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Introduction 

The neutron population in a multiplying body con­
taining a weak random source may depart consider­
ably from its average or expected value. The result­
ing behavior of the system is then unpredictable and 
a fully stochastic description of the neutron population 
becomes necessary. Stochastic considerations are espe­
cially important when dealing with pulsed reactors or 
in the case of criticality excursions in the presence of a 
weak source. 

Using the theory of discrete-state continuous-time 
Markov processes, and subject to some physical approx­
imations, Bell [I] obtained approximate solutions for the 
neutron number probability distributions (pdf), with and 
without an intrinsic rapdom neutron source, that were 
valid at late times and/ large neutron populations. In re­
cent work [4] , we obtained exact solutions for Bell's 
model problem, and in this paper we use these exact 
probability distributions to: (I) assess th~ accuracy of 
Bell's asymptotic solutions and show how the)a~r fol­
low from the exact solutions, (2) rigorously examine 
the probability of obtaining a divergent chain reaction, 
and (3) demonstrate the existence of an abrupt transition 
from a stochastic to a deterministic phase with increas­
ing source strength. 

Neutron Probability Distributions 

We define Pn (t) as the probability of finding n neu­
trons at time t in a lumped supercritical body in which 
a fission chain may be initiated by a single neutron or 
by an intrinsic random source. Pn(t) satisfies a forward 
Chapmann-Kolmogorov equation [1,2,3,4], which Bell 
solved for large neutron populations [I]. The exact so­
lutions for the pdfs may also be obtained, as shown in 
[4] . For a single initiating neutron at t = to, the exact 
distribution is given by: 

a(t) 
Po (t) = 1 - 1 + b( t) , (I a) 

p a(t) [ b(t) ] n+1 

n(t) = b2(t) 1 + b(t) , n "2 1, (I b) 

where Po(t) is the extinction probability and where we 
have defined: 

a(t) == n(t) = exp [1: a(t')dt'] , (2) 

b(t) = ~21: exp [l,t a(tll)dtll ] dt', (3) 

n(t) being the mean neutron population at time t. When 
an intrinsic random source is present, and there is no 
initiating neutron at t = to , the exact pdf is given by: 

p ( ) 1 r(1] + n) [ b(t) ] n 0 
n t = [1 + b(t)]1) r(1])n! 1 + b(t) ,n"2, 

(4) 
In the above, a(t) = [k(t) - l]/T > 0, where T is 
the neutron lifetime and k(t) is the multiplication fac­
tor, X2 is a fission multiplicity parameter [1, 4] and r(z) 
isthe gamma function. Also, 1] = 2S/X2 where S is 
the strength of the random source. The pdfs given by 
Eqs .(I) & (4) are non-negative and properly normalized 
[4] , and are valid for arbitrary neutron number n "2 0 at 
all times t "2 O. Bell's asymptotic approximations will 
be recovered below as limiting forms of these exact solu­
tions, but first, we consider the probability of obtaining 
a divergent fission chain. 

Probability of Divergent Chain Reaction 

We examine in detail the source-free case and give 
the final result for a random source. To this end, we 
begin by expressing the pdf given by Eq.(I b) as a recur­
rence relation: 

b(t) 
Pn+1 (t) = 1 + b(t) Pn(t) = h(t)Pn(t) , n"2 1, (5) 

which defines the function h(t) and where the initial 
value PI (t) is obtained by setting n = 1 in Eq.(l b). We 
are interested in establishing the conditions under which 
P 00 (t), the probability that a neutron chain diverges, i.e., 
grows to infinite size, is nonzero. Considering Eq.(5) as 
a sequence, P 00 (t) is the limiting value of this sequence 
for some fixed t. The existence of this limit implies the 
existence of a fixed point, i.e. , 

lim Pn = P' , (6) 
n-->oo 

which from Eq.(5) satisfies: 

(1 - h)P' = 0, (7) 

where time appears parametrically and the limits are as­
sumed to apply at each time. Thus, if h '" I, P' = 0 
is the only solution, indicating that the probability of a 



chain diverging is zero. However, a nonzero divergence 
probability, P' # 0, is possible if h = 1, and from 
Eq.(5) we observe that this possibility depends on how 
b(t) varies with time. It is clear from Eq.(3) that b(t) 
increases monotonically between 0 and 00 (for a super­
critical system) for 0 :S t :S 00. It then follows from 
Eq.(4) that h increases monotonically from 0 to 1 for 
o :S t :S 00. Thus, a nonzero limit of the sequence 
in Eq.(5) is only possible at t = 00 (when h = 1), 
and P 00 (00) is this limiting value. To obtain the lat­
ter, it is first necessary to consider the time-asymptotic 
limit of Pn(t) for finite neutron populations. Noting that 
limt-+CXJ PI (t) = limt-+CXJ a(t)/[1 + b(t)]2 = 0, it then 
follows from Eq.(5) that Pn(oo) = 0 for 1 :S n < 00. 
This means that as t -> 00, the only neutron states that 
have nonzero probability are n = 0 and n = 00. The 
normalization condition 2:::=0 Pn(t) = 1, which holds 
for all time, and Eq.(la) then yields the explicit result: 

a(oo) 
PCXJ(oo) = 1 - Po(oo) = 1 + b(oo)' (8) 

Summarizing, given one initiating neutron, the neu­
tron population in a source-free supercritical system 
will eventually (as t -> (0) either become extinct with 
probability Po (00) or it will diverge with probability 
1 - Po (00). The finite-state (0 < n < 00 ) occupa­
tion probabilities are all zero and, moreover, finite-time 
blow-up is not possible in such a system. For constant 
reactivity, Eq.(8) simplifies to: 

PCXJ(oo) = 2(k - 1) = 2(k - 1) (1/) 
X2T k (1/2) _ (1/) , (9) 

where (1/) and (1/2) are the mean and mean-square num­
ber of neutrons per fission. 

