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On Algebraic Decoding of g-ary Reed-Muller and
Product Reed-Solomon Codes

Nandakishore Santhi*

Abstract— We consider a list decoding algorithm recently
proposed by Pellikaan-Wu [4] for g-ary Reed-Muller codes
RM (¢, m, n) of length n < g™ when ¢ < g. A simple and
easrly accessible correctness proof is given which shows that
this algorithm achieves a relative error-correction radius of
T< (1 — g1/ ) This is an improvement over the proof
using one-point Algebraic-Geometric decoding method given in
[4]. The described algorithm can be adapted to decode product
Reed-Solomon codes.

We then propose a new low complexity recursive algebraic
decoding algorithm for product Reed-Solomon codes and Reed-
Muller codes. This algorithm achieves a relative error correction

radius of T <[[", | | —y/ki/q ). This algorithm is then proved to
outperform the Pellikaan-Wu algorithm in both complexity and
error correction radius over a wide range of code rates.

I. INTRODUCTION

With the discovery of deterministic list-decoding algo-
rithms for several Algebraic-Geometric codes, most notably
the Guruswami-Sudan [2] algorithm, there has been renewed
interest in algebraic decoding methods for other related g-ary
codes such as the Reed-Muller [3], [4] and product Reed-
Solomon [5] codes. However some of the existing correctness
proofs for these algorithms use advanced algebraic geometric
tools. In this paper we derive a proof for a list decoding
algorithm for a g-ary Reed-Muller code. Our proof is from
first principles and require only the most basic notions from
finite field theory.

The basic idea of our proof is to “lift” a multivariate
polynomial in F4[xy,x2,...,X»] to a univariate polynomial
in Fyn[X] using a deterministic mapping rule. This in turn
results in a higher total degree polynomial. The increase in
degree will not be high enough to render our list decoding
strategy for Reed-Muller codes useless at meaningful rates. A
higher degree for the lifted polynomial means that this Reed-
Muller code list decoding algorithm has a lower relative error-
correction radius (as a function of the rate) than a comparable
rate Reed-Solomon list decoder based on the Guruswami-
Sudan algorithm. In the following section we describe the
mapping rule and the decoding algorithm in some detail.

In the final section we propose new algorithms for de-
coding product Reed-Solomon codes and Reed-Muller codes.
We then show that this new algorithm performs better than
the Pellikaan-Wu algorithm in both complexity as well as
decoding capability.

* The author is affiliated to the T-13 Complex Systems Group, the Center
for Non-Linear Studies, and the CCS-5 division at the Los Alamos National
Laboratory, Los Alamos, NM 87544, nsanthilanl.gov

II. CORRECTNESS OF A LIST DECODING ALGORITHM
Let us begin by defining a g-ary Reed-Muller code.

Definition 1 The g-ary Reed-Muller code RM ,(€, m, n) of
length n < g™ is defined as the set of vecrors given by:

RM (€, m, n) € ' o(o) o(a) - @(ats)]
| @EFx1,%2,...,%n], deg(@) <€} (1)
where {@1,0,...,0,} are any set of n distinct points in ¥y,

Here by deg(©) we mean the total degree of the multivariate
polynomial .

The following well known property will be useful:

Proposition 1 Let {aj, ar,...,am} be a basis for Fgn over
F, and let [x1%3 ... xn) € Fy. Then the map y:Fj — Fm
defined as in (2) is an isomorphism.

(2

[xixy ... 3] — x & Zﬂ;X;
For example one might as usual use a polynomial basis
{1,E,82,...,Em 1} where & is any primitive element ir:!_ﬂi'qm
or even a normal basis of the form {{, {7, C‘i’l, B < A 8
where  is a suitable primitive element in Fm.

Therefore we arrive at this elementary conclusion:

Lemma 1 Ler X € Fgm. The reverse isomorphism for (2) is:

. -1 def , 2 =1,
X [nx...x,)]  SA L xxix7 .. x" )T @3
where
ap as e Om
. a‘f ag R - 4
A=| . : . : 4)
-1 =1 —1

is a non-singular (invertible) square matrix.

Proof: Since X = Y7 a;xj, and x; € IF,, we get x4 =

J_la‘fx, using Fermat’s little theorem. It only remains

to show that A is non-singular. By construction, the set
{a1,a2,...,an} is a basis for Fgn over F,. It then follows
from [1, Corollary 2.38, pp. 58] that A is non-singular. ®

It follows from Lemma 1 that there exist polynomials u; €
Fn [X] of degree at most g™ ! such that x; =u;(X), 1< j<m.



