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On Algebraic Decoding of q-ary Reed-Muller and 
Product Reed-Solomon Codes 

Nandakishore Santhi* 

Abstract- We consider a list decoding algorithm recently 
proposed by Pellikaan-Wu [4] for q-ary Reed-Muller codes 
1{Mq(£, m, n) of length n ::; qm when £ ::; q. A simple and 
easily accessible correctness proof is given which shows that 
this algorithm achieves a relative error-correction radius of 
't ::; (1 - vi £qm - 1 / n). This is an improvement over the proof 
using one-point Algebraic-Geometric decoding method given in 
[4]. The described algorithm can be adapted to decode product 
Reed-Solomon codes. 

We then propose a new low complexity recursive aJgebraic 
decoding algorithm for product Reed-Solomon codes and Reed­
Muller codes. This algorithm achieves a relative error correction 
radius of 'C ::; n7~ 1 (1 - VkJCi) . This algorithm is then proved to 
outperform the Pelllkaan-Wu algorithm in both complexity and 
error correction radius over a wide range of code rates. 

I. INTRODUCTION 

With the discovery of detennin istic list-decoding algo­
rithms for several Algebraic-Geometric codes, most notably 
the Guruswami-Sudan [2] algorithm, there has been renewed 
interest in algebraic decoding methods for other related q-ary 
codes such as the Reed-Muller [3], [4] and product Reed­
Solomon [5J codes. However some of the existing correctness 
proofs for these algorithms use advanced algebraic geometric 
tools . In this paper we derive a proof for a list decoding 
algorithm for a q-ary Reed-Muller code. Our proof is from 
first principles and require only the most basic notions from 
finite field theory. 

The basic idea of our proof is to "lift" a multivariate 
polynomial in IF q [XI X2,··· , Xm 1 to a univariate polynomial 
in lFqm [Xl using a detenninistic mapping rule. This in tum 
results in a higher total degree polynomial. The increase in 
degree will not be high nough to render our list decoding 
strategy for Reed-Muller codes useless at meaningful rates. A 
higher degree for the lifted polynomial means that this Reed­
Muller code list decoding algorithm has a lower relative error­
correction radius (as a function of the rate) than a comparable 
rate Reed-Solomon list decoder based on the Guruswami­
Sudan algorithm. In the followi ng section we describe the 
mapping rule and the decoding algorithm in some detai l. 

In the final section we propose new algorithms for de­
coding product Reed-Solomon codes and Reed-Muller codes. 
We then show that this new algorithm perfonns better than 
the Pellikaan-Wu algorithm in both complexity as well as 
decoding apability. 

* T he author is affi li ated to the T-1 3 Complex Systems Group, the Center 
for Non-Linear Studies , and the CCS-5 division at the Los Alamos National 
Laboratory, Los Alamos, NM 87544, nsanthi@l anl. gov 

II. C ORR ECT ESS OF A LIST DECODING ALGORI TH M 

Let us begin by defining a q-ary Reed-Muller code. 

Definition 1 The q-ary Reed-Muller code tJ('Mq (R., m, n ) of 
length n :S qm is defined as the set of vectors given by: 

!J(:Mq(P. , m, n) ~ { [<p (a l ) <p(a l) ... <p(an ) 1 

I <P E lFq(X I ,X2, ... ,xm ], deg ( <p) ~f!.} (1) 

where {a l ,(l2, ... ,an } are any set of n distinct points in lF~l. 
Here by deg( <p) we mean the total degree of the multivariate 
polynomial <p. 

The fo llowing well known property will be useful: 

Proposition 1 Let { a I, a2, ... , am} be a basis for lFqm over 
IF q and let [Xl x2 ... Xml E lF~l . Then the map \If: ; ---0 IF qn 
defined as in (2) is an isomorphism. 

(2) 

For example one might as usual use a polynomial basis 
{ 1, S, S2, ... , Sm-l } where S is any primitive element in IF qm 

or even a normal basis of the form {~, 1;q, ~cl , . .. ) t/ "- 1 
}, 

where S is a suitable primitive element in IF qm . 

