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Strategic Planning for Disaster Recovery with
Stochastic Last Mile Distribution

Pascal Van Hentenryck!, Russell Bent?, and Carleton Coffrin!

! Brown University, Providence RI 02912, USA
2 Los Alamos National Laboratory, Los Alamos NM 87545, USA

Abstract. This paper considers the single commodity allocation prob-
lem (SCAP) for disaster recovery, a fundamental problem faced by all
populated areas. SCAPs are complex stochastic optimization problems
that combine resource allocation, warehouse routing, and parallel fleet
routing. Moreover, these problems must be solved under tight runtime
constraints to be practical in real-world disaster situations. This paper
formalises the specification of SCAPs and introduces a novel multi-stage
hybrid-optimization algorithm that utilizes the strengths of mixed in-
teger programming, constraint programming, and large neighborhood
search. The algorithm was validated on hurricane disaster scenarios gen-
erated by Los Alamos National Laboratory using state-of-the-art disaster
simulation tools and is deployed to aid federal organizations in the US.

1 Background & Motivation

Every year seasonal hurricanes threaten Florida. The severity of hurricane dam-
age varies from year to year, but considerable human and monetary resources
are always spent to prepare for and recover from these disasters. It is policy
makers who make the critical decisions relating to how money and resources are
allocated for preparation and recovery. At this time, preparation and recovery
plans developed by policy makers are ad hoc and rely solely on available sub-
ject matter. Furthermore, the National Hurricane Center (NHC) of the National
Weather Service is highly skilled at generating ensembles of possible hurricane
tracks but current preparation methods often ignore this information.

This paper aims at solving this problem more rigorously by combining opti-
mization techniques and disaster-specific information given by NHC predictions.
The problem is not only hard from a combinatorial optimization standpoint,
but it is also inherently stochastic because the exact outcome of the disaster
is unknown. Although humans have difficulty reasoning over uncertain data,
recent work in the optimization community [13, 5] has shown that stochastic op-
timization techniques can find robust solutions in problems with uncertainty to
overcome this difficulty.

The paper considers the following abstract disaster recovery problem: How to
store a single commodity throughout a populated area to minimize its delivery
time after a disaster has occurred. It makes the following technical contributions:



1. It formalizes the single commodity allocation problem (SCAP).

2. It proposes a multi-stage hybrid-optimization decomposition for SCAPs,
combining a MIP model for stochastic commodity storage, a hybrid CP/MIP
model for multi-trip vehicle routing, and a large neighborhood search model
for minimizing the latest delivery time in multiple vehicle routing.

3. It validates the approach on the delivery of potable water for hurricane
recovery.

Section 2 of this paper reviews similar work on diaster preparation and recovery
problems. Section 3 presents a mathematical formulation of the disaster recovery
problem and sets up the notations for the rest of paper. Section 4 presents the
overall approach using (hopefully) intuitive models. Section 5 presents a number
of modeling and algorithmic improvements that refines each of the initial models;
it also presents the final version of the optimization algorithm for SCAPs. Section
6 reports experimental results of our complete algorithm on some benchmark
instances to validate the approach and Section 7 concludes the paper.

2 Previous Work

The operations research community has been investigating the field of human-
itarian logistics since the 1990s but recent disasters have brought increased at-
tention to these kinds of logistical problems [18,4,9,1]. Humanitarian logistics
is filled with a wide variety of optimization problems that combine aspects from
classic problems in inventory routing, supply chain management, warehouse lo-
cation, and vehicle routing. The problems posed by humanitarian logistics add
significant complexity to their classical variants. The operations research com-
munity recognizes that novel research in this area is required to solve these kinds
of problems [18,4]. Some of the key features that characterize these problems
are as follows:

1. Multi-Objective Functions - High-stake disaster situations often have to
balance conflicting objectives goals (e.g. operational costs, speed of service,
and unserved customers) (3, 8,2, 11].

2. Non-Standard Objective Functions - A makespan time objective in
VRPs [3, 6] or equitability objectives [2].

3. Arbitrary Side Constraints - Limited resources, a fixed vehicle fleet [2],
fixed latest delivery time [3, 2], or a insufficient preparation budget [8, 10].

4. Stochastic Aspects - Disasters are inherently unpredictable. Preparations
and recovery plans must be robust with respect to many scenarios [8,11].

