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Abstract 

Increasing the core-count on current and future processors is posing critical chal­
lenges to the memory subsystem to efficiently handle concurrent memory requests. 
The current trend to cope with this challenge is to increase the number of memory 
channels available to the processor's memory controller. In this paper we investigate 
the effectiveness of this approach on the performance of parallel scientific applications. 
Specifically, we explore the trade-off between employing multiple memory channels per 
memory controller and the use of multiple memory controllers. Experiments conducted 
on two current state-of-the-art multicore processors, a 6-core AMD Istanbul and a 4-
core Intel Nehalem-EP, for a wide range of production applications shows that there 
is a diminishing return when increasing the number of memory channels per memory 
controller. In addition, we show that this performance degradation can be efficiently 
addressed by increasing the ratio of memory controllers to channels while keeping the 
number of memory channels constant. Significant performance improvements can be 
achieved in this scheme, up to 28%, in the case of using two memory controllers with 
each with one channel compared with one controller with two memory channels. 

1 Introduction 

The increased silicon integration that is possible today and foreseen into the future has lead 
to an unprecedented growth in the number of processor-cores. Current main-stream proces­
sors from Intel, AMD, and IBM have 6-8 cores and recent experimental designs have much 
more, such as the 48-cores x86 processor from Intel [8]. However, this increase in compute 
capability comes with a significant cost - that of tremendously stressing the memory subsys­
tem, and making worse the well-known memory wall that can profoundly limit performance. 
Current memory subsystem designs are not able to sustain all the memory requirements from 
multiple cores for many memory intensive applications. A major constraint that prevents a 
linear performance improvement of the memory subsystem, proportional to the core-count , 
is the processor pin-count . The design of the memory subsystem is critical in order to achieve 
maximum efficiency from the available pins. 

The current industry trend to cope with the memory challenge to multi-core processors 
is to increase the number of memory channels available to the memory controller. Examples 
illustrating the increase in the number memory channels include the Intel's Nehalem pro­
cessors [4] that currently has three memory channels with a single memory controller (the 
quad-core Nehalem-EP) , which will increase to four memory channels next year (the oct-core 
Nehalem-EX). The next generation of the IBM's power processor, the oct-core Power7, will 
use eight memory channels spread across two memory controllers. This trend for increasing 
the performance of the memory subsystem is evolutionary as it leverages previous memory 
controller designs. However , it does'has n additional advantage of substantially boosting 
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the performance on sequential since a single core can potentially use all available channels 
simultaneously. It is not clear how this current trend will remain suitable for parallel appli­
cations in which the optimization of single threaded applications is not important but rather 
sustaining concurrent demand from multiple threads. Future technological innovations, such 
as stacking processors and memory chips using Through Silicon Vias (TSV), will also tackle 
this challenge but are currently in an experimental phase. 

This paper aims to shed some light into memory subsystem performance for multi-core 
processors for large-scale scientific applications by exploring the trade-offs between multiple 
memory channels per memory controller and multiple memory controllers. 'vVe show that 
there is a alarming diminishing performance return when considering the current trend of 
increasing the number of memory channels per memory controller. Moreover, we show how 
this diminishing return could be efficiently addressed by adding more memory controllers 
in a processor while keeping the total number of channels per chip constant, i.e. keep­
ing the pin-count constant . Vve quantify how much performance improvement is lost when 
increasing the number of memory channels per memory controller, and also how much per­
formance could be achieved by increasing the number of memory controllers instead. Results 
from empirical experiments are included for a wide range of scientific applications, memory­
bound to compute-bound, on two state-of-the-art production HPC processors - Intel's 4-core 
Nehalem-EP [4] and AMD's 6-core Istanbul [9]. 

The rest of this paper is organized as follows. Section 2 describes our method that 
enables an empirical analysis of varying the number of memory channels and memory con­
trollers available as well as describing the testbeds and the scientific applications employed. 
Section 3 discusses the results obtained from the testbeds. Related work on analyzing the 
performance impact of the memory subsystem is summarized in Section 4. Conclusions from 
this work are given in Section 5. 

