
LA-UR-
Approve,d for public release;
distribution is unlimited.

--QAlamos
NATIONA l LABORATORY
--- EST,1943 ---

Title: Analyzing the Trade-off between Multiple Memory
Controllers and Memory Channels on Multi-core Processor
Performance

Author(s): Jose Carlos Sancho Pitarch
Mike Lang
Darren J. Kerbyson

Intended for: Publish at the Workshop on Large-Scale Parallel Processing
to be held with the IEEE International Parallel & Distributed
Processing Symposium

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U,S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Analyzing the Trade-off between Multiple Memory Controllers
and Memory Channels on Multi-core Processor Performance

Jose Carlos Sancho, Mike Lang, Darren J . Kerbyson

Performance and Architecture Laboratory (PAL)
Computer Science for HPC (CCS-l)

Los Alamos National Laboratory, NM 87545, USA
{jcsancho,mlang,djk}~lanl . gov

Abstract

Increasing the core-count on current and future processors is posing critical chal­
lenges to the memory subsystem to efficiently handle concurrent memory requests.
The current trend to cope with this challenge is to increase the number of memory
channels available to the processor's memory controller. In this paper we investigate
the effectiveness of this approach on the performance of parallel scientific applications.
Specifically, we explore the trade-off between employing multiple memory channels per
memory controller and the use of multiple memory controllers. Experiments conducted
on two current state-of-the-art multicore processors, a 6-core AMD Istanbul and a 4-
core Intel Nehalem-EP, for a wide range of production applications shows that there
is a diminishing return when increasing the number of memory channels per memory
controller. In addition, we show that this performance degradation can be efficiently
addressed by increasing the ratio of memory controllers to channels while keeping the
number of memory channels constant. Significant performance improvements can be
achieved in this scheme, up to 28%, in the case of using two memory controllers with
each with one channel compared with one controller with two memory channels.

1 Introduction

The increased silicon integration that is possible today and foreseen into the future has lead
to an unprecedented growth in the number of processor-cores. Current main-stream proces­
sors from Intel, AMD, and IBM have 6-8 cores and recent experimental designs have much
more, such as the 48-cores x86 processor from Intel [8]. However, this increase in compute
capability comes with a significant cost - that of tremendously stressing the memory subsys­
tem, and making worse the well-known memory wall that can profoundly limit performance.
Current memory subsystem designs are not able to sustain all the memory requirements from
multiple cores for many memory intensive applications. A major constraint that prevents a
linear performance improvement of the memory subsystem, proportional to the core-count ,
is the processor pin-count . The design of the memory subsystem is critical in order to achieve
maximum efficiency from the available pins.

The current industry trend to cope with the memory challenge to multi-core processors
is to increase the number of memory channels available to the memory controller. Examples
illustrating the increase in the number memory channels include the Intel's Nehalem pro­
cessors [4] that currently has three memory channels with a single memory controller (the
quad-core Nehalem-EP) , which will increase to four memory channels next year (the oct-core
Nehalem-EX). The next generation of the IBM's power processor, the oct-core Power7, will
use eight memory channels spread across two memory controllers. This trend for increasing
the performance of the memory subsystem is evolutionary as it leverages previous memory
controller designs. However , it does'has n additional advantage of substantially boosting

1

the performance on sequential since a single core can potentially use all available channels
simultaneously. It is not clear how this current trend will remain suitable for parallel appli­
cations in which the optimization of single threaded applications is not important but rather
sustaining concurrent demand from multiple threads. Future technological innovations, such
as stacking processors and memory chips using Through Silicon Vias (TSV), will also tackle
this challenge but are currently in an experimental phase.