Humanitarian logistics also studies these problems at a variety of scales in both
space and time. Some problems consider a global scale with time measured in
days and weeks [8], while others focus on the minute-by-minute details of deliv-
ering suppiles from local warehouses directly to the survivors (3, 2]. This paper
considers a scale which is often called the “last mile” of distribution. This in-
volves warehouse selection and customer delivery at the city and state scale.



The operations research community has mainly formulated these problems
using MIP models. Many of the humanitarian logistics problems are complex
and MIP formulations do not always scale to real world instances [2,3|. Ad-
ditionally, it was shown that MIP solvers can have difficulty with some of the
unique features of these kinds of problems even when problem sizes are small
(e.g., with minimizing the latest delivery time in VRPs [6]). Local search tech-
niques are often used to scale the problems to real world instances (3,6]. This
paper demonstrates how hybrid optimization methods and recent advances in
the optimization community can yield high-quality solutions to such challenges.
To the best of our knowledge, SCAPs are the first humanitarian logistic prob-
lem to investigate the “last mile” vehicle routing problem and stochastic disaster
information simultaneously.

3 The Single Commodity Allocation Problem (SCAP)

In formalizing SCAPs, a populated area is represented as a graph G = (V, E)
where V' represents those sites of interest to the allocation problem, i.e., sites
requiring the commodity after the disaster (e.g., hospitals, shelters, and public
buildings) and vehicle storage depots. The required commodity can be stored at
any node of the graph subject to some side constraints. For simplicity, we assume
the graph is complete and the edges have weights representing travel times. The
weights on the edges form a metric space but it is not Euclidean due to the
transportation infrastructure. Moreover, the travel times can vary in different
disaster scenarios due to road damage. The primary outputs of a SCAP are (1)
the amount of commaedity to be stored at each node; (2) for each scenario and
each vehicle, the best plan to deliver the commodities. Figure 1 summarizes the
entire problem, which we now describe in detail.

Objectives The objective function aims at minimizing three factors: (1) The
amount of demands that are met; (2) the time it takes to meet those demands;
(3) the cost of storing the commodity. Since these three values are not expressed
in the same units, it is unclear how to combine them into a single objective
function. Furthermore, their relative importance is typically decided by policy
makers on a case-by-case basis. For these reasons, this paper uses weigths Wi,
Wy, and W. to balance the objectives and to give control to policy makers.

Side Constraints The first set of side constraints concerns the nodes of the graph
which represent the repositories in the populated area. Each repository Rici. »
has a maximum capacity RC; to store the commodity. It also has a one-time
initial cost RI; (the investment cost) and an incremental cost RM, for each
unit of commodity to be stored. As policy makers often work within budget
constraints, the sum of all costs in the system must be less than a budget B.
The second set of side constraints concerns the deliveries. We are given a
fleet of m vehicles Viey . which are homogeneous in terms of their capacity
VC. Each vehicle has a unique starting depot D] and ending depot D; . Unlike



Output:
The amount stored at each warehouse
Delivery schedules for each vehicle

Given:

Repositories: Rigi n
Capacity: RC;
Investment Cost: RI;
Maintenance Cost: RM,

Vehicles: Viei..m
Capacity: VC
Start Depot: D]

End Depot: D

Scenario Data: Sici. o Q

: - Subject To:
Scenario Probability: P Vehicle and site capacities
Qvaalable Slt?s: AR C {1.m} Vehicles start and end locations
ite Demand: Ci.| Costs < B
Travel Time Matrix: T51 1 4 =
Weights: W, W,, W.
Budget: B

Minimize:
W. = Unserved Demands +
W, * MAXT . Tour Time;+
W. # Investment Cost
W. * Maintenance Cost

Notes:
Every warehouse that stores a unit
must be visited at least once

Fig. 1. Single Commodity Allocation Problem Specification

classic vehicle routing problems [17], customer demands in SCAPs often exceed
the vehicle capacity and hence multiple deliveries are often required to serve a
single customer.

Stochasticity SCAPs are specified by a set of a different disaster scenarios S;e1 q,
each with an associated probability P,. After a disaster, some sites are damaged
and each scenario has a set AR, of available sites where the stored commodities
remain intact. Moreover, each scenario specifies, for each site R;, the demand
C,. Note that a site may have a demand even if a site is not available. Finally,
site-to-site travel times T} ; ;1.1 (where [ = |V]) are given for each scenario and
capture infrastructure damages.

