”T%d %d S%s Freq\ t ” , ptPairTypeVect [i] . f i r s t ,

ptPairTypeVect [i] . second , l im i t edSeg s [j] . c s t r ()) ;
for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; ++i)

for (int j = 0 ; j < 5 ; j++) // Segment s t d by p o i n t p a i r type
f p r i n t f (ofp , ”T%d %d S%s Std\ t ” , ptPairTypeVect [i] . f i r s t ,

ptPairTypeVect [i] . second , l im i t edSeg s [j] . c s t r ()) ;

199

for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; ++i)
for (int j = 0 ; j < 5 ; j++) // Segment mean by p o i n t p a i r type

f p r i n t f (ofp , ”T%d %d S%s Mean\ t ” , ptPairTypeVect [i] . f i r s t ,
ptPairTypeVect [i] . second , l im i t edSeg s [j] . c s t r ()) ;

// POINT TYPE JUNCTION−SEGMENT DATA
// Mean j u n c t i o n number by type
for (map<s t r i ng , map<int , double>>:: c o n s t i t e r a t o r f i l e I T =

junctPtTypeFract ion . begin () ; f i l e I T != junctPtTypeFract ion . end () ; ++
f i l e I T)

{ // loop through a l l f i l e s
f p r i n t f (ofp , ”\n%s \ t ” , f i l e I T−> f i r s t . c s t r ()) ;
map<s t r i ng , map<int , MeanAndStdDev>>:: i t e r a t o r jmSOneIT =

junctMnStdOnePtTypeMap . f i n d (f i l e I T−> f i r s t) ;
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<int , MeanAndStdDev> : : i t e r a t o r foundIT = jmSOneIT−>second . f i n d (
ptTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != jmSOneIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT−>second . stdDev) ; // Found i t

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d i t , output 0

}
// Atom type then j u n c t i o n type : T0 J1
map<s t r i ng , map<int , map<double , double>>>:: i t e r a t o r jFOneIT =

junctFreqOnePtTypeMap . f i n d (f i l e I T−> f i r s t) ;
for (unsigned int i = 0 ; i < ptTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<int , map<double , double>>:: i t e r a t o r foundIT = jFOneIT−>second .
f i n d (ptTypeVect [i]) ; // search f o r p o i n t type

i f (foundIT != jFOneIT−>second . end ())
{

for (unsigned int j = 0 ; j < junctTypeVect . s i z e () ; ++j) // Found
type

{ // loop through a l l j u n c t i o n t y p e s
map<double , double> : : i t e r a t o r foundIT 2 = foundIT−>second . f i n d (

junctTypeVect [j]) ; // search f o r j u n c t i o n type
i f (foundIT 2 != foundIT−>second . end ())

f p r i n t f (ofp , ”%f \ t ” , foundIT 2−>second) ; // Found j u n c t i o n
else

f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d junct ion ,
output 0

}
}
else
{

for (unsigned int j = 0 ; j < junctTypeVect . s i z e () ; ++j)
{ // loop through a l l j u n c t i o n t y p e s

f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d type , output
0 f o r a l l j u n c t i o n s

}
}

}
// Atom−Atom type then segment type f requency : T0 0 S1 2 Freq

200

map<s t r i ng , map<pair<int , int>, map<pair<int , int>, double>>>::
i t e r a t o r sFTwoIT = segFreqTwoPtTypeMap . f i n d (f i l e I T−> f i r s t) ;

for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<pair<int , int>, map<pair<int , int>, double>>:: i t e r a t o r foundIT =
sFTwoIT−>second . f i n d (ptPairTypeVect [i]) ; // search f o r p o i n t

type
i f (foundIT != sFTwoIT−>second . end ())
{

for (unsigned int j = 0 ; j < 5 ; ++j) // Found type
{ // loop through l i m i t e d S e g segments

map<pair<int , int>, double> : : i t e r a t o r foundIT 2 = foundIT−>
second . f i n d (l im i t edSegPa i r s [j]) ; // search f o r segment
type

i f (foundIT 2 != foundIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT 2−>second) ; // Found segment

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d segment ,

output 0
}

}
else
{

for (unsigned int j = 0 ; j < 5 ; ++j)
{ // loop through a l l j u n c t i o n t y p e s

f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d segment ,
output 0 f o r a l l segments

}
}

}
// Atom−Atom type then segment type Std : T0 0 S1 2 Std
map<s t r i ng , map<pair<int , int>, map<pair<int , int>, MeanAndStdDev>>>::

i t e r a t o r smSTwoIT = segMnStdTwoPtTypeMap . f i n d (f i l e I T−> f i r s t) ;
for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<pair<int , int>, map<pair<int , int>, MeanAndStdDev>>:: i t e r a t o r
foundIT = smSTwoIT−>second . f i n d (ptPairTypeVect [i]) ; // search f o r

p o i n t type
i f (foundIT != smSTwoIT−>second . end ())
{

for (unsigned int j = 0 ; j < 5 ; ++j) // Found type
{ // loop through l i m i t e d S e g segments

map<pair<int , int>, MeanAndStdDev> : : i t e r a t o r foundIT 2 = foundIT
−>second . f i n d (l im i t edSegPa i r s [j]) ; // search f o r
segment type

i f (foundIT 2 != foundIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT 2−>second . stdDev) ; // Found

segment
else

f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d segment ,
output 0

}
}

201

else
{

for (unsigned int j = 0 ; j < 5 ; ++j)
{ // loop through a l l j u n c t i o n t y p e s

f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d segment ,
output 0 f o r a l l segments

}
}

}
// Atom−Atom type then segment type Mean : T0 0 S1 2 Mean
for (unsigned int i = 0 ; i < ptPairTypeVect . s i z e () ; i++)
{ // loop through a l l p o i n t t y p e s

map<pair<int , int>, map<pair<int , int>, MeanAndStdDev>>:: i t e r a t o r
foundIT = smSTwoIT−>second . f i n d (ptPairTypeVect [i]) ; // search f o r

p o i n t type
i f (foundIT != smSTwoIT−>second . end ())
{

for (unsigned int j = 0 ; j < 5 ; ++j) // Found type
{ // loop through l i m i t e d S e g segments

map<pair<int , int>, MeanAndStdDev> : : i t e r a t o r foundIT 2 = foundIT
−>second . f i n d (l im i t edSegPa i r s [j]) ; // search f o r
segment type

i f (foundIT 2 != foundIT−>second . end ())
f p r i n t f (ofp , ”%f \ t ” , foundIT 2−>second . mean) ; // Found segment

else
f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d segment ,

output 0
}

}
else
{

for (unsigned int j = 0 ; j < 5 ; ++j)
{ // loop through a l l j u n c t i o n t y p e s

f p r i n t f (ofp , ”0\ t ”) ; // Couldn ’ t f i n d segment ,
output 0 f o r a l l segments

}
}

}
}
f c l o s e (ofp) ;

}
// C a l c u l a t e s the mean (average) o f the s p e c i f i e d number o f e lements in

the s u p p l i e d array s t a r t i n g from the f i r s t element , r e t u r n s 0 i f
numElements i s 0

double MSTcalc : : CalcMean (const double ∗doubleArray , int numElements) const
{

double sum = 0 ;
for (int i = 0 ; i < numElements ; i++)

sum += doubleArray [i] ;
i f (numElements == 0)

return 0 ;
else

return sum/numElements ;

202

}
// C a l c u l a t e s the s tandard d e v i a t i o n o f the s p e c i f i e d number o f e lements

in the s u p p l i e d array g iven the s u p p l i e d mean s t a r t i n g from the f i r s t
e lement

double MSTcalc : : CalcStdev (const double ∗doubleArray , double mean , int
numElements) const

{
double sum = 0 ;
double diffFromMean = 0 ;
for (int i =0; i<numElements ; i++)
{

diffFromMean = mean − doubleArray [i] ;
sum += diffFromMean ∗ diffFromMean ;

}
i f (numElements == 0)

return 0 ;
else
{

double sigma = pow(sum/numElements , 0 . 5) ;
return sigma ;

}
}
template<class T>
// C a l c u l a t e s the f requency each element occurs in the f i r s t s p e c i f i e d

number o f e lements in the s u p p l i e d array o f any data type . Each unique
element i s re turned in a map pa i red wi th i t s f requency o f occurrence (

from 0 to 1) . The map i s a l l o c a t e d on the heap .
map<T, double>∗ MSTcalc : : CalcFreq (const vector<T> &dataArray) const
{

map<T, int> freqMap ;
int numElements = dataArray . s i z e () ;
for (int i = 0 ; i < numElements ; i++)

freqMap [dataArray [i]]++;
int freqMapCount = freqMap . s i z e () ;
map<T, double> ∗ f r e q R e s u l t s = new map<T, double>;
for (map<T, int > : : c o n s t i t e r a t o r i t = freqMap . begin () ; i t != freqMap . end

() ; i t ++)
{

f r eqResu l t s−>i n s e r t (pair<T, double>(i t−>f i r s t , i t−>second /(double)
numElements)) ;

}
return f r e q R e s u l t s ;

}

branchlist

This class stores a linked list of pointers to pointlist data structures, which are in turn a

linked list of points. This class also provides methods for printing all its branchlists to file, and

for determining the min and max boundary points for the entire branchlist.

203

// b r a n c h l i s t . h
#ifndef BRANCHLIST H
#define BRANCHLIST H
#include <iostream>
#include ” p o i n t l i s t . h”
#include <map>

p o i n t l i s t ;
using namespace std ;

class b r a n c h l i s t {
public :

p o i n t l i s t ∗ s t a r t ;
b r a n c h l i s t ∗next ;
b r a n c h l i s t ∗ l a s t ; // a p p l i e s on ly to f i r s t b r a n c h l i s t in bunch
b r a n c h l i s t () : s t a r t (NULL) , next (NULL) , l a s t (NULL) {}
b r a n c h l i s t (p o i n t l i s t ∗P) : s t a r t (new p o i n t l i s t (P)) , next (NULL) , l a s t (NULL

) {} ;
b r a n c h l i s t (char ∗ fname) ;
˜ b r a n c h l i s t () ;
b r a n c h l i s t ∗ add (p o i n t l i s t ∗newbranch) ;
void p r i n t a l l (char ∗ fname) ;
void p r i n t a l l (FILE ∗ fp) ;
int count () ;
int countPts () ;
void de l () ;

po int ∗ minX() ;
po int ∗ maxX() ;
po int ∗ minY() ;
po int ∗ maxY() ;
po int ∗ minZ () ;
po int ∗ maxZ() ;
po int maxDimensions () ;
double t r e e l e n g t h () ;

} ;

#endif

// b r a n c h l i s t . cpp
#include ” s tda fx . h”
#include ” p o i n t l i s t . h”
#include ” b r a n c h l i s t . h”
#include <c s t d l i b>
b r a n c h l i s t : : b r a n c h l i s t (char ∗ fname) : s t a r t (NULL) , next (NULL) , l a s t (NULL)
{

// F i l e format has branch [x] where x i s branch number f o l l o w e d by a l l o f
the p o i n t s in the branch , then atom type (o p t i o n a l) , then the next

branch [x] , e t c . . .
// branch [1]
// x1 y1 z1 (type)
// x2 y2 z2 (type)
// . . .
// xN yN zN (type)
//

204

// branch [2]
// . . .
FILE ∗ fp ;
i f (f open s (&fp , fname , ” r ”) != 0)
{

p r i n t f (”\nCannot open input f i l e .\n”) ;
e x i t (1) ;

}
bool f i r s t L i n e = true ;
char BUFFER[2 5 5] ;
double X, Y, Z ;
int type , numInputs ;
bool newBranch = true ;
b r a n c h l i s t ∗ cur rent = this ;
while (f g e t s (BUFFER, 255 , fp) != NULL)
{

i f (BUFFER[0] == ’b ’)
{ // now reading branch

newBranch = true ;
while (f g e t s (BUFFER, 255 , fp) [0] != 10)
{

numInputs = s s c a n f s (BUFFER, ”%l f %l f %l f %d”,&X,&Y,&Z,& type) ;
i f (numInputs < 4)

type = 0 ;
i f (newBranch)
{

i f (this−>s t a r t != NULL)
cur rent = add(& p o i n t l i s t (X, Y, Z , type)) ;

else
s t a r t = new p o i n t l i s t (X, Y, Z , type) ;

newBranch = fa l se ;
}
else

current−>s ta r t−>add(&point (X, Y, Z , type)) ;
}

}
}
f c l o s e (fp) ;

}
b r a n c h l i s t : : ˜ b r a n c h l i s t ()
{

s ta r t−>de l () ;
}
// d e l e t e s the b r a n c h l i s t
void b r a n c h l i s t : : de l ()
{

b r a n c h l i s t ∗ cur rent = next ;
b r a n c h l i s t ∗ nextbranch ;
while (cur r ent !=NULL)
{

nextbranch = current−>next ;
delete cur rent ;
cur r ent = nextbranch ;

205

}
delete this ;

}
// Adds a new branch to the end o f the b r a n c h l i s t (you must c a l l t h i s on ly

on the f i r s t b r a n c h l i s t in the l i s t to maintain proper oper a t i on) ,
// Should p r o b a b l y adapt a head node to t h i s c l a s s f o r rap id b r a n c h l i s t

adding , but not necessary now s i n c e b r a n c h l i s t ’ s are r e l a t i v e l y few
b r a n c h l i s t ∗ b r a n c h l i s t : : add (p o i n t l i s t ∗P)
{

b r a n c h l i s t ∗newbranch = new b r a n c h l i s t (P) ;
i f (l a s t != NULL)

l a s t−>next = newbranch ;
else

next = newbranch ;
l a s t = newbranch ;
return newbranch ;

}
void b r a n c h l i s t : : p r i n t a l l (char ∗ fname)
{

FILE∗ ofp ;
i f (f open s (&ofp , fname , ”w”) != 0)
{

p r i n t f (”\nCannot open output f i l e <%s>.\n” , fname) ;
return ;

}
p r i n t a l l (ofp) ;
f c l o s e (ofp) ;

}
void b r a n c h l i s t : : p r i n t a l l (FILE ∗ fp)
{

b r a n c h l i s t ∗ curbranch = this ;
int branchNum = 1 ;
while (curbranch != NULL)
{

f p r i n t f (fp , ”branch[%d]\n” ,branchNum++);
curbranch−>s t a r t−>p r i n t a l l (fp) ;
curbranch = curbranch−>next ;

}
}
po int ∗ b r a n c h l i s t : : minX()
{

b r a n c h l i s t ∗ cur rent = this ;
po int ∗ pt = sta r t−>minX() ;
po int ∗ t e s t ;
while (current−>next != NULL)
{

cur rent = current−>next ;
t e s t = current−>s t a r t−>minX() ;
i f (t e s t−>x < pt−>x)

pt = t e s t ;
}
return pt ;

}

206

po int ∗ b r a n c h l i s t : : maxX()
{

b r a n c h l i s t ∗ cur rent = this ;
po int ∗ pt = sta r t−>maxX() ;
po int ∗ t e s t ;
while (current−>next != NULL)
{

cur rent = current−>next ;
t e s t = current−>s t a r t−>maxX() ;
i f (t e s t−>x > pt−>x)

pt = t e s t ;
}
return pt ;

}
po int ∗ b r a n c h l i s t : : minY()
{

b r a n c h l i s t ∗ cur rent = this ;
po int ∗ pt = sta r t−>minY() ;
po int ∗ t e s t ;
while (current−>next != NULL)
{

cur rent = current−>next ;
t e s t = current−>s t a r t−>minY() ;
i f (t e s t−>y < pt−>y)

pt = t e s t ;
}
return pt ;

}
po int ∗ b r a n c h l i s t : : maxY()
{

b r a n c h l i s t ∗ cur rent = this ;
po int ∗ pt = sta r t−>maxY() ;
po int ∗ t e s t ;
while (current−>next != NULL)
{

cur rent = current−>next ;
t e s t = current−>s t a r t−>maxY() ;
i f (t e s t−>y > pt−>y)

pt = t e s t ;
}
return pt ;

}
po int ∗ b r a n c h l i s t : : minZ ()
{

b r a n c h l i s t ∗ cur rent = this ;
po int ∗ pt = sta r t−>minZ () ;
po int ∗ t e s t ;
while (current−>next != NULL)
{

cur rent = current−>next ;
t e s t = current−>s t a r t−>minZ () ;
i f (t e s t−>z < pt−>z)

pt = t e s t ;

207

}
return pt ;

}
po int ∗ b r a n c h l i s t : : maxZ()
{

b r a n c h l i s t ∗ cur rent = this ;
po int ∗ pt = sta r t−>maxZ() ;
po int ∗ t e s t ;
while (current−>next != NULL)
{

cur rent = current−>next ;
t e s t = current−>s t a r t−>maxZ() ;
i f (t e s t−>z > pt−>z)

pt = t e s t ;
}
return pt ;

}
// Return the dimensions o f the s m a l l e s t cube t h a t e n v e l o p e s a l l p o i n t s in

the b r a n c h l i s t
po int b r a n c h l i s t : : maxDimensions ()
{

double DX = maxX()−>x − minX()−>x ;
double DY = maxY()−>y − minY()−>y ;
double DZ = maxZ()−>z − minZ ()−>z ;
return po int (DX, DY, DZ) ;

}
// r e t u r n s number o f p o i n t s in l i s t
int b r a n c h l i s t : : count ()
{

b r a n c h l i s t ∗ cur rent ;
cur r ent = this ;
int count =0;
while (cur r ent !=NULL)
{

count++;
cur rent = current−>next ;

}
return (count) ;

}
// r e t u r n s number o f unique p o i n t s in b r a n c h l i s t
int b r a n c h l i s t : : countPts ()
{

map<point , bool> pointCount ;
b r a n c h l i s t ∗ currentBranch = this ;
p o i n t l i s t ∗ currentPo int = s t a r t ;
while (currentBranch != NULL)
{

currentPo int = currentBranch−>s t a r t ;
while (cur rentPo int != NULL)
{

pointCount [cur rentPo int] = true ;
cur rentPo int = currentPoint−>next ;

}

208

currentBranch = currentBranch−>next ;
}
return pointCount . s i z e () ;

}
double b r a n c h l i s t : : t r e e l e n g t h ()
{

double l ength = 0 ;
b r a n c h l i s t ∗ curbranch ;
p o i n t l i s t ∗ cur rent ;
curbranch = this ;
while (curbranch != NULL)
{

cur rent = curbranch−>s t a r t ;
while (current−>next != NULL)
{
l ength += current−>DistanceFrom (current−>next) ;

cur r ent = current−>next ;
}
curbranch = curbranch−>next ;

}
return (l ength) ;

}

pointlist

This class defines a doubly linked list of points with a controlling head node structure. It

also defines methods for calculating boundary points inside the pointlist.

// p o i n t l i s t . h
// p o i n t l i s t . h

#ifndef POINTLIST H
#define POINTLIST H
#include <c s td io>
#include <map>
#include ” po int . h”
#include ”HeadNode . h”
class HeadNode ;
class p o i n t l i s t : public po int {
public :

p o i n t l i s t ∗next , ∗prev ;
HeadNode∗ headNode ;

public :
p o i n t l i s t () : next (NULL) , prev (NULL) , headNode (NULL) {} ;
p o i n t l i s t (po int ∗P) : po int (P) , next (NULL) , prev (NULL) , headNode (

NULL) {} ;
p o i n t l i s t (double X, double Y) : po int (X, Y) , next (NULL) , prev (NULL) ,

headNode (NULL) {} ;
p o i n t l i s t (double X, double Y, double Z) : po int (X, Y, Z) , next (NULL) ,

prev (NULL) , headNode (NULL) {} ;

209

p o i n t l i s t (double X, double Y, double Z , int type) : po int (X, Y, Z , type) ,
next (NULL) , prev (NULL) , headNode (NULL) {} ;

p o i n t l i s t (char ∗ fname) ;
˜ p o i n t l i s t () ;
p o i n t l i s t ∗ add (po int ∗P) { return add(& p o i n t l i s t (P)) ;}
p o i n t l i s t ∗ add (p o i n t l i s t ∗newpt) ;
p o i n t l i s t ∗ addLocal (p o i n t l i s t ∗newpt) ;
p o i n t l i s t ∗ padd (po int ∗P) { return padd(& p o i n t l i s t (P)) ;}
p o i n t l i s t ∗ padd (p o i n t l i s t ∗newpt) ;
int count () ;
p o i n t l i s t ∗ remove (p o i n t l i s t ∗Q) ;
p o i n t l i s t ∗ removeLocal (p o i n t l i s t ∗Q) ;
void de l () ;
int remdup () ;
void p r i n t a l l (FILE ∗ fp) ;
void p r i n t a l l (char ∗ fname) ;
p o i n t l i s t ∗ f u r t h e s t (p o i n t l i s t ∗Q) ;
p o i n t l i s t ∗ nea r e s t (p o i n t l i s t ∗Q) ;
p o i n t l i s t ∗ nea r e s t () ;
p o i n t l i s t ∗ minX() ;
p o i n t l i s t ∗ maxX() ;
p o i n t l i s t ∗ minY() ;
p o i n t l i s t ∗ maxY() ;
p o i n t l i s t ∗ minZ () ;
p o i n t l i s t ∗ maxZ() ;
po int maxDimensions () ;

} ;
#endif

// p o i n t l i s t . cpp
#include ” s tda fx . h”
#include ” po int . h”
#include ” p o i n t l i s t . h”
#include ”cmath”
#include <c s t d l i b>
p o i n t l i s t : : p o i n t l i s t (char ∗ fname) : next (NULL) , prev (NULL) , headNode (NULL)
{

FILE ∗ fp ;
i f (f open s (&fp , fname , ” r ”) != 0)
{

p r i n t f (”\nCannot open input f i l e .\n”) ;
e x i t (1) ;

}
double X, Y, Z ;
int type ;
bool threeDim = fa l se ;
bool atoms = fa l se ; // atoms i m p l i e s t h r e e dimensions , not going to

a l l o w atoms in two dimensions
char t e s t e r [2 5 5] ;
f g e t s (t e s t e r , 255 , fp) ; // Read f i r s t l i n e o f input to determine i f f i l e

p o i n t s are two or t h r e e dimensiona l
int numInputs = s s c a n f s (t e s t e r , ”%l f %l f %l f %d”,&X,&Y,&Z,& type) ;
i f (numInputs == 3)

210

{
threeDim = true ;
z = Z ;

}
else i f (numInputs == 4)
{

threeDim = true ;
atoms = true ;
z = Z ;
this−>type = type ;

}
x = X;
y = Y;
i f (threeDim)
{

i f (atoms)
while (f s c a n f s (fp , ”%l f %l f %l f %d”,&X,&Y,&Z,& type) != EOF)
{

add(&point (X, Y, Z , type)) ;
}

else
while (f s c a n f s (fp , ”%l f %l f %l f ” ,&X,&Y,&Z) != EOF)
{

add(&point (X, Y, Z)) ;
}

}
else

while (f s c a n f s (fp , ”%l f %l f ” ,&X,&Y) != EOF)
{

add(&point (X, Y)) ;
}

f c l o s e (fp) ;
}
p o i n t l i s t : : ˜ p o i n t l i s t ()
{}
// add p o i n t to beg inn ing o f l i n k e d l i s t o f p o i n t s
p o i n t l i s t ∗ p o i n t l i s t : : padd (p o i n t l i s t ∗P)
{

i f (headNode == NULL)
{ // This i s the f i r s t p o i n t l i s t ∗ o f a new l i n k e d l i s t o f po ints , so add

a HeadNode
headNode = new HeadNode (this) ;

}
return headNode−>AddPointToBeg (P) ;

}
// c r e a t e new p o i n t on the heap and add i t to end o f l i n k e d l i s t o f p o i n t s

and re turn a p o i n t e r to the new p o i n t
p o i n t l i s t ∗ p o i n t l i s t : : add (p o i n t l i s t ∗P)
{

i f (headNode == NULL)
{ // This i s the f i r s t p o i n t l i s t ∗ o f a new l i n k e d l i s t o f po ints , so add

a HeadNode
headNode = new HeadNode (this) ;

211

}
return headNode−>AddPoint (P) ;

}
// Add the s u p p l i e d p o i n t to the p o i n t l i s t w i thout c r e a t i n g a new p o i n t .