This paper aims to shed some light into memory subsystem performance for multi-core
processors for large-scale scientific applications by exploring the trade-offs between multiple
memory channels per memory controller and multiple memory controllers. 'vVe show that
there is a alarming diminishing performance return when considering the current trend of
increasing the number of memory channels per memory controller. Moreover, we show how
this diminishing return could be efficiently addressed by adding more memory controllers
in a processor while keeping the total number of channels per chip constant, i.e. keep­
ing the pin-count constant . Vve quantify how much performance improvement is lost when
increasing the number of memory channels per memory controller, and also how much per­
formance could be achieved by increasing the number of memory controllers instead. Results
from empirical experiments are included for a wide range of scientific applications, memory­
bound to compute-bound, on two state-of-the-art production HPC processors - Intel's 4-core
Nehalem-EP [4] and AMD's 6-core Istanbul [9].

The rest of this paper is organized as follows. Section 2 describes our method that
enables an empirical analysis of varying the number of memory channels and memory con­
trollers available as well as describing the testbeds and the scientific applications employed.
Section 3 discusses the results obtained from the testbeds. Related work on analyzing the
performance impact of the memory subsystem is summarized in Section 4. Conclusions from
this work are given in Section 5.

2 Approach

Our approach to analyze the trade-off between using multiple memory controllers and mul­
tiple memory channels is described below. We employ the use of a broad set of production
scientific applications and two current state-of-the-art multi-core processors from AMD and
Intel. The first compute-node contains four 6-core AMD Istanbul processors and the second
contains two 4-core Intel Nehalem-EP processors. As listed in Table 1, each Istanbul proces­
sor, executing at 2.6GHz, has a single memory controller with two DDR2-800MHz memory
channels. Each Nehalem-EP processor, executing at 2.93GHz, also has a single memory
controller but with three DDR3-1333MHz memory channels. The other processors listed in
Table 1 are near-to-market processors that have also been investigated but results cannot
be published at this time.

Table 1: Current state-of-the-art processing nodes

Vendor Name procs/node cores/proc Controllers/proc Channels/controller Memory

AMD Istanbul 2 or 4 6 1 2 DDR2
AMD MagnyCours 4 or 8 6 1 2 DDR3
Intel Nehalem-EP 2 4 1 3 DDR3
Intel Nehalem-EX 2 or 4 8 1 4 DDR3
IBM Power7 4 8 2 8 DDR3

The default mode of operation of these processors is to use of all cores, where each core
executes a separate thread of the application, and to use all of the memory channels requiring
all channels to be populated by identical memory DIMMS.

2

1. Fully populated
memory channels
on a processor

2. Partially populated
memory channels
on a processor

Ico UCl II C2 1 Jo lI C4 l1 cs l

-- - -
13 Cache t' - ~ 13Cache

MernCti MernClI

] '"

3. Altering the number of memory
controllers by using two processors

Figure 1: The three scenarios used for evaluating multiple memory channels and controllers.

In this work we explore the achievable performance using three scenarios:

1. Using the default node configuration, with fully populated memory channels, to explore
the achievable performance when varying the number of processor-cores used.

2. Undertake the same analysis as in case 1 but using only a sub-set of the available memory
channels.

3. Alter the ratio of memory-controllers to memory-channels by using only a sub-set of the
available cores per processor, and spreading the cores-used among processors within the
node.

These three cases are illustrated in Figure 1 for a six-core single processor with two mem­
ory channels. In case I, when using a single processor, all memory channels are populated
and between 1 and the maximum available number of cores are used on the single processor.
Case 2 is identical except that the memory channels are underpopulated by the physical
removal of memory DIMMS. The change in the ratio between memory controllers and chan­
nels, case 3, is achieved using multiple processors and by also underpopulating the memory
channels. Note that this is an approximation but captures the first-order effects to enable
conclusions to be drawn from this analysis.

Clearly, the advantage of this approach is that we can quickly obtain estimates on actual
hardware without having to perform any simulations. However the approach provides an
approximation to the performance that may be achievable, for case 3. It includes some per­
formance penalties caused by the spread of processes across multiple processors rather than
having the controllers on the same processor. Penalties include the extra communication
generated to transfer data among processors. In the case of our two test beds, we can only
compare the case of using two memory controllers (two processors) with one memory channel
on each and can compare it to the case of one memory controller with two memory channels.
Further configurations are not possible using our test beds.

