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DICTIONARY CONSTRUCTION IN SPARSE METHODS FOR IMAGE RESTORATION 

Brendt Wohlberg* 

Los Alamos National Laboratory 
Los Alamos, NM 87545, USA 

ABSTRACT 

Index Terms- Image restoration, sparse optimisation, 
basis pursuit denoising 

1. INTRODUCTION 

Sparsity-based methods [I] have achieved very good perfor­
mance in a wide variety of image restoration problems, in­
cluding denoising [2], inpainting [3,4], super-resolution [5], 
and source separation [6]. These methods are based on the 
assumption that the image to be reconstructed may be repre­
sented as a superposition of a few known components, and the 
appropriate linear combination of components is estimated 
by solving an optimisation such as Basis Pursuit De-Noising 
(BPDN) [7] 

(1) 

or the constrained problem 

min IIal11 such that II<I>a - sl12 :s; a, (2) 
Q 

where <I> is an overcomplete dictionary, a is the sparse repre­
sentation, s is the vector to be reconstructed, and A or a are 
user-determined parameters. Given the resulting representa­
tion a, the reconstructed image is <I>a. When the dictionary 
is known analytically and the corresponding matrix-vector 
product may be computed by a fast transform (e.g. curvelets 
and the Discrete Cosine Transform [6]), it is often possible to 
apply this framework to the image as a whole. More recently, 
however, there has been growing interest in dictionaries de­
rived from actual image data, in which case no fast transform 
is available, and it is, for practical reasons, necessary to apply 
the sparse optimisation to individual image blocks. 

When deriving the dictionary from image data, in the hope 
of obtaining dictionaries more representative of the specific 
image data of interest, the construction of the dictionary plays 
a critical role. Currently, the leading approaches are to either 
construct a very large dictionary using the blocks in a set of 
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training images (e.g. [5]), or to construct a compact dictio­
nary representing the variation within the full training set (or 
samples from the image to be restored) via an algorithm such 
as the K-SVD [2], which can be considered a generalisation 
of the k-means algorithm for Vector Quantization. 

As an alternative, a new approach is also considered here, 
consisting of a dictionary tuned to each block to be recon­
structed by searching the full set of available blocks for near­
est neighbours. (This new approach may either be considered 
as a new method for constructing a dictionary for standard 
BPDN, or as a hybrid of BPDN and Matching Pursuit [I].) 

2. EXPERIMENTS 

The performance of the different approaches to dictionary 
construction were compared in a number of computational ex­
periments for the denoising problem. In order for the results 
not to depend on the specific method for combining individ­
ual block estimates into an estimate of the full image to be 
denoised, performance was calculated using the mean recon­
struction error over a randomly selected set of 2000 blocks 
from the test images. The comparisons are made for three 
different noise levels (additive Gaussian white noise scaled to 
give SNR levels of 5dB, lOdB, and 20dB), two different block 
sizes (5 x 5 and 8 x 8), and six different dictionary sizes (with 
number of components selected to be 1 x, 2 x, 4 x, 8 x, 16 x, 
and 32 x the relevant block size, and denoted D I, D2, D4, 
D8, D16, and D32 respectively). When constructing a dictio­
nary, a distinction is made between testing data (noisy blocks 
selected from the test image to be denoised itself), and train­
ing data (a distinct, nominally noise-free set of images from 
which blocks are extracted). The following dictionary con­
struction methods are compared: 

NN train For each block to be denoised, a dictionary with N 
components is populated by the N nearest neighbours 
of that block, determined using angular distance, in the 
noise-free training data. 

NN train (nrm) The dictionary construction follows that for 
"NN train", but each component is normalised to have 
unit magnitude. 



KSVD train The K-SVD is applied to the noise-free training 
data to construct a dictionary of the desired size. 

NN test For each block to be denoised, a dictionary with N 
components is populated by the N nearest neighbours 
of that block, determined using angular distance, in the 
noisy testing data . (To avoid very poor denoising per­
formance, it is vital that the block being denoised is 
itself is omitted from this dictionary.) Each dictionary 
component is normalised to have unit magnitude. 

KSVD test The K-SVD is applied to the noisy testing data to 
construct a dictionary of the desired size. 

The computational experiments described here were per­
formed in Matlab, using publicly available codes where pos­
sible. The unconstrained minimum £1 problem (I) was solved 
using 1 L l s [8]; in comparisons wilh a number of other pub­
licly available codes for the same problem, this was found 
to give the most reliable convergence over a wide range of 
parameters, which was l:ritical for these experiments where 
hand-lUning of parameters for each individual test case was 
not possible. The constrained minimum £1 problem (2) was 
solved using spg 11 [9, 10], and the K-SVD was computed 
using KSVD- Box[2, II] . It should be emphasised that the 
K-SVD algorithm has a number of free parameters, and while 
every effort was made to choose those giving the best perfor­
mance in this application, it is possible that better choices are 
possible. 

Two distinct data sets were used for these experiments: 

Standard The test image consisted of the well-known "Cam­
eraman" image, and the training image set consisted 
of the "Boat", "House", "Lena", "Peppers", and "Bar­
bara" standard images included with the K-SVD im­
plementation [11] as training data. Since the training 
image do not contain similar content to the test image, 
this is a more challenging data set for dictionaries con­
structed from the training data. 

Face The test image consisted of a fixed image randomly 
selected from the AT&T Face Database [12], and the 
training image set consisted of 40 other images ran­
domly selected (but excluding all images of the sub­
jel:t used for the test image) from the same database. 
Given the tightly-controlled nature of the data set, with 
both the training and testing images consisting of simi­
lar scenes, this is an ideal data set for dictionaries con­
structed from the training data . 