The s u p p l i e d p o i n t w i l l s t i l l be d e l e t e d i f p o i n t l i s t : : d e l () i s c a l l e d
p o i n t l i s t ∗ p o i n t l i s t : : addLocal (p o i n t l i s t ∗newpt)
{

i f (headNode == NULL)
{ // This i s the f i r s t p o i n t l i s t ∗ o f a new l i n k e d l i s t o f po ints , so add

a HeadNode
headNode = new HeadNode (this) ;

}
return headNode−>AddPointLocal (newpt) ;

}
// Remove p o i n t Q from the l i s t , d e l e t e i t from the heap , and re turn the

f i r s t p o i n t in the l i s t
p o i n t l i s t ∗ p o i n t l i s t : : remove (p o i n t l i s t ∗Q)
{

p o i n t l i s t ∗ f i r s t p t = this ;
HeadNode ∗headPtr = Q−>headNode ;
i f (headPtr != NULL)
{

f i r s t p t = Q−>headNode−>RemovePoint (Q) ;
i f (headPtr−>GetCount () == 0) // l i s t i s now empty , so d e l e t e headNode
{

f i r s t p t = NULL;
delete headPtr ;

}
}
else
{ // head node has not been c r e a t e d yet , so on ly one p o i n t in l i s t and

must handle d e l e t i o n here
delete Q;
f i r s t p t = NULL;

}
return f i r s t p t ;

}
p o i n t l i s t ∗ p o i n t l i s t : : removeLocal (p o i n t l i s t ∗Q)
{

p o i n t l i s t ∗ f i r s t p t = this ;
i f (Q−>headNode != NULL)
{

f i r s t p t = Q−>headNode−>RemovePointLocal (Q) ;
i f (Q−>headNode−>GetCount () == 0)
{

f i r s t p t = NULL;
delete Q−>headNode ;

}
}
else

f i r s t p t = NULL;
return f i r s t p t ;

}

212

// d e l e t e the p o i n t l i s t
void p o i n t l i s t : : de l ()
{

i f (prev == NULL)
delete headNode ; // p o i n t i s a t beg inn ing o f l i s t , so do not need

headNode
p o i n t l i s t ∗ cur rent = this−>next ;
p o i n t l i s t ∗prev = NULL;
while (cur r ent !=NULL)
{

delete current−>prev ;
prev = current ;
cur r ent = current−>next ;

}
delete prev ;

}
// remove d u p l i c a t e p o i n t s
int p o i n t l i s t : : remdup ()
{

std : : map<point , bool> ∗ po in t s = new std : : map<point , bool>;
p o i n t l i s t ∗ currentPo int = this ;
p o i n t l i s t ∗nextPoint ;
po int tempPt ;
int count = 0 ;
while (cur rentPo int != NULL)
{

nextPoint = currentPoint−>next ;
tempPt = (po int) currentPo int ;
i f (po ints−>f i n d (tempPt) == points−>end ()) // i f no d u p l i c a t e a l r e a d y

in l i s t , then s t o r e p o i n t
points−>i n s e r t (std : : pair<point , bool>(tempPt , true)) ;

else // i f p o i n t i s a d u p l i c a t e , then d e l e t e i t
{

currentPoint−>remove (currentPo int) ;
count++;

}
currentPo int = nextPoint ;

}
delete po in t s ;
return count ;

}
// r e t u r n s number o f p o i n t s in l i s t
int p o i n t l i s t : : count ()
{

return this−>headNode−>GetCount () ;
}
// p r i n t l i s t to f i l e
void p o i n t l i s t : : p r i n t a l l (FILE ∗ fp)
{

p o i n t l i s t ∗ cur rent ;
cur r ent = this ;
while (cur r ent != NULL)

213

{ f p r i n t f (fp , ”%.14 l f \ t %.14 l f \ t %.14 l f \ t%d\n” , current−>x , current−>y ,
current−>z , current−>type) ;

cur r ent = current−>next ;
}
f p r i n t f (fp , ”\n”) ;

}
void p o i n t l i s t : : p r i n t a l l (char ∗ fname)
{

FILE ∗ fp ;
i f (f open s (&fp , fname , ”w”) != 0)
{

p r i n t f (”\nCannot open output f i l e <%s>.\n” , fname) ;
e x i t (1) ;

}
p r i n t a l l (fp) ;
f c l o s e (fp) ;

}
// Find f u r t h e s t p t from Q in l i s t
p o i n t l i s t ∗ p o i n t l i s t : : f u r t h e s t (p o i n t l i s t ∗Q)
{

p o i n t l i s t ∗ f u r t h e s t = this ;
p o i n t l i s t ∗ cur rent = this ;
double maxdist = fu r the s t−>DistanceFromSquared (Q) ;
double t e s t d i s t ;
while (cur r ent != NULL)
{

t e s t d i s t = current−>DistanceFromSquared (Q) ;
i f (t e s t d i s t > maxdist)
{

f u r t h e s t = current ;
maxdist = t e s t d i s t ;

}
cur rent = current−>next ;

}
return f u r t h e s t ;

}
// Find n e a r e s t p t to Q in l i s t
p o i n t l i s t ∗ p o i n t l i s t : : n ea r e s t (p o i n t l i s t ∗Q)
{

p o i n t l i s t ∗ c l o s e s t = this ;
p o i n t l i s t ∗ cur rent = this−>next ; // s t a r t current on second p o i n t
double mindist = this−>DistanceFromSquared (Q) ; // s e t min d i s t as

d i s t a n c e between f i r s t two p o i n t s
double t e s t d i s t ;
while (cur r ent != NULL)
{

i f (cur r ent != Q) // Don ’ t check d i s t a n c e i f curren t and Q r e f e r e n c e
the same p o i n t in memory

{
t e s t d i s t = current−>DistanceFromSquared (Q) ;
i f (t e s t d i s t < mindist)
{

c l o s e s t = current ;

214

mindist = t e s t d i s t ;
}
cur rent = current−>next ;

}
}
return c l o s e s t ;

}
p o i n t l i s t ∗ p o i n t l i s t : : n ea r e s t ()
{

return (nea r e s t (this)) ;
}
// f i n d the p o i n t wi th the minimum X v a l u e
p o i n t l i s t ∗ p o i n t l i s t : : minX()
{

double min = this−>x ;
p o i n t l i s t ∗ cur rent = this−>next ;
p o i n t l i s t ∗ r e tp t = this ;
while (cur r ent != NULL)
{

i f (current−>x < min)
{

min = current−>x ;
r e tp t = current ;

}
cur rent = current−>next ;

}
return (r e tp t) ;

}
// f i n d the p o i n t wi th the maximum X v a l u e
p o i n t l i s t ∗ p o i n t l i s t : : maxX()
{

double max = this−>x ;
p o i n t l i s t ∗ cur rent ;
cur r ent = this−>next ;
p o i n t l i s t ∗ r e tp t ;
r e tp t = this ;
while (cur r ent != NULL)
{

i f (current−>x > max)
{

max = current−>x ;
r e tp t = current ;

}
cur rent = current−>next ;

}
return (r e tp t) ;

}
// f i n d the p o i n t wi th the maximum Y v a l u e
p o i n t l i s t ∗ p o i n t l i s t : : minY()
{

double min = this−>y ;
p o i n t l i s t ∗ cur rent ;
cur r ent = this−>next ;

215

p o i n t l i s t ∗ r e tp t ;
r e tp t = this ;
while (cur r ent != NULL)
{

i f (current−>y < min)
{

min = current−>y ;
r e tp t = current ;

}
cur rent = current−>next ;

}
return (r e tp t) ;

}

// f i n d the p o i n t wi th the maximum Y v a l u e
p o i n t l i s t ∗ p o i n t l i s t : : maxY()
{

double max = this−>y ;
p o i n t l i s t ∗ cur rent ;
cur r ent = this−>next ;
p o i n t l i s t ∗ r e tp t ;
r e tp t = this ;
while (cur r ent != NULL)
{

i f (current−>y > max)
{

max = current−>y ;
r e tp t = current ;

}
cur rent = current−>next ;

}
return (r e tp t) ;

}
// f i n d the p o i n t wi th the maximum Z v a l u e
p o i n t l i s t ∗ p o i n t l i s t : : minZ ()
{

double min = this−>z ;
p o i n t l i s t ∗ cur rent ;
cur r ent = this−>next ;
p o i n t l i s t ∗ r e tp t ;
r e tp t = this ;
while (cur r ent != NULL)
{

i f (current−>z < min)
{

min = current−>z ;
r e tp t = current ;

}
cur rent = current−>next ;

}
return (r e tp t) ;

}
// f i n d the p o i n t wi th the maximum Z v a l u e

216

p o i n t l i s t ∗ p o i n t l i s t : : maxZ()
{

double max = this−>z ;
p o i n t l i s t ∗ cur rent ;
cur r ent = this−>next ;
p o i n t l i s t ∗ r e tp t ;
r e tp t = this ;
while (cur r ent != NULL)
{

i f (current−>z > max)
{

max = current−>z ;
r e tp t = current ;

}
cur rent = current−>next ;

}
return (r e tp t) ;

}
// Return the dimensions o f the s m a l l e s t cube t h a t e n v e l o p e s a l l p o i n t s in

the p o i n t l i s t
po int p o i n t l i s t : : maxDimensions ()
{

double DX = maxX()−>x − minX()−>x ;
double DY = maxY()−>y − minY()−>y ;
double DZ = maxZ()−>z − minZ ()−>z ;
return po int (DX, DY, DZ) ;

}

HeadNode

This class stores pointers to the first and last points in a pointlist, and also controls adding

and removing points to and from the list.

// HeadNode . h
#ifndef HEADNODE H
#define HEADNODE H
#include ” p o i n t l i s t . h”
class p o i n t l i s t ;
class HeadNode
{
private :

p o i n t l i s t ∗ f i r s t N o d e ;
p o i n t l i s t ∗ lastNode ;
int count ;

public :
HeadNode (p o i n t l i s t ∗ i n i t i a l N o d e) : f i r s t N o d e (i n i t i a l N o d e) , lastNode (

i n i t i a l N o d e) , count (1) {}
˜HeadNode () {}
p o i n t l i s t ∗ GetFirs tPo int () const { return f i r s t N o d e ;}
p o i n t l i s t ∗ GetLastPoint () const { return lastNode ;}

217

int GetCount () const { return count ;}
p o i n t l i s t ∗ AddPoint (p o i n t l i s t ∗ newPoint) ;
p o i n t l i s t ∗ AddPointLocal (p o i n t l i s t ∗newPoint) ;
p o i n t l i s t ∗ AddPointToBeg (p o i n t l i s t ∗ newPoint) ;
p o i n t l i s t ∗ RemovePoint (p o i n t l i s t ∗ o ldPoint) ;
p o i n t l i s t ∗ RemovePointLocal (p o i n t l i s t ∗ o ldPoint) ;

} ;
#endif
// HeadNode . cpp
#include ” s tda fx . h”
#include ”HeadNode . h”
// Creates a new p o i n t on the heap and adds i t to the end o f the l i s t
p o i n t l i s t ∗ HeadNode : : AddPoint (p o i n t l i s t ∗ newPoint)
{

p o i n t l i s t ∗ newPtLst = new p o i n t l i s t (newPoint) ;
return AddPointLocal (newPtLst) ;

}
// Adds the s u p p l i e d p o i n t to the end o f the l i s t w i thout c r e a t i n g a new

p o i n t . This w i l l t r a n s f e r the p o i n t i f i t a l r e a d y b e l o n g s to another
l i s t

p o i n t l i s t ∗ HeadNode : : AddPointLocal (p o i n t l i s t ∗newPoint)
{

i f (newPoint−>headNode != NULL) // i f p o i n t b e l o n g s to a l i s t then
remove i t from t h a t l i s t w i thout d e l e t i n g i t

newPoint−>headNode−>RemovePointLocal (newPoint) ;
newPoint−>headNode = this ;
newPoint−>prev = lastNode ;
lastNode−>next = newPoint ;
lastNode = newPoint ;
count++;
return newPoint ;

}
p o i n t l i s t ∗ HeadNode : : AddPointToBeg (p o i n t l i s t ∗ newPoint)
{

p o i n t l i s t ∗ newPtLst = new p o i n t l i s t (newPoint) ;
newPtLst−>headNode = this ;
newPtLst−>next = f i r s t N o d e ;
f i r s tNode−>prev = newPtLst ;
f i r s t N o d e = newPtLst ;
count++;
return newPtLst ;

}
// Removes the s u p p l i e d point , d e l e t e s i t from the heap , and r e t u r n s the

f i r s t p o i n t in the l i s t
p o i n t l i s t ∗ HeadNode : : RemovePoint (p o i n t l i s t ∗ o ldPoint)
{

p o i n t l i s t ∗newFirst = RemovePointLocal (o ldPoint) ;
delete o ldPoint ;
return newFirst ;

}
// Removes the s u p p l i e d p o i n t from the l i s t w i thou t d e l e t i n g i t and

r e t u r n s the f i r s t p o i n t in the l i s t
p o i n t l i s t ∗ HeadNode : : RemovePointLocal (p o i n t l i s t ∗ o ldPoint)

218

{
i f (oldPoint−>prev != NULL)

oldPoint−>prev−>next = oldPoint−>next ;
else

this−>f i r s t N o d e = oldPoint−>next ;
i f (oldPoint−>next != NULL)

oldPoint−>next−>prev = oldPoint−>prev ;
else

this−>lastNode = oldPoint−>prev ;
count−−;
return this−>f i r s t N o d e ;

}

point

This class defines an object with four data fields: three doubles for location specification,

and one int for type specification. Operator overloads are defined that control adding, sub-

tracting, and taking the dot product of two points, and methods are defined for the calculation

of the distances and angles between points.

// p o i n t . h
#ifndef POINT H
#define POINT H
#include <cmath>
class po int {
public :

double x , y , z ;
int type ;

public :
po int () : x (0) , y (0) , z (0) , type (0) {} ;
po int (double X, double Y) : x (X) , y (Y) , z (0) , type (0)

{} ;
po int (double X, double Y, double Z) : x (X) , y (Y) , z (Z) , type (0)

{} ;
po int (double X, double Y, double Z , int ptType) : x (X) , y (Y) , z (Z) ,

type (ptType) {} ;
po int (po int ∗Q) : x (Q−>x) , y (Q−>y) , z (Q−>z) , type (Q−>type

) {} ;
˜ po int () {} ;
bool EqualsValue (po int ∗ otherPt) const { return ((this−>x == otherPt−>x)

&& (this−>y == otherPt−>y) && (this−>z == otherPt−>z)) ; }
void s e t (po int ∗ pt) { x = pt−>x ; y = pt−>y ; z = pt−>z ;}
void s e t (double X, double Y) { x = X; y = Y;}
void s e t (double X, double Y, double Z) { x = X; y = Y; z = Z ;}
double DistanceFromSquared (const po int ∗ otherPoint) const ;
double DistanceFrom (po int ∗ otherPoint) const ;
po int operator−(const po int &Q) const { return po int (x−Q. x , y−Q. y , z−Q. z

) ; }

219

double operator ∗(const po int &Q) const { return x∗Q. x + y∗Q. y + z∗Q. z ;}
// dot product

po int operator ∗(double s c a l a r) const { return po int (x∗ s ca l a r , y∗ s ca l a r ,
z∗ s c a l a r) ; } bool operator<(const po int &otherPoint) const ;

bool operator==(const po int &otherPoint) const { i f (x == otherPoint . x
&& y == otherPoint . y && z == otherPoint . z) return true ; else return
fa l se ; }

double AngleBetween (const po int &pointOne , const po int &pointTwo) const ;
} ;

#endif

// p o i n t . cpp
#include ” s tda fx . h”
#include ”cmath”
#include ” po int . h”
#include ” p o i n t l i s t . h”
double po int : : DistanceFromSquared (const po int ∗ otherPoint) const
{

double xDi f f = otherPoint−>x − x ;
double yDi f f = otherPoint−>y − y ;
double z D i f f = otherPoint−>z − z ;
return xDi f f ∗ xDi f f + yDi f f ∗ yDi f f + z D i f f ∗ z D i f f ;

}
double po int : : DistanceFrom (po int ∗ otherPoint) const
{

return s q r t (DistanceFromSquared (otherPoint)) ; // d e c l a r e i n l i n e ?
}
// Inc luded so p o i n t can be a v a l i d key in map c l a s s
bool po int : : operator <(const po int &otherPoint) const
{ // z i s major d i g i t , y middle , x minor d i g i t

i f (z < otherPoint . z)
return true ;

i f (z > otherPoint . z)
return fa l se ;

i f (y < otherPoint . y)
return true ;

i f (y > otherPoint . y)
return fa l se ;

i f (x < otherPoint . x)
return true ;

return fa l se ;
}
// C a l c u l a t e s the ang l e in rad ians between the l i n e s formed from the

curren t p o i n t to each o f the two prov ided p o i n t s .
double po int : : AngleBetween (const po int &A, const po int &B) const
{ // c . AngleBetween (a , b) −> ac = a − c , bc = b − c , t h e t a = acos (ac∗ab / (|

a | ∗ | b |))
po int vectA = A − ∗ this ;
po int vectB = B − ∗ this ;
double magA = point (0 , 0 , 0) . DistanceFrom(&vectA) ;
double magB = point (0 , 0 , 0) . DistanceFrom(&vectB) ;
double product = vectA ∗ vectB / (magA ∗ magB) ;

220

i f (product > 1) // Ensure product between −1 and 1 , rounding e r r o r s
can push i t o u t s i d e the bounds

product = 1 ;
else i f (product < −1)

product = −1;
double theta = acos (product) ;
return theta ;

}

point I

This class is functionally identical to the point class, except its location specifiers are int

types and it does not have a type specifier.

// p o i n t I . h
#ifndef POINT I H
#define POINT I H
#include <cmath>
#include ” po int . h”
class p o i n t I {
public :

int x , y , z ;
public :

p o i n t I () : x (0) , y (0) , z (0) {} ;
p o i n t I (int X, int Y) : x (X) , y (Y) , z (0) {} ;
p o i n t I (int X, int Y, int Z) : x (X) , y (Y) , z (Z) {} ;
p o i n t I (p o i n t I ∗Q) : x (Q−>x) , y (Q−>y) , z (Q−>z) {} ;
˜ p o i n t I () {} ;
bool EqualsValue (p o i n t I ∗ otherPt) const { return ((this−>x == otherPt−>

x) && (this−>y == otherPt−>y) && (this−>z == otherPt−>z)) ; }
double DistanceFromSquared (const p o i n t I ∗ otherPoint) const ;
double DistanceFrom (p o i n t I ∗ otherPoint) const ;
p o i n t I operator−(const p o i n t I &Q) const { return p o i n t I (x−Q. x , y−Q. y ,

z−Q. z) ; }
int operator ∗(const p o i n t I &Q) const { return x∗Q. x + y∗Q. y + z∗Q. z ;}

// dot product
po int operator ∗(double s c a l a r) const { return po int (x∗ s ca l a r , y∗ s ca l a r

, z∗ s c a l a r) ; } p o i n t I operator ∗(int s c a l a r) const { return
p o i n t I (x∗ s ca l a r , y∗ s ca l a r , z∗ s c a l a r) ; } bool operator<(const
p o i n t I &otherPoint) const ;

operator po int const () { return po int (x , y , z) ; } // i m p l i c i t
convers ion to p o i n t

double AngleBetween (const p o i n t I &point IOne , const p o i n t I &point ITwo
) const ;

} ;
#endif

// p o i n t I . cpp
#include ” s tda fx . h”
#include ”cmath”

221

#include ” p o i n t I . h”
#include ” p o i n t l i s t . h”
double p o i n t I : : DistanceFromSquared (const p o i n t I ∗ otherPoint) const
{

double xDi f f = otherPoint−>x − x ;
double yDi f f = otherPoint−>y − y ;
double z D i f f = otherPoint−>z − z ;
return xDi f f ∗ xDi f f + yDi f f ∗ yDi f f + z D i f f ∗ z D i f f ;

}
double p o i n t I : : DistanceFrom (p o i n t I ∗ otherPoint) const
{

return s q r t (DistanceFromSquared (otherPoint)) ; // d e c l a r e i n l i n e ?
}
// Inc luded so p o i n t I can be a v a l i d key in map c l a s s
bool p o i n t I : : operator <(const p o i n t I &otherPoint) const
{ // z i s major d i g i t , y middle , x minor d i g i t

i f (z < otherPoint . z)
return true ;

i f (z > otherPoint . z)
return fa l se ;

i f (y < otherPoint . y)
return true ;

i f (y > otherPoint . y)
return fa l se ;

i f (x < otherPoint . x)
return true ;

return fa l se ;
}
// C a l c u l a t e s the ang l e in rad ians between the l i n e s formed from the

curren t p o i n t I to each o f the two prov ided p o i n t I s .
double p o i n t I : : AngleBetween (const p o i n t I &A, const p o i n t I &B) const
{ // c . AngleBetween (a , b) −> ac = a − c , bc = b − c , t h e t a = acos (ac∗ab / (|

a | ∗ | b |))
p o i n t I vectA = A − ∗ this ;
p o i n t I vectB = B − ∗ this ;
double magA = p o i n t I (0 , 0 , 0) . DistanceFrom(&vectA) ;
double magB = p o i n t I (0 , 0 , 0) . DistanceFrom(&vectB) ;
double product = vectA ∗ vectB / (magA ∗ magB) ;
i f (product > 1) // Ensure product between −1 and 1 , rounding e r r o r s

can push i t o u t s i d e the bounds
product = 1 ;

else i f (product < −1)
product = −1;

double theta = acos (product) ;
return theta ;

}

222

BinaryHeap

This class is a standard minimum binary heap class which optimizes the extraction of the

smallest object from a large data set. As elements are added to the heap, it stores them in a

binary tree structure, sorting by size, and the top item of the heap is always maintained as the

item of smallest value in the entire heap. This allows for rapid retrieval of the smallest object.

// BinaryHeap . h
#ifndef BINARY HEAP H
#define BINARY HEAP H
#include <vector>
using namespace std ;
template<class T>
class BinaryHeap
{
private :

vector<int> myints ;
vector<T∗> heapItems ;
void BubbleDown (int index) ;
void BubbleUp (int index) ;
void Swap(int index1 , int index2) { T∗ temp = heapItems [index1] ;

heapItems [index1] = heapItems [index2] ; heapItems [index2] = temp ; }
int ChildOne (int index) { return index ∗ 2 + 1 ; }
int ChildTwo (int index) { return index ∗ 2 + 2 ; }
int Parent (int index) { return (index − 1) / 2 ; }

public :
BinaryHeap (void) {}
˜BinaryHeap (void) { for (int i = 0 ; i < (int) heapItems . s i z e () ; i++)

delete heapItems [i] ; }
T∗ PopHeap () ;
T∗ PeekHeap () { return heapItems [0] ; }
void PushHeap (const T &itemToAdd) ;
void Clear () { for (int i = 0 ; i < (int) heapItems . s i z e () ; i++) delete

heapItems [i] ; }
int GetNumItems () const { return heapItems . s i z e () ; }

} ;
#include ”BinaryHeap . cpp”
#endif

// BinaryHeap . cpp
#include ”StdAfx . h”
#include ”BinaryHeap . h”
#ifndef BINARY HEAP CPP
#define BINARY HEAP CPP
// The item at index may be too h igh in the t r e e
template<class T>
void BinaryHeap<T> : : BubbleDown(int index)
{

int chi ldOne = ChildOne (index) ;

223

int childTwo = ChildTwo (index) ;
i f (chi ldOne < (int) heapItems . s i z e ()

&& ∗heapItems [index] > ∗heapItems [chi ldOne])
{

i f (childTwo < (int) heapItems . s i z e ()
&& ∗heapItems [childTwo] < ∗heapItems [chi ldOne])

{ // Swap l a r g e r parent wi th s m a l l e s t c h i l d (f o r minheap)
Swap(index , childTwo) ;
BubbleDown (childTwo) ;

}
else
{

Swap(index , chi ldOne) ;
BubbleDown (chi ldOne) ;

}
}
else i f (childTwo < (int) heapItems . s i z e ()

&& ∗heapItems [index] > ∗heapItems [childTwo])
{

Swap(index , childTwo) ;
BubbleDown (childTwo) ;

}
}
// The item at index may be too low in the t r e e
template<class T>
void BinaryHeap<T> : : BubbleUp (int index)
{

i f (index > 0)
{

int parent = Parent (index) ;
i f (∗ heapItems [index] < ∗heapItems [parent])
{ // Swap s m a l l e r c h i l d wi th l a r g e r parent

Swap(index , parent) ;
BubbleUp (parent) ;

}
}

}
// Extrac t top item from heap and re turn a p o i n t e r to i t (Item w i l l be

s t o r e d on f r e e s tore , remember to d e l e t e i t when done wi th i t)
template<class T>
T∗ BinaryHeap<T> : : PopHeap ()
{

T∗ returnItem = heapItems [0] ;
heapItems [0] = heapItems . back () ;
heapItems . pop back () ;
BubbleDown (0) ;
return returnItem ;

}
// Add item to end o f heap
template<class T>
inl ine void BinaryHeap<T> : : PushHeap (const T &itemToAdd)
{

heapItems . push back (new T(itemToAdd)) ;

224

BubbleUp (heapItems . s i z e () − 1) ;
}
#endif

PointGrid

This class performs the bulk of the work in calculating the MST. When a pointlist is added

to the PointGrid, it stores the points in a grid, which is basically an array of pointlists which

represents the points present in each grid box. Grid boxes can be rapidly accessed based

on point location, which allows for rapid retrieval of points in the PointGrid based on point

location, and subsequent fast determination of neighboring points.

