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Strategic Planning for Disaster Recovery with 
Stochastic Last Mile Distribution 

Pascal Van Hentenryck1 , Russell Bent2 , and Carleton Coffrin1 

1 Brown University, Providence R1 02912, USA 
2 Los Alamos National Laboratory, Los Alamos NM 87545, USA 

Abstract. This paper considers the single commodity allocation prob­
lem (SCAP) for disaster recovery, a fundamental problem faced by all 
populated areas. SCAPs are complex stochastic optimization problems 
that combine resource allocation, wa.rehouse routing, and parallel fleet 
routing. Moreover, these problems must be solved under tight runtime 
constraints to be practical in real-world disaster situations. This paper 
formalises the specification of SCAPs and introduces a novel multi-stage 
hybrid-optimization algorithm that utilizes the strengths of mixed in­
teger programming, constraint programming, and large neighborhood 
search. The algorithm was validated on hurricane disaster scenarios gen­
erated by Los Alamos National Laboratory using state-of-the-art disaster 
simulation tools and is deployed to aid federal organizations in the US. 

1 Background & Motivation 

Every year seasonal hurricanes threaten Florida. The severity of hurricane dam­
age varies from year to year, but considerable human and monetary resources 
are always spent to prepare for and recover from these disasters. It is policy 
makers who make the critical decisions relating to how money and resources are 
allocated for preparation and recovery. At this time, preparation a.nd recovery 
plans developed by policy makers are ad hoc and rely solely on available sub­
ject matter. Furthermore, the National Hurricane Center (NHC) of the National 
Weather Service is highly skilled at generating ensembles of possible hurricane 
tracks but current preparation methods often ignore this information. 

This paper aims at solving this problem more rigorously by combining opti­
mization techniques and disaster-specific information given by NHC predictions. 
The problem is not only hard from a combinatorial optimization standpoint, 
but it is also inherently stochastic because the exact outcome of the disaster 
is unknown. Although humans have difficulty reasoning over uncertain data, 
recent work in the optimization community [13,5) has shown that stochastic op­
timization techniques can find robust solutions in problems with uncertainty to 
overcome this difficulty. 

The paper considers the following abstract disaster recovery problem: How to 
store a single commodity throughout a populated area to minimize its delivery 
time after a disaster has occurred. It makes the following technical contributions: 



1. It formalizes the single commodity allocation problem (SCAP). 
2. It proposes a multi-stage hybrid-optimization decomposition for SCAPs, 

combining a MIP model for stochastic commodity storage, a hybrid CP /MIP 
model for multi-trip vehicle routing, and a large neighborhood search model 
for minimizing the latest delivery time in multiple vehicle routing. 

3. It validates the approach on the delivery of potable water for hurricane 
recovery. 

Section 2 of this paper reviews similar work on diaster preparation and recovery 
problems. Section 3 presents a mathematical formulation of the disaster recovery 
problem and sets up the notations for the rest of paper. Section 4 presents the 
overall approach using (hopefully) intuitive models. Section 5 presents a number 
of modeling and algorithmic improvements that refines each of the initial models; 
it also presents the final version of the optimization algorithm for SCAPs. Section 
6 reports experimental results of our complete algorithm on some benchmark 
instances to validate the approach and Section 7 concludes the paper. 

2 Previous Work 

The operations research community has been investigating the field of human­
itarian logistics since the 1990s but recent disasters have brought increased at­
tention to these kinds of logistical problems [18,4,9,1]. Humanitarian logistics 
is filled with a wide variety of optimization problems that combine aspects from 
classic problems in inventory routing, supply chain management, warehouse lo­
cation, and vehicle routing. The problems posed by humanitarian logistics add 
significant complexity to their classical variants. The operations research com­
munity recognizes that novel research in this area is required to solve these kinds 
of problems [18,4]. Some of the key features that characterize these problems 
are as follows: 

1. Multi-Objective Functions - High-stake disaster situations often have to 
balance conflicting objectives goals (e.g. operational costs, speed of service, 
and unserved customers) [3 ,8,2, ll]. 

