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ABSTRACT

There are three kinds of adaptive mesh refinement (AMR) in
structured meshes. Block-based AMR sometimes over refines
meshes. Cell-based AMR treats cells cell by cell and thus loses
the advantage of the nature of structured meshes. Patch-based
AMR is intended to combine advantages of block- and cell-based
AMR, i.e., the nature of structured meshes and sharp regions of
refinement. But, patch-based AMR has its own difficulties. For
example, patch-based AMR typically cannot preserve symmetries
of physics problems. In this paper, we will present an approach
for a patch-based AMR for hydrodynamics simulations. The
approach consists of clustering, symmetry preserving, mesh
continuity, flux correction, communications, management of
patches, and load balance. The special features of this patch-based
AMR include symmetry preserving, efficiency of refinement
across shock fronts and material interfaces, special
implementation of flux correction, and patch management in
parallel computing environments. To demonstrate the capability
of the AMR framework, we will show both two- and three-
dimensional hydrodynamics simulations with many levels of
refinement.

Categories and Subject Descriptors

1.2 [Computer Applications]: Physical Sciences and Engineering
— Physics.

General Terms
Algorithms.

Keywords
adaptive mesh refinement, shock. Euler Equation, material
interface.

1. INTRODUCTION

There are three kinds of adaptive mesh refinement (AMR) [1-22].
Block-based AMR, for example [2,20,21), refines a pre-defined
block when any cell within the block is marked to be refined. The
advantages of the block-based AMR include the nature of
structured meshes of each block and relatively simple data
structures for blocks. But it sometimes over refines meshes. Cell-
based AMR [22] refines only those cells that are supposed to be
refined, and therefore refined regions are well focused. But in
cell-based AMR, cells, including the cells that are not refined, are
typically treated cell by cell even for structured meshes. The
connectivity of meshes is often described by connectivity arrays,
not by i-, j-, and k-indices of structured meshes. Therefore cell-
based AMR often loses the advantage of the nature of structured

meshes. Patch-based AMR, for example [2], dynamically group
those cells, which are supposed to be refined, into several groups
through clustering algorithms, and these groups then form
rectangular patches. Therefore, patch-based AMR combines the
advantages of block- and cell-based AMR, i.e., the nature of
structured meshes and the sharp regions of refinement. But, patch-
based AMR has its own disadvantages. For example, existing
patch-based AMR typically cannot preserve symmetries of
physics problems. Since patches in patch-based AMR are
dynamically generated and have different sizes, efficiently
managing the patches in parallel environments presents a
challenge when many levels of refinement are involved.

In this paper, we will present patch-based AMR through which
refined meshes are able to preserve symmetries of physics
problems. Through the AMR, the grid cells near shock fronts and
material interfaces are refined. We will also implement a strategy
to efficiently manage patches and load balance. The plan of this
paper is as follows. The second section describes the patch-based
AMR that includes clustering, symmetry preserving, management
of patches, the “smooth™ nature of AMR, the requirement for
conservation laws, communications involved in AMR, and load
balance. The third section is for hydrodynamics solvers within the
AMR framework, which include the basic Euler equations, linear
interpolation for internal structure within cells, Riemann solvers
on fixed Eulerian grids, and the dimension-split technique. The
section after that is for numerical examples for mesh refinement
and hydrodynamics simulations within the framework. The last
section is for conclusions of this paper and a brief discussion
about symmetry and remaining issues we will work on.

2. PATCH-BASED AMR

In this section, we will present the algorithms and procedures we
will use to form patches for a given set of prescribed cells, flagged
cells, which normally are shock fronts and material interfaces

2.1 Clustering

K-means is one of simple leamning algorithms developed by
MacQueen [23] that solve the well known clustering problem. The
procedure follows a simple way to classify a given data set
through a certain number, k, clusters fixed a priori. The main idea
is to define k centroids, one for each cluster. These centroids
should be initially placed in a cunning way because of different
locations cause different results of clustering. Therefore, a good
choice is to place the initial centroids as much as possible far
away from each other. The next step is to take each cell belonging
to a given data set and associate it to the nearest centroid. When
no cell is pending, the first step is completed. At this point we



need to re-calculate k new centroids of the clusters resulting from
the previous step. After we have these k new centroids, a new
binding has to be done between the same data set points and the
nearest new centroid, and so on. As a result of this loop, the k
centroids changes their location step by step until no more
changes are done or centroids do not move any more.

One of important and desired requirements for a clustering
algorithm to be used in AMR is the symmetry preserving. If
flagged cells are symmefrical with respect to x- or y- or z-axis, the
refined cells determined through clustering algorithms should
preserve the symmetry. If this symmetry cannot be preserved in
the mesh, physics solutions obtained from AMR will immediately
loss the symmetry. Unfortunately, the most clustering algorithms
used in AMR are unable to preserve the symmetry.

We are trying to find a simple and practical approach to make sure
that the resulting mesh after refinement preserves the symmetry of
original data. We should point out that it is the area covered by
patches, not the patches themselves that are important for
symmetry preserving.

For a given set of n cells that are to be refined on a part of mesh
for which one computer processor is responsible, we pick a set of
k points on the part of mesh to be used as initial centroids. The
number k is on the scale of n. After the initial centroids are
determined, we proceed with the k-means algorithm. The result of
this procedure is the generation of k rectangles in space. But, in
general, some rectangles can be merged to form a larger rectangle.
Also, some rectangles may partially overlap with others, which
are split and redundant parts are removed.