// PointGrid . h
#ifndef POINTGRID H
#define POINTGRID H
#include <map>
#include ” p o i n t l i s t . h”
#include ”BinaryHeap . h”
#include ” p o i n t I . h”
#include < l i m i t s>
class p o i n t l i s t ;
class po int ;
using namespace std ;
// S t o r e s a s e t o f p o i n t s in a g r i d which a l l o w s f o r f a s t r e t r i e v a l o f

p o i n t s near a s p e c i f i e d l o c a t i o n
class PointGrid
{
public : struct Segment ;
private :

struct GridDimensions
{

double g r i dS id e ;
po int f u l l G r i d S i z e ;
p o i n t I numGridBoxes ;
po int bottomLeft ;

} ;
struct NeighborData
{

BinaryHeap<Segment> segmentHeap ;
int l a rge s tNeare s tNe ighbor ;
NeighborData (void) : l a rge s tNeare s tNe ighbor (0) {}

} ;
p o i n t l i s t ∗∗ g r id ;
GridDimensions gridDim ;
BinaryHeap<Segment> segmentHeap ;
map<p o i n t l i s t ∗ , NeighborData> neighborDataMap ;

225

map<p o i n t l i s t ∗ , bool> deadPoints ; // a f t e r removing p o i n t s from g r i d
t h e r e w i l l s t i l l be many r e f e r e n c e s to t h e s e p o i n t s in the
segmentHeap , so must s t o r e the p o i n t l o c a t i o n s to a l l o w l a t e r acc es s
and e v e n t u a l d e l e t i o n

double CalcDis tances (p o i n t l i s t ∗pt , p o i n t l i s t ∗ g r idPo in t s) ;
double CalcDis tances (p o i n t l i s t ∗pt , const vector<p o i n t l i s t ∗> &p o i n t L i s t s

) ;
int GetGridIndex (int xIndex , int yIndex , int zIndex) const { return

zIndex ∗ gridDim . numGridBoxes . y ∗ gridDim . numGridBoxes . x + yIndex ∗
gridDim . numGridBoxes . x + xIndex ; }

int GetGridIndex (const p o i n t I &xyz Ind i c e s) const { return GetGridIndex (
xyz Ind i c e s . x , xyz Ind i c e s . y , xyz Ind i c e s . z) ; }

void RemovePoint (p o i n t l i s t ∗ p t l i s t , int index) ;
public :

PointGrid (void) {}
PointGrid (p o i n t l i s t ∗ points , double s i z eOfGr idS ide) ;
PointGrid (p o i n t l i s t ∗ points , PointGrid sampleGrid) ;
˜ PointGrid (void) ;
// S t o r e s p o i n t e r s to two p o i n t l i s t members and the d i s t a n c e between

them , which i s used to s o r t Segment v a r i a b l e s . Does not handle data
s torage , on ly p o i n t e r s are r e t a i n e d .

struct Segment
{

double l engthSqr ;
p o i n t l i s t ∗pt1 ;
p o i n t l i s t ∗pt2 ;
Segment (double segLengthSqr , p o i n t l i s t ∗ f i r s t P t , p o i n t l i s t ∗ secondPt) :

l engthSqr (segLengthSqr) , pt1 (f i r s t P t) , pt2 (secondPt) {}
˜Segment (void) { }
bool operator<(const Segment &otherSegment) const { i f (l engthSqr <

otherSegment . l engthSqr) return true ; else return fa l se ; }
bool operator>(const Segment &otherSegment) const { i f (l engthSqr >

otherSegment . l engthSqr) return true ; else return fa l se ; }
} ;
p o i n t I GetGridBox (const po int ∗ pt) const { return (p o i n t I ((int) ((

pt−>x − gridDim . bottomLeft . x) /gridDim . g r i dS id e) , (int) ((pt−>y −
gridDim . bottomLeft . y) /gridDim . g r i dS id e) , (int) ((pt−>z − gridDim .
bottomLeft . z) /gridDim . g r i dS id e))) ; }

void GetNeighboringGridBoxes (const p o i n t I &gridBox , int
nearestNeighborNumber , vector<p o i n t l i s t ∗> ∗ ne ighborPo in tL i s t s) const ;

bool AddNearest (p o i n t l i s t ∗pt) ;
Segment∗ PopClosest () ;
void ClearNeighbors () { segmentHeap . Clear () ; }
void RemovePoint (p o i n t l i s t ∗ pt L i s t) ;
void RemovePoint (po int &pt) ;

} ;
#endif

// PointGrid . cpp
#include ”StdAfx . h”
#include ” PointGrid . h”

226

// Make sure a l l p o i n t s t h a t d e f i n e g r i d boundar ies are s u p p l i e d to t h i s
c o n s t r u c t o r

PointGrid : : PointGrid (p o i n t l i s t ∗points , double s i z eOfGr idS ide)
{

po int minX = points−>minX() ;
po int minY = points−>minY() ;
po int minZ = points−>minZ () ;
po int maxX = points−>maxX() ;
po int maxY = points−>maxY() ;
po int maxZ = points−>maxZ() ;
p o i n t I numBoxes = p o i n t I ((int) ((maxX. x − minX . x) / s i z eOfGr idS ide +

1 . 5) , (int) ((maxY. y − minY . y) / s i z eOfGr idS ide + 1 . 5) , (int) ((maxZ . z
− minZ . z) / s i z eOfGr idS ide + 1 . 5)) ;

gridDim . bottomLeft = point (minX . x − s i z eOfGr idS ide / 2 , minY . y −
s i z eOfGr idS ide / 2 , minZ . z − s i z eOfGr idS ide / 2) ;

gridDim . f u l l G r i d S i z e = numBoxes ∗ s i z eOfGr idS ide ;
gridDim . g r i dS id e = s i zeOfGr idS ide ;
gridDim . numGridBoxes = numBoxes ;
int totalNumBoxes = numBoxes . x ∗ numBoxes . y ∗ numBoxes . z ;
g r i d = new p o i n t l i s t ∗ [totalNumBoxes] ;
for (int i = 0 ; i < totalNumBoxes ; i++)

gr id [i] = NULL;
int numPoints = points−>count () ;
p o i n t l i s t ∗ currentPo int = po in t s ;
while (cur rentPo int != NULL)
{ // Populate g r i d wi th p o i n t s in s u p p l i e d p o i n t l i s t

int gr id Index = GetGridIndex (GetGridBox (currentPo int)) ;
i f (g r id [gr id Index] == NULL)
{ // c r e a t e new p o i n t l i s t

g r id [gr id Index] = new p o i n t l i s t (cur rentPo int) ;
}
else
{ // add to e x i s t i n g p o i n t l i s t

g r id [gr id Index]−>add(&point (currentPo int)) ;
}
currentPo int = currentPoint−>next ;

}
}
// Constructs a PointGrid c o n t a i n i n g the s u p p l i e d p o i n t s and wi th the

c a p a c i t y as s p e c i f i e d in the sample g r i d s u p p l i e d
PointGrid : : PointGrid (p o i n t l i s t ∗points , PointGrid sampleGrid)
{

gridDim = sampleGrid . gridDim ;
p o i n t l i s t ∗ currentPo int = po in t s ;
while (cur rentPo int != NULL)
{

int gr id Index = GetGridIndex (GetGridBox (currentPo int)) ;
g r i d [gr id Index] = currentPo int ;

}
}
// Des t ruc tor : c l ean up memory
PointGrid : : ˜ PointGrid ()
{

227

int numBoxes = gridDim . numGridBoxes . x ∗ gridDim . numGridBoxes . y ∗ gridDim
. numGridBoxes . z ;

for (int i = 0 ; i < numBoxes ; i++)
delete g r id [i] ;

delete [] g r i d ;
for (map<p o i n t l i s t ∗ , bool> : : i t e r a t o r i t = deadPoints . begin () ; i t !=

deadPoints . end () ; ++i t)
delete i t−> f i r s t ;

}
// Adds a l l p o i n t l i s t s conta ined w i t h i n the s p e c i f i e d n e a r e s t ne ighbor

s h e l l o f g r i d boxes to the s p e c i f i e d map
void PointGrid : : GetNeighboringGridBoxes (const p o i n t I &gridBox , int

nearestNeighborNumber , vector<p o i n t l i s t ∗> ∗ ne ighborPo in tL i s t s) const
{

vector<po in t I> neighborBoxes ;
i f (nearestNeighborNumber == 0)
{ // s t o r e s the gridBox i t s e l f

neighborBoxes . push back (p o i n t I (gridBox)) ;
}
else
{

p o i n t I minPoint = p o i n t I (gridBox . x − nearestNeighborNumber , gridBox .
y − nearestNeighborNumber , gridBox . z − nearestNeighborNumber) ;

p o i n t I maxPoint = p o i n t I (gridBox . x + nearestNeighborNumber , gridBox .
y + nearestNeighborNumber , gridBox . z + nearestNeighborNumber) ;

i f (minPoint . z >= 0 | | maxPoint . z < gridDim . numGridBoxes . z)
for (int y = (int) minPoint . y ; y <= maxPoint . y ; y++) // add in top

and bottom of s h e l l
i f (y >=0 && y < gridDim . numGridBoxes . y)

for (int x = (int) minPoint . x ; x <= maxPoint . x ; x++)
{

i f (x >= 0 && x < gridDim . numGridBoxes . x)
{

i f (minPoint . z >= 0)
neighborBoxes . push back (p o i n t I (x , y , minPoint . z)) ;

i f (maxPoint . z < gridDim . numGridBoxes . z)
neighborBoxes . push back (p o i n t I (x , y , maxPoint . z)) ;

}
}

int zMaxMinus1 = (int) maxPoint . z − 1 ;
int yMaxMinus1 = (int) maxPoint . y − 1 ;
for (int z = (int) minPoint . z + 1 ; z <= zMaxMinus1 ; z++)
{

i f (z >= 0 && z < gridDim . numGridBoxes . z)
{

for (int x = (int) minPoint . x ; x <= maxPoint . x ; x++) // add f r o n t
and back o f s h e l l minus t h o s e in top and bottom

{
i f (x >= 0 && x < gridDim . numGridBoxes . x)
{

i f (minPoint . y >= 0)
neighborBoxes . push back (p o i n t I (x , minPoint . y , z)) ;

i f (maxPoint . y < gridDim . numGridBoxes . y)

228

neighborBoxes . push back (p o i n t I (x , maxPoint . y , z)) ;
}

}
for (int y = (int) minPoint . y + 1 ; y <= yMaxMinus1 ; y++) // add

r i g h t and l e f t o f s h e l l minus t h o s e in top / bot and f r o n t / back
{

i f (y >= 0 && y < gridDim . numGridBoxes . y)
{

i f (minPoint . x >= 0)
neighborBoxes . push back (p o i n t I (minPoint . x , y , z)) ;

i f (maxPoint . x < gridDim . numGridBoxes . x)
neighborBoxes . push back (p o i n t I (maxPoint . x , y , z)) ;

}
}

}
} // next z

} // Else
// Now check f o r corresponding p o i n t l i s t s t r u c t u r e s in each o f the g r i d

boxes h e l d in neighborBoxes and re turn them
int numBoxes = neighborBoxes . s i z e () ;
for (int i = 0 ; i < numBoxes ; i++)
{

int gr id Index = GetGridIndex (neighborBoxes [i]) ;
i f (g r id [gr id Index] != NULL)
{

ne ighborPo intL i s t s−>push back (g r id [gr id Index]) ;
}

}
}
// Analyzes area around the s p e c i f i e d p o i n t and adds the segments between

the p o i n t and the p o i n t g r i d to segmentHeap . The minimum segment
// d i s t a n c e in the heap w i l l be the n e a r e s t ne ighbor to the s p e c i f i e d

p o i n t . Saves a n a l y s i s data to op t imi ze f u t u r e s e a r c h i n g f o r the same
// p o i n t l i s t ∗ (so keep the same p o i n t l i s t p o i n t e r s when c a l l i n g t h i s

r o u t i n e) . I f no ne ighbor p o i n t s are found , t h i s f u n c t i o n r e t u r n s f a l s e
.

bool PointGrid : : AddNearest (p o i n t l i s t ∗pt)
{

p o i n t I gridBox = GetGridBox (pt) ;
bool foundPoint = fa l se ;
double minDistSqr ;
int neighborNum = 0 ;
vector<p o i n t l i s t ∗> ∗ ne ighborPo in tL i s t s = new vector<p o i n t l i s t ∗>;
map<p o i n t l i s t ∗ , NeighborData > : : i t e r a t o r neighborDataIT = neighborDataMap

. f i n d (pt) ;
i f (neighborDataIT == neighborDataMap . end ())

neighborDataIT = neighborDataMap . i n s e r t (pair<p o i n t l i s t ∗ , NeighborData
>(pt , NeighborData ())) . f i r s t ;

i f (neighborDataIT−>second . segmentHeap . GetNumItems () == 0)
{ // Find the n e a r e s t ne ighbor p o i n t in the s m a l l e s t ne ighbor s h e l l

number (not n e c e s s a r i l y the n e a r e s t p o i n t o v e r a l l)
double maxGridDim = gridDim . numGridBoxes . x > gridDim . numGridBoxes . y ?

gridDim . numGridBoxes . x : gridDim . numGridBoxes . y ;

229

maxGridDim = maxGridDim > gridDim . numGridBoxes . z ? maxGridDim :
gridDim . numGridBoxes . z ; // p r e v e n t s i n f i n i t e loop upon f a i l u r e

while (! foundPoint && neighborNum < maxGridDim)
{ // Find n e a r e s t p o i n t by s e a r c h i n g n e a r e s t ne ighbor s h e l l s o f

g r i d b o x e s (us ing s h e l l s in cube shape around gridBox)
GetNeighboringGridBoxes (gridBox , neighborNum++, ne i ghborPo in tL i s t s) ;
i f (ne ighborPo intL i s t s−>s i z e () != 0)
{

foundPoint = true ;
minDistSqr = CalcDis tances (pt , ∗ ne ighborPo in tL i s t s) ;

}
}
neighborDataIT−>second . l a rge s tNeare s tNe ighbor = neighborNum − 1 ;
i f (neighborNum > maxGridDim)
{

delete ne ighborPo in tL i s t s ;
return fa l se ;

}
}
else
{ // a l r e a d y have at l e a s t one ne ighbor p o i n t s t o r e d in the segmentHeap ,

so j u s t s e t the minDistSqr
minDistSqr = neighborDataIT−>second . segmentHeap . PeekHeap ()−>l engthSqr ;
neighborNum = neighborDataIT−>second . l a rge s tNeare s tNe ighbor + 1 ;

}
ne ighborPo intL i s t s−>c l e a r () ;
// Found p o i n t us ing nearby g r i d method , now need to check a l l g r i d s

w i t h i n the r a d i u s o f the min d i s t a n c e found
int maxNeighbor = (int) (s q r t (minDistSqr) / gridDim . g r i dS id e + 1) ;
for (int i = neighborNum ; i <= maxNeighbor ; i++)
{ // Search remaining gridBox s h e l l s w i t h i n the d i s t a n c e o f the f i r s t

p o i n t found
GetNeighboringGridBoxes (gridBox , i , n e i ghborPo in tL i s t s) ;

}
neighborDataIT−>second . l a rge s tNeare s tNe ighbor = maxNeighbor ;
i f (ne ighborPo intL i s t s−>s i z e () != 0)

CalcDis tances (pt , ∗ ne ighborPo in tL i s t s) ;
delete ne ighborPo in tL i s t s ;
return true ;

}
// C a l c u l a t e s the square o f the d i s t a n c e s between the s u p p l i e d pt and a l l

p o i n t s in the p o i n t l i s t and s t o r e s the d i s t a n c e s in the
// b inary heap segmentHeap . Returns the s h o r t e s t d i s t a n c e squared

encountered .
double PointGrid : : Ca lcDis tances (p o i n t l i s t ∗pt , p o i n t l i s t ∗ g r idPo in t s)
{

p o i n t l i s t ∗ currentPo int = gr idPo in t s ;
double minDistSqr = numer i c l im i t s<double> : :max() ;
map<p o i n t l i s t ∗ , NeighborData > : : i t e r a t o r i t = neighborDataMap . f i n d (pt) ;
i f (cur rentPo int != NULL && i t == neighborDataMap . end ())

i t = neighborDataMap . i n s e r t (pair<p o i n t l i s t ∗ , NeighborData>(pt ,
NeighborData ())) . f i r s t ;

while (cur rentPo int != NULL)

230

{
Segment newSegment (pt−>DistanceFromSquared (currentPo int) , pt ,

cur rentPo int) ;
i f (newSegment . l engthSqr < minDistSqr)

minDistSqr = newSegment . l engthSqr ;
segmentHeap . PushHeap (newSegment) ;
i t−>second . segmentHeap . PushHeap (newSegment) ;
cur rentPo int = currentPoint−>next ;

}
return minDistSqr ;

}
// C a l c u l a t e s the square o f the d i s t a n c e s between the s u p p l i e d pt and a l l

p o i n t l i s t s in the s u p p l i e d v e c t o r and s t o r e s the d i s t a n c e s in the
b inary heap segmentHeap . Returns the s h o r t e s t d i s t a n c e squared
encountered

double PointGrid : : Ca lcDis tances (p o i n t l i s t ∗pt , const vector<p o i n t l i s t ∗> &
p o i n t L i s t s)

{
double minDistSqr = numer i c l im i t s<double> : :max() ;
int numPts = p o i n t L i s t s . s i z e () ;
for (int i = 0 ; i < numPts ; i++)
{

double tempMinDistSqr = CalcDis tances (pt , p o i n t L i s t s [i]) ;
i f (tempMinDistSqr < minDistSqr)

minDistSqr = tempMinDistSqr ;
}
return minDistSqr ;

}
// Returns the s h o r t e s t segment from the heap as found through AddNearest .

pt1 i s in the MST w h i l e pt2 i s from the p o i n t g r i d . Remember to d e l e t e
the segment when f i n i s h e d

PointGrid : : Segment∗ PointGrid : : PopClosest ()
{

delete neighborDataMap [segmentHeap . PeekHeap ()−>pt1] . segmentHeap . PopHeap
() ; // keep the i n d i v i d u a l and main segment heaps in sync

return segmentHeap . PopHeap () ;
}
// Removes the p o i n t from i t s p o i n t l i s t and c l e a r s i t s r e f e r e n c e in the

g r i d . Assumes p o i n t i s on heap and d e l e t e s i t upon d e s t r u c t i o n o f the
PointGrid .

// Sup p l i ed p o i n t l i s t must be in the PointGrid , o t h e r w i s e e r r a t i c b e h a v i o r
may ensue .

void PointGrid : : RemovePoint (p o i n t l i s t ∗ pt L i s t)
{

int index = GetGridIndex (GetGridBox (p tL i s t)) ;
RemovePoint (ptLi s t , index) ;

}
// Searches f o r and f i n d s the proper p o i n t then removes i t from i t s

p o i n t l i s t . Assumes p o i n t i s on heap and d e l e t e s i t upon d e s t r u c t i o n o f
the PointGrid .

void PointGrid : : RemovePoint (po int &pt)
{

int index = GetGridIndex (GetGridBox(&pt)) ;

231

p o i n t l i s t ∗ currentPo int = gr id [index] ;
p o i n t l i s t ∗ foundPt = NULL;
while (cur rentPo int != NULL)
{

i f (currentPoint−>EqualsValue(&pt))
foundPt = currentPo int ;

cur rentPo int = currentPoint−>next ;
}
RemovePoint (foundPt , index) ;

}
// Local method t h a t a c t u a l l y performs p o i n t removal
void PointGrid : : RemovePoint (p o i n t l i s t ∗ ptLis t , int index)
{

g r id [index] = gr id [index]−>removeLocal (p tL i s t) ; // This w i l l NULL g r i d [
index] i f necessary

deadPoints [p t L i s t] = true ; // Store p o i n t l o c a t i o n f o r l a t e r
d e l e t i o n

}

MST NameMaker CL

This is a command line program that takes two inputs: a directory name, and an optional

second parameter “output” that if present specifies whether to provide program output to

the command line. The program creates a plain text file named “MST FILENAMES.txt”

that contains a list of all .txt in the specified directory. This program is called within the

user interface portion of the MST calculation program in order to automate calculation of all

potential MST files in a directory.

This code is programmed in C# and compiled for the .NET framework version 3.5 using

Microsoft Visual Studio 2008.

// MST NameMaker CL . cs

using System ;
using System . C o l l e c t i o n s . Gener ic ;
using System . Linq ;
using System . Text ;
using System . IO ;

namespace MST NameMaker CL
{

class Program
{ // C:\ pathname output

stat ic void Main(s t r i n g [] a rgs)
{

232

i f (args . Length > 0)
{

bool output = fa l se ;
i f (args . Length > 1 && args [1] == ” output ”)

output = true ;
s t r i n g dirName = args [0] ;
i f (output)

Console . WriteLine (” Received : ” + dirName) ;
i f (! D i rec tory . Ex i s t s (dirName))
{

i f (output)
Console . WriteLine (” Di rec tory does not e x i s t ! ”) ;

return ;
}
D i r e c t o r y I n f o i n f o = new D i r e c t o r y I n f o (dirName) ;
F i l e I n f o [] f i l e s = i n f o . GetF i l e s () ;
StreamWriter w r i t e r = n u l l ;
try
{

w r i t e r = new StreamWriter (dirName + ”\\MST FILENAMES.
txt ”) ;

for (int i = 0 ; i < f i l e s . Length ; i++)
{

i f (f i l e s [i] . Name . EndsWith (” . txt ”))
{

s t r i n g f i l e L i n e = f i l e s [i] . Name . Subst r ing (0 ,
f i l e s [i] . Name . Length − 4) ;

w r i t e r . WriteLine (f i l e L i n e) ;
}

}
i f (output)

Console . WriteLine (”MST FILENAMES created
s u c c e s s f u l l y . ”) ;

}
catch (Exception ex)
{

i f (output)
Console . WriteLine (ex . ToString ()) ;

}
f i n a l l y
{

i f (w r i t e r != n u l l)
w r i t e r . Close () ;

}
}

}
}

}

233

Image Analysis Code

The following code was used to perform a large number of image analysis calculations

on the Al-Si system. Primary methods include the radial distribution and critical diameter

calculations described earlier. Additionally, methods are provided for the calculation of phase

fraction, random line spacing as described in the Al-Si Flake to Fiber Transition section,

and for the outlining of objects, which is also used in calculation of the radial distribution

function. The class is designed for use in a multithreaded environment and provides handlers

for events that are raised when calculations are finished. Analysis settings are passed in

using the AnalysisOptions class and results are returned through data classes passed by events

raised upon finishing calculation. All image calculation methods are encapsulated in the class

ImageCalc.

The class ImageCalc was programmed in C# and compiled for the .NET Framework version

3.5 using Microsoft Visual Studio 2008. A windows forms user interface class was created for

user interaction with the ImageCalc class, however, that code is not concerned with the actual

image analysis, and is therefore not presented here.

ImageCalc

This class provides a large number of highly optimized image analysis methods.

// ImageCalc . cs
using System ;
using System . Drawing ;
using System . Drawing . Drawing2D ;
using System . Drawing . Imaging ;
using System . C o l l e c t i o n s ;
using System . C o l l e c t i o n s . Gener ic ;
using System . Runtime . I n t e r o p S e r v i c e s ;
using System . Threading ;
namespace Image Analyzer
{

public unsa fe class ImageCalc
{

private Objec tL i s t theObjects ;
private bool s t o p C a l c u l a t i o n s = fa l se ;
private bool c a l c u l a t i o n I n P r o g r e s s = fa l se ;
public de l e ga t e void LockAnalyzeMenuHandler (ob j e c t sender , System .