When a random source of constant strength is 
present, the corresponding pdf, Eq.(4), can be expressed 
as the following recurrence relation: 

P (t) - b(t) (7]+n) P (t) n >_ O. (10) 
n+1 - l+b(t) n+l n , 

An analysis similar to that used for the source free case 
then shows that the divergence probability is unity. That 
is, the neutron population will always diverge when a 
source is present. 

Time Asymptotic Solutions 

Under the assumption of large t, so that the mean 
population is large, and large n, so that the actual pop­
ulation is also large, we have previously shown [4] that 
the discrete pdfs reduce to Bell's continuous distribu­
tions [1]. Here we follow a different approach and 
obtain an asymptotic result that is slightly more gen­
eral than Bell's. For n large (and continuous), Pn +1 (t) 

can be Taylor expanded to first order, which trans­
forms Eq.(5) to a differential equation that can be simply 
solved to obtain: 

Pn(t) ;;= A(t) exp [-1 + ~(t)]' n» 1 (II) 

where A(t) is undetennined. Since the extinction prob­
ability is nonzero in this case, the complete pdf, now a 
probability density, can be written as: 

Pn(t) = Po(t)o(n) + A(t) exp [-1 +nb(t)]' (12) 

Enforcing the nonnalization JoCXJ Pn(t)dn = 1 then 
gives A(t) in tenns of a(t) and b(t) and Eq.(l2) be­
comes: 

a(t) n 

Pn(t) = Po(t)o(n) + 2e--mm. (13) 
[1 + b(t)] 

Further assuming a constant reactivity and t » l/T, 
which yields b(t) ~ n(t)/pCXJ we recover Bell's solution 
[I] : 

p2 [npCXJ] Pn(t) = [1 - pCXJ]o(n) + n~) exp - n(t) . (14) 

where we have used the abbreviation pCXJ for P CXJ (00). 
Eq.(l3) provides a more accurate description than Bell's 
approximation Eq.(l4) of the large n tail of the distribu­
tion at earlier times. 

Similarly, when a random source is present, the re­
currence relation in Eq.( I 0) can be converted to a differ­
ential equation for large n and solved to give: 

1 n 

Pn(t) = B(t) nb(t)(I-7))/[I+b(t)1 e--mm. (IS) 

This solution can be normalized to unity to Obtain B(t), 
and, once again for t » l/T, we recover Bell's solution 
[I] : 

P (t) = 7]n 7] e-n 7)/ii(t) 
[ ]

7)-1 

n n(t) n(t) f(7]) . 
(16) 

For fixed time t, Eq.(16) is a Gamma distribution in the 
nonnalized neutron population n/n(t), where n(t) = 

Sb(t) is the mean neutron numper, jn this case. Fig.(I) 
displays the complement of the cdf,)lefined as the prob­
ability of the neutron number e<Ceeding the mean at 
any time t, for the discrete and continuous distributions, 
Eq.(4) and Eq.(r6). The relative error between these two 
distributions is shown in Fig. 2. It is observed that the 
relative error is less than 2.5% for a normalized neutron 
population less than approximately 0.01, and decreases 
to less than 0.1 % when the nonnalized neutron .popula­
tion is greater that 0.3. We conclude that Bell's approx­
imation is excellent, even for actual neutron population 
sizes considerably smaller than the mean. 
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Fig. 1: Exact and Bell CDFs 
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Fig. 2: Relative Accuracy of Bell Solution 

Transition from a Stochastic to a Deterministic Phase 

We now use the above solutions to investigate the 
behavior of the pdfs as a function of the source strength 
S or, equivalently, TJ. Assuming constant reactivity, 
for numerical expediency, Fig(3) shows the discrete pdf 
Eq.(4) plotted against the normalized neutron popula­
tion y = n/ii(t), for different source strengths. A 
drastic transition in the qualitative shape of the distri­
bution is evident at a critical value of S which corre­
sponds to TJ = 1. For TJ < 1, the pdf monotonically de­
creases with increasing y but becomes unimodal when 
TJ > 1, with an apparent maximum around y = 1. 
The distribution continues to sharpen around this value 
with increasing TJ, with the standard deviation decreas­
ing as l/VS. Interestingly, this transition is explicit in 
Bell's asymptotic solution, Eq.(l6), and arises from the 
change in sign of the exponent of n1)-l as TJ increases 
past unity. Eq.(l6) can also be used to show that the 
maximum occurs at y = (TJ - 1)/TJ, which very rapidly 
approaches unity as TJ increases, and, moreover that, as 
TJ -> 00, Pn(t) -> 8[n - n(t)] [4]. Fig(3) clearly shows 
that for a weak source, the neutron population remains 
strongly stochastic (the pdf is very broad with a long 

tail), no matter how large the mean neutron population. 
The source must be sufficiently strong for a determin­
istic phase to set in and for the point kinetics model to 
provide a valid and useful description. While this result 
is qualitatively well appreciated [5], our work demon­
strates that the transition from a stochastic to a deter­
ministic phase is in fact sharp and can be quantified. 
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Fig. 3: PDFs for Various Source Strengths 

Conclusions 

We have used previously obtained [4] exact discrete 
pdfs of the neutron population in a supercritical body, 
with and without an intrinsic random source, to (I) nu­
merically demonstrate the high accuracy of Bell's ap­
proximate solution [I], (2) establish rigorously the exis­
tence and magnitude of the probability of a divergent fis­
sion chain, and (3) demonstrate the existence of a "phase 
transition" in the pdf as the source strength increases 
past a critical value. 
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