Unigue Features Although difterent aspects of this problem were studied before
in the context of vehicle routing, location routing, inventory management, and
humanitarian logistics, SCAPs present unique features. Earlier work in location-
routing problems (LRP) assumes that (1) customers and warehouses (storage
locations) are disjoint sets; (2) the number of warehouses is ~ 3..10; (3) customer
demands are less than the vehicle capacity; (4) customer demands are atomic

None of these assumptions hold in the SCAP context. In a SCAP, it may not
only be necessary to serve a customer with multiple trips but, due to the storage
capacity constraints, those trips may need to come from different warehouses.
The key features of SCAP are: (1) each site can be a warehouse and /or customer;
(2) one warehouse may have to make many trips to a single customer; (3) one
customer may be served by many warehouses; (4) the number of available vehicles
is fixed; (5) vehicles start and end in different depots; (6) the objective is to
minimize the time of the last delivery. Minimizing the time of the last delivery
is one of the most difficult aspects of this problem as in demonstrated in [6].



4 The Basic Approach

This section presents the basic approach to the SCAP problem for simplifying
the reading of the paper. Modeling and algorithmic improvements are presended
in Section 5. Previous work on location routing [7,14,15] has shown that rea-
soning over both the storage problem and the routing problem simultaneously
is extremely hard computationally. To address this difficuty, we present a three-
stage algorithm that decomposes the storage, customer allocation, and routing
decisions. The three stages and the key decisions of each stage are as follows:

1. Storage & Customer Allocation: Which repositories store the commod-
ity and how is the commodity allocated to each customer?

2. Repository Routing: For each repository, what is the best customer dis-
tribution plan?

3. Fleet Routing: How to visit the repositories to minimize the time of the
last delivery?

The decisions of each stage are independent and can use the optimization tech-
nique most appropriate to their nature. The first stage is formulated as a MIP,
the second stage is solved optimally using constraint programming, and the third
stage uses large neighborhood search (LNS).

Storage € Customer Allocation The first stage captures the cost and demand
objectives precisely but approximates the routing aspects. In particular, the
model only considers the time to move the commodity from the repository to
a customer, not the maximum delivery times. Let D be a set of delivery triples
of the form (source, destination, qguantity). The delivery-time component of the
objective is replaced by

Wy * Z Ts,d * Q/VC
(s,d,q)ED

Figure 2 presents the stochastic MIP model, which scales well with the number
of disaster scenarios because the number of integer variables only depends on
the number of sites n. The meaning of the decision variables is explained in the
figure. Once the storage and customer allocation are computed, the uncertainty
is revealed and the second stage reduces a deterministic multi-depot, multiple-
vehicle capacitated routing problem whose objective consists in minimizing the
latest delivery. To our knowledge, this problem has not been studied before.
One of its difficulties in this setting is that the customer demand is typically
much larger than the vehicle capacity. As a result, we tackle it in two steps. We
first consider each repository independently and determine a number of vehicle
trips to serve the repository customers (Repository Routing). A trip is a tour
that starts at the depot, visits customers, returns to the depot, and satisfies the
vehicle capacity constraints. We then determine how to route the vehicles to
perform all the trips and minimize the latest delivery time (Fleet Routing).



Variables:
Storedici..» € (0, RC;) - Units stored
Opeiiie1.n € {0,1} - More than zero units stored flag

StoredSaved,ci, aict.n € (0,Cs:) - Units used at the storage location

StoredSentsei . .aic1.n € (0, RC;) - Total units shipped to other locations

Incomingsei. .aic1.n € (0,Cs;) - Total units coming from other locations

Unsatisfied oy , :e1. 0 € (0,Cs.:) - Demand not satisfied

Sentsel. aiel . ngel.n € (0, RC;/VC) - Trips needed from i to j
Minimize:

Wex > Py Y Unsatisfied, .+

sel.a i€l.n

Wys > Pox 3 D Touj*Sentass+

scl.a i€El.njEl. n
W.x > (RI *Open; + RM; = Stored;)

tel.n

Subject To:

Z (RI; « Open; + RM; = Stored;) < B

i€l..n

RC; # Open; > Stored; Y1

StoredSaveds.; + Incoming, : + Unsatisfied, ; = Cs;  ¥s,1
StoredSaveds ; + StoredSent,; < Stored; Vs,1

Z VC % Sent,, ; = StoredSent; Vs,1
j€El.n

z VC « Sent, ;i = Incoming; Vs,
JjEl.n

StoredSaved;.; + StoredSents; =0 Vs,1 where i not in AR,

Fig. 2. Storage & Customer Selection: The MIP Model.