2. Non-Standard Objective Functions - A makespan time objective in 
VRPs [3 , 6] or equitability objectives [2]. 

3. Arbitrary Side Constraints - Limited resources, a fixed vehicle fleet [2], 
fixed latest delivery time [3,2], or a insufficient preparation budget [8 , 10]. 

4. Stochastic Aspects - Disasters are inherently unpredictable. Preparations 
and recovery plans must be robust with respect to many scenarios [8,11]. 

Humanitarian logistics also studies these problems at a variety of scales in both 
space and time. Some problems consider a global scale with time measured in 
days and weeks [8], while others focus on the minute-by-minute details of deliv­
ering suppiles from local warehouses directly to the survivors [3,2]. This paper 
considers a scale which is often called the "last mile" of distribution. This in­
volves warehouse selection and customer delivery at the city and state scale. 



The operations research community has mainly formulated these problems 
using MIP models. Many of the humanitarian logistics problems are complex 
and MIP formulations do not always scale to real world instances [2,3]. Ad­
ditionally, it was shown that MIP solvers can have difficulty with some of the 
unique features of these kinds of problems even when problem sizes are small 
(e.g., with minimizing the latest delivery time in VRPs [6]). Local search tech­
niques are often used to scale the problems to real world instances [3,6]. This 
paper demonstrates how hybrid optimization methods and recent advances in 
the optimization community can yield high-quality solutions to such challenges. 
To the best of our knowledge, SCAPs are the first humanitarian logistic prob­
lem to investigate the "last mile" vehicle routing problem and stochastic disaster 
information simultaneously. 

3 The Single Commodity Allocation Problem (SCAP) 

In formalizing SCAPs, a populated area is represented as a graph G = (V, E) 
where V represents those sites of interest to the allocation problem, i.e., sites 
requiring the commodity after the disaster (e.g., hospitals , shelters, and public 
buildings) and vehicle storage depots. The required commodity can be stored at 
any node of the graph subject to some side constraints. For simplicity, we assume 
the graph is complete and the edges have weights representing travel times. The 
weights on the edges form a metric space but it is not Euclidean due to the 
transportation infrastructure. Moreover, the travel times can vary in different 
disaster scenarios due to road damage. The primary outputs of a SCAP are (1) 
the amount of commodity to be stored at each node; (2) for each scenario and 
each vehicle, the best plan to deliver the commodities. Figure 1 summarizes the 
entire problem, which we now describe in detail. 

Objectives The objective function aims at minimizing three factors: (1) The 
amount of demands that are met ; (2) the time it takes to meet those demands; 
(3) the cost of storing the commodity. Since these three values are not expressed 
in the same units, it i.e; unclear how to combine them into a single objective 
function. Furthermore, their relative importance is typically decided by policy 
makers on a case-by-case basis. For these reilSOllS, this paper uses weigths W x , 

VV:q, and Wz to balance the objectives and to give control to policy makers. 

Side Constraints The first set of side constraints concerns the nodes of the graph 
which represent the repOSitories in the populated area. Each repository R'iEl. n 

has a maximum capacity RGi to store the commodity. It also has a one-time 
initial cost R1i (the investment cost) and an incremental cost RM; for each 
unit of commodity to be stored. As policy makers often work within budget 
constraints, the sum of all costs in the system must be less than a budget B. 

The second set of side constraints concerns the deliveries. We are given a 
fleet of m vehicles \!iEl .. m which are homogeneous in terms of their capacity 
VG. Each vehicle has a unique starting depot D; and ending depot D; . Unlike 



Given: 
Repositories: R;.E1..,. 

Capacity: RCi 

Investment Cost: Rl;, 
Maintenance Cost: RM; 

Vehicles: ViEl .. m 

Capacity: VC 
Start Depot: Dt 
End Depot: Di 

Scenario Data: SiEl.a, 

Scenario Probability: Pi 
A vailable Sites: ARi C {L n} 
Site Demand: Ci,1..n 

Travel Time Matrix : 1i,1.I , 1..I. 