For all cases, application performance is measured for a fixed problem size on a single
processor following the strong scaling model. Moreover, performance results are collected for
various core-counts so as to also investigate the sensitivity of core-count on the performance.
Note that when spreading out the cores being used across processors, for case 3, we also
increase the application's working set in proportion to the number of processors being so as
to minimize the effect of having multiple L3 caches available.

3

-'*,," nc h1llem-3ch.)nr,eIt

j-----:::::--""'"""""""-_- neh.1ll!m-2chotnnels

,,/" ~~""'m,l,h,"",1
j---r'------- --... btllnbul-2ch.)nnels

Number 01 co,.,

Figure 2: STREAMS performance.

2.1 Scientific applications

... nehOlltm-)thll nnlls

l .iO€~ - +- ISllI nbul-2chllronels - .,..= .. =.---'~------l
_ is!lInbUI_lchannel ... ,,... .. ·

.... . - _ .. -
r ' "

a ,'

~~~.~---~=-----~~ - ---

NUn'lH,ofcor •• 

Figure 3: SAGE performance. 

The applications used in this analysis are SAGE [10], MILe [14], POP [11], S3D [7], XNO­
BEL, and SWEEP3D [12]. Many of these are taken from existing workloads within the 
Department of Energy, and are summarized in Table 2. These applications have differing re­
quirements of the memory subsystem. At one extreme is SAGE - a memory-bound code, and 
at the other extreme is SWEEP3D - a compute-bound code. In addition we also make use 
the STREAMS [13] benchmark to measure the peak achievable bandwidth of the memory 
subsystem, and to compare against application performance. 

Table 2: Description of scientific applications 

Name Description Input deck Problem size Processing type 

SAGE Hydro dynamics (Hydro) timing_h 140,000 Memory 
MILC Quantum chromodynamics SU3_RMD 8 x 8 x 40 x 48 Memory 
POP Ocean circulation model xl 320 x 384 x 40 Memory jCompute 
S3D 3D Turbulent combustion typical 100 x 100 x 100 Memory jCompute 

XNOBEL Hydro with high explosives typical 10 x 10 x 10 Memory 
SWEEP3D 3D SN radiation transport Pencil 20 x 10 x 400 Compute 

3 Evaluation 

The analysis is split into two main sections - the first deals with the default processor con­
figuration when fully (case 1) and partially populating (case 2) available memory channels, 
and the second details the case of using multi pIe memory controllers (case 3). 

3.1 Multiple memory channels per memory controller 

vVe focus initially on the performance of the STREAMS benchmark and use these results to 
explain the underlying principles that are also seen in the application results. 

3.1.1 STREAMS performance 

Figure 2 shows the performance impact on STREAMS when varying both the number of 
memory channels and number of cores on the Istanbul and Nehalem processors. As can be 
seen, a single core can achieve up to 5.7 GB/s i;1nd 7.3 GB/s from a single memory channel on 
Istanbul and Nehalem respectively. These numbers represent 90% and 70% of the hardware 
peak memory bandwidth for DDR2-800 and DDR3-1333 (6.4Gb/s and 10.6 GB/s). 

4 



.. • . nehaJem-lc.hannd s 

~ n('h"lem-2ch ... nt'lels 

=~~::~rO:-2~h3"n::~: - -----c:::&--------...., 
_ iSl"nbul·lch"nnel /-.~ 

,/ 
~ .. 

/ ' 
/ , .... - ...- ---- --

__ ... -e- - --- ...... -- - - -

.. " .. --
~~------------~ 

Figure 4: XNOBEL performance. 

- nehalem-lch""tlels 
-. nehalem-2c.h"nnl!!l, - - ,+-------1 
=~::~e:::::: --, ... / .£-./,.,-.---- ---1 

_ 'ii"nbul_tchillnnel /-~ .... 7'-.: .. ', "'='- -' ------I 

--IP 
r----,~----------------

~~' .... -- --_ . -- - --. 

..... 
~~ -------------------~ 

Number of cor •• 

Figure 5: MILe performance. 

'When increasing the number of memory channels, a single core achieves improved perfor­
mance by simultaneously using the additional channels. 7.7 GB/s is achieved by a single-core 
on Istanbul and up to 11.3 GB/s and 11.7 GB/s on two and three channels respectively on 
Nehalem. Therefore, performance improvements can be obtained by sequential applications 