Repository Routing Figure 3 shows how to create the inputs for repository rout-
ing from the outputs of the MIP model. For a given scenario s, the idea is to
compute the customers of each repository w, the number of full-capacity trips
FullTripss .. and the remaining demand Demand, ., . needed to serve each
such customer ¢. The full trips are only considered in the fleet routing since they
must be performed by a round-trip. The minimum number of trips required to
serve the remaining customers is also computed using a bin-packing algorithm.
The repository routing then finds a set of trips serving these customers with
minimal travel time. The repository routing is solved using a simple CP model
depicted in Figure 4. The model uses two depots for each possible trip (a starting
and an ending depot localized at the repository) and considers nodes consist-
ing of the depots and the customers. Its decision variables are the successor
variables specifying which node to visit next and the trip variables associating
a trip with each customer. The circuit constraint expresses that the successor
variables constitute a circuit, the vehicle capacity constraint is enforced with a
multi-knapsack constraint, and the remaining constraints associate a trip num-
ber with every node. This model is then solved to optimality.



Given scenario s and for each repository w € 1.n
Customerss w = {i € L.n: Sents w,: > 0}
For ¢ € Customerss
FullTripss w.e = |Sents w,.]
Demands e = VC * (Sents we — | Sentswe])
MinTripss » = MinBinPacking({Demand; w.c}e, VC)

Fig. 3. The Inputs for the Repository Routing.

Let:
R i +
Depotsy,, = {w],w; ,,.,,me?.lew}
Depots,, = {wy,w; , o Wi Pripss w

Nodes; ., = Depots?t,, U Depots; ,, U Customersa w
Tripssw = {1,2, ..., MinTrips; w}

Variables:
Successor[Nodes, ] € Nodes; ., - Node traversal order
Trip|Nodess ) € Tripssw - Node trip assignment

Minimize:
Ts,n:Sncccssm-]n;
neNodesg, w

Subject To:
circuit(Successor)
multiknapsack(Trip, { Demandss w)e, VC)
for wl € Depots!,,: Triplw}] =i
for w; € Depots, ,: Triplw. | =1
for n € Customerss . U Depotsy ,: Tripln] = Trip|Successor(n]]

Fig. 4. The CP Model for Repository Routing.

Fleet Routing It then remains to decide how to perform the trips with the
fleet and to minimize the latest delivery time. The capacity constraints can be
ignored now since each trip satisfies them. Each trip is abstracted into a task
with a specific location and a service time capturing the time to perform the trip
(the exact trip has no importance). The fleet routing problem then consists of
nsing the vehicles to perform all these tasks while minimizing the latest delivery.

Figure 5 depicts how to compute the inputs for fleet routing given the re-
sults of the earlier steps, which consists of computing the proper service times
TripTime, for each trip ¢{. The model for the fleet routing is depicted in Fig-
ure 6 and is a standard CP formulation for multiple vehicle routing adapted to
minimize the latest delivery time. For each node, the decision variables are its
successor, its vehicle, and its delivery time. The objective minimizes the maxi-
mum delivery time and the rest of the model expresses the subtour elimination
constraints, the vehicle constraints, and the delivery time computation.

The fleet routing problem is solved using LNS [16] to obtain high-quality so-
lutions quickly given the significant number of nodes arising in large instances.
At each optimization step, the LNS algorithm selects 15% of the trips to re-



Given scenario s and for each repository w € 1.1
Taskssaw = {t1,82, ..., Trips, . } U FullTripss
For each t € FullTrips, » to customer ¢

TripTime, = 2 Ts u ¢
For t € Taskss.w \ FullTripss
TaskNodes, = {n € Nodess.., : Trip|n] = t}
TTE‘.DT?:NJ,E: — Z Ta,n,Succe:uor[ﬂl
neTaskNodes,

Fig. 5. The Inputs for the Fleet Routing.

lax, keeping the rest of the routing fixed. The neighborhood is explored using
constraint programming allowing up to (0.15|Nodes,|)® backtrackings.

5 Modeling and Algorithmic Enhancements

We now turn to some modeling and algorithmic improvements to the basic ap-
proach which bring significant benefits on real-life applications.