3. RESULTS 

In the first set of experiments, all test blocks are denoised us­
ing the unconstrained optimisation (1) over each of a set of 
fixed A values. For the IOdB noise level and 8 x 8 blocks, 
the dependence of the mean reconstruction errors on A are 

displayed in Figure I for the "Standard" data set , and in Fig­
ure 2 for the "Face" data set. (Since the best lperformance 
of "NN train" was found to be at much larger values of A 
than the other methods, it was omitted from this set of ex­
periments for practical reasons.) In both of these figures, to 
avoid clutter, only the best-performing dictionary size is plot­
ted for each different dictionary construction method. The 
performance varation with diclionary size for the "Standard" 
data set is plotted for "KSVD test" in Figure 3 and for "NN 
train (nrm)" in Figure 4. The optimum reconstruction errors 
for each method , for all block sizes and noise levels, are pre­
sented in Tables I and 2. NOle that, at each noise level, the 
best mean reconstruction error.is provided by the "NN train 
(nrm)" dictionary construction method. 
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Fig. 1. Average reconstruction error for BPDN with various 
8 x 8 block dictionaries constructed on the "Standard" data 
set, and tested at a noise level of IOdB. 

SNR 
Blocks 

Noise 

NN train (n) 540 319 215 143 31 27 
KSVD train 547 444 248 223 43 41 
NN test 675 407 233 161 31 28 
KSVD test 643 492 239 212 41 39 

Table 1. Minimum (over A) average reconstruction errors on 
the "Standard" data set. 

In the second set of experiments, the known Mean Square 
Error (MSE) of each test image was used to set the value of 
(J in the constrained optimisation (2), and the resulting mean 
reconstruction errors are presented in Tables 3 and 4. At each 
noise level, the best mean reconstruction error is provided by 
the "NN train" diclionary construclion method. (It is inter­
esting to note that the dictionary normalisation of "NN train 
(nrm)" substantially reduces performance in this case.) The 
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Fig. 2. Average reconstruction error for BPDN with various 
8 x 8 block dictionaries constructed on the "Face" data set, 
and tested at a noise level of 10dB. 
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Fig. 3. Average reconstruction error for BPDN with various 
size KSVD dictionaries (8 x 8 blocks) constructed from "Stan­
dard" test data with SNR of 10dB. 

SNR 
Blocks 

Noise 

NN train (n) 228 111 81 46 12 10 
KSVD train 218 155 86 67 15 14 
NN test 252 152 86 59 12 10 
KSVD test 247 177 94 68 15 13 

Table 2. Minimum (over A) average reconstruction errors on 
the "Face" data set. 

reconstruction error variation with dictionary size of the "NN 
train" method is displayed in Figure 5; note that the position 
of the minimum varies, but in all cases, the performance falls 
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Fig. 4. Average reconstruction error for BPDN with various 
size NN train (normalised) dictionaries (8 x 8 blocks) con­
structed from "Standard" test data with SNR of 10dB. 

off beyond some dictionary size. 

SNR 
Blocks 

I Noise 

NN train 549 350 213 153 39 31 
NN train (n) 1081 636 396 242 52 38 
KSVD train 714 591 291 257 58 50 
NN test 1279 804 442 276 50 38 
KSVD test 855 581 279 224 49 42 

I PCA pro]. II 436 I 369 II 170 I 162 II 32 I 39 II 

Table 3. Average reconstruction errors on the "Standard" data 
set assuming known noise magnitude. 

SNR 
Blocks 

I Noise 

NN train 211 134 80 55 14 12 I 

NN train (n) 463 261 163 86 19 13 
KSVD train 293 206 III 81 18 14 
NN test 479 298 166 102 18 13 
KSVD test 340 250 124 89 17 15 

I PCA pro] II 156 I 148 II 67 I 72 II 14 I 14 II 

Table 4. Average reconstruction errors on the "Face" data set 
assuming known noise magnitude. 
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Fig. 5 . Variation of relative reconstruction errors (each MSE 
curve is divided by its minimum to allow comparison on the 
same graph) with dictionary size factor (actual dictionary size 
is 64Ns ) for the "NN train" method with 8 x 8 blocks. 

4. CONCLUSIONS 

Considering that the K-SVD constructs a dictionary which 
has been optimised for mean performance over a training set, 
it is not too surprising that better performance can be achieved 
by selecting a custom dictionary for each individual block to 
be reconstructed. The nearest neighbour dictionary construc­
tion can be understood geometrically as a method for esti­
mating the local projection into the manifold of image blocks 
[13], whereas the K-SVD dictionary makes more sense within 
a source-coding framework (it is presented as a generalisation 
of the k-means algori thm for constructing a VQ codebook), is 
therefore, it could be argued, less appropriate in principle, for 
reconstruction problems. One can, of course, motivate the 
use of the K-SVD in reconstruction application on practical 
grounds, avoiding the computational expense of constructing 
a different dictionary for each block to be denoised. 

Since the performance of the nearest neighbour dictionary 
decreases when the dictionary becomes sufficiently large, this 
method is also superior to the approach of utilising the entire 
training set as a dictionary (and this can also be understood 
within the image block manifold model). In practical terms, 
the tradeoff is between the computational cost of a nearest 
neighbour search (which can be achieved very efficiently), or 
of increased cost at the sparse optimisation. 
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