EventArgs args) ;

234

public event LockAnalyzeMenuHandler OnLockAnalyzeMenu ;
public de l e ga t e void UnLockAnalyzeMenuHandler (ob j e c t sender ,

System . EventArgs args) ;
public event UnLockAnalyzeMenuHandler OnUnLockAnalyzeMenu ;

public de l e ga t e void ProgressUpdateHandler (ob j e c t sender , double
percentIncrement) ;

public event ProgressUpdateHandler OnProgressUpdate ;
public de l e ga t e void AfterSpacingCalcHandler (ob j e c t sender ,

Spac ingCalc In fo r e s u l t s) ;
public event AfterSpacingCalcHandler AfterSpac ingCalc ;
public de l e ga t e void AfterPhaseCalcHandler (ob j e c t sender ,

PhaseFract ionResu l t s r e s u l t s) ;
public event AfterPhaseCalcHandler AfterPhaseCalc ;
public de l e ga t e void ObjectsFoundHandler (ob j e c t sender ,

FindObjectResults r e s u l t s) ;
public event ObjectsFoundHandler OnObjectsFound ;
// The f o l l o w i n g e v e n t s used to c a l l back in MainForm
public de l e ga t e void FinishedFindObjectsHandler (ob j e c t sender ,

System . EventArgs args) ;
public event FinishedFindObjectsHandler OnFinishedFindObjects ;
public de l e ga t e void FinishedSpacingCalcHandler (ob j e c t sender ,

System . EventArgs args) ;
public event FinishedSpacingCalcHandler OnFinishedSpacingCalc ;
public de l e ga t e void FinishedPhaseCalcHandler (ob j e c t sender ,

System . EventArgs args) ;
public event FinishedPhaseCalcHandler OnFinishedPhaseCalc ;
public de l e ga t e void FinishedCritDiamCalcHandler (ob j e c t sender ,

Cr i t i c a lD iamete rRe su l t s r e s u l t s) ;
public event FinishedCritDiamCalcHandler OnFinishedCritDiamCalc ;
public de l e ga t e void Fin i shedPixe lDi s tCa lcHand le r (ob j e c t sender ,

System . EventArgs args) ;
public event F in i shedPixe lDi s tCa lcHand le r OnFinishedRadialDistCalc

;
private int radDistWorkerDoneCount = 0 ;
private int radDistWorkerThreadCount = 0 ;
private readonly ob j e c t ThisLock = new ob j e c t () ;
private double pixe l sPerMicron ;
private s t r i n g f i leName ;
private s t r i n g r e su l t sPath ;
private List<int> objectCalcOrder ;
private OptionsForm . Analys i sOpt ions . R a d i a l D i s t r i b u t i o n S e t t i n g s

r a d D i s t S e t t i n g s ;
private Color radDistPhaseColor ;
L i s t<uint []> sumDistResults ;
L i s t<uint []> sumDistResultsLocal ;
L i s t<int> i n t e r s e c t s ;
L i s t<double> d i s t anc e ;
int spacingWorkerDoneCount = 0 ;
int spacingWorkerThreadCount = 0 ;
int t o t a l L i n e s = 0 ;
OptionsForm . Analys i sOpt ions . Spac ingSe t t ing s s p a c i n g S e t t i n g s ;

private bool showLines ;
private int critDiamPhaseCount = 0 ;

235

private int critDiamNumPixels = 0 ;
private List<List<double>> cr i tDiamPhaseFract ions ;
private OptionsForm . Analys i sOpt ions . C r i t i c a l D i a m e t e r S e t t i n g s

c r i tD iamSet t ings ;
const int MAXPOINTS = 2000 ;
private List<FastBitmap> fastBitmaps = new List<FastBitmap>() ;
private List<FastBitmap> fastBitmapsAlt = new List<FastBitmap>() ;

public ImageCalc (Bitmap bitmap)
{

fastBitmaps . Add(new FastBitmap (bitmap)) ;
}

/// <summary>
/// Attempts to l o c k c a l c u l a t i o n by check ing c a l c u l a t i o n I n P r o g r e s s

. I f c a l c u l a t i o n i s a l r e a d y in progress , an erro r messagebox
i s

/// d i s p l a y e d and t h i s f u n c t i o n r e t u r n s f a l s e . Returns t r u e and
s e t s c a l c u l a t i o n I n P r o g r e s s to t r u e o t h e r w i s e .

/// </summary>
/// <re turns></returns>
private bool LockCalcu lat ion ()
{

l o ck (ThisLock)
{

i f (c a l c u l a t i o n I n P r o g r e s s)
{

System . Windows . Forms . MessageBox . Show(”Cannot s t a r t
c a l c u l a t i o n . Ca l cu l a t i on a l ready in prog r e s s . ”) ;

return fa l se ;
}
c a l c u l a t i o n I n P r o g r e s s = true ;
return true ;

}
}
private void UnlockCalcu lat ion ()
{

l o ck (ThisLock)
{

c a l c u l a t i o n I n P r o g r e s s = fa l se ;
}

}
public void Calcu lateSpac ing (OptionsForm . Analys i sOpt ions .

Spac ingSe t t ing s s e t t i n g s , double pixe lsPerMicron , s t r i n g
fi leName , s t r i n g r e su l t sPa th)

{// Need to c r e a t e m u l t i p l e bitmaps , us ing one bitmap doesn ’ t work
because r e q u i r e d l o c k s go s lower than s i n g l e threaded app
i f (! LockCalcu lat ion ())

return ;
int numProcessors = System . Environment . ProcessorCount ;
i f (s e t t i n g s . NumberOfLines < 100 && fastBitmaps [0] . Width ∗

fastBitmaps [0] . Height < 10000000)
numProcessors = 1 ; // no need to incur overhead o f

m u l t i p l e images and t h r e a d s on such a sma l l number o f
l i n e s

236

this . f i leName = fi leName ;
this . showLines = s e t t i n g s . ShowLines ;
this . i n t e r s e c t s = new List<int>() ;
this . d i s t ance = new List<double>() ;
this . spacingWorkerDoneCount = 0 ;
this . spacingWorkerThreadCount = numProcessors ;
this . t o t a l L i n e s = s e t t i n g s . NumberOfLines ;
this . p ixe l sPerMicron = pixe l sPerMicron ;
this . s p a c i n g S e t t i n g s = s e t t i n g s ;
i f (fastBitmaps . Count > 1) // need to g e t r i d o f images (

shou ld on ly have one fas tBi tmap in l i s t a f t e r f i n i s h e d c a l c
{

for (int i = 1 ; i < fastBitmaps . Count ; i++)
{

fastBitmaps [i] . Bitmap . Dispose () ;
fastBitmaps . RemoveAt(i) ;

}
}
i f (fastBitmapsAlt . Count > 0)
{

for (int i = 0 ; i < fastBitmapsAlt . Count ; i++)
{

fastBitmapsAlt [i] . Bitmap . Dispose () ;
fastBitmapsAlt . RemoveAt(i) ;

}
}
for (int i = 1 ; i < numProcessors ; i++) // Create new

FastBitmaps f o r every p r o c e s s o r we have to work wi th
fastBitmaps . Add(new FastBitmap (fastBitmaps [0] . Bitmap)) ;

i f (showLines)
for (int i = 0 ; i < numProcessors ; i++) // Create new

FastBitmaps f o r every p r o c e s s o r we have to work wi th
fastBitmapsAlt . Add(new FastBitmap (fastBitmaps [0] .

Bitmap)) ;
for (int i = 0 ; i < fastBitmaps . Count ; i++)

fastBitmaps [i] . LockBitmap () ;
i f (showLines)

for (int i = 0 ; i < fastBitmapsAlt . Count ; i++)
fastBitmapsAlt [i] . LockBitmap () ;

Thread newThread ;
for (int i = 0 ; i < numProcessors ; i++)
{

i n t e r s e c t s . Add(0) ;
d i s t anc e . Add(0) ;
int threadNum = i ;
i f (i + 1 < numProcessors)
{

newThread = new Thread (d e l e ga t e ()
{

CalculateSpacingWorker (new OptionsForm .
Analys i sOpt ions . Spac ingSe t t ing s (s e t t i n g s .
NumberOfLines / numProcessors ,
s e t t i n g s . ShowLines) , threadNum) ;

237

}) ;
}
else
{ // on l a s t i t e r a t i o n , may need to add a coup le

i t e r a t i o n s due to i n t e g e r rounding
newThread = new Thread (d e l e ga t e ()
{

int numCalc = s e t t i n g s . NumberOfLines /
numProcessors ;

int numLines = s e t t i n g s . NumberOfLines − numCalc ∗
(numProcessors − 1) ;

CalculateSpacingWorker (new OptionsForm .
Analys i sOpt ions . Spac ingSe t t ing s (numLines ,
s e t t i n g s . ShowLines) , threadNum) ;

}) ;
}
newThread . IsBackground = true ;
newThread .Name = ”Worker ” + i . ToString () + ” (Spacing) ” ;
newThread . Sta r t () ;

}
}
public void CalculateSpacingWorker (OptionsForm . Analys i sOpt ions .

Spac ingSe t t ing s s e t t i n g s , int threadNumber)
{

int numLines = s e t t i n g s . NumberOfLines ;
double p r o g r e s s I n t e r v a l ;
l o ck (ThisLock)
{

p r o g r e s s I n t e r v a l = 1 .0 / spacingWorkerThreadCount ;
}

// need to c a l c u l a t e random l i n e s and make sure they do not
i n t e r s e c t any ” red ” areas

int l i n e s = 0 , x1 = 0 , y1 = 0 , x2 = 0 , y2 = 0 ;
System . Random r = new Random() ;
Line myLine ;
Point pointOne , pointTwo ;

for (l i n e s = 0 ; l i n e s < numLines ; l i n e s++)
{

Color myColor ;
int c o l = fastBitmaps [threadNumber] . Width ;
int row = fastBitmaps [threadNumber] . Height ;

do // randomizes p i x e l p o i n t t h a t i s not red
{

x1 = r . Next (co l −1) ;
y1 = r . Next (row−1) ;

myColor = fastBitmaps [threadNumber] . GetPixel (x1 , y1) ;
} while (myColor == Color . FromArgb (255 , 0 , 0)) ;
do // randomizes second p i x e l p o i n t t h a t i s not red
{

x2 = r . Next (co l −1) ;
y2 = r . Next (row−1) ;

myColor = fastBitmaps [threadNumber] . GetPixel (x2 , y2) ;

238

} while ((myColor == Color . FromArgb (255 , 0 , 0)) | | (x2 == x1 && y2
== y1)) ;

pointOne = new Point (x1 , y1) ;
pointTwo = new Point (x2 , y2) ;
myLine = new Line (pointOne , pointTwo) ;

int pointNumber = 0 ;
i n t e r s e c t s [threadNumber] += F i n d I n t e r s e c t s (myLine , Color . FromArgb

(255 , 255 , 255) , Color . FromArgb (255 , 0 , 0) , r e f pointNumber ,
threadNumber) ;

i f (pointNumber > 0) // means a s t op c o l o r (red) was
encountered

{
myLine . ClipTo (pointNumber − 1) ;
y2 = myLine . GetPoint (pointNumber − 1) .Y; // make

sure x2 and y2 are the proper p o i n t s
x2 = myLine . GetPoint (pointNumber − 1) .X;

}
else
{

y2 = myLine . GetPoint (myLine . Points − 1) .Y; // make
sure x2 and y2 are the proper p o i n t s

x2 = myLine . GetPoint (myLine . Points − 1) .X;
}

d i s t anc e [threadNumber]+=System . Math . Sqrt (Convert . ToDouble ((y2−y1) ∗(y2−y1)
+(x2−x1) ∗(x2−x1))) ;

i f (l i n e s % (numLines /100 .0) == 0)
{

i f (OnProgressUpdate != n u l l)
{

OnProgressUpdate (this , p r o g r e s s I n t e r v a l) ;
}

}
}
Calcu la teSpac ingF in i shed () ;

}
public void Calcu la teSpac ingF in i shed ()
{

bool lastThreadDone = fa l se ;
l o ck (ThisLock)
{

spacingWorkerDoneCount++;
i f (spacingWorkerDoneCount == spacingWorkerThreadCount)

lastThreadDone = true ;
}
i f (lastThreadDone == fa l se)

return ;
int numRow = fastBitmaps [0] . Height ;
int numCol = fastBitmaps [0] . Width ;
i f (s p a c i n g S e t t i n g s . ShowLines & spacingWorkerThreadCount > 1)
{

Color c o l o r ;
for (int row = 0 ; row < numRow; row++)

for (int c o l = 0 ; c o l < numCol ; c o l++)

239

for (int i = 1 ; i < fastBitmaps . Count ; i++)
{

c o l o r = fastBitmapsAlt [i] . GetPixel (co l , row) ;
i f (c o l o r == Color . FromArgb (0 , 128 , 0)) //

Carefu l , Color . Green does not work here
even i f t h a t ’ s how i t ’ s been s e t

{
fastBitmapsAlt [0] . S e tP ixe l (co l , row , c o l o r

) ;
break ;

}
}

}
for (int i = 0 ; i < fastBitmaps . Count ; i++)
{

fastBitmaps [i] . UnlockBitmap () ;
i f (showLines)

fastBitmapsAlt [i] . UnlockBitmap () ;
}
int t o t a l I n t e r s e c t s = 0 ;
double t o t a l D i s t a n c e = 0 ;
double spac ing ;
for (int i = 0 ; i < spacingWorkerThreadCount ; i++)
{

t o t a l D i s t a n c e += d i s t anc e [i] ;
t o t a l I n t e r s e c t s += i n t e r s e c t s [i] ;

}
i f (t o t a l I n t e r s e c t s > 0)
{

spac ing = t o t a l D i s t a n c e / Convert . ToDouble (t o t a l I n t e r s e c t s
) / p ixe l sPerMicron ;

}
else
{

spac ing = 0 ;
}
for (int i = 1 ; i < fastBitmaps . Count ; i++)
{

fastBitmaps [i] . Bitmap . Dispose () ;
fastBitmaps . RemoveAt(i) ;

}
for (int i = 1 ; i < fastBitmapsAlt . Count ; i++)
{

fastBitmapsAlt [i] . Bitmap . Dispose () ;
fastBitmapsAlt . RemoveAt(i) ;

}
i f (AfterSpac ingCalc != n u l l)
{

Spac ingCalc In fo r e s u l t s = new Spac ingCalc In fo (spacing ,
t o t a l I n t e r s e c t s , t o ta lD i s tance , t o t a l L i n e s) ;

AfterSpac ingCalc (this , r e s u l t s) ;
}
i f (OnFinishedSpacingCalc != n u l l)

240

{
OnFinishedSpacingCalc (this , new System . EventArgs ()) ;

}
UnlockCalcu lat ion () ;

}
/// <summary>
/// Finds and counts the number o f i n t e r s e c t s on a g iven l i n e ,

counts i n d i v i d u a l s p a c i n g s i f t r a c k D i s t r i b u t i o n i s s e t and
s t o r e s them

/// in the s u p p l i e d s p a c i n g L i s t , which i s ignored o t h e r w i s e .
/// </summary>
/// <param name=” l i n e ”>Line to analyze</param>
/// <param name=”c o l o r”>Color to count i n t e r s e c t i o n s of</param>
/// <param name=”stopCo lor”>Color to h a l t c a l c u l a t i o n </param>
/// <param name=”pointNumber”>Point number at which s topCo lor was

encountered , e q u a l to 0 i f i t was not encountered</param>
/// <re turns></returns>
int F i n d I n t e r s e c t s (Line l i n e , Color co lo r , Color stopColor , r e f

int pointNumber , int threadNumber)
{

int i n t e r s e c t s = 0 ;
Color oldColor , newColor ;
i f (c o l o r == Color . FromArgb (0 , 0 , 0)) // 0 ,0 ,0 i s b l a c k

o ldColor = Color . FromArgb (255 ,255 ,255) ; // 255 , 255 , 255 i s whi te
else

o ldColor = Color . FromArgb (0 , 0 , 0) ;
for (int i = 0 ; i<l i n e . Points ; i++)

{
newColor = fastBitmaps [threadNumber] . GetPixel (l i n e .

GetPoint (i) .X, l i n e . GetPoint (i) .Y) ;
i f (i == 0)

o ldColor = newColor ; // prevent f i r s t p i x e l from
caus ing i n t e r s e c t

i f (newColor != stopColor) // i f s to p c o l o r h i t (red) then abo r t
l i n e check ing pro ces s

{
i f (newColor == c o l o r && oldColor != c o l o r)

{
i n t e r s e c t s ++;

i f (showLines)
{

fastBitmapsAlt [threadNumber] . S e tP ixe l (l i n e .
GetPoint (i) .X, l i n e . GetPoint (i) .Y, Color .
Red) ;

}
}

else
{

i f (showLines)
{

fastBitmapsAlt [threadNumber] . S e tP ixe l (l i n e .
GetPoint (i) .X, l i n e . GetPoint (i) .Y, Color .
Green) ;

241

}
}

o ldColor = newColor ;
}
else // s t op c o l o r h i t , abo r t p roc es s
{

pointNumber = i ;
i = l i n e . Points ;

}
}
return i n t e r s e c t s ;
}
/// <summary>

/// Se t s pointNumber to p o i n t o f f i r s t i n t e r s e c t , r e t u r n s f a l s e i f no
i n t e r s e c t s are found

/// </summary>
bool F i n d F i r s t I n t e r s e c t (Line l i n e , Color co lo r , r e f int pointNumber ,

int threadNumber)
{

Color oldColor , newColor ;
int i = 0 ;
i f (c o l o r == Color . FromArgb (0 , 0 , 0))

newColor = Color . FromArgb (255 ,255 ,255) ;
else

newColor = Color . FromArgb (0 , 0 , 0) ;
do
{

o ldColor = newColor ;
newColor = fastBitmaps [threadNumber] . GetPixel (l i n e .

GetPoint (i) .X, l i n e . GetPoint (i) .Y) ;
i ++;

} while (i<l i n e . Points && ((newColor != c o l o r) | | (o ldColor != c o l o r
))) ;

i f (i == l i n e . Points)
{

return fa l se ; // no i n t e r s e c t s found
}
else
{

pointNumber = i −1;
return true ;

}
}
public void Calcu latePhaseFract ion (OptionsForm . Analys i sOpt ions .

PhaseSett ings phase In fo)
{

i f (! LockCalcu lat ion ())
return ;

Thread phaseCalcThread = new Thread (d e l e ga t e ()
{

CalculatePhaseFract ionWorker (phase In fo) ;
}) ;
phaseCalcThread . IsBackground = true ;

242

phaseCalcThread .Name = ”Phase Calc Worker 0” ;
phaseCalcThread . Sta r t () ;

}
public void CalculatePhaseFract ionWorker (OptionsForm .

Analys i sOpt ions . PhaseSett ings phase In fo)
{

int numPhases = phaseIn fo . Count ;
int [] phaseCount = new int [numPhases] ;
double [] phaseFract ion = new double [numPhases] ;
Color [] phaseColors = new Color [numPhases] ;

Color c o l o r ;
int rowPtr ;
phase In fo . PhaseColors . CopyTo(phaseColors) ; // speeds up

a n a l y s i s s l i g h t l y
int numRow = fastBitmaps [0] . Height ;
int numCol = fastBitmaps [0] . Width ;

int numPixels = numRow ∗ numCol ;
for (int i = 0 ; i < numPhases ; i++)
{

phaseCount [i] = 0 ;
}
fastBitmaps [0] . LockBitmap () ;
for (int row = 0 ; row < numRow; row++)
{

rowPtr = fastBitmaps [0] . GetRowPtr (row) ;
for (int c o l = 0 ; c o l < numCol ; c o l++)
{

c o l o r = fastBitmaps [0] . GetPixelFromRowPtr (rowPtr , c o l)
;

for (int j = 0 ; j < numPhases ; j++)
{

i f (c o l o r == phaseColors [j])
{

phaseCount [j]++;
j = numPhases ;

}
}

}
}
fastBitmaps [0] . UnlockBitmap () ;
for (int i = 0 ; i < numPhases ; i++)

phaseFract ion [i] = Convert . ToDouble (phaseCount [i]) /numPixels ;
i f (AfterPhaseCalc != n u l l)
{

AfterPhaseCalc (this , new PhaseFract ionResu l t s (
phaseFract ion)) ;

}

i f (OnFinishedPhaseCalc != n u l l)
{

OnFinishedPhaseCalc (this , new System . EventArgs ()) ;
}
UnlockCalcu lat ion () ;

243

}
/// <summary>

/// F i l l s c i r c l e D i a m e t e r s and phaseFrac t ions wi th a l i s t o f d iameters
(in p i x e l s) and phase

/// f r a c t i o n data
/// </summary>
/// <param name=”phaseColor”></param>
/// <param name=”c i r c l e D i a m e t e r s”></param>
/// <param name=”phaseFrac t ions”></param>
public void CalcCritDiamFract ions (OptionsForm . Analys i sOpt ions .

C r i t i c a l D i a m e t e r S e t t i n g s s e t t i n g s , Color phaseColor)
{

i f (! LockCalcu lat ion ())
return ;

c r i tD iamSet t ing s = s e t t i n g s ;
Thread t = new Thread (d e l e ga t e ()

{
CalcCritDiamMain (phaseColor) ;

}) ;
t . IsBackground = true ;
t .Name = ” C r i t i c a l Diameter Driver Thread” ;
t . S ta r t () ;

}
private void CalcCritDiamMain (Color phaseColor)
{

int numProcessors = System . Environment . ProcessorCount ;
i f (fastBitmaps . Count > 1) // need to g e t r i d o f images (

shou ld on ly have one fas tBi tmap in l i s t a f t e r f i n i s h e d c a l c
{

for (int i = 1 ; i < fastBitmaps . Count ; i++)
{

fastBitmaps [i] . Bitmap . Dispose () ;
fastBitmaps . RemoveAt(i) ;

}
}
for (int i = 1 ; i < numProcessors ; i++) // Create new

FastBitmaps f o r every p r o c e s s o r we have to work wi th
fastBitmaps . Add(new FastBitmap (fastBitmaps [0] . Bitmap)) ;

for (int i = 0 ; i < fastBitmaps . Count ; i++)
fastBitmaps [i] . LockBitmap () ;

int [] d i amete rL i s t = {10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 , 90 , 100 ,
120 , 140 , 160 , 180 , 200 , 220 ,

240 , 260 , 280 , 300 , 320 , 340 , 360 , 380 , 400 , 450 , 500 ,
550 , 600 ,

650 , 700 , 750 , 800 , 850 , 900 , 950} ;
ArrayList d iameters = new ArrayList (d iamete rL i s t) ;
ArrayList phaseFract ions = new ArrayList () ;
ArrayList c i r c l e D i a m e t e r s = new ArrayList () ;
Color rgbPhaseColor = Color . FromArgb(phaseColor .R, phaseColor .

