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Introduction

The neutron population in a multiplying body con-
taining a weak random source may depart consider-
ably from its average or expected value. The result-
ing behavior of the system is then unpredictable and
a fully stochastic description of the neutron population
becomes necessary. Stochastic considerations are espe-
cially important when dealing with pulsed reactors or
in the case of criticality excursions in the presence of a
weak source.

Using the theory of discrete-state continuous-time
Markov processes, and subject to some physical approx-
imations, Bell [1] obtained approximate solutions for the
neutron number probability distributions (pdf), with and
without an intrinsic rafndom neutron source, that were
valid at late times and/large neutron populations. In re-
cent work [4], we obtained exact solutions for Bell’s
model problem, and in this paper we use these exact
probability distributions to: (1) assess the accuracy of
Bell’s asymptotic solutions and show how the latter fol-
low from the exact solutions, (2) rigorously examine
the probability of obtaining a divergent chain reaction,
and (3) demonstrate the existence of an abrupt transition
from a stochastic to a deterministic phase with increas-
ing source strength,

Neutron Probability Distributions

We define P, (t) as the probability of finding n neu-
trons at time ¢ in a lumped supercritical body in which
a fission chain may be initiated by a single neutron or
by an intrinsic random source. P, (t) satisfies a forward
Chapmann-Kolmogorov equation [1, 2, 3, 4], which Bell
solved for large neutron populations [1]. The exact so-
lutions for the pdfs may also be obtained, as shown in
[4]. For a single initiating neutron at t = tp, the exact
distribution is given by:
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where Py(t) is the extinction probability and where we
have defined:
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7i(t) being the mean neutron population at time ¢. When
an intrinsic random source is present, and there is no
initiating neutron at ¢ = tp, the exact pdf is given by:
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In the above, a(t) = [k(t) — 1]/7 > 0, where 7 is
the neutron lifetime and k(t) is the multiplication fac-
tor, x4 is a fission multiplicity parameter [1, 4] and I'(z2)
is the gamma function. Also, n = 25/x5 where S is
the strength of the random source. The pdfs given by
Egs.(1) & (4) are non-negative and properly normalized
[4], and are valid for arbitrary neutron number n. > 0 at
all times ¢ > 0. Bell’s asymptotic approximations will
be recovered below as limiting forms of these exact solu-
tions, but first, we consider the probability of obtaining
a divergent fission chain.

Probability of Divergent Chain Reaction

We examine in detail the source-free case and give
the final result for a random source. To this end, we
begin by expressing the pdf given by Eq.(1b) as a recur-
rence relation:
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which defines the function h(t) and where the initial
value P (t) is obtained by setting n = 1 in Eq.(1b). We
are interested in establishing the conditions under which
P..(t), the probability that a neutron chain diverges, i.e.,
grows to infinite size, is nonzero. Considering Eq.(5) as
a sequence, Pa(t) is the limiting value of this sequence
for some fixed t. The existence of this limit implies the
existence of a fixed point, i.e.,

lim P, = P*, (6)
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which from Eq.(5) satisfies:
(1-h)P* =0, )

where time appears parametrically and the limits are as-
sumed to apply at each time. Thus, if h # 1, P* = 0
is the only solution, indicating that the probability of a



chain diverging is zero. However, a nonzero divergence
probability, P* # 0, is possible if h = 1, and from
Eq.(5) we observe that this possibility depends on how
b(t) varies with time. It is clear from Eq.(3) that b(t)
increases monotonically between 0 and co (for a super-
critical system) for 0 < t < co. It then follows from
Eq.(4) that A increases monotonically from 0 to 1 for
0 <t < oo. Thus, a nonzero limit of the sequence
in Eq.(5) is only possible at t = oo (when h = 1),
and P, (oo) is this limiting value. To obtain the lat-
ter, it is first necessary to consider the time-asymptotic
limit of P, (t) for finite neutron populations. Noting that
limg—00 P (t) = limi—oo a(t)/[1 + b(t)]* = 0, it then
follows from Eq.(5) that P,(c0) = 0for1 < n < co.
This means that as t — oo, the only neutron states that
have nonzero probability are n = 0 and n = oo. The
normalization condition " 2 ; P, (t) = 1, which holds
for all time, and Eq.(1a) then yields the explicit result:
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Summarizing, given one initiating neutron, the neu-
tron population in a source-free supercritical system
will eventually (as ¢ — o0) either become extinct with
probability Py(cc) or it will diverge with probability
1 — Py(oc0). The finite-state (0 < n < oo ) occupa-
tion probabilities are all zero and, moreover, finite-time
blow-up is not possible in such a system. For constant
reactivity, Eq.(8) simplifies to:
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where (v) and (%) are the mean and mean-square num-
ber of neutrons per fission.