Weights: W x , W y , W z 
Budget: B 

Output: 
The amount st.ored at each warehouse 
Delivery schedules for each vehicle 

Minimize: 
Wx * Unserved Demands + 
W y * MAXl .. mToUl" Timei+ 
Wz * Investment Cost 
W z * Maintenance Cost 

Subject To: 
Vehicle and site capacities 
Vehicles start and end locations 
Costs:S B 

Notes: 
Every warehouse that stores a unit 
must be visited at least once 

Fig. 1. Single Commodity Allocation Problem SpeCification 

classic vehicle routing problems [17], customer demands in SCAPs often exceed 
the vehicle capacity and hence multiple deliveries are often required to serve a 
single customer. 

Stochasticity SCAPs are specified by a set of a different disaster scenarios SiEl a, 

each with an associated probability Pi. After a disaster, some sites are damaged 
and each scenario has a set AR; of available sites where the stored commodities 
remain intact, Moreover, each scenario specifies, for each site R i , the demand 
Ci . Note that a site may have a demand even if a site is not available, Finally, 
site-to-site travel times Ti .1 1,1.l (where l = IVI) are given for each scenario and 
capture infrastructure damages, 

Unique Features Although different aspects of this problem were studied before 
in the context of vehicle routing, location routing, inventory management , and 
humanitarian logistics, SCAPs present unique features. Earlier work in location­
routing problems (LRP) assumes that (1) customers and warehouses (storage 
locations) are disjoint sets; (2) the number of warehouses is ::::; 3 .. 10; (3) customer 
demands are less than the vehicle capacity; (4) customer demands are atomic 

None of these assumptions hold in the SCAP context, In a SCAP, it may not 
only be necessary to serve a customer with multiple trips but, due to the storage 
capacity constraints, those trips may need to come from different warehouses. 
The key features of SCAP are: (1) each site can be a warehouse and / or customer; 
(2) one warehouse may have to make many trips to a single customer; (3) one 
customer may be served by many warehouses; (4) the number of available vehicles 
is fixed; (5) vehicles start and end in different depots; (6) the objective is to 
minimize the time of the last delivery. Minimizing the time of the last delivery 
is one of the most difficult aspects of this problem as in demonstrated in [6]. 



4 The Basic Approach 

This section presents the basic approach to the SCAP problem for simplifying 
the reading of the paper. Modeling and algorithmic improvements are presended 
in Section 5. Previous work on location routing [7,14,15] has shown that rea­
soning over both the st.orage problem and the routing problem simultaneously 
is extremely hard computationally. To address this difficuty, we present a three­
stage algorithm that decomposes the storage, customer allocation, and routing 
decisions. The t.hree stages and the key decisions of each stage are as follows: 

1. Storage & Customer Allocation: Which repositories store the commod­
ity and how is the commodity allocated to each customer? 

2. Repository Routing: For each repository, what is the best customer dis­
tribution plan? 

3. Fleet Routing: How to visit the repositories to minimize the time of the 
last delivery? 

The decisions of each stage are independent and can use the optimization tech­
nique most appropriate to their nature. The first sta.ge is formulated as a IVIIP, 
the second stage is solved optimally using constraint programming, and the third 
stage uses large neighborhood search (LNS) . 

Storage [3 Customer Allocation The first stage captures the cost and demand 
objectives precisely but approximates the routing aspects. In particular, the 
model only considers the time to move the commodity from the repository to 
a customer, not the maximum delivery times. Let D be a set of delivery triples 
of the form (source, destination, quantity). The delivery-time component of the 
objective is replaced by 

Wy * L Ts,d * qjVC 
(s ,d,q)ED 

Figure 2 presents the stochastic MIP model , which scales well with the number 
of disaster scenarios because the number of integer variables only depends on 
the number of sites n. The meaning of the decision variables is explained in the 
figure . Once the storage and customer allocation are computed, the uncertainty 
is revealed and the second stage reduces a deterministic multi-depot, multiple­
vehicle capacitated routing problem whose objective consists in minimizing the 
latest delivery. To our knowledge, this problem has not been studied before. 
One of its difficulties in this setting is that the customer demand is typically 
much larger than the vehicle capacity. As a result, we tackle it in two steps. We 
first consider each repository independently and determine a number of vehicle 
trips to serve the repository customers (Repository Routing). A trip is a tour 
that starts at the depot, visits customers, returns to the depot , and satisfies the 
vehicle capacity constraints. We then determine how to route the vehicles to 
perform all the trips and minimize the latest delivery time (Fleet Routing). 