G, phaseColor .B) ;
f o r each (ob j e c t diameter in diameters)
{

244

i f ((int) diameter < fastBitmaps [0] . Width && (int) diameter
< fastBitmaps [0] . Height)

{
double [] f r a c t i o n s = CalcPhaseFract ionDriver (

rgbPhaseColor , (int) diameter) ;
phaseFract ions . AddRange(f r a c t i o n s) ;
for (int i = 0 ; i < f r a c t i o n s . Length ; i++)
{

c i r c l e D i a m e t e r s . Add((int) diameter) ;
}

}
i f (OnProgressUpdate != n u l l)
{

OnProgressUpdate (this , 1 . 0 / diameters . Count ∗ 100) ;
}

}
for (int i = 0 ; i < fastBitmaps . Count ; i++)

fastBitmaps [i] . UnlockBitmap () ;
i f (OnFinishedCritDiamCalc != n u l l)
{

OnFinishedCritDiamCalc (this , new Cr i t i c a lD iamete rRe su l t s (
c i r c l eD iamete r s , phaseFract ions)) ;

}
UnlockCalcu lat ion () ;

}
/// <summary>
/// Returns an array o f phase f r a c t i o n s c a l c u l a t e d from c i r c l e s

wi th the s u p p l i e d diameter .
/// </summary>
/// <param name=”phaseColor”></param>
/// <param name=”diameter”></param>
/// <re turns></returns>
private double [] CalcPhaseFract ionDriver (Color phaseColor , int

diameter)
{

i f (c r i tD iamSet t ing s . CalculationMethod == OptionsForm .
Analys i sOpt ions . C r i t i c a l D i a m e t e r S e t t i n g s . CalcMethod .
RandomCircles)
return CalcByRandomCircles (phaseColor , diameter) ;

else
return CalcByGridCirc les (phaseColor , diameter) ;

}
private double [] CalcByGridCirc les (Color phaseColor , int diameter)
{

int maxLtoR = (fastBitmaps [0] . Width − 1) / diameter ;
int maxTtoB = (fastBitmaps [0] . Height − 1) / diameter ;
int xDistBetweenCirc le s = 0 ;
int yDistBetweenCirc le s = 0 ;
i f (maxLtoR > 5)
{

maxLtoR = 5 ;
// xDis tBetweenCirc l e s = t h i s . mnCol/5−diameter ;

}

245

xDistBetweenCirc le s = fastBitmaps [0] . Width / maxLtoR −
diameter ;

i f (maxTtoB > 5)
{

maxTtoB = 5 ;
// yDis tBetweenCirc les = t h i s .mnRow/5−diameter ;

}
yDistBetweenCirc le s = fastBitmaps [0] . Height / maxTtoB −

diameter ;
int numCircles = maxLtoR ∗ maxTtoB ;
double [] phaseFract ions = new double [numCircles] ;
// C i r c l e c i r c l e = new C i r c l e (diameter , new Point (diameter /2 ,

diameter /2)) ;
C i r c l e c i r c l e = new C i r c l e (diameter , new Point (diameter / 2 +

xDistBetweenCirc le s / 2 , diameter / 2 + yDistBetweenCirc le s
/ 2)) ;

for (int x = 0 ; x < maxLtoR ; x++)
{

for (int y = 0 ; y < maxTtoB ; y++)
{

// i f (maxTtoB == 1 && maxLtoR == 1)
// c i r c l e . DrawCircle (t h i s) ;
phaseFract ions [x ∗ maxTtoB + y] =

CalcPhaseFract ionCi rc l e (phaseColor , c i r c l e) ;
c i r c l e . O f f s e t (new Point (0 , diameter +

yDistBetweenCirc le s)) ;
}
c i r c l e . O f f s e t (new Point (diameter + xDistBetweenCirc les , −(

diameter + yDistBetweenCirc l es) ∗ maxTtoB)) ;
}
return phaseFract ions ;

}
/// <summary>
///
/// </summary>
/// <param name=”phaseColor”></param>
/// <param name=”diameter”></param>
/// <re turns></returns>
private double [] CalcByRandomCircles (Color phaseColor , int

diameter)
{

// Now want to genera te randomly p la ced c i r c l e s o f the
s p e c i f i e d diameter and compi le phase f r a c t i o n measurements
to a doub le array

double t o t a l C i r c l e A r e a = fastBitmaps [0] . Height ∗ fastBitmaps
[0] . Width ;

double i n d i v i d u a l C i r c l e A r e a = diameter ∗ diameter ∗ 0 .7853982 ;
// Area = p i ∗ r ˆ2 , or Area = dˆ2 ∗ p i / 4

int numCircles = (int) (t o t a l C i r c l e A r e a / i n d i v i d u a l C i r c l e A r e a
+ 0 . 5) ;

int numProcessors = fastBitmaps . Count ;
cr i tDiamPhaseFract ions = new List<List<double>>() ;
bool s p l i t C i r c l e s = fa l se ;

246

i f (numCircles < numProcessors)
{ // Have more p r o c e s s o r s than c i r c l e s , so w i l l run j u s t one

worker thread and t e l l i t to s p l i t c i r c l e s up
numProcessors = 1 ;
s p l i t C i r c l e s = true ;

}
Random seed = new Random() ;
Thread [] threads = new Thread [numProcessors] ;
for (int i = 0 ; i < numProcessors ; i++)
{

int d = diameter ;
int threadNum = i ;
int t h r e a d C i r c l e s ;
Random r = new Random(seed . Next ()) ;
//Thread . S l eep (1) ; // ensures the next random number

won ’ t be c r e a t e d wi th the same seed number
i f (i + 1 < numProcessors)

t h r e a d C i r c l e s = numCircles / numProcessors ;
else

t h r e a d C i r c l e s = numCircles − numCircles /
numProcessors ∗ (numProcessors − 1) ;

cr i tDiamPhaseFract ions . Add(new List<double>(t h r e a d C i r c l e s)
) ;

threads [i] = new Thread (d e l e ga t e ()
{

CalcByRandomCirclesWorker (Color . FromArgb(
phaseColor .R, phaseColor .G, phaseColor .B) , d ,
threadNum , th r eadCi r c l e s ,
s p l i t C i r c l e s , r) ;

}) ;
threads [i] . IsBackground = true ;
threads [i] . Name = ”CD Rand Worker ” + threadNum . ToString ()

;
threads [i] . S ta r t () ;

}
for (int i = 0 ; i < numProcessors ; i++)
{

threads [i] . Jo in () ;
}
List<double> combPhaseFractions = new List<double>(numCircles)

;
for (int i = 0 ; i < numProcessors ; i++)
{

combPhaseFractions . AddRange(cr i tDiamPhaseFract ions [i]) ;
}
return combPhaseFractions . ToArray () ;

}
/// <summary>
/// Generates the s p e c i f i e d number o f c i r c l e s and c a l c u l a t e s the

phase f r a c t i o n us ing the c i r c l e phase f r a c t i o n worker f u n c t i o n .
Phase

/// f r a c t i o n r e s u l t s are s t o r e d to cri tDiamPhaseFract ions [
threadNum]

247

/// </summary>
/// <param name=”phaseColor”></param>
/// <param name=”diameter”></param>
/// <param name=”threadNum”></param>
/// <param name=”numCircles”></param>
private void CalcByRandomCirclesWorker (Color phaseColor , int

diameter , int threadNum , int numCircles , bool s p l i t C i r c l e s ,
Random r)

{
int rad iu s = diameter / 2 + 1 ;
int maxX = fastBitmaps [threadNum] . Width − rad iu s ;
int minX = rad iu s ;
int maxY = fastBitmaps [threadNum] . Height − rad iu s ;
int minY = rad iu s ;
int xRange = maxX − minX ;
int yRange = maxY − minY ;
int x = r . Next (minX , maxX + 1) ;
int y = r . Next (minY , maxY + 1) ;
C i r c l e c i r c l e = new C i r c l e (diameter , x , y) ;
for (int i = 0 ; i < numCircles ; i++)
{

x = r . Next (minX , maxX + 1) ;
y = r . Next (minY , maxY + 1) ;
c i r c l e . O f f s e t (new Point (x − c i r c l e . Center .X, y − c i r c l e .

Center .Y)) ;
i f (s p l i t C i r c l e s)
{

cr i tDiamPhaseFract ions [threadNum] . Add(
Ca lcPhaseFract ionCi rc l e (phaseColor , c i r c l e)) ;

}
else
{

CalcPhaseFract ionCirc leWorker (phaseColor , c i r c l e ,
threadNum , 0 , c i r c l e . Diameter) ;

}
}

}
private double CalcPhaseFract ionCirc l eS ing leThreaded (Color

phaseColor , C i r c l e t h e C i r c l e)
{

int numPixels = 0 ;
int phaseCount = 0 ;
for (int y = 0 ; y <= t h e C i r c l e . Diameter ; y++) // i t e r a t e top to

bottom
{

for (int x = t h e C i r c l e . Le f tPo in t s [y] . X; x <= t h e C i r c l e . RightPoints
[y] . X; x++)

{
i f (fastBitmaps [0] . GetPixel (x , t h e C i r c l e . Le f tPo in t s [y

] . Y) == phaseColor)
{

phaseCount++;
}

248

numPixels++;
}

}
double phaseFract ion = Convert . ToDouble (phaseCount) /numPixels ;
return phaseFract ion ;
}
/// <summary>
/// C a l c u l a t e s phase f r a c t i o n w i t h i n the g iven c i r c l e us ing as

many t h r e a d s as t h e r e are f a s t b i t m a p s a v a i l a b l e .
/// </summary>
/// <param name=”phaseColor”></param>
/// <param name=”t h e C i r c l e”></param>
private double CalcPhaseFract ionCi rc l e (Color phaseColor , C i r c l e

t h e C i r c l e)
{

int numThreads = fastBitmaps . Count ;
L i s t<Circ l e> c i r c l e s = new List<Circ l e >() ;
for (int i = 0 ; i < numThreads ; i++)
{

c i r c l e s . Add(new C i r c l e (t h e C i r c l e . Diameter , t h e C i r c l e .
Center)) ;

}
Thread [] threads = new Thread [numThreads] ;
critDiamNumPixels = 0 ;
critDiamPhaseCount = 0 ;
for (int i = 0 ; i < numThreads ; i++)
{

int threadNum = i ;
i f (i + i < numThreads)
{

threads [threadNum] = new Thread (d e l e ga t e ()
{

CalcPhaseFract ionCirc leWorker (Color . FromArgb(
phaseColor .R, phaseColor .G, phaseColor .B) ,
c i r c l e s [threadNum] , threadNum ,
threadNum∗ c i r c l e s [threadNum] . Diameter/

numThreads , (threadNum+1)∗ c i r c l e s [
threadNum] . Diameter/numThreads −1) ;

}) ;
}
else // may need more l o o p s f o r the l a s t thread
{

threads [threadNum] = new Thread (d e l e ga t e ()
{

CalcPhaseFract ionCirc leWorker (Color . FromArgb(
phaseColor .R, phaseColor .G, phaseColor .B) ,
c i r c l e s [threadNum] , threadNum ,
threadNum ∗ c i r c l e s [threadNum] . Diameter /

numThreads , c i r c l e s [threadNum] . Diameter
) ;

}) ;
}

}

249

for (int i = 0 ; i < numThreads ; i++)
{

threads [i] . IsBackground = true ;
threads [i] . Name = ” Cr i t Diam Worker ” + i . ToString () ;
threads [i] . S ta r t () ;

}
for (int i = 0 ; i < numThreads ; i++)
{

threads [i] . Jo in () ;
}
return ((double) critDiamPhaseCount) / critDiamNumPixels ;

}
/// <summary>
/// C a l c u l a t e s phase f r a c t i o n f o r the s u p p l i e d c i r c l e and the

g iven y v a l u e s us ing f a s t b i t m a p [threadNum] . I f a f u l l c i r c l e
i s be ing

/// c a l c u l a t e d (based on endY − s tar tY == t h e C i r c l e . diameter) then
r e s u l t s are s t o r e d to cri tDiamPhaseFract ions [threadNum] . I f a
par t

/// c i r c l e i s be ing c a l c u l a t e d then r e s u l t s are s t o r e d to
critDiamNumPixels and critDiamPhaseCount wi th thread−s a f e code .

/// </summary>
/// <param name=”phaseColor”></param>
/// <param name=”t h e C i r c l e”></param>
/// <param name=”threadNum”></param>
/// <param name=”star tY”></param>
/// <param name=”endY”></param>
private void CalcPhaseFract ionCirc leWorker (Color phaseColor ,

C i r c l e theC i r c l e , int threadNum , int startY , int endY)
{

int numPixels = 0 ;
int phaseCount = 0 ;
for (int y = startY ; y <= endY ; y++)
{

for (int x = t h e C i r c l e . Le f tPo in t s [y] . X; x <= t h e C i r c l e .
RightPoints [y] . X; x++)

{
i f (fastBitmaps [threadNum] . GetPixel (x , t h e C i r c l e .

Le f tPo in t s [y] . Y) == phaseColor)
{

phaseCount++;
}
numPixels++;

}
}
i f (endY − startY == t h e C i r c l e . Diameter) // Detec t s i f a

f u l l c i r c l e i s be ing c a l c u l a t e d
{

cr i tDiamPhaseFract ions [threadNum] . Add (((double) phaseCount)
/ numPixels) ;

}
else
{

250

l o ck (ThisLock)
{

critDiamNumPixels += numPixels ;
critDiamPhaseCount += phaseCount ;

}
}

}
/// <summary>
/// C a l c u l a t e s p i x e l d i s t r i b u t i o n o f the s u p p l i e d image and

o u t p u t s the data to a t e x t f i l e
/// </summary>
/// <param name=”phaseColor”>Phase c o l o r f o r which to ana lyze the

d i s t a n c e between p i x e l s </param>
/// <param name=”pixe l sPerMicron”>Image c a l i b r a t i o n </param>
/// <param name=”fi leName”>F i l e name o f the image be ing analyzed ,

not i n c l u d i n g the path , i n c l u d i n g the ex tens ion</param>
public void Ca l cRad ia lD i s t r i bu t i on (Color phaseColor , double

pixe lsPerMicron , s t r i n g fi leName , s t r i n g re su l t sPath ,
OptionsForm . Analys i sOpt ions . R a d i a l D i s t r i b u t i o n S e t t i n g s

r a d D i s t S e t t i ng s)
{

i f (! LockCalcu lat ion ())
return ;

this . f i leName = fi leName ;
this . r e su l t sPa th = re su l t sPath ;
this . p ixe l sPerMicron = pixe l sPerMicron ;
this . r a d D i s t S e t t i n g s = r a d D i s t S e t t i n g s ;
s t o p C a l c u l a t i o n s = fa l se ;
i f (r a d D i s t S e t t i n g s . Loca lAna lys i s)
{

i f (r a d D i s t Se t t i n g s . RadDistCalcStyle ==
OptionsForm . Analys i sOpt ions . R a d i a l D i s t r i b u t i o n S e t t i n g s .

R a d i a l D i s t r i b u t i o n C a l c u l a t i o n S t y l e . FromCircle)
{

CalcRadia lDistLoca lFromCirc le (phaseColor) ;
}
else
{

CalcRadialDistLocalFromObject (phaseColor) ;
}
return ;

}
fastBitmaps [0] . LockBitmap () ;
// S t o r e s l o c a t i o n s o f p i x e l s o f c o l o r s p e c i f i e d by phaseColor
List<ushort> phasePointsX = new List<ushort >() ;
L i s t<ushort> phasePointsY = new List<ushort >() ;
for (int row = 0 ; row < fastBitmaps [0] . Height ; row++)

for (int c o l = 0 ; c o l < fastBitmaps [0] . Width ; c o l++)
{

i f (fastBitmaps [0] . GetPixel (co l , row) == phaseColor)
{

phasePointsX . Add((ushort) c o l) ;
phasePointsY . Add((ushort) row) ;

251

}
}

fastBitmaps [0] . UnlockBitmap () ;

ushort [] pointX = phasePointsX . ToArray () ;
ushort [] pointY = phasePointsY . ToArray () ;
i f (fastBitmaps [0] . Height ∗ fastBitmaps [0] . Width > 10000000)
{

System . Windows . Forms . Dia logResu l t r e s u l t = System . Windows .
Forms . MessageBox . Show(”Image s i z e l a r g e r than 10
m i l l i o n p i x e l s . ”
+ ” This c a l c u l a t i o n may take a long time to complete

or slow down your system . Continue anyway?” , ”
Warning ! ” ,

System . Windows . Forms . MessageBoxButtons . YesNo) ;
i f (r e s u l t == System . Windows . Forms . Dia logResu l t . No)

return ;
}
DateTime t imeStart = DateTime .Now;
int numProcessors = System . Environment . ProcessorCount ;
int loopsMain = pointX . Length − 1 ;
int loopsSecondary = 0 ;
i f (numProcessors > 1)
{

numProcessors = 2 ;
loopsMain = Convert . ToInt32 ((pointX . Length) ∗ 0 .293 + . 0 1)

; // 0.01 because 4.5 i s conver ted to 4
loopsSecondary = Convert . ToInt32 ((pointX . Length) ∗ 0 .707 +

. 0 1) ; // 0.01 because 4.5 i s conver ted to 4
i f (loopsMain + loopsSecondary < pointX . Length)

loopsMain += pointX . Length − loopsSecondary −
loopsMain ;

}
else
{

loopsMain = pointX . Length − 1 ;
}
radDistWorkerThreadCount = numProcessors ;
radDistWorkerDoneCount = 0 ;
i f (OnLockAnalyzeMenu != n u l l)
{

OnLockAnalyzeMenu (this , new EventArgs ()) ;
}
sumDistResults = new List<uint [] > () ;
Thread [] t = new Thread [numProcessors] ;
int numDistances = fastBitmaps [0] . Height ∗ fastBitmaps [0] .

Width ∗ 10 ;
for (int i = 0 ; i < numProcessors ; i++)
{

sumDistResults . Add(new uint [numDistances]) ;
CalcPixelDistThreadParameters calcParams = new

CalcPixelDistThreadParameters (i , loopsMain , pointX ,
pointY) ;

252

t [i] = new Thread (new Parameter izedThreadStart (
Ca lcPixe lDi s t r ibut ionWorker)) ;

t [i] . IsBackground = true ;
t [i] . S ta r t (calcParams) ;

}
DateTime timeEnd = DateTime .Now;
TimeSpan t imeDi f f = timeEnd − t imeStart ;

}
private void CalcPixe lDi s t r ibut ionWorker (ob j e c t calcParams)
{ // loopsMain i s how many l o o p s the f i r s t thread shou ld do , t h i s

i s c u r r e n t l y j u s t op t imized f o r dua l core
CalcPixelDistThreadParameters parameters = (

CalcPixelDistThreadParameters) calcParams ;
int yDi f f ;
int xDi f f ;
int l as tLoop ;
i f (parameters . threadNumber == 0)

lastLoop = parameters . loopsMain ;
else

l as tLoop = parameters . pointX . Length − 1 ;

int i n t e r v a l = parameters . pointX . Length / 100 ;
i f (i n t e r v a l < 1)

i n t e r v a l = 100 / parameters . pointX . Length ;
for (int i = parameters . loopsMain ∗ parameters . threadNumber ; i

< l as tLoop ; i++)
{

for (int j = i + 1 ; j < parameters . pointX . Length ; j++)
{

yDi f f = parameters . pointY [j] − parameters . pointY [i] ;
xD i f f = parameters . pointX [j] − parameters . pointX [i] ;

sumDistResults [parameters . threadNumber] [xD i f f ∗ xDi f f
+ yDi f f ∗ yDi f f]++;

}
i f (i % i n t e r v a l == 0)
{

i f (OnProgressUpdate != n u l l)
{

OnProgressUpdate (this , 1) ;
}
i f (s t o p C a l c u l a t i o n s == true)
{

break ;
}

}
}
bool a l lThreadsF in i shed = fa l se ;
l o ck (ThisLock)
{

radDistWorkerDoneCount++;
i f (radDistWorkerDoneCount == radDistWorkerThreadCount)

a l lThreadsF in i shed = true ;

253

}
i f (a l lThreadsF in i shed)
{

CalcPixelDistThreadsDone () ;
}

}
private void CalcPixelDistThreadsDone ()
{ // A l l worker t h r e a d s are now done c a l c u l a t i n g , r e s u l t s are

conta ined w i t h i n sumDist [] []
int numDistances = fastBitmaps [0] . Height ∗ fastBitmaps [0] .

Width ∗ 10 ;
u int [] sumDist = new uint [numDistances] ;
sumDist . I n i t i a l i z e () ;
for (int i = 0 ; i < numDistances ; i++)

for (int j = 0 ; j < radDistWorkerThreadCount ; j++)
{

sumDist [i] += sumDistResults [j] [i] ;
}

System . IO . StreamWriter ou tF i l e = n u l l ;
try
{

s t r i n g path = re su l t sPath + ”\\Pixe l D i s t r i b u t i o n Resu l t s ”
;

System . IO . D i r e c t o r y I n f o r e s u l t s D i r e c t o r y = new System . IO .
D i r e c t o r y I n f o (path) ;

i f (! r e s u l t s D i r e c t o r y . Ex i s t s)
r e s u l t s D i r e c t o r y . Create () ;

int per iodIndex = fi leName . LastIndexOf (” . ”) ;
i f (per iodIndex == −1)

per iodIndex = fi leName . Length ;
s t r i n g resu l t sF i l eName = path + ”\\” + fi leName . Substr ing

(0 , per iodIndex) + ” . txt ” ;
ou tF i l e = new System . IO . StreamWriter (re su l t sF i l eName) ;
ou tF i l e . WriteLine (”D, mic\ tCounts”) ;
double distanceNormal ized ;
Random rand = new Random() ;
for (int i = 0 ; i < sumDist . Length ; i++)
{

i f (sumDist [i] > 0)
{

distanceNormal ized = System . Math . Sqrt (i) /
p ixe l sPerMicron ;

ou tF i l e . WriteLine (d i s tanceNormal ized . ToString () +
”\ t ” + sumDist [i] . ToString ()) ; // uncomment
t h i s and ignore next to r e v e r t to normal

}
}

}
catch (Exception ex)
{

System . Windows . Forms . MessageBox . Show(” Error in ImageCalc ,
unable to output f i l e . Exception d e t a i l s :\ r \n” + ex .
ToString ()) ;

254

}
f i n a l l y
{

i f (ou tF i l e != n u l l)
ou tF i l e . Close () ;

}
i f (OnUnLockAnalyzeMenu != n u l l) // t h i s event a l s o spawns

the ChildForm ’ s A f t e r C a l c u l a t e P i x e l D i s t r i b u t i o n method
{

OnUnLockAnalyzeMenu (this , new EventArgs ()) ;
}
i f (OnFinishedRadialDistCalc != n u l l)
{

OnFinishedRadialDistCalc (this , new EventArgs ()) ;
}
UnlockCalcu lat ion () ;

}
private class CalcPixelDistThreadParameters
{

public int threadNumber ;
public int loopsMain ;
public ushort [] pointX ;
public ushort [] pointY ;
public CalcPixelDistThreadParameters (int threadNumber , int

loopsMain , ushort [] pointX , ushort [] pointY)
{

this . threadNumber = threadNumber ;
this . loopsMain = loopsMain ;
this . pointX = pointX ;
this . pointY = pointY ;

}
}
private void CalcRadia lDistLoca lFromCirc le (Color phaseColor)
{

i f (r a d D i s t S e t t i n g s . MaxRadius ∗ 2 ∗ pixe l sPerMicron >
fastBitmaps [0] . Width | |
r a d D i s t S e t t i n g s . MaxRadius ∗ 2 ∗ pixe l sPerMicron >

fastBitmaps [0] . Height)
{

System . Windows . Forms . MessageBox . Show(” C i r c l e dimensions
l a r g e r than image dimensions . Cannot proceed . ”) ;

i f (OnUnLockAnalyzeMenu != n u l l) // t h i s event a l s o
spawns the ChildForm ’ s A f t e r C a l c u l a t e P i x e l D i s t r i b u t i o n
method

{
OnUnLockAnalyzeMenu (this , new EventArgs ()) ;

}
i f (OnFinishedRadialDistCalc != n u l l)
{

OnFinishedRadialDistCalc (this , new EventArgs ()) ;
}
c a l c u l a t i o n I n P r o g r e s s = fa l se ;
return ;

255

}
int maxCircleD = (int) (r a d D i s t S e t t i n g s . MaxRadius ∗

pixe l sPerMicron ∗ 2) ;
int maxCircleR = (int) (r a d D i s t S e t t i n g s . MaxRadius ∗

pixe l sPerMicron) ;
int l o c a l C i r c l e R = (int) (r a d D i s t S e t t i n g s . LocalRadius ∗

pixe l sPerMicron ∗ 2) ;
Point c i r c l e L o c a t i o n = new Point (maxCircleR , maxCircleR) ;
C i r c l e l o c a l C i r c l e = new C i r c l e (l o ca lC i r c l eR , c i r c l e L o c a t i o n) ;
C i r c l e maxCircle = new C i r c l e (maxCircleD , c i r c l e L o c a t i o n) ;
int yPoint ;
int numCircleRows = fastBitmaps [0] . Height / maxCircleD ;
int numCircleCols = fastBitmaps [0] . Width / maxCircleD ;
int numCircles = numCircleCols ∗ numCircleRows ;
int xOf f s e t = 0 ;
int yOf f s e t = 0 ;
// S t o r e s l o c a t i o n s o f p i x e l s o f c o l o r s p e c i f i e d by phaseColor
List<List<ushort>> phasePo intsXloca l = new List<List<ushort

>>() ;
L i s t<List<ushort>> phasePo intsYloca l = new List<List<ushort

>>() ;
L i s t<List<ushort>> phasePointsXmax = new List<List<ushort>>() ;
L i s t<List<ushort>> phasePointsYmax = new List<List<ushort>>() ;
for (int i = 0 ; i < numCircles ; i++)
{

phasePo intsXloca l . Add(new List<ushort>(maxCircleD)) ; //
c u r r e n t l y j u s t s c a l i n g i n i t i a l s i z e o f l i s t wi th s i z e
o f c i r c l e s

phasePo intsYloca l . Add(new List<ushort>(maxCircleD)) ;
phasePointsXmax . Add(new List<ushort>(maxCircleD)) ;
phasePointsYmax . Add(new List<ushort>(maxCircleD)) ;

}
bool cance lAna ly s i s = fa l se ;
i f (r a d D i s t S e t t i n g s . ShowCirc les)
{

fastBitmapsAlt . Clear () ;
fastBitmapsAlt . Add(new FastBitmap (fastBitmaps [0] . Bitmap)) ;
fastBitmapsAlt [0] . LockBitmap () ;

}
fastBitmaps [0] . LockBitmap () ;
for (int circleNum = 0 ; circleNum < numCircles ; circleNum++)
{

for (int i = 0 ; i < l o c a l C i r c l e . Diameter ; i++) // This
i t e r a t e s through a l l p o i n t s w i t h i n one l o c a l (sma l l)
c i r c l e

{
yPoint = l o c a l C i r c l e . Le f tPo in t s [i] . Y;
for (int j = l o c a l C i r c l e . Le f tPo in t s [i] . X; j <

l o c a l C i r c l e . RightPoints [i] . X; j++)
i f (fastBitmaps [0] . GetPixel (j , yPoint) ==

phaseColor)
{

phasePo intsXloca l [circleNum] . Add((ushort) j) ;

256

phasePo intsYloca l [circleNum] . Add((ushort)
yPoint) ;

}
}
i f (phasePo intsXloca l [circleNum] . Count == 0) // no p i x e l s

found in c i r c l e , so cannot use i t
{

numCircles−−;
circleNum−−;
i f (numCircles <= 0)
{

cance lAna ly s i s = true ;
break ;

}
continue ;

}
for (int i = 0 ; i < maxCircle . Diameter ; i++) // This

i t e r a t e s through a l l p o i n t s w i t h i n one l o c a l (sma l l)
c i r c l e

{
yPoint = maxCircle . Le f tPo in t s [i] . Y;
for (int j = maxCircle . Le f tPo in t s [i] . X; j < maxCircle .