Substituting for all x; in this manner, we have proved the
following:

| Theorem 1 Let n < g™ If £ < g then

RM (4, m, n) C RS m(n, g""")NF; (5)
where .‘R‘.Sqm (n, & "‘1) is the Reed-Solomon code given by

RSg(n, €™ ") L { [£(BL) £(B2) --. £(B))]
| fEFpR[X), deg(f) <tg™ "'} (6)
def o

\ where Bj =L ajllj, and O dér [C{“ (1 7o R (I,’m], |<i<nare
the points of evaluation for the Reed-Muller code. Moreover
if the information polynomial associated with the Reed-Muller
code is given by

def e i
O(X1, %2, -3 Xm) = Y, P | | %}
iy g eendm: Jj=1
| ):jfjﬁf

(N

then the information polynomial f of degree at most £g™
associated with the Reed-Solomon code is:

fX)= ¥ Ouirim [ [ Wi(X))" @®
ll,gf});gmf! j=]

Let dy(x, y) represent the Hamming distance between the
two vectors. Using Theorem 1 and the Guruswami-Sudan
- algorithm [2] for list decoding a Reed-Solomon code, we
, have proved the correctness of the following deterministic list-
| decoding algorithm for Reed-Muller codes:

| Algorithm 1 (RM-List-1)
|INPUT: g, <gmn<q"; r=[rir...m]€F,
| STEPS:

1. Compute the parameter t = [n (l - \/fq’""'l/n) -‘
2. Using Guruswami-Sudan algorithm find a list L of code-
, words ¢ € RS n(n, £q™ 1) such that dy(e, r) <t.
3. For every c € L check if c €y :
i. If NO then discard ¢ from L.
ii. If YES then check if ¢ € RM (¢, m, n) :
a. If NO then discard ¢ from L.
| b. If YES then keep c in the list L.
4. return

OUTPUT: L

|This algorithm was originally proposed by Pellikaan-Wu in
(4], though their proofs were different.

|A. Complexity of Algorithm 1

The complexity of our proposed algorithm is of the same
,order as the complexity of Guruswami-Sudan algorithm for
,decoding Reed-Solomon codes over the extension field Fym.
'This is O(n®) field operations in Fyn.

B. Comparison to previous results

The Pellikaan-Wu algorithm for decoding Reed-Muller
codes by means of embedding into one-point Algebraic-
Geometric codes was shown [4] to achieve an error correction
radius of [n (l —E(g+ l)”'—l/nﬂ. It is interesting to note
that the error-correction radius demonstrated herein is always
larger than that suggested by the Pellikaan-Wu formalism
employing Algebraic-Geometric codes. However we believe
that the more important contribution of this paper is the readily
accessible correctness proof which relies on just a few basic
notions from Galois theory.

C. Product Reed-Solomon codes

Product Reed-Solomon codes PR.S, ,(¢™, k1, .-, kn) iy
®LRS4(9, ki) over FZ' can be thought of as the set of
vectors whose g™ coordinates consist of the ¢™ evalua-
tions of m-variate information polynomials with coefficients
in F, and degree in the i-variable x; at most (k; —1).
m is usually called the dimension of the product code.
Thus PR.S, m(q™, k1, ..., k) is contained in ‘_Kaffq(f‘_?‘;1 (ki —
1), m, ¢™). When Y%, (ki — 1) < g the list decoding algorithm
given in Algorithm 1 may be used essentially without any
modifications. Several product Reed-Solomon algebraic list
decoders, including a similar method as sketched above are
described in [5]. Using Algorithm 1 it is possible to achieve
a relative error correction radius of (1 — /%%, p;), where

def
Pi = ki/q.
D. Zeros of Multivariate Polynomials

From Theorem 1, it is clear that f(X) being of degree
at most £g™ !, has at most £g"! zeros in [Fgm, including
multiplicities. Therefore a non-zero multivariate polynomial
@(x1, %2, ..., %n ) of total degree £ has at most £g™ ! zeros in
F7. This gives the famous DeMillo-Lipton-Schwartz-Zippel
lemma for polynomials over finite fields. Note that the state-
ment above appears to be stronger than the classical lemma
in that this counts multiplicities too. Moreover the proof also
appears to differ from the traditional expositions which use
probabilistic arguments.

Next we propose a lower complexity recursive algebraic de-
coder which outperforms the Reed-Muller decoder considered
in this section.

ITI. A RECURSIVE DECODING ALGORITHM FOR PRODUCT
REED-SOLOMON AND REED-MULLER CODES

For simplicity, let n & ¢". A codeword in the code
PRS4m(@™, kiy...,kn) can be described within an m-
dimensional cube of side length g. Let a codeword ¢ (corre-
spondingly a received word, r) be so described. We will find it
convenient to write this vector as :c;l.,-z,___‘;m], where each of the
indices i; take values in the range {1,...,9}. We further use

the notation [c‘-;"“j+"""f'”] to denote the (j— 1)-dimensional

B 302500
vector formed out of fc,-l‘,-zi,,,.,-m] when the coordinates indexed
by (ij,ij+1,-..,im) are fixed at (@j,djs1,...,am) and the rest
of the indices are free. By the nature of the product code,

[ca';ﬂ"+1"';'?’"] belongs to PR.S, ;- 1(¢' ", ku, ..., kj1).
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Now consider the following decoding algorithm for the code