Customer Allocation The assignment of customers to repositories is a very im-
portant step in this algorithm because it directly determines the quality of the
trips computed by the repository routing and there is no opportunity for correc-
tion. Recall that Section 4 uses

i=(sd,q)

S Toaxq/VC

=

as an approximation of travel distance. Our experimental results indicate that
this approximation yields poor customer-to-warehouse allocation when there is
an abundance of commodities. To resolve this limitation, we try to solve a slightly

stronger relaxation, i.e.,
i=(s,d,q)

S Tyax[e/VC]

ieD
but this ceiling function is too difficult for the stochastic MIP model. Instead, we
decompose the problem further and separate the storage and allocation decisions.
The stochastic MIP now decides which repository to open and how much of the
commodity to store at each of them. Once these decisions are taken and once
the uncertainty is revealed (i.e., the scenario s becomes known), we solve a
customer allocation problem, modeled as a MIP (see Figure 7). This problem
must be solved quickly since it is now considered after the uncertainty is revealed.
Unfortunately, even this simplified problem can be time consuming to solve
optimally. However, a time limit of between 30 and 90 seconds results in solutions
within 1% (on average) of the best solution found in one hour. Our results
indicate that even suboptimal solutions to this problem yield better customer
allocation than those produced by the stochastic MIP.



Let:
Vehicless = {1,2,...,m}
StartNodes. = {D},..., D}

EndNodes; = {Dy ,...,D,.}
Nodess = StartNodes; U EndNodess U U Taskssw
wel.n
Variables:

Successor|Nodes,) € Nodes, - Node traversal order
Vehicle|Nodes;| € Vehicles. - Node vehicle assignment
DelTime[Nodes:] € {0,...,00} - Delivery time

Minimize:
MAX nenNodes, DelTime(n)

Subject To:
circuit(Successor)
for n € StartNodess such that n = D}
Vehicle[n] = ¢
DelTime|n] = Times,n
DelTime[Successor|n]] = DelTimeln] + TripTimen + Ty n,successor(n]
for each n € EndNodes, such that n = D
Vehicleln] =1
for n € Nodes; \ StartNodes; \ EndNode
Vehicle[n] = Vehicle[Successor|n]]
DelTime|Successor[n|| = DelTime[n] + TripTimen + T n successorin|

Fig. 6. The CP Model for Fleet Routing.

Path-Based Routing The delivery plans produced by the basic approach exhibit
an obvious limitation. By definition of a trip, the vehicle returns to the reposi-
tory at the end of trip. In the case where the vehicle moves to another repository
next, it is more efficient to go directly from its last delivery to the next repository
(assuming a metric space which is the case in practice). To illustrate this point,
congider Figure 8 which depicts a situation where a customer (white node) re-
ceives deliveries from multiple repositories (shaded nodes). The figure shows the
saving when moving from a tour-based (middle picture) to a path-based solution
(right picture). It is not difficult to adapt the algoritm from a tour-based to a
path-based routing. In the repository routing, it suffices to ignore the last edge
of a trip and to remember where the path ends. In the fleet routing, only the
time matrix needs to be modified to account for the location of the last delivery.

Set-Based Repository Routing The SCAP problems generated by hurricane sim-
ulators have some unique properties that are not common in traditional VRPs.
One of these features appears during repository routing: The customer demands
are distributed roughly uniformly through the range 0.V C. This property al-
lows for a repository-routing formulation that scales much better than the pure
CP formulation described earlier. Indeed, if the customer demands d;, ..., d,,
are uniformly distributed in the range 0.V C, it can be shown that the expected



Variables:
Sentici njer.n € (0,Stored:) - Units moved from i to j
TTipsici.n.jet.n € (0..[Stored,/VC]) - Trips needed from i to j

Minimize:

Wex > (Coi— Y Sent;)+

i€l.n jEL.n

Wyx 3 > TaiyxTripsi;

i€l..njEl..n

Subject To:
Z Sent; ; < Stored; Vi
JELLn
> Sent;i<Cyi Vi
JjEL.n

Sent; ; =0 Vi,j where i not in AR,
Tripi; = Senti;/VC ¥i,j

Fig. 7. The MIP Model for Customer Allocation.

SR

Warehouse-Client Tour Solution Path Solution
Allocation 10 Edges 7 Edges

Fig. 8. Tlustrating the Improvement of Path-Based Routing.

number of sets that satisfy the vehicle capacity is ¢ with high probability. This
observation inspires the following formulation:

1. Use CP to enumerate all customer sets satisfying the capacity constraint.
2. Use CP to compute an optimal trip for those customer sets.
3. Use MIP to find a partition of customers with minimal delivery time.