2 Approach 

Our approach to analyze the trade-off between using multiple memory controllers and mul­
tiple memory channels is described below. We employ the use of a broad set of production 
scientific applications and two current state-of-the-art multi-core processors from AMD and 
Intel. The first compute-node contains four 6-core AMD Istanbul processors and the second 
contains two 4-core Intel Nehalem-EP processors. As listed in Table 1, each Istanbul proces­
sor, executing at 2.6GHz, has a single memory controller with two DDR2-800MHz memory 
channels. Each Nehalem-EP processor, executing at 2.93GHz, also has a single memory 
controller but with three DDR3-1333MHz memory channels. The other processors listed in 
Table 1 are near-to-market processors that have also been investigated but results cannot 
be published at this time. 

Table 1: Current state-of-the-art processing nodes 

Vendor Name procs/node cores/proc Controllers/proc Channels/controller Memory 

AMD Istanbul 2 or 4 6 1 2 DDR2 
AMD MagnyCours 4 or 8 6 1 2 DDR3 
Intel Nehalem-EP 2 4 1 3 DDR3 
Intel Nehalem-EX 2 or 4 8 1 4 DDR3 
IBM Power7 4 8 2 8 DDR3 

The default mode of operation of these processors is to use of all cores, where each core 
executes a separate thread of the application, and to use all of the memory channels requiring 
all channels to be populated by identical memory DIMMS. 
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3. Altering the number of memory 
controllers by using two processors 

Figure 1: The three scenarios used for evaluating multiple memory channels and controllers. 

In this work we explore the achievable performance using three scenarios: 

1. Using the default node configuration, with fully populated memory channels, to explore 
the achievable performance when varying the number of processor-cores used. 

2. Undertake the same analysis as in case 1 but using only a sub-set of the available memory 
channels. 

3. Alter the ratio of memory-controllers to memory-channels by using only a sub-set of the 
available cores per processor, and spreading the cores-used among processors within the 
node. 

These three cases are illustrated in Figure 1 for a six-core single processor with two mem­
ory channels. In case I, when using a single processor, all memory channels are populated 
and between 1 and the maximum available number of cores are used on the single processor. 
Case 2 is identical except that the memory channels are underpopulated by the physical 
removal of memory DIMMS. The change in the ratio between memory controllers and chan­
nels, case 3, is achieved using multiple processors and by also underpopulating the memory 
channels. Note that this is an approximation but captures the first-order effects to enable 
conclusions to be drawn from this analysis. 

Clearly, the advantage of this approach is that we can quickly obtain estimates on actual 
hardware without having to perform any simulations. However the approach provides an 
approximation to the performance that may be achievable, for case 3. It includes some per­
formance penalties caused by the spread of processes across multiple processors rather than 
having the controllers on the same processor. Penalties include the extra communication 
generated to transfer data among processors. In the case of our two test beds, we can only 
compare the case of using two memory controllers (two processors) with one memory channel 
on each and can compare it to the case of one memory controller with two memory channels. 
Further configurations are not possible using our test beds. 

For all cases, application performance is measured for a fixed problem size on a single 
processor following the strong scaling model. Moreover, performance results are collected for 
various core-counts so as to also investigate the sensitivity of core-count on the performance. 
Note that when spreading out the cores being used across processors, for case 3, we also 
increase the application's working set in proportion to the number of processors being so as 
to minimize the effect of having multiple L3 caches available. 
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Figure 2: STREAMS performance. 
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Figure 3: SAGE performance. 

The applications used in this analysis are SAGE [10], MILe [14], POP [11], S3D [7], XNO­
BEL, and SWEEP3D [12]. Many of these are taken from existing workloads within the 
Department of Energy, and are summarized in Table 2. These applications have differing re­
quirements of the memory subsystem. At one extreme is SAGE - a memory-bound code, and 
at the other extreme is SWEEP3D - a compute-bound code. In addition we also make use 
the STREAMS [13] benchmark to measure the peak achievable bandwidth of the memory 
subsystem, and to compare against application performance. 

Table 2: Description of scientific applications 

Name Description Input deck Problem size Processing type 

SAGE Hydro dynamics (Hydro) timing_h 140,000 Memory 
MILC Quantum chromodynamics SU3_RMD 8 x 8 x 40 x 48 Memory 
POP Ocean circulation model xl 320 x 384 x 40 Memory jCompute 
S3D 3D Turbulent combustion typical 100 x 100 x 100 Memory jCompute 

XNOBEL Hydro with high explosives typical 10 x 10 x 10 Memory 
SWEEP3D 3D SN radiation transport Pencil 20 x 10 x 400 Compute 

3 Evaluation 

The analysis is split into two main sections - the first deals with the default processor con­
figuration when fully (case 1) and partially populating (case 2) available memory channels, 
and the second details the case of using multi pIe memory controllers (case 3). 