RS iK1 oo

Algorithm 2 (PRS-Decoder)

INPUT: ¢, (ki k2, km) : ki < gym; 7 € Y, where r &
:ril.ig ..... t'm];] SIJSQ

STEPS:

L Ifm=1do:

i. Compute the parameter t| = [q (l -k /qﬂ.
ii. Using Guruswami-Sudan algorithm find a list L1 of
codewords ¢y € R.S5,(q, ki) such that du(ey, ri) <.
iii. Search Ly for ¢| such that dy(cy, r;) is least. Sub-
stitute in-place the positions corresponding to r;, inr
with ¢| and return .
2. Foram=1,2,...,q do:
i. Set r— [’f{?{'g,...,l‘m_[]
ii. Set m' —m—1andn' —g"
iii. Recursively decode ¥ using PRS-Decoder with input
parameters q, (ki ky,... ky),m’; ¥ € Fg'

3. Compute the parameter ty, = "q (1 - \/k,,,/q)“.
4. For each m—1 tuple (a),az,...,am—1) do:
i. Using Guruswami-Sudan algorithm find a list

Ln of codewords cm € RS,(q, km) such that

dpylen, r "= ) 2

iil. Search Ly for ¢u such that dy(cm, 7y ™" """ is
least. Substitute in-place the positions corresponding
to ¥t I with ¢y

5. return

OUTPUT: Resulting vector r

The following recursive algorithm uses PRS-Decoder to
decode M (¢, m, n).

Algorithm 3 (RM-List-2)
INPUT: ¢,£ < gmn<g"; r=[riry...r| €Fy.
STEPS:
1. For each possible m-tuple (ky,ka, ... .kn) 1 ki < q,Ljk; <€
do:
i. Using PRS-Decoder with input parameters
g, (ki,ka, ... km),m; r € FY, decode r as c.
ii. Add ¢ to a list L of codeword candidates.
2. return
OUTPUT: L

We have the following result concerning the decoding power
of Algorithm 2 and Algorithm 3.

Theorem 2 Algorithm 2 has a relative error correction radius
of T £ T12 (1 —\/Pi). where p; = k;/q. Moreover; there exist
error patterns of weight above n[I{* (1 — /p;) which cannot
be guaranteed to be efficiently decoded by Algorithm 2.

Proof: Our proof is by induction. When m = 1, the claim
is trivially true. Let us assume the claim to be true for some

m =M. We will now show it to be true for the case m =M +
1. Let there be a maximum of fy+1 = gM* [IX1(1 - /p7)
errors. In Step 2 of Algorithm 2, let there be a maximum
of x recursions which fail to decode correctly. Since by the
induction hypothesis, this would mean that there are more than
ty errors in these x sub-recursions, we have that xty < fyr41-
Substituting for #y; and £y gives, x < g(1 — \/Pm1). These
errors will get corrected in Step 4 of the algorithm. This proves
the first part of the claim.

To see the second part of the claim, we observe that
an error pattern which is contiguously spread over an m
dimensional sub-cube of volume more than n[]",(1— /p7)
cannot be guaranteed to be efficiently decoded by the proposed
algorithm. This shows that the error correction radius predicted
by Theorem 2 is rather tight.

A. Complexity of Algorithm 2 and Algorithm 3

Let §,, be the complexity of decoding an m-dimensional
product Reed-Solomon Code using Algorithm 2. Then the
complexity of decoding an m+ 1 dimensional code is Oy =
0(g9m + ¢"91). But ¥ = O(¢%) field operations in F,.
This gives, 8,, = O(g™*2) which is &~ O(n) for large m. The
complexity of Algorithm 3 is &~ O(n?®) field operations in F,.
This is substantially better than the Pellikaan-Wu method in
Algorithm 1.

B. Comparison of Algorithm 1 and Algorithm 3

Algorithm 3 not only has a lower complexity, but also
performs better over a wide range of rates. For example when
¥ pi > 1, the Pellikaan-Wu algorithm is not effective, whereas
the new algorithm is still useful. Furthermore [T, (1 — /p:)
is larger than (1— /Y7 p;) for most code rates and the
advantage is more pronounced at higher code rates.

C. Other Related Product Code Decoders

Several iterative hard decision decoders for product Reed-
Solomon codes available in literature use some form of
Algorithm 2. The performance of such iterative decoders can
also be characterized using Theorem 2. Similar conclusions
are obvious for the case of other product codes which have
algebraic bounded distance decoders available for their com-
ponent codes.

IV. CONCLUSIONS

In this paper, we present a simple and easily accessible proof
for the Pellikaan-Wu algebraic decoding algorithm for Reed-
Muller codes. Our proof uses only the fundamental properties
of finite field arithmetic.

We also propose a low complexity recursive algorithm
for product Reed-Solomon and Reed-Muller codes. This new
algebraic algorithm is then shown to have a significantly better
error correction radius than the Pellikaan-Wu algorithm over
a wide range of code rates.
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