Variables: 
Stored;El.n E (0, RCi ) - Units stored 
OpeniE 1.. n E {O, I} - More than zero units stored flag 

StoredSavedsEl.a ,i.E l..n E (0, C. ,i) - Units used at the storage location 
Sto'redSent sE l.a.,iEl. .n E (0, RCi) - Total units shipped to other locations 
incomingsEl.a.,iEl.n E (O,Cs ,i) - Total units coming from other locations 
Unsati8fiedsE1..a. ,iEl..n E (0, Cs ,i ) - Demand not sat.isfied 
Sents El.a. ,;El.n,jEl. n E (0, RCi/VC) - Trips needed from ito j 

Minimize: 

W x " L Ps * L Unsatisfied s,;+ 
s El. .a. iEl..n 

Wy * L p. * L L Ts ,i.j * Sents,i ,j + 
8El .. a iEl. .rtiEl..n 

Wz * L (Ri, * Open, + RMi * Stored,) 
i E 1. .n 

Subject To: 

L (Rii * Openi, + RM;, .. Stored.) ::; B 
iEl .. n 

RC;. * Open;, ::: StaTed, Vi 
StoredSaveds, i + incomings ,; + Unsatisfied',i = Cs,i Vs, i 
StoredSaveds ,i + StoredSents ,i ::; StorediVs, i 

L VC * Sents ,;"j = StoredSent i Vs , i 
jEl.n 
L VC * Sents,j,i = incoming, Vs, i 

jEI..n 

StoredSaved,.i + StoredSent s,; = 0 Vs,i where i not in ARs 

Fig. 2. Storage & Customer Selection: The MIP ModeL 

Repository Routing Figure 3 shows how to create the inputs for repository rout­
ing from the outputs of the MIP model. For a given scenario s, the idea is to 
compute the customers of each repository w , the number of full-capacity trips 
FullTripss ,w,c and the rema.ining demand Demands,w,e needed to serve each 
such customer c. The full trips are only considered in the fleet routing since they 
must be performed by a round-trip. The minimum number of trips required to 
serve the remaining customers is also computed using a bin-packing algorithm. 
The repository routing then finds a set of trips serving these customers with 
minimal travel time, The repository routing is solved using a simple CP model 
depicted in Figure 4. The model uses two depots for each possible trip (a starting 
and an ending depot localized at the repository) and considers nodes consist­
ing of the depots and the customers, Its decision variables are the successor 
variables specifying which node to visit next and the trip variables associating 
a trip with each customer. The circuit constraint expresses that the successor 
variables constitute a circuit , the vehicle capacity constraint is enforced with a 
multi-knapsack constraint , and the remaining constraints associate a trip num­
ber with every node, This model is then solved to optimality, 



Let: 

Given scenario s and for each repository w E l..n 
Custornerss,w = {i E l..n: Sents ,w';' > O} 
For c E Customerss ,w 

FullTrips s,'w,c = LSents,w, cJ 
Demands,w,e = VC * (Sents,'w,c - LSents,w,cJ) 

MinTripss,w = MinBinPacking( {Demands,w,e} c, VC) 

Fig. 3. The Inputs for the Repository Routing, 

Depotst,w == {,wi, 'wt) .. " wtfinTn psa 'CJ.J 

Depots-;'w == {1U~ , w:; , ... ) W NJinTTi Ps s:w } 

Nodess,'W = Depotstw U Depots -;,UJ U Customerss ,w 
Trips .,'w = {l, 2, ... , MinTripss,'W} 

Variables: 
Success07' [Nodes s ,w] E Node ss,w - Node traversal order 
Trip[Nodess ,w] E Trips s,w - Node trip assignment 

Minimize: 

2.::::: T s ,n ,S1.ic c(;ssorlnl 

nE Nodess,w 

Subject To: 
circuit( Successor) 
multiknapsack(Trip, {Demands s,w}c, VC) 
for wt E Depots;'", : Trip[wt ] = i 
for w; E Depots;'",: Trip[wi" ] = i 
for n E Oustomer'ss,w U Depots;'",: Trip[n] = Tr-ip[Successor[n]] 

Fig. 4 . The CP Model for Repository Routing. 