3.1 Multiple memory channels per memory controller 

vVe focus initially on the performance of the STREAMS benchmark and use these results to 
explain the underlying principles that are also seen in the application results. 

3.1.1 STREAMS performance 

Figure 2 shows the performance impact on STREAMS when varying both the number of 
memory channels and number of cores on the Istanbul and Nehalem processors. As can be 
seen, a single core can achieve up to 5.7 GB/s i;1nd 7.3 GB/s from a single memory channel on 
Istanbul and Nehalem respectively. These numbers represent 90% and 70% of the hardware 
peak memory bandwidth for DDR2-800 and DDR3-1333 (6.4Gb/s and 10.6 GB/s). 
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Figure 4: XNOBEL performance. 
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Figure 5: MILe performance. 

'When increasing the number of memory channels, a single core achieves improved perfor­
mance by simultaneously using the additional channels. 7.7 GB/s is achieved by a single-core 
on Istanbul and up to 11.3 GB/s and 11.7 GB/s on two and three channels respectively on 
Nehalem. Therefore, performance improvements can be obtained by sequential applications 
when employing multiple channels. 

'When using multiple cores, reflecting parallel applications , the aggregate bandwidth 
achieved increases on both Intel and AMD processors with respect to a single-core . But, the 
bandwidth does not increase linearly with the number of cores used. A saturation point can 
be observed above which no further improvement in bandwidth occurs. The performance 
achieved at the saturation point on a single memory channel is denoted as Per iI-channel. 

For Istanbul, the saturation point occurs at one-core and three-cores when using one or two 
memory channels respectively. The resulting aggregate bandwidth when using two channels 
is 10.5GB/s - only a 35% increase above a single-cores bandwidth. For Nehalem, the sat­
Ul'ation point occurs at one-core, two-cores, and three-cores when using one, two and three 
memory channels respectively. The aggregate bandwidth increases by 14% (12.9GB/s) and 
40% (16.3GB/s) for the two and three channel cases at the saturation points. Note that 
when using more cores beyond the saturation points the delivered performance drops, by as 
such as 4%, due to contention on the single memory controller from multiple cores. 

Table 3: Summary of STREAMS bandwidth 

1 channel 2 channel 3 channel 
Processor Peak STREAMS % Peak STREAMS % Peak STREAMS % 

----- ----
Istanbul 6.4 5.7 89% 12.8 10.5 82% 
Nehalem 10.6 7.3 68% 21.2 12.9 61% 31.8 16.3 51% 

A summary of the achievable STREAMS bandwidth at the saturation points is listed 
in Table 3 when using different numbers of memory channels. It can be seen that only a 
fraction of the peak bandwidth is being achieved and that the fraction significantly decreases 
as the number of memory channels increases. These results clearly indicate that there is a 
diminishing return on the aggregate bandwidth that one or multiple cores can achieve when 
using multiple channels with a single memory controller. 
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Figure 6: S3D performance, 

3.1.2 Scientific application performance 

.• . nth;)le m-ld1ann els 

..... neh"lC!'m-2ch,1nnt b / . 

=~:~:;~:~~:~ --/" "",-,., ~------1 
--istilr:buJ· lchilMel //~", 

,.-

Numb.r of cor .. 

Figure 7: POP performance, 

The application suite was run under the same conditions as the STREAMS benchmark 
for various memory channel configurations and core-counts, The observed performance for 
SAGE, XNOBEL, MILe , S3D , POP, and SWEEP3D are shown in Figures 3, 4, 5, 6, 
7, and 8 respectively. The performance of these applications, when varying the number of 
memory channels, is similar to that observed for STREAMS apart from SvVEEP3D, The 
performance of SWEEP3D is invariant to the number of channels as it is compute-bound 
and performance improvements are due solely to the increased parallelism, 

Applications that are mostly memory bound, or a mixture of compute and memory 
bound, are impacted significantly by the number of memory channels, In particular, the per­
formance is increased by 64%, 60%, 30%, 35%, and 54% for SAGE, XNOBEL, MILe, S3D, 
and POP, respectively, when using two channels compared with a single memory channel. On 
Nehalem, the performance is increased by 76%, 77%,44%,40%, and 62% using two channels, 
and by 35%, 30%, 17%, 20%, and 0% when using three channels for the same applications. 