RightPoints [i] . X; j++)
i f (fastBitmaps [0] . GetPixel (j , yPoint) ==

phaseColor)
{

phasePointsXmax [circleNum] . Add((ushort) j) ;
phasePointsYmax [circleNum] . Add((ushort) yPoint)

;
}

}
i f (r a d D i s t Se t t i n g s . ShowCirc les)
{

l o c a l C i r c l e . DrawCircle (fastBitmapsAlt [0]) ;
maxCircle . DrawCircle (fastBitmapsAlt [0]) ;

}
xOf f s e t = maxCircleD ; // Scan c i r c l e s l e f t to r i g h t , top

to bottom
yOf f s e t = 0 ;
i f (l o c a l C i r c l e . Center .X + maxCircleR ∗ 3 > fastBitmaps

[0] . Width)
{

xOf f s e t = maxCircleR − l o c a l C i r c l e . Center .X; // Set
x v a l u e o f c i r c l e back to i n i t i a l v a l u e

yOf f s e t = maxCircleD ;
}
l o c a l C i r c l e . O f f s e t (new Point (xOf f set , yOf f s e t)) ;
maxCircle . O f f s e t (new Point (xOf f set , yOf f s e t)) ;

}
fastBitmaps [0] . UnlockBitmap () ;
i f (r a d D i s t S e t t i n g s . ShowCirc les)
{

fastBitmapsAlt [0] . UnlockBitmap () ;

257

}
i f (cance lAna ly s i s == true)
{

System . Windows . Forms . MessageBox . Show(”No p i x e l s o f the
s p e c i f i e d phase were found ! Cannot proceed . ”) ;

return ;
}
List<ushort []> po in tX loca l = new List<ushort []>(numCircles) ;
L i s t<ushort []> po in tY loca l = new List<ushort []>(numCircles) ;
L i s t<ushort []> pointXmax = new List<ushort []>(numCircles) ;
L i s t<ushort []> pointYmax = new List<ushort []>(numCircles) ;
for (int i = 0 ; i < numCircles ; i++)
{

po in tX loca l . Add(phasePo intsXloca l [i] . ToArray ()) ;
po in tY loca l . Add(phasePo intsYloca l [i] . ToArray ()) ;
pointXmax . Add(phasePointsXmax [i] . ToArray ()) ;
pointYmax . Add(phasePointsYmax [i] . ToArray ()) ;

} // now have l i s t o f ushor t arrays , each array corresponds
to d i f f e r e n t l o c a l c i r c l e /max c i r c l e image p a i r s

int numProcessors = System . Environment . ProcessorCount ;
// max d i s t i s ˜ Rloca l + Rmax, so max sum squares i s t h i s

v a l u e squared
int numDistances = (maxCircleR + l o c a l C i r c l e R + 1) ∗ (

maxCircleR + l o c a l C i r c l e R + 1) ; // add one j u s t to be s a f e
from rounding e f f e c t s

radDistWorkerThreadCount = numProcessors ;
radDistWorkerDoneCount = 0 ;
sumDistResults = new List<uint [] > () ;
for (int i = 0 ; i < numCircles ; i++)
{

sumDistResults . Add(new uint [numDistances]) ; // i n i t i a l i z e s
the proper number o f array e lements in the r e s u l t s

l i s t
}
Thread newThread ;
for (int i = 0 ; i < numProcessors ; i++)
{

int threadNum = i ;
int startNum = (int) ((double) numCircles / numProcessors ∗

i) ; // determines the f i r s t and l a s t pointX arrays
to c a l c u l a t e

int endNum = (int) ((double) numCircles / numProcessors ∗ (i
+ 1)) ; // f o r each thread

newThread = new Thread (d e l e ga t e ()
{

CalcRadialDistWorkerLocal (threadNum , po intXloca l ,
po intYloca l , pointXmax , pointYmax , startNum , endNum
) ;

}) ;
newThread . IsBackground = true ;
newThread .Name = ”Worker ” + i . ToString () + ” (

RadDistLoca lCirc l e) ” ;
newThread . Sta r t () ;

258

}
}
/// <summary>
/// Ca l l ed when Radia l D i s t r i b u t i o n C a l c u l a t i o n needs o b j e c t s to

be found . . . need to c a l l back the RadDist r o u t i n e
/// </summary>
/// <param name=”sender”></param>
/// <param name=”args”></param>
void ImageCalc OnObjectsFound (ob j e c t sender , ImageCalc .

FindObjectResults r e s u l t s)
{

OnObjectsFound −= new ObjectsFoundHandler (
ImageCalc OnObjectsFound) ;

i f (theObjects != n u l l) // avoid i n f i n i t e loop i f t h e O b j e c t s
was not i n i t i a l i z e d f o r some reason
CalcRadialDistLocalFromObject (radDistPhaseColor) ;

}
private void CalcRadialDistLocalFromObject (Color phaseColor)
{

// want to c a l c u l a t e r a d i a l d i s t r i b u t i o n on every o b j e c t whose
bounds are f a r enough from the edge to prevent p i x e l cut

o f f when determining the max c i r c l e p i x e l s
// F i r s t make sure FindObjects has been run
i f (theObjects == n u l l)
{

OnObjectsFound += new ObjectsFoundHandler (
ImageCalc OnObjectsFound) ;

radDistPhaseColor = phaseColor ;
UnlockCalcu lat ion () ; // in the f u t u r e may want to c a l l

d i f f e r e n t p r i v a t e FindObjects to avoid t h i s s p l i t
second u n l o c k i n g o f c a l c

FindObjects (phaseColor) ;
return ;

}
List<ObjectInfo> va l i dOb j e c t s = new List<ObjectInfo >() ;
objectCalcOrder = new List<int>() ;
BoolBitmap bBitmap = new BoolBitmap (fastBitmaps [0]) ;
L i s t<ushort []> po in tX loca l = new List<ushort [] > () ;
L i s t<ushort []> po in tY loca l = new List<ushort [] > () ;
L i s t<ushort []> pointXmax = new List<ushort [] > () ;
L i s t<ushort []> pointYmax = new List<ushort [] > () ;
L i s t<ushort> phasePointsXmax = new List<ushort >() ;
L i s t<ushort> phasePointsYmax = new List<ushort >() ;
ushort [] xLoca ls ;
ushort [] yLoca ls ;
int rad iu s = (int) (r a d D i s t S e t t i n g s . MaxRadius ∗ pixe l sPerMicron

+ 0 . 5) ;
int l a rge s tDiamete r = 0 ;
int largestBoundDiag = 0 ;
i f (r a d D i s t S e t t i n g s . ShowCirc les)
{

fastBitmapsAlt . Clear () ;
fastBitmapsAlt . Add(new FastBitmap (fastBitmaps [0] . Bitmap)) ;

259

fastBitmapsAlt [0] . LockBitmap () ;
}
fastBitmaps [0] . LockBitmap () ;
f o r each (Object In fo obj in theObjects . GetObjects [phaseColor])
{

i f (obj . ObjectBounds . Le f t − rad iu s > 0 &&
obj . ObjectBounds . Right + rad iu s < fastBitmaps [0] . Width

&&
obj . ObjectBounds . Top − rad iu s > 0 &&
obj . ObjectBounds . Bottom + rad iu s < fastBitmaps [0] .

Height)
{ // add the o b j e c t p o i n t s to be ana lyzed i f i t i s f a r

enough from the edge to prevent p i x e l cut o f f
int boundDiag = (int) (System . Math . Sqrt (obj .

ObjectBounds . Width ∗ obj . ObjectBounds . Width +
obj . ObjectBounds . Height ∗ obj . ObjectBounds . Height)

/ 2 + 0 . 5) ;
int maxCircleR = (int) (r a d D i s t S e t t i n g s . MaxRadius ∗

pixe l sPerMicron + boundDiag + 0 . 5) ;
obj . ObjectBounds) ; // + boundDiag + 0 . 5) ;

Point cente r = new Point (obj . ObjectBounds . Le f t + obj .
ObjectBounds . Width / 2 ,
obj . ObjectBounds . Top + obj . ObjectBounds . Height /

2) ;
i f (c ent e r .X − maxCircleR <= 0 | |

cente r .X + maxCircleR >= fastBitmaps [0] . Width | |
cente r .Y − maxCircleR <= 0 | |
cente r .Y + maxCircleR >= fastBitmaps [0] . Height)

{
continue ;

}
C i r c l e maxCircle = new C i r c l e (maxCircleR ∗ 2 , c en te r) ;
i f (maxCircle . Diameter > l a rge s tDiamete r)

l a rge s tDiamete r = maxCircle . Diameter ;
i f (boundDiag > largestBoundDiag)

largestBoundDiag = boundDiag ;
int yPoint ;
phasePointsXmax . Clear () ;
phasePointsYmax . Clear () ;
for (int i = 0 ; i < obj . A l lPo in t s . Length ; i++)

bBitmap . Set (obj . A l lPo int s [i] . X, obj . A l lPo int s [i] . Y
, true) ;

for (int i = 0 ; i < maxCircle . Diameter ; i++) // This
i t e r a t e s through a l l p o i n t s w i t h i n the l a r g e c i r c l e

{
yPoint = maxCircle . Le f tPo in t s [i] . Y;
for (int j = maxCircle . Le f tPo in t s [i] . X; j <

maxCircle . RightPoints [i] . X; j++)
i f (fastBitmaps [0] . GetPixel (j , yPoint) ==

phaseColor && bBitmap . Get (j , yPoint) ==
fa l se)

{ // only add p o i n t s i f they are not from
w i t h i n the o b j e c t area

260

phasePointsXmax . Add((ushort) j) ; // Bui ld a
l i s t o f p o i n t s f o r the max c i r c l e

phasePointsYmax . Add((ushort) yPoint) ;
}

}
pointXmax . Add(phasePointsXmax . ToArray ()) ; // Store

the l i s t o f p o i n t s as an array o f p o i n t s
pointYmax . Add(phasePointsYmax . ToArray ()) ;
for (int i = 0 ; i < obj . A l lPo in t s . Length ; i++)

bBitmap . Set (obj . A l lPo int s [i] . X, obj . A l lPo int s [i] . Y
, fa l se) ;

i f (r a d D i s t S e t t i n g s . ShowCirc les)
maxCircle . DrawCircle (fastBitmapsAlt [0]) ;

obj . ToXYArray(out xLocals , out yLoca ls) ;
po in tX loca l . Add(xLoca ls) ;
po in tY loca l . Add(yLoca ls) ;
va l i dOb j e c t s . Add(obj) ;
objectCalcOrder . Add(obj . ObjectNumber) ;

}
}
fastBitmaps [0] . UnlockBitmap () ;
i f (r a d D i s t S e t t i n g s . ShowCirc les)
{

fastBitmapsAlt [0] . UnlockBitmap () ;
}
i f (po in tX loca l . Count <= 0 | | pointXmax . Count <= 0)
{

System . Windows . Forms . MessageBox . Show(”No o b j e c t s found
with in bounds s p e c i f i e d by Max Radius . ”) ;

i f (OnUnLockAnalyzeMenu != n u l l) // t h i s event a l s o
spawns the ChildForm ’ s A f t e r C a l c u l a t e P i x e l D i s t r i b u t i o n
method

{
OnUnLockAnalyzeMenu (this , new EventArgs ()) ;

}
i f (OnFinishedRadialDistCalc != n u l l)
{

OnFinishedRadialDistCalc (this , new EventArgs ()) ;
}
UnlockCalcu lat ion () ;
return ;

}
int numProcessors = System . Environment . ProcessorCount ;
i f (po in tX loca l . Count == 1)

numProcessors = 1 ;
// max d i s t i s ˜ Rloca l + Rmax, so max sum squares i s t h i s

v a l u e squared
int numDistances = (la rge s tDiamete r / 2 + largestBoundDiag +

1) ∗ (l a rge s tDiamete r / 2 + largestBoundDiag + 1) ∗ 2 ;
int numDistancesLocal = largestBoundDiag ∗ largestBoundDiag ∗

8 ;
int numCircles = po in tX loca l . Count ;

261

radDistWorkerThreadCount = numProcessors ;
radDistWorkerDoneCount = 0 ;
sumDistResults = new List<uint [] > () ;
sumDistResultsLocal = new List<uint [] > () ;
for (int i = 0 ; i < numCircles ; i++)
{

sumDistResults . Add(new uint [numDistances]) ; // i n i t i a l i z e s
the proper number o f array e lements in the r e s u l t s

l i s t
sumDistResultsLocal . Add(new uint [numDistancesLocal]) ;

}
Thread newThread ;
for (int i = 0 ; i < numProcessors ; i++)
{

int threadNum = i ;
int startNum = (int) ((double) numCircles / numProcessors ∗

i) ; // determines the f i r s t and l a s t pointX arrays
to c a l c u l a t e

int endNum = (int) ((double) numCircles / numProcessors ∗ (i
+ 1)) ; // f o r each thread

newThread = new Thread (d e l e ga t e ()
{

CalcRadialDistWorkerLocal (threadNum , po intXloca l ,
po intYloca l , pointXmax , pointYmax , startNum , endNum
) ;

}) ;
newThread . IsBackground = true ;
newThread .Name = ”Worker ” + i . ToString () + ” (

RadDistLocalObject) ” ;
newThread . Sta r t () ;

}
}
/// <summary>
/// C a l c u l a t e s r a d i a l d i s t r i b u t i o n from s u p p l i e d l i s t s o f x and y

p o i n t va lues , s t o r e d as ushor t array l i s t s . Frequency o f
r e s u l t s are

/// s t o r e d in sumDistResul ts [arraynum] [SumOfSquares]
/// </summary>
/// <param name=”threadNumber”>Thread number</param>
/// <param name=”p o i n t X l o c a l”>L i s t o f arrays c o n t a i n i n g l o c a l

p o i n t X va lues</param>
/// <param name=”p o i n t Y l o c a l”>L i s t o f arrays c o n t a i n i n g l o c a l

p o i n t Y va lues</param>
/// <param name=”pointXmax”>L i s t o f arrays c o n t a i n i n g p o i n t X

v a l u e s o u t s i d e the l o c a l area</param>
/// <param name=”pointYmax”>L i s t o f arrays c o n t a i n i n g p o i n t Y

v a l u e s o u t s i d e the l o c a l area</param>
/// <param name=”startNum”>S p e c i f i e s s t a r t v a l u e o f array to s t o r e

the r e s u l t s in</param>
/// <param name=”endNum”>S p e c i f i e s end v a l u e o f array to s t o r e the

r e s u l t s in</param>
private void CalcRadialDistWorkerLocal (int threadNumber , L i s t<

ushort []> po intXloca l , L i s t<ushort []> po intYloca l ,

262

List<ushort []> pointXmax , Lis t<ushort []> pointYmax , int
startNum , int endNum)

{
int yDi f f ;
int xDi f f ;
int loopNum = 0 ;
int t o t a l P o i n t s = 0 ;
for (int i = 0 ; i < po in tX loca l . Count ; i++)
{

t o t a l P o i n t s += po intX loca l [i] . Length ;
}
int numThreads ;
l o ck (ThisLock)
{

numThreads = radDistWorkerThreadCount ;
}
double increment = 1 . 0 ;
int i n t e r v a l = t o t a l P o i n t s / 100 ;
i f (i n t e r v a l < 1)
{

i n t e r v a l = 1 ;
increment = 100 / t o t a l P o i n t s ;

}
for (int arrayNum = startNum ; arrayNum < endNum ; arrayNum++)
{

int numLocalPoints = po in tX loca l [arrayNum] . Length ;
int numMaxPoints = pointXmax [arrayNum] . Length ;
for (int i = 0 ; i < numLocalPoints ; i++)
{

for (int j = i + 1 ; j < numMaxPoints ; j++)
{ // long range p i x e l d i s t a n c e s

yDi f f = pointYmax [arrayNum] [j] − po in tY loca l [
arrayNum] [i] ; // cou ld t r y p r e s e t t i n g the
r e f e r e n c e to p o i n t [arrayNum]

xDi f f = pointXmax [arrayNum] [j] − po in tX loca l [
arrayNum] [i] ; // i f the compi ler does not
op t imi ze enough

sumDistResults [arrayNum] [xD i f f ∗ xDi f f + yDi f f ∗
yDi f f]++;

}
for (int j = i + 1 ; j < numLocalPoints ; j++)
{ // l o c a l p i x e l d i s t a n c e s

yDi f f = po in tY loca l [arrayNum] [j] − po in tY loca l [
arrayNum] [i] ; // cou ld t r y p r e s e t t i n g the
r e f e r e n c e to p o i n t [arrayNum]

xDi f f = po in tX loca l [arrayNum] [j] − po in tX loca l [
arrayNum] [i] ; // i f the compi ler does not
op t imi ze enough

sumDistResultsLocal [arrayNum] [xD i f f ∗ xDi f f +
yDi f f ∗ yDi f f]++;

}
loopNum++;
i f (loopNum % i n t e r v a l == 0)

263

{
i f (OnProgressUpdate != n u l l)
{

OnProgressUpdate (this , increment) ;
}
i f (s t o p C a l c u l a t i o n s == true)
{

break ;
}

}
}

}
bool a l lThreadsF in i shed = fa l se ;
l o ck (ThisLock)
{

radDistWorkerDoneCount++;
i f (radDistWorkerDoneCount >= radDistWorkerThreadCount)

a l lThreadsF in i shed = true ;
i f (radDistWorkerDoneCount > radDistWorkerThreadCount)

System . Windows . Forms . MessageBox . Show(” Error detec ted .
Miscount o f p i x e l d i s t r i b u t i o n threads .

Attempting to cont inue . . . ”) ;
}
i f (a l lThreadsF in i shed)
{

CalcRadialDistThreadsDoneLocal () ;
}

}
private void CalcRadialDistThreadsDoneLocal ()
{ // A l l t h r e a d s have f i n i s h e d c a l c u l a t i o n , r e s u l t s are conta ined

w i t h i n sumDist [circleNum] [sum square d i s t a n c e s]
bool o b j e c t S t y l e = true ;
i f (r a d D i s t S e t t i n g s . RadDistCalcStyle ==

OptionsForm . Analys i sOpt ions . R a d i a l D i s t r i b u t i o n S e t t i n g s .
R a d i a l D i s t r i b u t i o n C a l c u l a t i o n S t y l e . FromCircle)

{
o b j e c t S t y l e = fa l se ;

}
System . IO . StreamWriter ou tF i l e = n u l l ;
System . IO . StreamWriter ou tF i l eLoca l = n u l l ;
try
{

s t r i n g path ;
i f (o b j e c t S t y l e)

path = re su l t sPath + ”\\Radial D i s t r i b u t i o n Resu l t s
Obj−Based” ;

else
path = re su l t sPath + ”\\Radial D i s t r i b u t i o n Resu l t s

C i r c l e−Based” ;
System . IO . D i r e c t o r y I n f o r e s u l t s D i r e c t o r y = new System . IO .

D i r e c t o r y I n f o (path) ;
i f (! r e s u l t s D i r e c t o r y . Ex i s t s)

r e s u l t s D i r e c t o r y . Create () ;

264

int per iodIndex = fi leName . LastIndexOf (” . ”) ;
i f (per iodIndex == −1)

per iodIndex = fi leName . Length ;
s t r i n g resu l t sF i l eName = path + ”\\” + fi leName . Substr ing

(0 , per iodIndex) + ” (” + r ad D i s t S e t t i n g s . LocalRadius .
ToString (” 0 .00 ”) +
”−” + r a d D i s t S e t t i n g s . MaxRadius . ToString (” 0 .00 ”) + ”)

Long . txt ” ;
s t r i n g re su l t sF i l eNameLoca l = path + ”\\” + fi leName .

Substr ing (0 , per iodIndex) + ” (” + r a dD i s t S e t t i n g s .
LocalRadius . ToString (” 0 .00 ”) +
”−” + r a d D i s t S e t t i n g s . MaxRadius . ToString (” 0 .00 ”) + ”)

Local . txt ” ;
ou tF i l e = new System . IO . StreamWriter (re su l t sF i l eName) ;
ou tF i l e . WriteLine (re su l t sF i l eName) ;
i f (o b j e c t S t y l e)

ou tF i l e . WriteLine (” Radial D i s t r i b u t i o n r e s u l t s
c a l c u l a t e d from i n d i v i d u a l o b j e c t s out to max
c i r c l e rad iu s o f ”
+ r a d Di s t S e t t i ng s . MaxRadius . ToString (” 0 .000 ”) + ”

microns . ”) ;
else

ou tF i l e . WriteLine (” Radial D i s t r i b u t i o n r e s u l t s
c a l c u l a t e d from a l o c a l c i r c l e ” +
r a d D i s t S e t t i n g s . LocalRadius . ToString (” 0 .000 ”) + ”

microns in diameter out to max c i r c l e rad iu s o f
” +

r a d D i s t S e t t i n g s . MaxRadius . ToString (” 0 .000 ”) + ”
microns . ”) ;

ou tF i l e . WriteLine (”Image Ca l i b ra t i on : ” + pixe l sPerMicron .
ToString (” 0 .000 ”) + ” p i x e l s per micron”) ;

ou tF i l e . WriteLine (sumDistResults . Count . ToString () + ”
o b j e c t s analyzed ”) ;

ou tF i l e . WriteLine () ;
System . Text . S t r i ngBu i l d e r s t r = new System . Text .

