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DICTIONARY CONSTRUCTION IN SPARSE METHODS FOR IMAGE RESTORATION

Brendt Wohlberg*

Los Alamos National Laboratory
Los Alamos, NM 87545, USA

ABSTRACT

Index Terms— Image restoration, sparse oplimisation,
basis pursuit denoising

1. INTRODUCTION

Sparsity-based methods [1] have achieved very good perfor-
mance in a wide variety of image restoration problems, in-
cluding denoising [2], inpainting [3, 4], super-resolution [5],
and source separation [6]. These methods are based on the
assumption that the image to be reconstructed may be repre-
sented as a superposition of a few known components, and the
appropriate linear combination of components is estimated
by solving an optimisation such as Basis Pursuit De-Noising
(BPDN) [7]

o
min = || ®a — s[|3 + Allel, ()
o

or the constrained problem

min |||y such that || ®a — sz < o, (2)

where @ is an overcomplete dictionary, ¢ is the sparse repre-
sentation, s is the vector to be reconstructed, and A or o are
user-determined parameters. Given the resulting representa-
tion «, the reconstructed image is ®«. When the dictionary
is known analytically and the corresponding matrix-vector
product may be computed by a fast transform (e.g. curvelets
and the Discrete Cosine Transform [6]), it is often possible to
apply this framework to the image as a whole. More recently,
however, there has been growing interest in dictionaries de-
rived from actual image data, in which case no fast transform
is available, and it is, for practical reasons, necessary to apply
the sparse optimisation to individual image blocks.

When deriving the dictionary from image data, in the hope
of obtaining dictionaries more representative of the specific
image data of interest, the construction of the dictionary plays
a critical role. Currently, the leading approaches are to either
construct a very large dictionary using the blocks in a set of
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training images (e.g. [5]), or to construct a compact dictio-
nary representing the variation within the full training set (or
samples from the image to be restored) via an algorithm such
as the K-SVD [2], which can be considered a generalisation
of the k-means algorithm for Vector Quantization.

As an alternative, a new approach is also considered here,
consisting of a dictionary tuned to each block to be recon-
structed by searching the full set of available blocks for near-
est neighbours. (This new approach may either be considered
as a new method for constructing a dictionary for standard
BPDN, or as a hybrid of BPDN and Matching Pursuit [1].)

2. EXPERIMENTS

The performance of the different approaches to dictionary
construction were compared in a number of computational ex-
periments for the denoising problem. In order for the results
not to depend on the specific method for combining individ-
ual block estimates into an estimate of the full image to be
denoised, performance was calculated using the mean recon-
struction error over a randomly selected set of 2000 blocks
from the test images. The comparisons are made for three
different noise levels (additive Gaussian white noise scaled to
give SNR levels of 5dB, 10dB, and 20dB), two different block
sizes (5 x 5 and 8 x 8), and six different dictionary sizes (with
number of components selected to be 1x, 2x, 4x, 8x, 16,
and 32x the relevant block size, and denoted D1, D2, D4,
D8, D16, and D32 respectively). When constructing a dictio-
nary, a distinction is made between testing data (noisy blocks
selected from the test image to be denoised itself), and train-
ing data (a distinct, nominally noise-free set of images from
which blocks are extracted). The following dictionary con-
struction methods are compared:

NN train For each block to be denoised, a dictionary with N
components is populated by the N nearest neighbours
of that block, determined using angular distance, in the
noise-free training data.

NN train (nrm) The dictionary construction follows that for
“NN train”, but each component is normalised to have
unit magnitude.



KSVD train The K-SVD is applied to the noise-free training
data to construct a dictionary of the desired size.

NN test For each block to be denoised, a dictionary with N
components is populated by the N nearest neighbours
of that block, determined using angular distance, in the
noisy testing data. (To avoid very poor denoising per-
formance, it is vital that the block being denoised is
itself is omitted from this dictionary.) Each dictionary
component is normalised to have unit magnitude.

KSVD test The K-SVD is applied to the noisy testing data to
construct a dictionary of the desired size.

The computational experiments described here were per-
formed in Matlab, using publicly available codes where pos-
sible. The unconstrained minimum #* problem (1) was solved
using 11_1s [8]; in comparisons with a number of other pub-
licly available codes for the same problem, this was found
to give the most reliable convergence over a wide range of
paramelers, which was critical for these experiments where
hand-wning of parameters for each individual test case was
not possible. The constrained minimum £! problem (2) was
solved using spgll [9, 10], and the K-SVD was computed
using KSVD-Box[2, 11]. It should be emphasised that the
K-SVD algorithm has a number of free parameters, and while
every effort was made to choose those giving the best perfor-
mance in this application, it is possible that better choices are
possible.

Two distinct data sets were used for these experiments:

Standard The test image consisted of the well-known “Cam-
eraman” image, and the training image set consisted
of the “Boat”, “House”, “Lena”, “Peppers”, and “Bar-
bara” standard images included with the K-SVD im-
plementation [11] as training data. Since the training
image do not contain similar content to the test image,
this is a more challenging data set for dictionaries con-
structed from the training data.

Face The test image consisted of a fixed image randomly
selected from the AT&T Face Database [12], and the
training image set consisted of 40 other images ran-
domly selected (but excluding all images of the sub-
ject used for the test image) from the same database.
Given the tightly-controlled nature of the data set, with
both the training and testing images consisting of simi-
lar scenes, this is an ideal data set for dictionaries con-
structed from the training data.