Fleet R01Lting It then remains to decide how to perform the trips with the 
fleet and to minimize the latest delivery time. The capacity constraints can be 
ignored now since each trip satisfies them. Each trip is abstracted into a task 
with a specific location and a service time capturing the time to perform the trip 
(the exact trip has no importance). The fleet routing problem then consists of 
using the vehicles to perform all these tasks while minimizing the latest delivery. 

Figure 5 depicts how to compute the inputs for fleet routing given the re­
sults of the earlier steps , which consists of computing the proper service times 
TripTimet for each trip t. The model for the fleet routing is depicted in Fig­
ure 6 and is a standard CP formulation for multiple vehicle routing adapted to 
minimize the latest delivery time. For each node, the decision variables are its 
successor, its vehicle, and its delivery time. The objective minimizes the maxi­
mum delivery time and the rest of the model expresses the subtour elimination 
constraints, the vehicle constraints, and the delivery time computation. 

The fleet routing problem is solved using LNS [16] to obtain high-quality so­
lutions quickly given the significant number of nodes arising in large instances. 
At each optimization step , the LNS algorithm selects 15% of the trips to re-



Given scenario s and for each repository 'W E l..n 

Tasks. ,,,, = {tJ, t2, ... , tTrips.,w} U FuliTripss ,w 
For ea.ch t E FuliTripssw to custorner c 

TripTimet = 2 Ts,w ,c 
For t E Tasks s ,,,, \ FullTripss,w 

TaskNodest = {n E Nodes"w : Trip[nJ = t} 

TripTimet = L Ts ,n,Sv.cc • . , .,or[nl 
nETaskNode·'1t 

Fig. 5. The Inputs for the Fleet Routing. 

lax, keeping the rest of the routing fixed. The neighborhood is explored using 
constraint programming allowing up to (0.1SINodes s I)3 backtrackings. 

5 Modeling and Algorithmic Enhancements 

We now turn to some modeling and algorithmic improvements to the basic ap­
proach which bring significant benefits on real-life applications. 

Customer Allocation The assignment of customers to repositories is a very im­
portant step in this algorithm because it directly determines the quality of the 
trips computed by the repository routing and there is no opportunity for correc­
tion. Recall that Section 4 uses 

i=(s,d,q) 

L Ts ,d * q/VC 
iE D 

as an approximation of travel distance. Our experimental results indicate that 
this approximation yields poor customer-to-warehouse allocation when there is 
an abundance of commodities. To resolve this limitation, we try to solve a slightly 
stronger relaxation, i.e., 

i=(s,d ,q) 

L Ts ,d * iq/VCl 
iED 

but this ceiling function is too difficult for the stochastic MIP model. Instead, we 
decompose the problem further and separate the storage and allocation decisions. 
The stochastic MIP now decides which repository to open and how much of the 
commodity to store at each of them. Once these decisions are taken and once 
the uncertainty is revealed (i.e., the scenario s becomes known), we solve a 
customer allocation problem, modeled as a MIP (see Figure 7). This problem 
must be solved quickly since it is now considered after the uncertainty is revealed. 
Unfortunately, even this simplified problem can be time consuming to solve 
optimally. However, a time limit of between 30 and 90 seconds results in solutions 
within 1% (on average) of the best solution found in one hour. Our results 
indicate that even suboptimal solutions to this problem yield better customer 
allocation than those produced by the stochastic MIP. 