Note that for many of the applications, the performance increases monotonically with 
core-count as there is not enough cores to reach a saturation point. Only SAGE, XNOBEL, 
and MILe reach a saturation point, The saturation point for SAGE is at 3 cores per channel 
on Istanbul and 2 cores per channel on Nehalem, The saturation point for XNOBEL and 
MILe is at 4 cores per memory channel on Istanbul. As shown for these applications we 
still observe a diminishing return in common with STREAMS when using multiple channels 
with a single memory controller. 

3.2 Multiple memory controllers 

Here we mimic the case of using two memory controllers per processor by using multiple 
processors as described in Section 2. The principle followed is to compare the performance 
when using the same number of memory channels but spread across multiple memory con­
trollers. The testbed nodes enable a direct comparison between a single processor having a 
single memory-controller with two channels and two processors each having a single memory­
controller with a single channel. In both cases, the same number of cores is used by the ap­
plications. The observed performance improvements achieved in this case, for both Istanbul 
and Nehalem are shown in Figure 9. It can been that in all cases, a performance improvement 
occurs of up to 28% (XNOBEL on Istanbul) with a minimum of 5% (MILe on Nehalem). 

Larger improvements are seen on Istanbul because it is the one more penalized when us­
ing multiple memory channels at the memory controller. Those performance improvements 
are really close, within 3%, from the ideal Per fnchanneis on STREAMS and SAGE that are 
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Figure 9: Application performance 
improvement on two memory controllers. 

the applications that already have enough cores to reach saturation points on this setup. 

4 Related work 

The work in this paper spans the areas of application performance, memory performance 
analysis, and systems architecture. The original memory wall problem stems from the mem­
ory su bsystem not keeping pace with the increasing processor clock speed [15] . Presently, the 
speed of processors have plateaued but the memory issues remain due to the increase in core­
count - it is a parallel feed rather than a serial one [6] that is now poses the greates_t challenge. 
As such, this study is similar to previous work that characterizes memory performance. 

There have been many recent studies on the achievable application performance on multi­
core processors including [1]. Further work has focused on the optimization of the memory 
controller itself including [3], and others have looked at predicting future memory perfor­
mance based on reducing memory bus frequency [5]. Higher density of memory controllers 
have been suggested and designed in the past , including Compaq's 8-core Piranha, which 
had 8 memory controllers - one per memory channel [2] on a single die. 

S Conclusions 

Currently, a trend to cope with the memory challenge posed by increasing cores in a proces­
sors is being addressed by increasing the number of memory channels available to a memory 
controller. In this paper, we investigate the effectiveness of this approach. Through empirical 
analysis using scientific applications on two state-of-the-art multicore processor nodes from 
Intel and AMD we have demonstrated this approach is not sufficiently effective for a wide 
rage of parallel applications. Performance does not increase proportionally as the number of 
memory channels, available to a memory controller, increases . On today's multicore proces­
sors, memory-intensive scientific applications achieve between a 30% and 76% performance 
increase when using two memory channel compared with one, and between a negligible and 
35% performance increases when using a third channel. This trend needs to be addressed 
because memory channels, and thus pin count, are a scarce processor resource which should 
be fully exploited. 

We have investigated the case of adding more memory controllers on a chip in order to 
overcome these diminishing returns. vVe have shown that /~igher performances can be 
achieved by increasing the number of memory controllers in 'a chip whilst keeping the overall 
number of channels constant. One memory channel per controller can achieve significant 
improvements for parallel applications rather than having multiple channels. In particular, 
two memory controllers each with one channel can increase the performance by 28% in com-
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parison to one controller with two channels. Larger performance improvements are expected 
with larger numbers of memory controllers. However, more work has to be done in order 
to fully deploy this approach in current processors. In particular, the affinity between cores 
and memory controllers as well as coherency and addressability of the entire memory from 
each core all been to be investigated. We feel that this work provides a unique analysis into 
the trade-off between memory controllers and memory channels using current production 
applications and state-of-the-art processing nodes. 
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