3. RESULTS

In the first set of experiments, all test blocks are denoised us-
ing the unconstrained optimisation (1) over each of a set of
fixed A values. For the 10dB noise level and 8 x 8 blocks,
the dependence of the mean reconstruction errors on A are

displayed in Figure | for the “Standard” data set, and in Fig-
ure 2 for the “Face™ data set. (Since the best performance
of “NN train” was found to be at much larger values of A
than the other methods, it was omitted from this set of ex-
periments for practical reasons.) In both of these figures, to
avoid clutter, only the best-performing dictionary size is plot-
ted for each different dictionary construction method. The
performance varation with dictionary size for the “Standard”
data set is plotted for “KSVD test” in Figure 3 and for “NN
train (nrm)” in Figure 4. The optimum reconstruction errors
for each method, for all block sizes and noise levels, are pre-
sented in Tables | and 2. Nole that, at each noise level, the
best mean reconstruction error is provided by the “NN train
{nrm)” dictionary construction method.
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Fig. 1. Average reconstruction error for BPDN with various
8 x 8 block dictionaries constructed on the “Standard” data
set, and tested at a noise level of 10dB.

SNR 5dB 10dB 20dB

Blocks 5x5 | 8x8 || 5x5 | 8x8 | 5x5 | 8x8
| Noise 1485 | 1486 | 470 | 470 || 47 | 47
NNtrain(n) [ 540 [ 319215 143 ]| 31| 27
KSVDtrain || 547 | 444 || 248 | 223 || 43 | 41
NN test 675 | 407 || 233 [ 161 || 31| 28
KSVD test 643 | 492 (239|212 41| 39

Table 1. Minimum (over \) average reconstruction errors on
the “*Standard” data set.

In the second set of experiments, the known Mean Square
Error (MSE) of each test image was used Lo set the value of
o in the constrained optimisation (2), and the resulting mean
reconstruction errors are presented in Tables 3 and 4, At each
noise level, the best mean reconstruction error is provided by
the “NN train” dictionary construction method. (It is inter-
esting to note that the dictionary normalisation of “NN train
(nrm)” substantially reduces performance in this case.) The
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Fig. 2. Average reconstruction error for BPDN with various
8 x 8 block dictionaries constructed on the “Face” data set,
and tested at a noise level of 10dB.
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Fig. 4. Average reconstruction error for BPDN with various
size NN train (normalised) dictionaries (8 x 8 blocks) con-
structed from “Standard™ test data with SNR of 10dB.

off beyond some dictionary size.
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SNR 5dB 10dB 20dB
Blocks 5x5 [ 8x8 || 5x5 | 8x8 [ 5x5 | 8x8

[ Noise [ 14851483 ] 470 | 469 | 47 [ 47
NN train 5491 350213153 39] 31
NN train (n) || 1081 | 636 | 396 | 242 || 52| 38
KSVD train || 714 [ 591 [ 291 [ 257 || 58 | 50
NN fest 1279 | 804 || 442276 || 50 | 38
KSVD test 855 | 581279224 ] 49| 42

[PCAproj. [[ 436] 369 170162 32] 39

Fig. 3. Average reconstruction error for BPDN with various
size KSVD dictionaries (8 x 8 blocks) constructed from “Stan-
dard” test data with SNR of 10dB.

Table 3. Average reconstruction errors on the “Standard” data
set assuming known noise magnitude.

SNR 5dB 10dB 20dB
Blocks 5x5 | 8x8 || 55 | 8x8 || 5x5 | Bx8
Noise 634 | 635 || 201 | 201 20 20
NN train (n) || 228 | 111 81 46 12 10
KSVD train || 218 | 155 86 | 67 15 14
NN test 252 | 152 86 | 59 12| 10 |
KSVD test 247 | 177 94 | 68 15 13 |

Table 2. Minimum (over ) average reconstruction errors on
the “Face” data set.

reconstruction error variation with dictionary size of the “NN
train” method is displayed in Figure 5; note that the position
of the minimum varies, but in all cases, the performance falls

SNR 5dB 10dB 20dB ||
Blocks 5x5 | 8x8 [ 5x5 | 8x8 || 5x5 | 8x8 |
Noise 634 [ 630 [ 201 [ 199 ] 20 ] 20|
NN train 211 134 80 [ 55 14 12
NN train (n) || 463 [ 261 [ 163 ] 8 | 19| 13
KSVDtrain [ 2931206 | 111 | 81| 18] 14
NN test 479 [ 298 | 166 | 102 [ 18 [ 13

| KSVDtest | 340 | 250 || 124 | 89 |[ 17 | 15

[PCAproj [ 156 [ 148 ] 67 72 14] 141

Table 4. Average reconstruction errors on the “Face” data set
assuming known noise magnitude.
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Fig. 5. Variation of relative reconstruction errors (each MSE
curve is divided by its minimum to allow comparison on the
same graph) with dictionary size factor (actual dictionary size
is 64N, ) for the NN train” method with 8 x 8 blocks.

4. CONCLUSIONS

Considering that the K-SVD constructs a dictionary which
has been optimised for mean performance over a training set,
it is not too surprising that better performance can be achieved
by selecting a custom dictionary for each individual block to
be reconstructed. The nearest neighbour dictionary construc-
tion can be understood geometrically as a method for esti-
mating the local projection into the manifold of image blocks
[13], whereas the K-SVD dictionary makes more sense within
a source-coding framework (it is presented as a generalisation
of the k-means algorithm for constructing a VQ codebook), is
therefore, it could be argued, less appropriate in principle, for
reconstruction problems. One can. of course, motivate the
use of the K-SVD in reconstruction application on practical
grounds, avoiding the computational expense of constructing
a different dictionary for each block to be denoised.

Since the performance of the nearest neighbour dictionary
decreases when the dictionary becomes sufficiently large, this
method is also superior to the approach of utilising the entire
training set as a dictionary (and this can also be understood
within the image block manifold model). In practical terms,
the tradeoff is between the computational cost of a nearest
neighbour search (which can be achieved very efficiently), or
of increased cost al the sparse optimisation.
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