Let: 
Vehicles s = {1 , 2, ... , m} 
StartN odes. = {D;, ... , D;t.} 
EndNodes s = {D~, ... , D';} 

Nodess = Stm·tNodess U EndNodess U U Tasks"tv 
w El .. n 

Variables: 
SuccessO't[N odes. ] E N odes s - Node traversal order 
Vehicle[Nodes s] E Vehicles s - Node vehicle assignment 
DeITime[Nodess ] E {O, ... , oa} - Delivery time 

Minimize: 
MAX nENodes sDeITime(n) 

Subject To: 
circuit(SuccessO'r) 
for n E StartN odes s such tha.t n = D; 

Vehicle[n] = i 
DelTime[nJ = Tim.es ,n 
DeITirne[SlIccessO'r [nll = DeITirne[n] + T1'ipTirnen + T s, n,s"cces.", [n] 

for each n E EndNodes s such that n = Di~ 
Vehicle[n] = i 

for n E Nodes s \ StartNodes s \ EndNodes 
Vehicle[nJ = VehicZe[SuccessO't[nll 
DeITirne[Successo'r[nJJ = DelTirne[nJ + TTipTimen + T.,n ,successor[nj 

Fig. 6. The CP Model for Fleet Routing. 

Path-Based Routing The delivery plans produced by the basic approach exhibit 
an obvious limita tion. By definition of a trip, the vehicle returns to the reposi­
tory at the end of trip. In the case where the vehicle moves to another repository 
next , it is more efficient to go directly from its last delivery to the next repository 
(assuming a metric space which is the case in practice). To illustrate this point, 
consider Figure 8 which depicts a situation where a customer (white node) re­
cehres deliveries from multiple repositories (shaded nodes). The figure shows the 
saving when moving from a tour-based (middle picture) to a path-based solution 
(right picture). It is not difficult to adapt the a\goritm from a tour-based to a 
path-based routing. In the repository routing, it suffices to ignore the last edge 
of a trip and to remember where the path ends. In the fleet routing, only the 
time matrix needs to be modified to account for the location of the last delivery. 

Set-Based Repository Routing The SCAP problems generated by hurricane sim­
ulators have some unique properties that are not common in traditional VRPs. 
One of these features appears during repository routing: The customer demands 
are distributed roughly uniformly through the range 0 .. VC. This property al­
lows for a repository-routing formulation that scales much better than the pure 
CP formulation described earlier. Indeed, if the customer demands d1 , ... , dc, 
are uniformly distributed in the range O . .v C, it can be shown that the expected 



Variables: 
SentiE 1 .n,jE l.. n. E (0, Stored;) - Units moved from i to j 
TripSiEl..n,jE\.n E (O··rStored;fVel) - Trips needed from i to j 

Minimize: 

Wx * ~ (e.i - ~ Sentj ,i) + 
iEl . . n jEl .. 1t 

Wy * ~ ~ T',i,j * TripS;,j 
iEl..njEl. .n 

Subject To: 

~ S ent;,j ::: Stored; Vi 
jE L.n 

~ Sentj,;::: es,i. Vi 
jEl..n 

Sent"j = ° Vi, j where i not in ARs 
Tripi,j 2 Senti. ,j I Ve Vi, j 

Fig. 7. The MIP Model for Customer Allocation. 

Warehouse-Client 
Allocation 

Tour Solution 
10 Edges 

Path Solution 
7 Edges 

Fig. 8. Illustrating the Improvement of Path-Based Routing. 

number of sets that satisfy the vehicle capacity is c3 with high probability. This 
observation inspires the following formulation: 

1. Use CP to enumerate all customer sets satisfying the capacity constraint. 
2. Use CP to compute an optimal trip for those customer sets. 
3. Use MIP to find a partition of customers with minimal delivery time. 

This hybrid model is more complex but each subproblem is small and it scales 
much better than the pure CP model on the Los Alamos benchmarks. 

Aggregate Fleet Routing The most computationally intense phase is the fleet 
routing and we now investigate how to initialize the LNS search with a high­
quality solution. Recall that the fleet routing problem associates a node with 
every trip. Given a scenario s, a lower bound for the number of trips is, 

L StcrredSents,;fVG 
iEln 

Clearly, the size and complexity of this problem grows with the amount of com­
modities moved. To find high-quality solutions to the fleet routing subtask, the 



MULl'l-STAGE-SCAP(y) 
1 V +-- StochasticM J P(Y) 
2 for s E La 
3 do C +-- CustmTLerAllocationProblem(9s, Vs) 
4 for wE 1..n 
5 do T +-- RepositO'ryPathRoutingPr'oblem(9s,Cto ) 