This hybrid model is more complex but each subproblem is small and it scales
much better than the pure CP model on the Los Alamos benchmarks.

Aggregate Fleet Routing The most computationally intense phase is the fleet
routing and we now investigate how to initialize the LNS search with a high-
quality solution. Recall that the fleet routing problem associates a node with
every trip. Given a scenario 8, a lower bound for the number of trips is,

> StoredSent, ,/VC
t€El.n

Clearly, the size and complexity of this problem grows with the amount of com-
modities moved. To find high-quality solutions to the fleet routing subtask, the



MuLTI-STAGE-SCAP(G)

1 D « StochasticMIP(G)

2 forsel.a

3 do C « CustomerAllocation Problem(Gs, Ds)

for we l.n

do 7 « RepositoryPathRouting Problem(Gs,Cy)
T «— AggregateFleet Routing(Gs, T)

Ss «— TripBasedFeet Routing(Gs, T,T)

& return S

=l O

Fig. 9. The Final Hybrid Stochastic Optimization Algorithms for SCAPs.

idea is to aggregate the trips to remove this dependence on the amount of com-
modities delivered. More precisely, we define an aggregate fleet routing model in
which all trips at a repository are replaced by an aggregate trip whose service
time is the sum of all the trip service times. The number of nodes in the aggre-
gate problem is now proportional to the number of repositories. Finding a good
initial solution is not important for smaller problems (e.g., n = 25, m = 4), but it
becomes critical for larger instances (e.g., n =~ 100, m ~ 20). Since the aggregate
problem is much simpler, it often reaches high-quality solution quickly.

The Final Algorithm The final algorithm for solving a SCAP instance G is
presented in Figure 9.

6 Benchmarks & Results

Benchmarks The benchmarks are based on the infrastructure of the United
States and the disaster scenarios are generated by state-of-the-art hurricane
simulation tools used by the National Hurricane Center. The relative size of
the benchmarks are presented in Table 1 (The table also depicts the time limit
used in the fleet routing step). Benchmark 3 features one scenario where the
hurricane misses the region; this results in the minimum demand being zero.
This is important since any algorithm must be robust with respect to empty
disaster scenarios because they do arise often in practice. All of the experimental
results have fixed values of W.,, W,,, and W, satisfying the field constraint W, >
W, > W. and we vary the value of the budget B to evaluate the algorithm. The
results are consistent across multiple weight configurations, although there are
variations in the problem difficulties. It is also important to emphasize that, on
these benchmarks, the number of trips is in average between 2 and 5 times the
number of repositories and thus produces routing problems of significant sizes.

The Algorithm Implementation and the Baseline Algorithm The final algorithm
was implemented in the COMET system [12] and the experiments were run on
Intel Xeon CPU 2.80GHz machines running 64-bit Linux Debian. To validate
our results, we compare our delivery schedules with those of an agent-based al-
gorithm. The agent-based algorithm uses the storage model but builds a routing



Benchmarﬂ_n |mia Min_ _Qg:mand Max De_:Ea.n_d _Tim_eguij
[ BML [25[4]3 550 2700 30 |
| BM2 25|53 6000 8384 60 |
| BM3 251513 0 11000 60

| BM4_ [30[5[3] 3500 11000 90_1
| BM5 510(1@ 3 8200 22000 | 600 |

Table 1. SCAP Benchmark Statistics

[Benchmark]|u(T)[o (T)|u(Too) |0 (L) [1(STO) 0 (STO) | w( CA) W RR)| w(AFR) [ u(FR)]

[ BMI1 [196.3][18.40] 78.82 ] 9.829 | 0.9895 | 0.5023 [ 11.78 [0.2328] 23.07 [30.00
| BM2 316.9]59.00] 120.2 20.97 | 0.5780 | 0.2725 |[ 16.83 [0.2343] 28.33 | 60.00
BM3 [178.4[15.89] 102.1 | 15.02 | 0.3419 | 0.1714 | 7.192 [0.1317| 11.98 | 40.00 |
BM4  [439.8/48.16[ 169.0 [ 22.60 [ 0.9093 | 0.4262 || 22.71 [0.2480| 33.28 | 90.00
BM5  [3179[234.8[ 1271 [114.5 [ 46.71 | 25.05 | 91.06 [1.0328] 351.7 [600.0]

Table 2. SCAP Benchmark Runtime Statistics (Seconds)

solution without any optimization. Each vehicle works independently to deliver
as much commodity as possible using the following heuristic:

GREEDY-TRUCK-AGENT()

1 while 3 commodity to be picked up A demands to be met

2 do if I have some water

3 then drop it off at the nearest demand location

4 else pick up some water from the nearest warehouse
5 goto final destination

This agent-based algorithm roughly approximates current relief delivery proce-
dures and is thus a good baseline for comparison.