when employing multiple channels. 

'When using multiple cores, reflecting parallel applications , the aggregate bandwidth 
achieved increases on both Intel and AMD processors with respect to a single-core . But, the 
bandwidth does not increase linearly with the number of cores used. A saturation point can 
be observed above which no further improvement in bandwidth occurs. The performance 
achieved at the saturation point on a single memory channel is denoted as Per iI-channel. 

For Istanbul, the saturation point occurs at one-core and three-cores when using one or two 
memory channels respectively. The resulting aggregate bandwidth when using two channels 
is 10.5GB/s - only a 35% increase above a single-cores bandwidth. For Nehalem, the sat­
Ul'ation point occurs at one-core, two-cores, and three-cores when using one, two and three 
memory channels respectively. The aggregate bandwidth increases by 14% (12.9GB/s) and 
40% (16.3GB/s) for the two and three channel cases at the saturation points. Note that 
when using more cores beyond the saturation points the delivered performance drops, by as 
such as 4%, due to contention on the single memory controller from multiple cores. 

Table 3: Summary of STREAMS bandwidth 

1 channel 2 channel 3 channel 
Processor Peak STREAMS % Peak STREAMS % Peak STREAMS % 

----- ----
Istanbul 6.4 5.7 89% 12.8 10.5 82% 
Nehalem 10.6 7.3 68% 21.2 12.9 61% 31.8 16.3 51% 

A summary of the achievable STREAMS bandwidth at the saturation points is listed 
in Table 3 when using different numbers of memory channels. It can be seen that only a 
fraction of the peak bandwidth is being achieved and that the fraction significantly decreases 
as the number of memory channels increases. These results clearly indicate that there is a 
diminishing return on the aggregate bandwidth that one or multiple cores can achieve when 
using multiple channels with a single memory controller. 

5 



...... f1~h ;l lfJm ·)(h<ln,.h 

__ nehillem-2c.hilnMIS 

___ oeflJlem- i(h"ruwl ----,/::;;-0--------1 
-.... iu . nbul·2(h.anntls , .. , 

- istantH,Jl · l chilMe:1 7'",---,," -' --=------1 
./ 

~ ... ~ .,1' .. - .. -

.-- .. ---- - .. ... 

Nllmb.r of co, .. 

, " ", 

Figure 6: S3D performance, 

3.1.2 Scientific application performance 

.• . nth;)le m-ld1ann els 

..... neh"lC!'m-2ch,1nnt b / . 

=~:~:;~:~~:~ --/" "",-,., ~------1 
--istilr:buJ· lchilMel //~", 

,.-

Numb.r of cor .. 

Figure 7: POP performance, 

The application suite was run under the same conditions as the STREAMS benchmark 
for various memory channel configurations and core-counts, The observed performance for 
SAGE, XNOBEL, MILe , S3D , POP, and SWEEP3D are shown in Figures 3, 4, 5, 6, 
7, and 8 respectively. The performance of these applications, when varying the number of 
memory channels, is similar to that observed for STREAMS apart from SvVEEP3D, The 
performance of SWEEP3D is invariant to the number of channels as it is compute-bound 
and performance improvements are due solely to the increased parallelism, 

Applications that are mostly memory bound, or a mixture of compute and memory 
bound, are impacted significantly by the number of memory channels, In particular, the per­
formance is increased by 64%, 60%, 30%, 35%, and 54% for SAGE, XNOBEL, MILe, S3D, 
and POP, respectively, when using two channels compared with a single memory channel. On 
Nehalem, the performance is increased by 76%, 77%,44%,40%, and 62% using two channels, 
and by 35%, 30%, 17%, 20%, and 0% when using three channels for the same applications. 

Note that for many of the applications, the performance increases monotonically with 
core-count as there is not enough cores to reach a saturation point. Only SAGE, XNOBEL, 
and MILe reach a saturation point, The saturation point for SAGE is at 3 cores per channel 
on Istanbul and 2 cores per channel on Nehalem, The saturation point for XNOBEL and 