Therefore we arrive at this elementary conclusion: 

Lemma 1 Let X E lFqm. The reverse isomorphism for (2) is: 

X f-7 [X I X2 ... xmJ"r ~ A- I. [X xq xl ... xqm-1f (3) 

where 
al el2 

am 1 aq aq a~l 
A ~ 

I 2 
(4) 

rj"-l (;n-J q'~l -l 
a a2 am 1 

is a non-singular (invertible) square matrix. 

Proof' Since X = [ 7=1 ajxj, and Xj E lFq, we get X ql = 

[,)=1 ar Xj using Fennat's little theorem. It only remains 
to show that A is non-singular. By construction, the set 
{ a i , Cl2, ... , am} is a basis for IF qm over IF if ' It then follows 
from [1, Corollary 2.38, pp . 58] that A is non-singular . • 

It follows from Lemma 1 that there exist polynomials )1j E 

lFqm [Xl of degree at most qm- t such that Xj = )1j(X ) , 1 :S j :S m. 



Substituting for all Xj in this manner, we have proved the 
following: 

Theorem 1 Let n ::; qn. If i! ::; q then 

1(Mq(i!, m, n) <:;;; 1(S qm(n, i!qm-l) IIIF~ (5) 

where 1(S qm (n , i!qm-l) is the Reed-Solomon code given by 

1(Sqm(n, i!qm- l)~ { [J( ~df(~2) ... f(~n)] 
I f E IFqm [X], deg(j) ::; i!qm-l} (6) 

where ~i ~ I:J= 1 a /xij, and ai ~ [ail a i2 .. . a im ], 1 ::; i ::; n are 
the points of evaluation f or the Reed-Muller code. Moreo ver 
if the information polynomial associated with the Reed-Muller 
code is given by 

) 
def 

CP(Xl , X2, "', Xm = (7) 

then the information polynomial f of degree at most .eqn-l 
associated with the Reed-Solomon code is: 

m 

f( X ) = L <Pi I h, . . ,im I1 ().1j(X ) )ij (8) 
Q,12,···,lm: j = ! 
Lj ij $t 

Let dH (X, y) represent the Hamming distance between the 
two vectors. Using Theorem I and the Guruswami-Sudan 
algorithm [2] for list decoding a Reed-Solomon code, we 
have proved the correctness of the following detenninistic list­
decoding algorithm for Reed-Muller codes: 

Algorithm 1 (RM-List-l) 
INPUT: q , i! 5. q,m,n ::; qm; r = [rl r2 '" rnl E ~. 
STEPS: 

1. Compute the parameter t = r n ( 1 - J i!qm-l / n) l· 
2. Using Guruswami-Sudan algorithm find a list .L of code­

words C E 1(Sqm(n, eqm- l) such that dH(c, r) < t. 
3. For every e E L check if C E IF~ : 

i. If NO then discard c f rom L 
ii. If YES then check if c E 1(:Mq(i!, m, n) 

a. If NO then discard c f rom L 
b. If YES then keep c in the list L 

4. ret urn 

!OUTPUT: L 

This algorithm was originally proposed by Pellikaan-Wu in 
[4J, though their proofs were different. 

A. Complexity of Algorithm 1 

The complexity of our proposed algorithm is of the same 
I order as the complexity of Guruswami-Sudan algorithm for 
I decoding Reed-Solomon codes over the extension field IF qm. 
IThis is O(n3 ) field operations in IFqm. 

B. Comparison to previous results 

The Pellikaan-Wu algorithm for decoding Reed-Muller 
codes by means of embedding into one-point Algebraic­
Geometric codes was shown [4] to achieve an error correction 

radius of In (1 - J i!(q + 1 )m-l / n ) l It is interesting to note 

that the error-correction radius demonstrated herein is always 
larger than that suggested by the Pellikaan-Wu fornlalism 
employing Algebraic-Geometric codes. However we believe 
that the more important contribution of this paper is the readily 
accessible correctness proof which relies on just a few basic 
notions from Galois theory. 