6 I+-- AggregateFleetRouting(9s, T) 
7 Ss +-- TripBasedFeetRouting(ys, T,I) 
8 return S 

Fig. 9. The Final Hybrid Stochastic Optimization Algorithms for SCAPs. 

idea is to aggregate the trips to remove this dependence on the amount of com­
modities delivered. More precisely, we define an aggregate fleet routing model in 
which all trips at a repository are replaced by an aggregate trip whose service 
time is the sum of all the trip service times. The number of nodes in the aggre­
gate problem is now proportional to the number of repositories. Finding a good 
initial solution is not important for smaller problems (e.g., n:::::: 25, m:::::: 4), but it 
becomes critical for larger instances (e.g., n:::::: 100, m :::::: 20). Since the aggregate 
problem is much simpler, it often reaches high-quality solution quickly. 

The Final Algorithm The final algorithm for solving a SCAP instance 9 is 
presented in Figure 9. 

6 Benchmarks & Results 

Benchmarks The benchmarks are based on the infrastructure of the United 
States and the disaster scenarios are generated by state-of-the-art hurricane 
simulation tools used by the National Hurricane Center. The relative size of 
the benchmarks are presented in Table 1 (The table also depicts the time limit 
used in the fleet routing step). Benchmark 3 features one scenario where the 
hmricane misses the region; this results in the minimum demand being zero. 
This is important since any algorithm must be robust with respect to empty 
disaster scenarios because they do arise often in practice. All of the experimental 
results have fixed values of W x , W y , and W. satisfying the field constraint Wr > 
Wy > Wz and we vary the value of the budget B to evaluate the algorithm. The 
results are consistent across multiple weight configurations, although there are 
variations in the problem difficulties. It is also important to emphasize that, on 
these benchmarks, the number of trips is in average between 2 and 5 times the 
number of repositories and thus produces routing problems of Significant sizes. 

The Algorithm Implementation and the Baseline Algorithm The final algorithm 
was implemented in the COMET system [12] and the experiments were run on 
Intel Xeon CPU 2.S0GHz machines running 64-bit Linux Debian. To validate 
our results, we compare our delivery schedules with those of an agent-based al­
gorithm. The agent-based algorithm uses the storage model but builds a routing 



I Benchmarkl n Im la lMin DemandlMax DemandlTimeout l 
BM1 25 4 3 550 2700 30 
BM2 25 5 3 6000 8384 60 
BM3 25 5 3 0 11000 60 
BM4 30 5 3 3500 11000 90 
BM5 100 203 8200 22000 600 

Table 1. SCAP Benchmark Statistics 

--
BM1 196.3 18.40 78.82 9.829 0.9895 0.5023 11.78 0.2:128 23.07 3000 
BM2 316.9 59.00 120.2 20.97 0 5780 0.2725 16.83 0.2.343 28.33 60.00 
BM3 178.4 15.89 102.1 15.02 0.3419 0.1714 7.192 0.1317 11.98 40.00 

.. 

BM4 439.8 48.16 169.0 22.60 09093 0.4262 22.71 0.2480 :33.28 9000 
BM5 3179 234.8 1271 114.5 46.71 25.05 9106 10328 351.7 600.0 

Table 2. SCAP Benchmark Runtime Statistics (Seconds) 

solution without any optimization. Each vehicle works independently to deliver 
as much commodity as possible using the following heuristic: 

GREEDY- TRUCK-AGENTO 

1 while:3 commodity to be picked up 1\ demands to be met 
2 do if I have some water 
3 then drop it off at the nearest demand location 
4 else pick up some water from the nearest warehouse 
5 goto fin al destination 

This agent-based algorithm roughly approximates current relief delivery proce­
dures and is thus a good baseline for comparison . 