S t r i ngBu i l d e r (7 ∗ sumDistResults . Count) ;
s t r . Append(”D, pix \tD , mic”) ;
for (int i = 0 ; i < sumDistResults . Count ; i++)
{

s t r . Append(”\ tObject ” + objectCalcOrder [i] . ToString ()
) ;

}
ou tF i l e . WriteLine (s t r . ToString ()) ;
// now c a l l a method to combine the d i f f e r e n t d i s t a n c e s

and counts i n t o one f i l e wi th a s i n g l e d i s t a n c e and
m u l t i p l e count columns

int numCircles = sumDistResults . Count ;
bool foundDistance = fa l se ;
double d i s t anc e ;
int edgeEf f e c tL imi t ;
i f (o b j e c t S t y l e)

edgeEf f e c tL imi t = (int) (r a d D i s t S e t t i n g s . MaxRadius ∗
r a d D i s t S e t t i ng s . MaxRadius ∗ pixe l sPerMicron ∗

265

pixe l sPerMicron) ;
else

edgeEf f e c tL imi t = (int) ((r a d D i s t S e t t i n g s . MaxRadius −
r a d D i s t S e t t i ng s . LocalRadius) ∗ pixe l sPerMicron ∗

(r a d D i s t Se t t i n g s . MaxRadius − r a d D i s t S e t t i n g s .
LocalRadius) ∗ pixe l sPerMicron) ;

for (int i = 1 ; i < edgeEf f e c tL imi t ; i++)
{ // i t e r a t e through a l l the sumSquares which are not

cut o f f by the edge e f f e c t
foundDistance = fa l se ;
for (int circleNum = 0 ; circleNum < numCircles ;

circleNum++)
{

i f (sumDistResults [circleNum] [i] > 0)
{

foundDistance = true ;
c ircleNum = numCircles ;

}
}
i f (foundDistance)
{

s t r = new System . Text . S t r i ngBu i l d e r (7 ∗
sumDistResults . Count) ;

d i s t anc e = System . Math . Sqrt (i) ;
s t r . Append(d i s t anc e . ToString () + ”\ t ”) ;
s t r . Append ((d i s t anc e / p ixe l sPerMicron) . ToString ()

) ; // Adds the d i s t a n c e measurement to the l e f t
column

for (int circleNum = 0 ; circleNum < numCircles ;
circleNum++)

{
s t r . Append(”\ t ” + sumDistResults [circleNum] [i

] . ToString ()) ;
}
ou tF i l e . WriteLine (s t r . ToString ()) ;

}
}
i f (o b j e c t S t y l e) // output l o c a l data to new f i l e
{

outF i l eLoca l = new System . IO . StreamWriter (
re su l t sF i l eNameLoca l) ;

ou tF i l eLoca l . WriteLine (re su l t sF i l eNameLoca l) ;
i f (o b j e c t S t y l e)

ou tF i l eLoca l . WriteLine (” Local Radial D i s t r i b u t i o n
r e s u l t s c a l c u l a t e d from i n d i v i d u a l o b j e c t s out
to max c i r c l e rad iu s o f ”
+ r a d D i s t S e t t i n g s . MaxRadius . ToString (” 0 .000 ”)

+ ” microns . ”) ;
else

outF i l eLoca l . WriteLine (” Radial D i s t r i b u t i o n
r e s u l t s c a l c u l a t e d from a l o c a l c i r c l e ” +
r a d Di s t S e t t i ng s . LocalRadius . ToString (” 0 .000 ”)

+ ” microns in diameter out to max c i r c l e

266

rad iu s o f ” +
r a d Di s t S e t t i ng s . MaxRadius . ToString (” 0 .000 ”) +

” microns . ”) ;
ou tF i l eLoca l . WriteLine (”Image Ca l i b ra t i on : ” +

pixe l sPerMicron . ToString (” 0 .000 ”) + ” p i x e l s per
micron”) ;

ou tF i l eLoca l . WriteLine (sumDistResults . Count . ToString ()
+ ” o b j e c t s analyzed ”) ;

ou tF i l eLoca l . WriteLine () ;
s t r = new System . Text . S t r i ngBu i l d e r (7 ∗ sumDistResults

. Count) ;
s t r . Append(”D, pix \tD , mic”) ;
for (int i = 0 ; i < sumDistResults . Count ; i++)
{

s t r . Append(”\ tObject ” + objectCalcOrder [i] .
ToString ()) ;

}
outF i l eLoca l . WriteLine (s t r . ToString ()) ;
// now c a l l a method to combine the d i f f e r e n t

d i s t a n c e s and counts i n t o one f i l e wi th a s i n g l e
d i s t a n c e and m u l t i p l e count columns

numCircles = sumDistResultsLocal . Count ;
foundDistance = fa l se ;
for (int i = 1 ; i < sumDistResultsLocal [0] . Length ; i

++)
{ // i t e r a t e through a l l the sumSquares which are

not cut o f f by the edge e f f e c t
foundDistance = fa l se ;
for (int circleNum = 0 ; circleNum < numCircles ;

circleNum++)
{

i f (sumDistResultsLocal [circleNum] [i] > 0)
{

foundDistance = true ;
c ircleNum = numCircles ;

}
}
i f (foundDistance)
{

s t r = new System . Text . S t r i ngBu i l d e r (7 ∗
sumDistResultsLocal . Count) ;

d i s t anc e = System . Math . Sqrt (i) ;
s t r . Append(d i s t anc e . ToString () + ”\ t ”) ;
s t r . Append ((d i s t anc e / p ixe l sPerMicron) .

ToString ()) ; // Adds the d i s t a n c e
measurement to the l e f t column

for (int circleNum = 0 ; circleNum < numCircles
; circleNum++)

{
s t r . Append(”\ t ” + sumDistResultsLocal [

circleNum] [i] . ToString ()) ;
}
outF i l eLoca l . WriteLine (s t r . ToString ()) ;

267

}
}

}
}
catch (Exception ex)
{

System . Windows . Forms . MessageBox . Show(” Error in ImageCalc ,
unable to output f i l e . Exception d e t a i l s :\ r \n” + ex .
ToString ()) ;

}
f i n a l l y
{

i f (ou tF i l e != n u l l)
ou tF i l e . Close () ;

}
sumDistResults = new List<uint [] > () ;
sumDistResultsLocal = new List<uint [] > () ;
i f (OnUnLockAnalyzeMenu != n u l l) // t h i s event a l s o spawns

the ChildForm ’ s A f t e r C a l c u l a t e P i x e l D i s t r i b u t i o n method
{

OnUnLockAnalyzeMenu (this , new EventArgs ()) ;
}
i f (OnFinishedRadialDistCalc != n u l l)
{

OnFinishedRadialDistCalc (this , new EventArgs ()) ;
}
UnlockCalcu lat ion () ;

}
/// <summary>
/// Finds and s t o r e s the o b j e c t s o f the s p e c i f i e d phase c o l o r on

the image to an O b j e c t l i s t . Runs on a d e d i c a t e d worker thread .
/// </summary>
public void FindObjects (Color phaseColor)
{

i f (! LockCalcu lat ion ())
return ;

Thread newThread = new Thread (d e l e ga t e ()
{

FindObjectsWorkerThread (phaseColor) ;
}) ;
newThread . IsBackground = true ;
newThread .Name = ”Find Objects Worker” ;
newThread . Sta r t () ;

}
private void FindObjectsWorkerThread (Color phaseColor)
{

theObjects = new Objec tL i s t () ;
theObjects . FindObjects (phaseColor , fastBitmaps [0]) ;
i f (fastBitmapsAlt . Count == 0)

fastBitmapsAlt . Add(new FastBitmap (fastBitmaps [0] . Bitmap)) ;
else

fastBitmapsAlt [0] = new FastBitmap (fastBitmaps [0] . Bitmap) ;

268

fastBitmapsAlt [0] . DrawObjects (theObjects . GetObjects [Color .
FromArgb (255 , 255 , 255)] . ToArray () , true , Color . FromArgb (0 ,

255 , 0)) ;
UnlockCalcu lat ion () ;
i f (OnObjectsFound != n u l l)

OnObjectsFound (this , new FindObjectResults (theObjects .
GetObjects [Color . FromArgb (255 , 255 , 255)] . Count)) ;

i f (OnFinishedFindObjects != n u l l)
OnFinishedFindObjects (this , new System . EventArgs ()) ;

}
/// <summary>
/// Provides f u n c t i o n a l i t y f o r f a s t p i x e l acce s s . Must use

LockBitmap p r i o r to p i x e l acce s s and UnlockBitmap to end p i x e l
ac ces s s e s s i o n .

/// </summary>
private class FastBitmap
{

/// <summary>
/// This o b j e c t cont a in s p o i n t e r a d d r e s s a b l e in format ion about

the bitmap
/// </summary>
private System . Drawing . Imaging . BitmapData bitmapData = n u l l ;
/// <summary>
/// The p o i n t e r to the upper l e f t corner o f the bitmap
/// </summary>
private byte∗ pBase = n u l l ;
private Bitmap bitmap = n u l l ;
private int numCol ;
private int numRow;
private int numPixels ;
private bool bitmapLocked = fa l se ;
public FastBitmap (Bitmap bitmap)
{

Bitmap b2 = new Bitmap (bitmap . S i z e . Width , bitmap . S i z e .
Height , PixelFormat . Format24bppRgb) ;

Graphics g = Graphics . FromImage (b2) ;
g . DrawImage (bitmap , 0 , 0 , bitmap . Width , bitmap . Height) ;
this . bitmap = b2 ;
g . Dispose () ;

numCol = bitmap . Width ;
numRow = bitmap . Height ;
numPixels = numCol ∗ numRow;

}
/// <summary>
/// Lock the bitmap so we can use the p o i n t e r s to acc es s i t .

Locking m u l t i p l e t imes w i l l have no a d d i t i o n a l e f f e c t .
/// </summary>
public void LockBitmap ()
{

i f (! bitmapLocked)
{

269

bitmapData = bitmap . LockBits (new Rectangle (0 , 0 ,
bitmap . Width , bitmap . Height) , ImageLockMode .
ReadOnly , bitmap . PixelFormat) ;

bitmapLocked = true ;
pBase = (Byte ∗) bitmapData . Scan0 . ToPointer () ;

}
}
/// <summary>
/// Unlock the bitmap to end the p o i n t e r acc es s s e s s i o n .

Unlocking m u l t i p l e t imes w i l l have no a d d i t i o n a l e f f e c t .
/// </summary>
public void UnlockBitmap ()
{

i f (bitmapLocked)
{

bitmap . UnlockBits (bitmapData) ;
bitmapData = n u l l ;
pBase = n u l l ;
bitmapLocked = fa l se ;

}
}
/// <summary>
/// Get a p i x e l us ing unsafe code . C a l l on ly a f t e r l o c k i n g

f a s t b i t m a p with LockBitmap .
/// </summary>
/// <param name=”x”>Column</param>
/// <param name=”y”>Row</param>
/// <re turns>Color</returns>
public Color GetPixel (int x , int y)
{

PixelData ∗ p = PixelAt (x , y) ;
return Color . FromArgb ((int)p−>Red , (int)p−>Green , (int)p−>

Blue) ;
}
public Color GetPixelFromRowPtr (int rowPtr , int c o l)
{

PixelData ∗ p = PixelAtFromRowPtr (rowPtr , c o l) ;
return Color . FromArgb ((int)p−>Red , (int)p−>Green , (int)p−>

Blue) ;
}
/// <summary>
/// Set a p i x e l c o l o r us ing unsafe code . C a l l on ly a f t e r

l o c k i n g f a s t b i t m a p with LockBitmap .
/// </summary>
/// <param name=”x”>Column</param>
/// <param name=”y”>Row</param>
/// <param name=”c”>Color</param>
public void SetP ixe l (int x , int y , Color c)
{

PixelData ∗ p = PixelAt (x , y) ;
p−>Red = c .R;
p−>Green = c .G;
p−>Blue = c .B;

270

}
/// <summary>
/// Get a p o i n t e r to a p i x e l
/// </summary>
/// <param name=”x”>Column</param>
/// <param name=”y”>Row</param>
/// <re turns></returns>
private unsa fe PixelData ∗ PixelAt (int x , int y)
{

return (PixelData ∗) (pBase + y ∗ bitmapData . S t r i d e + x ∗
s izeof (PixelData)) ;

}

private unsa fe PixelData ∗ PixelAtFromRowPtr (int rowPtr , int
c o l)

{
// re turn (Pixe lData ∗) (rowPtr + c o l ∗ s i z e o f (Pixe lData)) ;
return (PixelData ∗) (rowPtr + c o l ∗ s izeof (PixelData)) ;

}
/// <summary>
/// Returns an i n t v a l u e to be s u p p l i e d as a row p o i n t e r v a l u e

to PixelAt , not as the a c t u a l row v a l u e
/// </summary>
/// <param name=”row”></param>
/// <re turns></returns>
public int GetRowPtr (int row)
{

return (int) pBase + row ∗ bitmapData . S t r i d e ;
}
/// <summary>
/// Draws s u p p l i e d o b j e c t s to bitmap
/// </summary>
/// <param name=” o b j e c t s ”>Array o f O b j e c t I n f o i n s t a n c e s to

draw</param>
/// <param name=”outLineOnly”>True to draw o u t l i n e s , f a l s e to

draw e n t i r e o b j e c t s </param>
/// <param name=”c o l o r”>Color to o u t l i n e / f i l l o b j e c t s with</

param>
/// <param name=”displayNumber”> I n d i c a t e s whether to draw the

o b j e c t numbers or not</param>
public void DrawObjects (Object In fo [] ob j e c t s , bool outLineOnly

, Color c o l o r)
{

bool i n i t i a l S t a t e = bitmapLocked ;
i f (bitmapLocked)

UnlockBitmap () ;
Pen pen = new Pen(c o l o r) ;
Sol idBrush brush = new Sol idBrush (c o l o r) ;
Graphics g = Graphics . FromImage (bitmap) ;
L i s t<Point> s i n g l e P o i n t s = new List<Point>() ;
i f (outLineOnly)
{

for (int i = 0 ; i < o b j e c t s . Length ; i++)

271

{
i f (o b j e c t s [i] . BorderPoints . Length > 2)

g . DrawPolygon (pen , o b j e c t s [i] . BorderPoints) ;
else i f (o b j e c t s [i] . BorderPoints . Length == 2)

g . DrawLine (pen , o b j e c t s [i] . BorderPoints [0] ,
o b j e c t s [i] . BorderPoints [1]) ;

else
s i n g l e P o i n t s . Add(o b j e c t s [i] . BorderPoints [0]) ;

}
}
else
{

for (int i = 0 ; i < o b j e c t s . Length ; i++)
{

i f (o b j e c t s [i] . BorderPoints . Length > 2)
{

g . F i l lPo lygon (brush , o b j e c t s [i] . BorderPoints) ;
g . DrawPolygon (pen , o b j e c t s [i] . BorderPoints) ;

// F i l l P o l y g o n l e a v e s some borders
u n f i l l e d

}
else i f (o b j e c t s [i] . BorderPoints . Length == 2)

g . DrawLine (pen , o b j e c t s [i] . BorderPoints [0] ,
o b j e c t s [i] . BorderPoints [1]) ;

else
s i n g l e P o i n t s . Add(o b j e c t s [i] . BorderPoints [0]) ;

}
}
g . Dispose () ;
LockBitmap () ;
f o r each (Point p in s i n g l e P o i n t s)
{

SetP ixe l (p .X, p .Y, c o l o r) ;
}
i f (! i n i t i a l S t a t e)

UnlockBitmap () ;
}
public void DrawNumbers (Object In fo [] ob j ec t s , Color co lo r ,

Font labe lFont)
{

bool i n i t i a l S t a t e = bitmapLocked ;
i f (bitmapLocked)

UnlockBitmap () ;
Sol idBrush brush = new Sol idBrush (c o l o r) ;
Point textPo int ;
Graphics g = Graphics . FromImage (bitmap) ;
for (int i = 0 ; i < o b j e c t s . Length ; i++)
{

t extPo int = new Point (o b j e c t s [i] . ObjectBounds . Le f t +
o b j e c t s [i] . ObjectBounds . Width / 2 ,
o b j e c t s [i] . ObjectBounds . Top + o b j e c t s [i] .

ObjectBounds . Height / 2) ;

272

g . DrawString ((o b j e c t s [i] . ObjectNumber) . ToString () ,
labe lFont , brush , t extPo int) ;

}
g . Dispose () ;
i f (i n i t i a l S t a t e)

LockBitmap () ;
}
/// <summary>
/// This s t r u c t i s used to ho ld the RGB v a l u e s when we f i n d a

p i x e l us ing the p o i n t e r
/// </summary>
private struct PixelData
{

public byte Blue ;
public byte Green ;
public byte Red ;

}
/// <summary>
/// Get the Image we are working wi th
/// </summary>
public Bitmap Bitmap
{

get
{

return bitmap ;
}

}
public int Width
{

get
{

return numCol ;
}

}
public int Height
{

get
{

return numRow;
}

}
public int NumPixels
{

get
{

return numPixels ;
}

}
}
/// <summary>
/// S t o r e s a Dic t ionary o f O b j e c t I n f o L i s t s keyed to d i f f e r e n t

o b j e c t c o l o r s . Encapsu la tes methods f o r f i n d i n g and o u t l i n i n g
o b j e c t s

273

/// from a FastBitmap .
/// </summary>
private class Objec tL i s t
{

Dict ionary<Color , L i s t<ObjectInfo>> o b j e c t s ;
int numObjects = 0 ;
public Objec tL i s t ()
{

o b j e c t s = new Dict ionary<Color , L i s t<ObjectInfo >>() ;
}
public void FindObjects (FastBitmap fBitmap)
{
}
public void FindObjects (Color objectColor , FastBitmap fBitmap)
{

i f (! o b j e c t s . ContainsKey (ob j e c tCo lo r))
o b j e c t s [ob j e c tCo lo r] = new List<ObjectInfo >() ;

Point s t a r t = Point . Empty ;
Color c o l o r = Color . FromArgb (255 , 255 , 255) ; // whi te
BoolBitmap pixe l sChecked = new BoolBitmap (fBitmap) ;
p ixe l sChecked . SetFa l s e () ;
L i s t<Point> a l l P o i n t s = new List<Point>() ;
fBitmap . LockBitmap () ;
while (true) // f i n d a l l o b j e c t s
{

bool objectFound = fa l se ;
while (true)
{

i f (! p ixe l sChecked . Get (s t a r t .X, s t a r t .Y) &&
fBitmap . GetPixel (s t a r t .X, s t a r t .Y) == c o l o r)

{
objectFound = true ;
break ;

}
s t a r t .X++;
i f (s t a r t .X >= fBitmap . Width)
{

s t a r t .X = 0 ;
s t a r t .Y++;
i f (s t a r t .Y >= fBitmap . Height)

break ;
}

}
i f (! objectFound)

break ;
Queue<Point> queue = new Queue<Point >(16) ;
queue . Enqueue (s t a r t) ;
int top = int . MaxValue ;
int bottom = int . MinValue ;
int l e f t = int . MaxValue ;
int r i g h t = int . MinValue ;
a l l P o i n t s . Clear () ;

274

while (queue . Count > 0) // f i l l one o b j e c t
{

Point pt = queue . Dequeue () ;
int rowPtr = fBitmap . GetRowPtr (pt .Y) ;
int l o c a l L e f t = pt .X − 1 ;
int l o c a l R i g h t = pt .X;
while (l o c a l L e f t >= 0 && ! pixe l sChecked . Get (

l o c a l L e f t , pt .Y) && fBitmap . GetPixelFromRowPtr (
rowPtr , l o c a l L e f t) == c o l o r)

{
pixe l sChecked . Set (l o c a l L e f t , pt .Y, true) ;
a l l P o i n t s . Add(new Point (l o c a l L e f t , pt .Y)) ;
−− l o c a l L e f t ;

}
while (l o c a l R i g h t < fBitmap . Width && !

pixe l sChecked . Get (l oca lR ight , pt .Y) &&
fBitmap . GetPixelFromRowPtr (rowPtr ,

l o c a l R i g h t) == c o l o r)
{

pixe l sChecked . Set (l oca lR ight , pt .Y, true) ;
a l l P o i n t s . Add(new Point (l oca lR ight , pt .Y)) ;
++l o c a l R i g h t ;

}
++l o c a l L e f t ;
−−l o c a l R i g h t ;
i f (pt .Y > 0)
{

int s l e f t = l o c a l L e f t ;
int s r i g h t = l o c a l L e f t ;
int rowPtrUp = fBitmap . GetRowPtr (pt .Y − 1) ;

for (int sx = l o c a l L e f t ; sx <= l o c a l R i g h t ; ++
sx)

{
i f (! p ixe l sChecked . Get (sx , pt .Y − 1) &&

fBitmap . GetPixelFromRowPtr (rowPtrUp , sx
) == c o l o r)

{
++s r i g h t ;

}
else
{

i f (s r i g h t − s l e f t > 0)
{

queue . Enqueue (new Point (s l e f t , pt .
Y − 1)) ;

}
++s r i g h t ;
s l e f t = s r i g h t ;

}
}
i f (s r i g h t − s l e f t > 0)
{

275

queue . Enqueue (new Point (s l e f t , pt .Y − 1)) ;
}

}
i f (pt .Y < fBitmap . Height − 1)
{

int s l e f t = l o c a l L e f t ;
int s r i g h t = l o c a l L e f t ;
int rowPtrDown = fBitmap . GetRowPtr (pt .Y + 1) ;
for (int sx = l o c a l L e f t ; sx <= l o c a l R i g h t ; ++

sx)
{

i f (! p ixe l sChecked . Get (sx , pt .Y + 1) &&
fBitmap . GetPixelFromRowPtr (rowPtrDown ,
sx) == c o l o r)

{
++s r i g h t ;

}
else
{

i f (s r i g h t − s l e f t > 0)
{

queue . Enqueue (new Point (s l e f t , pt .
Y + 1)) ;

}
++s r i g h t ;
s l e f t = s r i g h t ;

}
}
i f (s r i g h t − s l e f t > 0)
{

queue . Enqueue (new Point (s l e f t , pt .Y + 1)) ;
}

}
i f (l o c a l L e f t < l e f t)
{

l e f t = l o c a l L e f t ;
}
i f (l o c a l R i g h t > r i g h t)
{

r i g h t = l o c a l R i g h t ;
}
i f (pt .Y < top)
{

top = pt .Y;
}
i f (pt .Y > bottom)
{

bottom = pt .Y;
}

}
// Now o u t l i n e o b j e c t
Point [] borderPo ints = Outl ineObject (pixelsChecked ,

s t a r t) ;

276

o b j e c t s [ob j e c tCo lo r] . Add(new Object In fo (a l l P o i n t s .
ToArray () , borderPoints , Rectangle .FromLTRB(l e f t ,
top , r i ght , bottom) ,
numObjects + 1)) ;

numObjects++;
}
fBitmap . UnlockBitmap () ;

}
private Point [] Out l ineObject (BoolBitmap bBitmap , Point s t a r t)
{

List<Point> pts = new List<Point>() ;
pts . Add(s t a r t) ;
Rectangle bounds = new Rectangle (0 , 0 , bBitmap . Width ,

bBitmap . Height) ;
Point l a s t = new Point (s t a r t .X, s t a r t .Y − 1) ;
Point curr = new Point (s t a r t .X, s t a r t .Y) ;
Point next = curr ;
Point l e f t = Point . Empty ;
Point r i g h t = Point . Empty ;
Point s t r a i g h t = Point . Empty ;
Point back = Point . Empty ;
while (true)
{ // t r a c e o b j e c t o u t l i n e

i f (curr .Y < l a s t .Y) // Up
{

l e f t = new Point (curr .X − 1 , curr .Y) ;
r i g h t = new Point (curr .X + 1 , curr .Y) ;

}
else i f (curr .Y > l a s t .Y) // Down
{

l e f t = new Point (curr .X + 1 , curr .Y) ;
r i g h t = new Point (curr .X − 1 , curr .Y) ;

}
else i f (curr .X > l a s t .X) // Right
{

l e f t = new Point (curr .X, curr .Y − 1) ;
r i g h t = new Point (curr .X, curr .Y + 1) ;

}
else // L e f t
{

l e f t = new Point (curr .X, curr .Y + 1) ;
r i g h t = new Point (curr .X, curr .Y − 1) ;

}
s t r a i g h t = new Point (curr .X + curr .X − l a s t .X, curr .Y

+ curr .Y − l a s t .Y) ;
i f (bounds . Contains (l e f t) && bBitmap . Get (l e f t .X, l e f t .