C. Product Reed-Solomon codes 

Product Reed-Solomon codes P1(Sq,m(qm, k l ' ... , km ) ~ 
®?: I '1lS q (q, ki) over lF~n can be thought of as the set of 
vectors whose qm coordinates consist of the ql1Z evalua­
tions of m-variate infonnation polynomials with coefficients 
in lFq and degree in the lh-variable Xi at most (ki - 1) . 
m is usually called the dimension of the product code. 
Thus P1(Sq ,m(qm, k" ''', km) is contained in 1(Mq(L~ 1 (ki -

1), m, qm). When I:~:l (ki-1) 5. q the list decoding algorithm 
given in Algori thm 1 may be used essentially without any 
modifications. Several product Reed-Solomon algebraic list 
decoders, inclucting a similar method as sketched above are 
described in [5]. Using Algorithm 1 it is possible to achieve 
a relative error correction radius of (l - '\IL~ 1 Pi), where 

def / Pi = ki q. 

D. Zeros of Multivariate Polynomials 

From Theorem 1, il is clear that f(X ) being of degree 
at most flqm- l, has at most i!qm-l zeros in IF qrr, including 
multiplicities. Therefore a non-zero multivariate polynomial 
<p( Xl , X2, ... , xm) of total degree f has at most £cj1t- l zeros in 
lF~n. This gives the famous DeMillo-Lipton-Schwartz-Zippel 
lemma for polynomials over finite fields. Note that the state­
ment above appears to be stronger than the classical lemma 
in that thi s counts multiplicities too . Moreover the proof also 
appears to differ from the traditional expositions which use 
probabilistic arguments. 

Next we propose a lower complexity recursive algebraic de­
coder which outperforms the Reed-Muller decoder considered 
in this sect jon. 

III. A RECURSIVE DECODING ALGORITHM FOR PRODUCT 

REED-SOLOMON AND R ED -MULLER CODES 

For si mplicity, let n ~ qm. A codeword in the code 
P1(Sq,m(qm , k[, ... , km) can be described within an m­
dimensional cube of side length q. Let a codeword c (corre­
spondingly a received word, r ) be so described . We will find it 
convenient to write this vector as [cq ,i2, ... ,im ], where each of the 
indices i j take values in the range {I, ... , q}. We further use 
the notation [C~:,'i~~~l,;.~,~m 1 to denote the (j - 1 )-dimensional 
vector fonned out of (cq ,iz, .. . ,im 1 when the coordinates indexed 
by (ij,ij+l, ... ,im ) are fixed at (aj,aj+l, ... ,am ) and the rest 
of the indices are free. By the nature of the product code, 
[ aj,aj+l, ... ,am] b I p tP c . ( j - J k k) 
Cil h, ... ,ij-l e ongs to ..l\J..l q,]- l q , I ,· .. , j-l . 



Now consider the following decoding algorithm for the code 
P'l(Sq,m(qfTl, kl ' ... ,km): 

Algorithm 2 (PRS-Decoder) 

( ~ 
INPUT: q, k l ,k2, ... ,km ) : ki < q,m; T E lF~ , where T = 

[rilh." ,!m];l ::; i j ::; q. 
STEPS: 
1. If m = 1 do: 

i. Compute the parameter tl = I q (1- Jkl/q) l 
ii. Using Guruswami-Sudan algorithm find a list .£1 of 

codewords Cl E 1(Sq(q, k l ) such that dH(CI, Til) < tl· 
iii. Search .£1 for CI such that dH(CI, Til) is least. Sub­

stitute in-place the positions corresponding to Til in r 
with CI and r eturn . 

2. For am = 1,2, .. . ,q do: 

i. Set r' .- [ram . 1 
1[,12, .. ·,lm-l · 

ii. Set mt .- m - 1 and n' .- qn' 
iii. Recursively decode r' using PRS-Decoder with input 

parameters q, (kJ ,k2, . . . I km, ) ,m'; r' E lF~/. 

3. Compute the parameter tm = I q ( 1 - Jkm / q ) l· 
4. Foreachm -l tuple (a j,a2,.·. ,am-d do: 

i. Using Guruswami-Sudan algorithm find a list 
Lm of codewords em E ~Sq(q, km) such that 
dH (Cm, r~l,a2, .. ,am-l) < tm. 

ii. Search in for Cm such that dH( cm, r~~,a2, .. .,a,rt-l) is 
least. Substitute in-place the positions corresponding 
to ral' I,G2 , .. ·,am- i with em. 