MILe is at 4 cores per memory channel on Istanbul. As shown for these applications we 
still observe a diminishing return in common with STREAMS when using multiple channels 
with a single memory controller. 

3.2 Multiple memory controllers 

Here we mimic the case of using two memory controllers per processor by using multiple 
processors as described in Section 2. The principle followed is to compare the performance 
when using the same number of memory channels but spread across multiple memory con­
trollers. The testbed nodes enable a direct comparison between a single processor having a 
single memory-controller with two channels and two processors each having a single memory­
controller with a single channel. In both cases, the same number of cores is used by the ap­
plications. The observed performance improvements achieved in this case, for both Istanbul 
and Nehalem are shown in Figure 9. It can been that in all cases, a performance improvement 
occurs of up to 28% (XNOBEL on Istanbul) with a minimum of 5% (MILe on Nehalem). 

Larger improvements are seen on Istanbul because it is the one more penalized when us­
ing multiple memory channels at the memory controller. Those performance improvements 
are really close, within 3%, from the ideal Per fnchanneis on STREAMS and SAGE that are 

6 



Numb.r 01 eqr., 

Figure 8: SWEEP3D performance. 

a lsuobul 

. o.h.l.m--------t-------1 

Figure 9: Application performance 
improvement on two memory controllers. 

the applications that already have enough cores to reach saturation points on this setup. 

4 Related work 

The work in this paper spans the areas of application performance, memory performance 
analysis, and systems architecture. The original memory wall problem stems from the mem­
ory su bsystem not keeping pace with the increasing processor clock speed [15] . Presently, the 
speed of processors have plateaued but the memory issues remain due to the increase in core­
count - it is a parallel feed rather than a serial one [6] that is now poses the greates_t challenge. 
As such, this study is similar to previous work that characterizes memory performance. 

There have been many recent studies on the achievable application performance on multi­
core processors including [1]. Further work has focused on the optimization of the memory 
controller itself including [3], and others have looked at predicting future memory perfor­
mance based on reducing memory bus frequency [5]. Higher density of memory controllers 
have been suggested and designed in the past , including Compaq's 8-core Piranha, which 
had 8 memory controllers - one per memory channel [2] on a single die. 

S Conclusions 

Currently, a trend to cope with the memory challenge posed by increasing cores in a proces­
sors is being addressed by increasing the number of memory channels available to a memory 
controller. In this paper, we investigate the effectiveness of this approach. Through empirical 
analysis using scientific applications on two state-of-the-art multicore processor nodes from 
Intel and AMD we have demonstrated this approach is not sufficiently effective for a wide 
rage of parallel applications. Performance does not increase proportionally as the number of 
memory channels, available to a memory controller, increases . On today's multicore proces­
sors, memory-intensive scientific applications achieve between a 30% and 76% performance 
increase when using two memory channel compared with one, and between a negligible and 
35% performance increases when using a third channel. This trend needs to be addressed 
because memory channels, and thus pin count, are a scarce processor resource which should 
be fully exploited. 

We have investigated the case of adding more memory controllers on a chip in order to 
overcome these diminishing returns. vVe have shown that /~igher performances can be 
achieved by increasing the number of memory controllers in 'a chip whilst keeping the overall 