Y))
{ // turn l e f t

next = l e f t ;
}
else i f (bounds . Contains (s t r a i g h t) && bBitmap . Get (

s t r a i g h t .X, s t r a i g h t .Y))
{ // go s t r a i g h t

277

next = s t r a i g h t ;
}
else i f (bounds . Contains (r i g h t) && bBitmap . Get (r i g h t .X

, r i g h t .Y))
{ // turn r i g h t

next = r i g h t ;
}
else
{ // go back or end

back = new Point (curr .X + l a s t .X − curr .X, curr .Y
+ l a s t .Y − curr .Y) ;

i f (bounds . Contains (back) && bBitmap . Get (back .X,
back .Y))

{ // go back
next = back ;

}
}
i f (Math . Sign (next .X − curr .X) != Math . Sign (curr .X −

l a s t .X) | |
Math . Sign (next .Y − curr .Y) != Math . Sign (curr .Y −

l a s t .Y))
{

pts . Add(curr) ;
}
l a s t = curr ;
curr = next ;
i f (next .X == s t a r t .X && next .Y == s t a r t .Y)
{

i f (l a s t .X == s t a r t .X + 1 && l a s t .Y == s t a r t .Y &&
bounds . Contains (s t a r t .X, s t a r t .Y + 1) &&
bBitmap . Get (s t a r t .X, s t a r t .Y + 1))

{ // i f you j u s t came from the p o i n t to the
r i g h t o f s t a r t then might have to add p i x e l s
be low y e t
// now need to keep going and e v e n t u a l l y w i l l

g e t back to s t a r t
}
else
{

break ;
}

}
}
i f (pts . Count > 1 && pts [0] == pts [1]) // p r e v e n t s doub le

count ing o f f i r s t p o i n t
pts . RemoveAt (1) ;

return pts . ToArray () ;
}
public Dict ionary<Color , L i s t<ObjectInfo>> GetObjects
{

get
{

return o b j e c t s ;

278

}
}

}
private class Object In fo
{

Point [] a l l P o i n t s ;
Point [] borderPo ints ;
Color ob j e c tCo lo r ;
Rectangle objectBounds ;
int objectNumber ;
public Object In fo (Point [] a l l P o i n t s , Point [] borderPoints ,

Rectangle objectBounds , int objectNumber)
{

this . a l l P o i n t s = a l l P o i n t s ;
this . borderPo ints = borderPo ints ;
this . objectBounds = objectBounds ;
this . objectNumber = objectNumber ;

}
public void ToXYArray(out ushort [] xValues , out ushort []

yValues)
{

xValues = new ushort [a l l P o i n t s . Length] ;
yValues = new ushort [a l l P o i n t s . Length] ;
for (int i = 0 ; i < a l l P o i n t s . Length ; i++)
{

xValues [i] = (ushort) a l l P o i n t s [i] . X;
yValues [i] = (ushort) a l l P o i n t s [i] . Y;

}
}
public int ObjectNumber
{

get
{

return objectNumber ;
}

}
/// <summary>
/// Gets the s m a l l e s t r e c t a n g l e which e n t i r e l y e n c a p s u l a t e s

the o b j e c t
/// </summary>
public Rectangle ObjectBounds
{

get
{

return objectBounds ;
}

}
/// <summary>
/// Gets the number o f p o i n t s w i t h i n the O b j e c t I n f o item
/// </summary>
public int NumPoints
{

get

279

{
return a l l P o i n t s . Length ;

}
}
/// <summary>
/// Gets the PointS array t h a t s t o r e s a l l p o i n t s conta ined

w i t h i n the O b j e c t I n f o item .
/// </summary>
public Point [] A l lPo in t s
{

get
{

return a l l P o i n t s ;
}

}
/// <summary>
/// Gets the PointS array t h a t s t o r e s the p o i n t s t h a t make up

the border o f the O b j e c t I n f o item . The border p o i n t s are
s imply the

/// outermost p o i n t s o f the item .
/// </summary>
public Point [] BorderPoints
{

get
{

return borderPoints ;
}

}
/// <summary>
/// Gets or s e t s the c o l o r the o b j e c t r e p r e s e n t s , shou ld be

r e l a t e d to the phase r e p r e s e n t e d by the o b j e c t .
/// </summary>
public Color ObjectColor
{

get
{

i f (ob j ec tCo lo r != n u l l)
return ob j ec tCo lo r ;

else
return Color . FromArgb (0 , 0 , 0) ;

}
s e t
{

ob j ec tCo lo r = value ;
}

}
}
/// <summary>
/// Encapsu la tes some Point f u n c t i o n a l i t y e x c e p t s t o r i n g the

v a l u e s in s h o r t s to save space
/// </summary>
public struct PointS
{

280

short xValue ;
short yValue ;
public PointS (short x , short y)
{

xValue = x ;
yValue = y ;

}
public stat ic i m p l i c i t operator Point (PointS p)
{

return new Point (p . xValue , p . yValue) ;
}
public short X
{

get
{

return xValue ;
}
s e t
{

xValue = value ;
}

}
public short Y
{

get
{

return yValue ;
}
s e t
{

yValue = value ;
}

}
}
private class BoolBitmap
{

bool [] theBools ;
int width ;
int he ight ;
int numPixels ;
/// <summary>
/// Constructs a BoolBitmap o f width and h e i g h t e q u i v a l e n t to

the s u p p l i e d FastBitmap and i n i t i a l i z e s a l l v a l u e s to f a l s e
/// </summary>
/// <param name=”pairedBitmap”></param>
public BoolBitmap (FastBitmap pairedBitmap)
{

this . width = pairedBitmap . Width ;
this . he ight = pairedBitmap . Height ;
this . numPixels = width ∗ he ight ;
theBools = new bool [numPixels] ;
for (int i = 0 ; i < numPixels ; i++)

theBools [i] = fa l se ;

281

}
public void SetFa l s e ()
{

for (int i = 0 ; i < numPixels ; i++)
theBools [i] = fa l se ;

}
public void SetTrue ()
{

for (int i = 0 ; i < numPixels ; i++)
theBools [i] = true ;

}
public void Set (int co l , int row , bool value)
{

theBools [row ∗ width + c o l] = value ;
}
public bool Get (int co l , int row)
{

return theBools [row ∗ width + c o l] ;
}
public int Width
{

get
{

return width ;
}

}
public int Height
{

get
{

return he ight ;
}

}
}
/// <summary>
/// Contains array o f p o i n t s t h a t c o n s t i t u t e a s t r a i g h t l i n e s

between two p o i n t s
/// </summary>
public class Line

{
int mnPoints ;
Point [] mPoints ;
/// <summary>
/// Line cons t ruc tor , t a k e s two p o i n t s and determines a l i n e between

them
/// </summary>
public Line (Point pointOne , Point pointTwo)
{

int xDi f f = pointOne .X − pointTwo .X;
int yDi f f = pointOne .Y − pointTwo .Y;

Point d i f f e r e n c e = new Point (xDi f f , yD i f f) ;
bool xAxisMax ;

// 29 r i g h t x 28 up

282

i f (d i f f e r e n c e .X > 0)
xD i f f = d i f f e r e n c e .X;

else
xDi f f = −d i f f e r e n c e .X;

i f (d i f f e r e n c e .Y > 0)
yD i f f = d i f f e r e n c e .Y;

else
yDi f f = −d i f f e r e n c e .Y;

int absD i f f = System . Math .Max(xDi f f , yD i f f) ; // s p e c i f i e s number
o f p i x e l s needed

mnPoints = absD i f f ;
mPoints = new Point [mnPoints] ;

int maxDiff = System . Math .Max(d i f f e r e n c e .X, d i f f e r e n c e .Y) ;
// the number o f p i x e l s i s e q u a l to the g r e a t e s t d i f f e r e n c e
// need to f i n d out i f the d i r e c t i o n o f maxDiff i s p o s i t i v e or

n e g a t i v e (which way to p l o t p o i n t s)
// i f d i f f e r e n c e x i s b i g g e s t d i f f e r e n c e and x i s p o s i t i v e then

increment i s n e g a t i v e
int i , increment ;
double s l ope ;
i f (xD i f f == absD i f f)
{ // x d i r e c t i o n determines number o f p i x e l s

xAxisMax = true ;
i f (xD i f f == d i f f e r e n c e .X)
{ // i f x d i f f e r e n c e i s p o s i t i v e then increment i s n e g a t i v e

increment = −1;
}
else
{

increment = 1 ;
}

}
else
{ // y d i r e c t i o n determines number o f p i x e l s

xAxisMax = fa l se ;
i f (yD i f f == d i f f e r e n c e .Y)
{ // i f y d i f f e r e n c e i s p o s i t i v e then increment i s n e g a t i v e

increment = −1;
}
else
{

increment = 1 ;
}

}
i f (pointOne .X != pointTwo .X)

s l ope = Convert . ToDouble (pointOne .Y−pointTwo .Y) /Convert . ToDouble
(pointOne .X−pointTwo .X) ;

else
s l ope = 1000000000;

for (i = 0 ; i<absD i f f ; i++)
{

i f (xAxisMax)

283

{
i f (s l ope < 0)
{

mPoints [i] = pointOne ;
mPoints [i] . O f f s e t (i ∗ increment , (int) (Convert . ToDouble (i) ∗

s l ope +0.5)∗ increment) ; // + new Point (i ∗ increment ,
Convert . ToInt16 (Convert . ToDouble (i)∗ s l o p e +0.5)∗ increment)
;

}
i f (s l ope >= 0)
{

mPoints [i] = pointOne ;
mPoints [i] . O f f s e t (i ∗ increment , (int) (Convert . ToDouble (i) ∗

s l ope +0.5)∗ increment) ;
}

}
else
{

i f (s l ope < 0)
{

mPoints [i] = pointOne ;
mPoints [i] . O f f s e t ((int) (Convert . ToDouble (i) ∗1/ s l ope +0.5)∗

increment , i ∗ increment) ;
}
i f (s l ope >= 0)
{

mPoints [i] = pointOne ;
mPoints [i] . O f f s e t ((int) (Convert . ToDouble (i) ∗1/ s l ope +0.5)∗

increment , i ∗ increment) ;
}

}
}

}
/// <summary>
/// Gets number o f p o i n t s in a l i n e
/// </summary>
public int Points
{

get
{

return mnPoints ;
}

}
public Point GetPoint (int n)
{

return mPoints [n] ;
}

public void ClipTo (int n)
{

i f (n < mnPoints)
mnPoints = n ;

}

284

}
/// <summary>
/// Represents a c i r c l e based upon a s u p p l i e d diameter and

l o c a t i o n . C i r c l e p o i n t s are s t o r e d in two arrays f o r the l e f t
and r i g h t s i d e s

/// o f the c i r c l e and only one p o i n t per Y v a l u e i s c r e a t e d per
s ide , thus the c i r c l e i s meant to be i t e r a t e d through l e f t to
r i g h t then

/// top to bottom . I f an odd diameter i s s u p p l i e d the next
h i g h e s t even i n t e g e r diameter i s used to c r e a t e the c i r c l e .

/// </summary>
private class C i r c l e

{
private Point [] l e f t P o i n t s ;

private Point [] r i g h t P o i n t s ;
private int diameter = 0 ;
private Point l o c a t i o n = new Point (0 , 0) ;

public C i r c l e (int diam , int x , int y)
{

i f (diam % 2 != 0)
diam++;

l e f t P o i n t s = new Point [diam + 2] ;
r i g h t P o i n t s = new Point [diam + 2] ;
int count = 0 ;
int maxY = y + diam / 2 ;
int rad = diam / 2 ;
double radSqr = rad ∗ rad ;
int xVal ;
for (int i = y − diam / 2 ; i <= maxY; i++)
{

// (x−x0) ˆ2 + (y−y0) ˆ2 = (d /2) ˆ2
// x = ((d /2) ˆ2 − (y−y0) ˆ2) ˆ(1/2) + x0
xVal = (int) (System . Math . Sqrt (radSqr − (i − y) ∗ (i −

y)) + 0 . 5) ;
l e f t P o i n t s [count] . X = x − xVal ;
l e f t P o i n t s [count] . Y = i ;
r i g h t P o i n t s [count] . X = x + xVal ;
r i g h t P o i n t s [count] . Y = i ;
count++;

}
diameter = diam ;
this . l o c a t i o n = new Point (x , y) ;

}
public C i r c l e (int diam , Point l o c a t i o n) : this (diam , l o c a t i o n .

X, l o c a t i o n .Y)
{
}
public void DrawCircle (FastBitmap fastBitmap)

{
for (int i = 0 ; i < this . d iameter ; i++)
{

fastBitmap . Se tP ixe l (l e f t P o i n t s [i] . X, l e f t P o i n t s [i] . Y, Color .
Green) ;

285

fastBitmap . Se tP ixe l (r i g h t P o i n t s [i] . X, r i g h t P o i n t s [i] . Y
, Color . Green) ;

}
}
/// <summary>
/// O f f s e t s the c i r c l e by a s p e c i f i e d p o i n t
/// </summary>
/// <param name=” o f f s e t ”></param>
public void O f f s e t (Point o f f s e t)

{
for (int i = 0 ; i <= diameter ; i++)
{

l e f t P o i n t s [i] . O f f s e t (o f f s e t .X, o f f s e t .Y) ;
r i g h t P o i n t s [i] . O f f s e t (o f f s e t .X, o f f s e t .Y) ;

}
l o c a t i o n . O f f s e t (o f f s e t .X, o f f s e t .Y) ;

}
public int Diameter

{
get
{

return diameter ;
}

}
public Point Center
{

get
{

return l o c a t i o n ;
}

}
public Point [] Le f tPo in t s
{

get
{

return l e f t P o i n t s ;
}

}
public Point [] RightPoints
{

get
{

return r i g h t P o i n t s ;
}

}
}

public class Spac ingCalc In fo
{

private double spac ing ;
private int i n t e r c e p t s ;
private double d i s t anc e ;
private int numLines ;

286

public Spac ingCalc In fo (double theSpacing , int the In t e r c ep t s , double
theDistance , int theNumLines)

{
spac ing = theSpacing ;
i n t e r c e p t s = t h e I n t e r c e p t s ;
d i s t anc e = theDistance ;
numLines = theNumLines ;

}
public double Spacing
{

get
{

return spac ing ;
}

}
public int I n t e r c e p t s
{

get
{

return i n t e r c e p t s ;
}

}
public double Distance
{

get
{

return d i s t anc e ;
}

}
public int NumberOfLines
{

get
{

return numLines ;
}

}
}

public class PhaseFract ionResu l t s
{

private double [] phaseFract ion ;

public PhaseFract ionResu l t s (double [] phaseFract ion)
{

this . phaseFract ion = phaseFract ion ;
}
public double [] PhaseFract ions
{

get
{

return phaseFract ion ;
}

}
}

287

public class Cr i t i c a lD iamete rRe su l t s
{

private ArrayList c i r c l e D i a m e t e r s ;
private ArrayList phaseFract ions ;
public Cr i t i c a lD iamete rRe su l t s (ArrayList c i r c l eD iamete r s ,

ArrayList phaseFract ions)
{

this . c i r c l e D i a m e t e r s = c i r c l e D i a m e t e r s ;
this . phaseFract ions = phaseFract ions ;

}
public ArrayList Ci rc l eDiameter s
{

get
{

return c i r c l e D i a m e t e r s ;
}

}
public ArrayList PhaseFract ions
{

get
{

return phaseFract ions ;
}

}
}
public class FindObjectResults
{

private int numberOfObjects ;
public FindObjectResults (int numberOfObjects)
{

this . numberOfObjects = numberOfObjects ;
}
public int NumberOfObjects
{

get
{

return numberOfObjects ;
}

}
}
/// <summary>
/// Burns o b j e c t s and o b j e c t d e t a i l s i n t o u n a l t e r e d bitmap based

on the s u p p l i e d s e t t i n g s and r e t u r n s the r e s u l t i n g bitmap .
/// </summary>
/// <param name=” s e t t i n g s ”></param>
/// <re turns></returns>
public Bitmap GetDetailedBitmap (Image Analyzer . ObjectDetai lsForm .

Objec tSe t t ing s s e t t i n g s , double zoom)
{

i f (fastBitmapsAlt . Count == 0)
fastBitmapsAlt . Add(new FastBitmap (fastBitmaps [0] . Bitmap)) ;

else
fastBitmapsAlt [0] = new FastBitmap (fastBitmaps [0] . Bitmap) ;

288

bool out l ineOnly = (s e t t i n g s . ObjectSty l e == ObjectDetai lsForm .
ObjectSty l e . Out l ine) ;

bool displayNumbers = (s e t t i n g s . ObjectLabel ==
ObjectDetai lsForm . ObjectLabel . ObjectNumber) ;

Object In fo [] objArray = theObjects . GetObjects [Color . FromArgb
(255 , 255 , 255)] . ToArray () ;

fastBitmapsAlt [0] . DrawObjects (objArray , out l ineOnly , Color .
FromArgb (0 , 255 , 0)) ;

Font zoomModFont = s e t t i n g s . LabelFont ;
i f (displayNumbers)

fastBitmapsAlt [0] . DrawNumbers (objArray , Color . FromArgb
(255 , 0 , 0) , zoomModFont) ;

return fastBitmapsAlt [0] . Bitmap ;
}
/// <summary>

/// Get the Image we are working wi th
/// </summary>
public Bitmap Bitmap
{

get
{

return fastBitmaps [0] . Bitmap ;
}

}
/// <summary>
/// Returns the bitmap with l i n e s on i t from spac ing c a l c u l a t i o n .

Returns u n a l t e r e d bitmap i f no l i n e bitmap e x i s t s .
/// </summary>
public Bitmap LineBitmap
{

get
{

i f (fastBitmapsAlt != n u l l && fastBitmapsAlt . Count > 0)
return fastBitmapsAlt [0] . Bitmap ;

else
return fastBitmaps [0] . Bitmap ;

}
}
/// <summary>
/// Creates a new bitmap from the base bitmap and draws the

o b j e c t s to i t
/// </summary>
public Bitmap ObjectBitmap
{

get
{

i f (fastBitmapsAlt . Count == 0)
fastBitmapsAlt . Add(new FastBitmap (fastBitmaps [0] .

Bitmap)) ;
else

fastBitmapsAlt [0] = new FastBitmap (fastBitmaps [0] .
Bitmap) ;

289

fastBitmapsAlt [0] . DrawObjects (theObjects . GetObjects [Color .
FromArgb (255 , 255 , 255)] . ToArray () , true , Color .
FromArgb (0 , 255 , 0)) ;

return fastBitmapsAlt [0] . Bitmap ;
}

}
/// <summary>
/// Gets or s e t s a v a r i a b l e t h a t determines whether the ImageCalc

i s to s t op c a l c u l a t i o n s at next a v a i l a b l e o p p o r t u n i t y
/// </summary>
public bool StopCa l cu la t i ons
{

get
{

return s t o p C a l c u l a t i o n s ;
}
s e t
{

s t o p C a l c u l a t i o n s = value ;
}

}
}

}

AnalysisOptions

This class stores settings for the different calculations available in ImageCalc.

// Analys i sOpt ions
public class Analys i sOpt ions
{

private Genera lSe t t ing s g e n e r a l S e t t i n g s ;
private C a l i b r a t i o n S e t t i n g s c a l i b r a t i o n S e t t i n g s ;
private PhaseSett ings phaseSe t t ing s ;
private Spac ingSe t t ing s s p a c i n g S e t t i n g s ;
private C r i t i c a l D i a m e t e r S e t t i n g s c r i tD iamSet t ings ;
private R a d i a l D i s t r i b u t i o n S e t t i n g s r a d i a l D i s t S e t t i n g s ;
public Analys i sOpt ions ()
{
}
public class Genera lSe t t ing s
{

private s t r i n g r e s u l t s D i r e c t o r y ;
public Genera lSe t t ing s (s t r i n g r e s u l t s D i r e c t o r y)
{

this . r e s u l t s D i r e c t o r y = r e s u l t s D i r e c t o r y ;
}
/// <summary>
/// Gets or s e t s the d i r e c t o r y where a n a l y s i s r e s u l t s w i l l be

s t o r e d to
/// </summary>

290

public s t r i n g Resu l t sD i r e c to ry
{

get
{

return r e s u l t s D i r e c t o r y ;
}
s e t
{

r e s u l t s D i r e c t o r y = value ;
}

}
}
public class C a l i b r a t i o n S e t t i n g s
{

private s t r i n g calName ;
private double calNumber ;
public C a l i b r a t i o n S e t t i n g s (s t r i n g cal ibrat ionName , double

cal ibrat ionNumber)
{

calName = cal ibrat ionName ;
calNumber = cal ibrat ionNumber ;

}
public s t r i n g CalibrationName
{

get
{

return calName ;
}
s e t
{

calName = value ;
}

}
public double CalibrationNumber
{

get
{

return calNumber ;
}
s e t
{

calNumber = value ;
}

}
}
/// <summary>
/// Contains in format ion about phase s e t t i n g s , such as the names and

a s s i g n e d c o l o r s o f each phase
/// </summary>
public class PhaseSett ings
{

private ArrayList phaseNames = new ArrayList (15) ;
private ArrayList phaseColors = new ArrayList (15) ;

291

private ArrayList phaseColorNames = new ArrayList (15) ;
public PhaseSett ings ()
{
}
public PhaseSett ings (ArrayList phases , ArrayList colorNames ,

ArrayList c o l o r s)
{

phaseNames = phases ;
phaseColorNames = colorNames ;
phaseColors = c o l o r s ;

}
/// <summary>
/// Gets or s e t s an ArrayLis t o f s t r i n g s c o n t a i n i n g the names o f

each phase t h a t has been d e f i n e d
/// </summary>
public ArrayList PhaseNames
{

get
{

return phaseNames ;
}
s e t
{

phaseNames = value ;
}

}
/// <summary>
/// Gets or s e t s an ArrayLis t o f s t r i n g s c o n t a i n i n g the names o f

each c o l o r d e f i n e d f o r the phases
/// </summary>
public ArrayList PhaseColorNames
{

get
{

return phaseColorNames ;
}
s e t
{

phaseColorNames = value ;
}

}
/// <summary>
/// Gets or s e t s an ArrayLis t c o n t a i n i n g Argb Colors f o r each

phase t h a t has been d e f i n e d
/// </summary>
public ArrayList PhaseColors
{

get
{

return phaseColors ;
}
s e t
{

292

phaseColors = value ;
}

}
/// <summary>
/// Returns number o f phases a s s i g n e d
/// </summary>
public int Count
{

get
{

return phaseNames . Count ;
}

}
}
public class Spac ingSe t t ing s
{

private int numLines ;
private bool showLines ;
public Spac ingSe t t ing s (int numberOfLines , bool showTheLines)
{

numLines = numberOfLines ;
showLines = showTheLines ;

}
/// <summary>
/// Gets or s e t s number o f l i n e s to c a l c u l a t e , e q u a l s −1 i f manual

l i n e de terminat ion i s s e t wi th no l i n e l i m i t in p l a c e
/// </summary>
public int NumberOfLines
{

get
{

return numLines ;
}
s e t
{

numLines = value ;
}

}
public bool ShowLines
{

get
{

return showLines ;
}
s e t
{

showLines = value ;
}

}
}
public class C r i t i c a l D i a m e t e r S e t t i n g s
{

CalcMethod calcMethod ;

293

public C r i t i c a l D i a m e t e r S e t t i n g s (CalcMethod calcMethod)
{

this . calcMethod = calcMethod ;
}
public enum CalcMethod
{

GridCi rc l e s , RandomCircles
}
public CalcMethod CalculationMethod
{

get
{

return calcMethod ;
}
s e t
{

calcMethod = value ;
}

}
}
public class R a d i a l D i s t r i b u t i o n S e t t i n g s
{

private double l oca lRadiusMicrons ;
private double maxRadiusMicrons ;
private bool showCirc l e s ;
private bool l o c a l A n a l y s i s ;
private R a d i a l D i s t r i b u t i o n C a l c u l a t i o n S t y l e radDi s tCa l cSty l e ;
public enum R a d i a l D i s t r i b u t i o n C a l c u l a t i o n S t y l e
{

FromCircle ,
FromObject

}
public R a d i a l D i s t r i b u t i o n S e t t i n g s (

R a d i a l D i s t r i b u t i o n C a l c u l a t i o n S t y l e radDistCa lcSty le , double
loca lRadiusMicrons ,
double maxRadiusMicrons , bool showCirc les , bool l o c a l A n a l y s i s)

{
this . r adDi s tCa l cSty l e = radDi s tCa l cSty l e ;
this . l oca lRadiusMicrons = loca lRadiusMicrons ;
this . maxRadiusMicrons = maxRadiusMicrons ;
this . showCirc l e s = showCirc l e s ;
this . l o c a l A n a l y s i s = l o c a l A n a l y s i s ;

}
/// <summary>
/// Gets or s e t s the s t y l e o f r a d i a l d i s t r i b u t i o n c a l c u l a t i o n ,

i n d i c a t i n g how the l o c a l area o f c a l c u l a t i o n i s determined .
/// </summary>
public R a d i a l D i s t r i b u t i o n C a l c u l a t i o n S t y l e RadDistCalcStyle
{

get
{

return radDi s tCa l cSty l e ;
}

294

s e t
{

radDi s tCa l cSty l e = value ;
}

}
/// <summary>
/// Gets or s e t s the r a d i u s o f the l o c a l area , in microns , where

the r a d i a l d i s t r i b u t i o n w i l l be c a l c u l a t e d from
/// </summary>
public double LocalRadius
{

get
{

return l oca lRadiusMicrons ;
}
s e t
{

l oca lRadiusMicrons = value ;
}

}
/// <summary>
/// Gets or s e t s the maximum radius , in microns , a t which p i x e l

d i s t a n c e s w i l l be c a l c u l a t e d
/// </summary>
public double MaxRadius
{

get
{

return maxRadiusMicrons ;
}
s e t
{

maxRadiusMicrons = value ;
}

}
/// <summary>
/// Gets or s e t s whether to show c i r c l e s used in r a d i a l

d i s t r i b u t i o n c a l c u l a t i o n s
/// </summary>
public bool ShowCirc les
{

get
{

return showCirc l e s ;
}
s e t
{

showCirc l e s = value ;
}

}
public bool Loca lAna lys i s
{

get

295

{
return l o c a l A n a l y s i s ;

}
s e t
{

l o c a l A n a l y s i s = value ;
}

}
}
public Genera lSe t t ing s GetGenera lSett ings
{

get
{

return g e n e r a l S e t t i n g s ;
}

}
public C a l i b r a t i o n S e t t i n g s GetCa l i b ra t i onSe t t i ng s
{

get
{

return c a l i b r a t i o n S e t t i n g s ;
}

}
public PhaseSett ings GetPhaseSett ings
{

get
{

return phaseSe t t ing s ;
}

}
public Spac ingSe t t ing s GetSpac ingSett ings
{

get
{

return s p a c i n g S e t t i n g s ;
}

}
public C r i t i c a l D i a m e t e r S e t t i n g s GetCr i t i c a lD iamete rSe t t ing s
{

get
{

return c r i tD iamSet t ings ;
}

}
public R a d i a l D i s t r i b u t i o n S e t t i n g s GetRad ia lD i s t r i bu t i onSe t t i ng s
{

get
{

return r a d i a l D i s t S e t t i n g s ;
}

}
}