When a random source of constant strength is
present, the corresponding pdf, Eq.(4), can be expressed
as the following recurrence relation:
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An analysis similar to that used for the source free case
then shows that the divergence probability is unity. That
is, the neutron population will always diverge when a
source is present.

Time Asymptotic Solutions

Under the assumption of large ¢, so that the mean
population is large, and large n, so that the actual pop-
ulation is also large, we have previously shown [4] that
the discrete pdfs reduce to Bell’s continuous distribu-
tions [1]. Here we follow a different approach and
obtain an asymptotic result that is slightly more gen-
eral than Bell's. For n large (and continuous), Pp1(t)

can be Taylor expanded to first order, which trans-
forms Eq.(5) to a differential equation that can be simply
solved to obtain:

Pp(t) = A(t)exp [— n3>1 (1)

n
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where A(t) is undetermined. Since the extinction prob-
ability is nonzero in this case, the complete pdf, now a
probability density, can be written as:

Palt) = Po(t)5(n) + A(t) exp [— 12)

B
L+b6(t) |
Enforcing the normalization fﬂ w(t)dn = 1 then
gives A(t) in terms of a(t) and b(t) and Eq.(12) be-
comes:
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Further assuming a constant reactivity and ¢ > 1/,
which yields b(t) = 7i(t)/po we recover Bell's solution
[1]:

Pa(t) = Po(t)é(n) + ———
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where we have used the abbreviation ps, for FPe,(00).
Eq.(13) provides a more accurate description than Bell’s
approximation Eq.(14) of the large n tail of the distribu-
tion at earlier times.

Similarly, when a random source is present, the re-
currence relation in Eq.(10) can be converted to a differ-
ential equation for large n and solved to give:
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This solution can be normalized to unity to obtain B(t),
and, once again for ¢ > 1/7, we recover Bell’s solution
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For fixed time t, Eq.(16) is a Gamma distribution in the
normalized neutron population n/n(t), where a(t) =
Sb(t) is the mean neutron number.in this case, Fig.(1)
displays the complement of the cdf, defined as the prob-
ability of the neutron number exceeding the mean at
any time t, for the discrete and continuous distributions,
Eq.(4) and Eq.(16). The relative error between these two
distributions is shown in Fig. 2. It is observed that the
relative error is less than 2.5% for a normalized neutron
population less than approximately 0.01, and decreases
to Iess than 0.1% when the normalized neutron popula-
tion is greater that 0.3. We conclude that Bell’s approx-
imation is excellent, even for actual neutron population
sizes considerably smaller than the mean.
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Fig. 1: Exact and Bell CDFs
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Fig. 2: Relative Accuracy of Bell Solution

Transition from a Stochastic to a Deterministic Phase

We now use the above solutions to investigate the
behavior of the pdfs as a function of the source strength
S or, equivalently, . Assuming constant reactivity,
for numerical expediency, Fig(3) shows the discrete pdf
Eq.(4) plotted against the normalized neutron popula-
tion y = n/a(t), for different source strengths. A
drastic transition in the qualitative shape of the distri-
bution is evident at a critical value of S which corre-
sponds to n = 1. For 7 < 1, the pdf monotonically de-
creases with increasing y but becomes unimodal when
n > 1, with an apparent maximum around y = 1.
The distribution continues to sharpen around this value
with increasing 7, with the standard deviation decreas-
ing as 1/4/S. Interestingly, this transition is explicit in
Bell's asymptotic solution, Eq.(16), and arises from the
change in sign of the exponent of 7! as 7 increases
past unity. Eq.(16) can also be used to show that the
maximum occurs at y = (n — 1)/n, which very rapidly
approaches unity as 7 increases, and, moreover that, as
n — o0, P,(t) — 8[n — 7(t)] [4]. Fig(3) clearly shows
that for a weak source, the neutron population remains
strongly stochastic (the pdf is very broad with a long

tail), no matter how large the mean neutron population.
The source must be sufficiently strong for a determin-
istic phase to set in and for the point kinetics model to
provide a valid and useful description. While this result
is qualitatively well appreciated [5], our work demon-
strates that the transition from a stochastic to a deter-
ministic phase is in fact sharp and can be quantified.
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Fig. 3: PDFs for Various Source Strengths

Conclusions

We have used previously obtained [4] exact discrete
pdfs of the neutron population in a supercritical body,
with and without an intrinsic random source, to (1) nu-
merically demonstrate the high accuracy of Bell's ap-
proximate solution [1], (2) establish rigorously the exis-
tence and magnitude of the probability of a divergent fis-
sion chain, and (3) demonstrate the existence of a “phase
transition” in the pdf as the source strength increases
past a critical value.
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