number of channels constant. One memory channel per controller can achieve significant 
improvements for parallel applications rather than having multiple channels. In particular, 
two memory controllers each with one channel can increase the performance by 28% in com-

7 



· . 

parison to one controller with two channels. Larger performance improvements are expected 
with larger numbers of memory controllers. However, more work has to be done in order 
to fully deploy this approach in current processors. In particular, the affinity between cores 
and memory controllers as well as coherency and addressability of the entire memory from 
each core all been to be investigated. We feel that this work provides a unique analysis into 
the trade-off between memory controllers and memory channels using current production 
applications and state-of-the-art processing nodes. 

Acknowledgments 

This work was funded in part by the Advanced Simulation and Computing program of the 
Department of Energy, and the Office of Science. Los Alamos is operated by the Los Alamos 
National Security, LLC for the US Department of Energy under contract No. DE-AC52-
06NA25396. 

References 

[1] K. Barker, K. Davis, et al. A Performance Evaluation of the Nehalem Quad-core Processor 
for Scientific Computing. Parallel Processing Letters, 18(4):453-469, Dec. 2008. 

[2] 1. A. Barroso, K. Gharachorloo, et al. Piranha: a Scalable Architecture based on Single-chip 
Multiprocessing. In Proceedings of International Symposium on Computer Architecture. 
Vancouver, Canada, Jun. 2000. 

[3] J . B. Carter and L. Zhang. A Study of Performance Impact of Memory Controller. In Pro­
ceedings of Workshop on Memory Performance Issues, in conjunction with the International 
Symposium on Computer Architecture. Munich, Germany, Jun. 2004. 

[4] J. Casazza. First the Tick, Now the Tock: Intel Microarchitecture (Nehalem) . In Intel 
White Paper. 2009. Available at http://www.intel.com/technology / architecture-silicon/next­
gen/319724.pdf. 

[5] D. Doerfler. Personal Communication. 2009. 
[6] J. Dongarra, G. Dennis, et al. The Impact of Multicore on Computa-

tional Science Software. CTWatch Quarterly, 3(1), Feb. 2007 Available 
at http)/www.ctwatch.org/quarterly /articies/2007 /02/the-impact-of-multicore-on­
computational-science-software/index.html. 

[7] E. R. Hawkes, R. Sankaran, et al. Direct Numerical Simulation of Turbulent Combustion: 
Fundamental Insights towards Predictive Models. Journal of Physics, 16:pp. 65-79, 2005. 

[8] Futuristic Intel Chip Could Reshape How Computers are Built, Con-
sumers Interact with Their PCs and Personal Devices. Press released at 
http://www.intel.com/pressroom/archive/releases/2009/20091202comp2im.html. 

[9] AMD Istanbul Processor. Information available at http://developer.amd.com/ZONES/ISTANBUL. 
[10] D. J. Kerbyson, H. J. Alme, et al. Predictive Performance and Scalability Modeling of a Large­

scale Application. In Proceedings of the Supercomputing Conference. Denver, CO, Nov. 2001. 
[11] D. J. Kerbyson and P. W. Jones. A Performance Model of the Parallel Ocean Program. Interna­

tional Journal of High Performance Computing Applications, vol. 35(no. 3):pp. 261-276, 2005. 
[12] K. R. Koch, R. S. Baker, et al. First-Order Form of the 3-D Discrete Ordinates Equation on 

a Massively Parallel Processor. Trans. of the American Nuclear Soc., 65:pp. 198- 199, 1992. 
[13] J. McCalpin. Memory Bandwidth and Machine Balance in Current High Performance Com­

puters. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) 
Newsletter, pp. 19-25, 1995. Code available at http)/www.cs.virginia.edu/streamj. 

[14] MIMD Lattice Computation (MILC) Collaboration. Code available at 
http)/www.physics.indiana.edu/ sg/milc.html. 

[15] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the Obvious. 
SIGARCH Computation Architecture News, 23(1):pp. 20-24, 1995. 

8 