Efficiency Results Table 2 depicts the runtime results. In particula r, the table 
reports, in average, the total time in seconds for aU scenarios (Tl)' the total 
elpased time when the scenarios a re run in parallel (Too), the time for the s torage 
model (STO), the client-allocation model (CA), the repository routing (RR), the 
aggregate fleet routing (AFR), and fleet routing (FR). The first three fields(T1 , 

Too, STO) are averaged over ten identical runs on each of the budget parameters. 
The last four fields (CA, RR, AFR, FR) are averaged over ten identical runs on 
each of the budget parameters and each scenario. Since these are averages, the 
times of the individual components do not sum to the total time. The results 
show that the a pproach scales well with the size of the problems and is a practical 
approach to SCAPs. 

Quality of the Results Table 3 depicts the improvement of our SCAP algorithm 
over the baseline algorithm. Observe the significant and uniform benefits of our 
approach which systematically delivers about a 50% reduction in delivery time. 
Ta ble 4 also reports results on the a bsolute and relative differences between 



I Benchmark IBMIIBtvI21BM31BM41BMSI 

IImprovement(%)IS7.7 140.616S.sIS1.7 l so.6 1 

Table 3. Improvements over the Baseline Algorithm. 

Benchmark IBtvUlBM21BM31BM41BMSI 

Table 4. The Difference in Delivery Times Between Vehicles. 

vehicles in the solutions. They indicate that the load is nicely balanced between 
the vehicles. More precisely, the maximum delivery times a.re often within 10% 
of each other on average. Only the BM5 is worse because it is operating at a 
state level, not at a city level, where long travel distances increase the vehicle 
load variance. 

Behavioral Analysis Figure 10 presents the experimental results on benchmark 
5 (other benchmarks are consistent, but omitted for space reasons). The gra.ph 
on the left shows how the satisfied demand increases with the budget while the 
graph on the right shows how the last delivery time changes. Given the weight 
selection, it is expected that the demand and routing time will increase steadily 
as the budget increases until the total demand is met. At that pOint, the demand 
should stay constant and the routing time should decrease. The results confirm 
this expectation. The experimental results also indicate the significant benefits 
provided by our approach compared to the baseline algorithm. 

Fleet Ro'uting Figure 11 presents experimental results comparing aggregate (AFR), 
tour-based (TFR), and path-based (PFR) fleet routing. (Only BMI is presented 
but other results are consistent). The key insight from these results is to show 
the benefits of allowing the trips of a repository to be performed by multiple 
vehicles. I Note also the significant improvements obtained by considering paths 
instead of tours. 

Customer Allocation As mentioned earlier , the benefits of separating customer 
allocation from storage decisions are negligible when the budget is small. How­
ever, they become significant when the budget increases and can produce a 
reduction by up to 16% of the expected maximum delivery time. 

7 Conclusion 

This paper studied a novel problem in the field of humanitarian logistics, the 
Single Commodity Allocation Problem (SCAP). The SCAP models the strate­
gic planning process for disaster recovery with stochastic last mile distribution. 
The paper proposed a multi-stage stochastic hybrid optimization algorithm that 
yields high quality solutions to real-world benchmarks provided by Los Alamos 
National Laboratory. The algorithm uses a variety of technologies, including 



Expected Demand Met Expected Last Delivery Time 

0 
0 0 - 0 0 0 0 0 ~ o 

o ~ o 

/ 
0 

0 

~ / 

, • G~ 
-0-- PFR 
- ,. . STOV 

8 
::l 

~ 
l 0 

/ .. 0 

" il -

/ ~ 
~ 
iI ~ 0 

u 
~ 

~ 
~ -

" ~ ~ -

on 8 
oll 

iil · 

~-'---'----,---''---r--- , --
1500000 2500000 500000 1500000 

Budget ($) Budgel ($) 

Fig. 10. Varying the Budget on Benchmark 5 

MIP, constraint programming, and large neighborhood search, to exploit the 
structure of each individual optimization subproblem. The experimental results 
on water allocation benchmarks indicate that the algorithm is practical from a 
computational standpoint and produce significant improvements over existing 
relief delivery procedures. This work is currently deployed at LANL as part of 
the National Infrastructure Simulation and Analysis Center (NISAC). It is be­
ing used to aid federal organizations such as the Department of Energy and the 
Department of Homeland Security in planning and responding to disasters . 
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