Tn 

S. return 

OUTPUT: Resulting vector r 

The following recursive algorithm uses PRS-Decoder to 
decode tf(.1}y{ q (f m, n). 

Algorithm 3 (RM-List-2) 
INPUT: q , f ::; q, m, n ::; qm ; r = [r 1 r2 . . . r n 1 E IF~. 
STEPS: 
1. For each possible m-tuple (kj, k2,· .. , km ) : ki < q, Lj k j ::; f 

do: 

i. Using PRS-Decoder with input parameters 
q , (k l ,k2, .. . ,km), m; r E lF~ , decode T as c. 

ii. Add c to a list L of codeword candidates. 

2. return 

OUTPUT: .£ 

We have the following result concerning the decoding power 
of Algorithm 2 and Algorithm 3. 

Theorem 2 Algorithm 2 has a relative error correction radius 
def ( ) def / . of 'tm = TIi~ 1 1 - JPi ' where Pi = ki q. Moreover; there eXist 

error patterns of weight above n TIi~ 1 (1 - -/Pi) which cannot 
be guaranteed to be efficiently decoded by Algorithm 2. 

Proof' Our proof is by induction. When m = 1, the claim 
is trivially true. Let us assume the claim to be true for some 

m = M. We will now show it to be true for the case m = M + 
1. Let there be a maximum of tM. I = ctt+ 1 rr~t l(l --/Pi) 
errors. In Step 2 of Algorithm 2, let there be a maximum 
of X recursions which fail to decode correctly. Since by the 
induction hypothesis, this would mean that there are more than 
tM errors in these x sub-recursions, we have that Xf/v! ::; tA'1+ I. 

Substituting for tM-r l and tM gives, x ::; q(1 - y'PM+ I)' These 
errors will get corrected in Step 4 of the algorithm. This proves 
the first part of the claim. 

To see the second part of the claim, we observe that 
an error pattern which is contiguously spread over an m 
dimensional sub-cube of volume more than n rr~~ l (1 - JPi) 
cannot be guaranteed to be efficiently decoded by the proposed 
algorithm. This shows that the error correction radius predicted 
by Theorem 2 is rather tight. • 

A. Complexity of Algorithm 2 and Algorithm 3 

Let ~m be the complexity of decoding an m-dimensionaI 
product Reed-Solomon Code using Algorithm 2. Then the 
complexity of decoding an m + 1 dimensional code is ~m-i- I = 

O(q~m + qm ~I). But ~ I = O(q3 ) field operations in lFq . 

This gives, ~m = O(qm+2) which is ~ O(n) for large m. The 
complexity of Algorithm 3 is ~ O(n2 ) field operations in lFq . 

This is substantially better than the Pellikaan-Wu method in 
Algorithm 1. 

B. Comparison of Algorithm J and A lgorithm 3 

Algorithm 3 not only has a lower complexity, but also 
performs better over a wide range of rates. For example when 
Li Pi > 1, the Pellikaan-Wu algorithm is not effective, whereas 
the new algorithm is still useful. Furthermore IT?!.I (1 - VPi) 
is larger than (1 - JE~ I pJ for most code rates and the 
advantage is more pronounced at higher code rates . 

C. Other Related Product Code Decoders 

Several iterative hard decision decoders for product Reed­
Solomon codes available in literature u, e 'orne form of 
Algorithm 2. The performance of such iterative decoders can 
also be characterized using Theorem 2. Similar conclusions 
are obvious for the case of other product codes which have 
algebraic bounded distance decoders available for their com­
ponent codes. 

IV. C ONCLUSIONS 

In this paper, we present a simple and easily acce sible proof 
for the Pellikaan -Wu algebraic decoding algorithm for Reed­
Muller codes. Our proof uses only the fundamental properties 
of finite field arithmetic. 

We also propose a low complexity recursive algorithm 
for product Reed-Solomon and Reed-Muller codes . This new 
algebraic algorithm is then shown to have a significantly better 
error correction radius than the Pellikaan-Wu algorithm over 
a wide range of code rates. 
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