Efficiency Results Table 2 depicts the runtime results. In particular, the table
reports, in average, the total time in seconds for all scenarios (73), the total
elpased time when the scenarios are run in parallel (7. ), the time for the storage
model (STO), the client-allocation model (CA), the repository routing (RR), the
aggregate fleet routing (AFR), and fleet routing (FR). The first three fields(Ty,
Te, STO) are averaged over ten identical runs on each of the budget parameters.
The last four fields (CA, RR, AFR, FR) are averaged over ten identical runs on
each of the budget parameters and each scenario. Since these are averages, the
times of the individual components do not sum to the total time. The results
show that the approach scales well with the size of the problems and is a practical
approach to SCAPs.

Quality of the Results Table 3 depicts the improvement of our SCAP algorithm
over the baseline algorithm. Observe the significant and uniform benefits of our
approach which systematically delivers about a 50% reduction in delivery time.
Table 4 also reports results on the absolute and relative differences between



Benchmark [BVi1[BM2[BM3[BMA[BN)
[Tmprovement(%)[ 57.7 [ 40.6 | 68.851.7 [ 50.6
Table 3. Improvements over the Baseline Algorithm.
L ~ Benchmark [BM1]BM2 BM3 BM4|BM5|
[ Absolute Difference | 6.7 [59.4[39.5[49.1] 749
‘Relative Difference(%)| 10.7|12.8| 6.7 | 8.7 |46.2

Table 4. The Difference in Delivery Times Between Vehicles.

vehicles in the solutions. They indicate that the load is nicely balanced between
the vehicles. More precisely, the maximum delivery times are often within 10%
of each other on average. Only the BM5 is worse because it is operating at a
state level, not at a city level, where long travel distances increase the vehicle
load variance.

Behavioral Analysis Figure 10 presents the experimental results on benchmark
5 (other benchmarks are consistent, but omitted for space reasons). The graph
on the left shows how the satisfied demand increases with the budget while the
graph on the right shows how the last delivery time changes. Given the weight
selection, it is expected that the demand and routing time will increase steadily
as the budget increases until the total demand is met. At that point, the demand
should stay constant and the routing time should decrease. The results confirm
this expectation. The experimental results also indicate the significant benefits
provided by our approach compared to the baseline algorithm.

Fleet Routing Figure 11 presents experimental results comparing aggregate (AFR),
tour-based (TFR), and path-based (PFR) fleet routing. (Only BM1 is presented
but other results are consistent). The key insight from these results is to show
the benefits of allowing the trips of a repository to be performed by multiple
vehicles. I Note also the significant improvements obtained by considering paths
instead of tours.

Customer Allocation As mentioned earlier, the benefits of separating customer
allocation from storage decisions are negligible when the budget is small. How-
ever, they become significant when the budget increases and can produce a
reduction by up to 16% of the expected maximum delivery time.

7 Conclusion

This paper studied a novel problem in the field of humanitarian logistics, the
Single Commodity Allocation Problem (SCAP). The SCAP models the strate-
gic planning process for disaster recovery with stochastic last mile distribution.
The paper proposed a multi-stage stochastic hybrid optimization algorithm that
yields high quality solutions to real-world benchmarks provided by Los Alamos
National Laboratory. The algorithm uses a variety of technologies, including
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Fig. 10. Varying the Budget on Benchmark 5

MIP, constraint programming, and large neighborhood search, to exploit the
structure of each individual optimization subproblem. The experimental results
on water allocation benchmarks indicate that the algorithm is practical from a
computational standpoint and produce significant improvements over existing
relief delivery procedures. This work is currently deployed at LANL as part of
the National Infrastructure Simulation and Analysis Center (NISAC). It is be-
ing used to aid federal organizations such as the Department of Energy and the
Department of Homeland Security in planning and responding to disasters.
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