As we stated before, generally the patches formed through this
procedure do not have symmetries, but the area covered by these
patches preserves symmetries, which is what we are actually
looking for. Figure 1 show the patches we generated (the left
image) and the mesh after one level of refinement (the right
image). The mesh in Fig.! clearly shows the symmetries with
respect to the axes of x- and y-axes and the diagonal directions of
the simulation domain.

Figure 1. Patches generated through our procedure (the left image)
and the mesh after one level of refinement (the right image) that
shows the symmetries with respect to the x- and y-axes and the
diagonal directions.

2.2 “Continuous” AMR

After the first level of refinement, we have two levels of cells, the
base cells or cells of level zero, and the cells of level one. Afier
getting the cells of level one, we can check cells against the
refinement criterion to be used and apply clustering algorithms

again to implement another level of refinement. Figure 2 shows
the flagged cells that are to be further refined, the second level of
patches, and the mesh after two levels of refinement. This
procedure can continue until no more cells satisfy the refinement
criterion. In this way, a mesh with a number of levels of
refinement will be generated.

Figure 2. The flagged cells that are to be further refined and the
patches resulted from the second level of refinement (the left
image) and the mesh after two level of refinement (the right
image).

It is often desired that mesh resolution smoothly change from
locations to locations. If a cell of level m is to be further refined,
any of its neighboring cells will be refined too if the neighboring
cell is at (m-1) level. For example, if the cells marked with “+” in
Fig.3 are to be further refined, their neighboring cells that are
coarser are to be refined too. This requirement of continuous
AMR  will result in additional communications in parallel
computer environments.
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Figure 3. If the cells marked with “+” are to be further refined,
their neighboring cells that are coarser have to be refined too. If
the neighboring cells belong to other processors, communications
are needed.

2.3 Ghost Cells and Their Communication

Each patch formed from clustering algorithms is a structured
mesh on which physics solvers will be implemented. Therefore,
the values of physics variables on the ghost cells have to be
obtained before physics solvers can be implemented. The
thickness of the layer of ghost cells depends on physics solvers to
be used. Typically, higher order a solver is, thicker the layer is. In
our AMR framework, the thickness of the layer of ghost cells is a
parameter, which can be set to anything appropriate for the
solvers to be used.



The values of physics variables on the ghost cells of a patch come
from physics boundary conditions and the cells on the
surrounding patches. The surrounding patches may be at the same
level, or at a finer or coarser level. We require that the values of
physics variables on any ghost cell come from the values of finest
neighboring cells.

In our code, before each time step, each computer processor find
all the neighboring patches of each of its own patches, pack all the
variables on the areas that will be the ghost cells of the
neighboring patches, and then send each of these datum buffers
containing the variables to each of neighboring processors. Each
neighboring processor receives one buffer from each of the
neighboring processors, unpack the buffer, and put the values onto
the ghost cells of each patch. In this way, for each time step, each
processor communicates to each of its neighboring processors
only once. We should point out that the list of neighboring
processors doesn’t change until the mesh is changed.

2.4 Management of Patches

The number of patches in patch-based AMR may dramatically
increase with the sizes of physics problems and the number of
levels of refinement. The way to manage these patches may
significantly influence the performance of AMR in parallel
environments.
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Figure 4. The base patch marked with the red square has eight
neighboring base patches. Assume one processor owns only this
patch. In addition to the patch owned by the processor, in Method
1 this processor knows all patches with all levels, in Method 2 this
processor knows only patches reside in these eight neighboring
patches, and in the approach we developed the processor knows
only the patches overlapped by the bold black square.

A primitive approach to manage these patches, which will be
labeled “Method 1™ in subsequent figures, assumes the following.
Each computer processor knows the metadata of all patches, no
matter whether these patches are owned by the processor. Here
“metadata” is used to stand for the locations, sizes, and level of
patches. Metadata do not include the values of variables on
patches. This approach is relatively simple in programming, but
its performance is slower compared to other methods. More

significantly, this approach will fail when the number of computer
processors gets very large.

The second approach to manage patches, which will be labeled
“Method 2" in our figures, is able to scale up with the processors
and is faster in performance than the approach described above. In
the second approach, in addition to the patches owned by the
processor, each computer processor knows only those patches that
reside in the neighboring base patches of each of the base patches
owned by the processor. For example, as shown in Fig.4, if one
processor owns only one base patch, for example, the base patch
marked with the red square, the processor has eight (in two-
dimensions) or twenty-six (in three-dimensions) neighboring base
patches. In general, each processor and each base patch may have
more neighboring base patches. In the method 2, this processor
knows the metadata of only the patches reside in the neighboring
base patches.

The third approach is the one we developed and used in this
paper. For a given set of physics solvers, the thickness of ghost
cells of each patch is determined. In addition to the patches owned
by the processor, the computer processor knows only those
patches that are needed for values of physics variables on the
ghost cells of the patches owned by the processor. For the base
patch marked with the red color in Fig4, the processor knows
only the patches overlapped by the bold black square. Therefore,
this is the list with the minimum number of patches that related to
the processor.

The performances of the three approaches to manage patches in
parallel environments may be dramatically different when many
levels of refinements are involved. In performance, the first two
approaches are close to each other if only a small number of
processors are involved, and the second and third approaches are
close to each other if only few levels of refinement are involved.
Figure 5 shows the costs of three approaches excluding the costs
of physics solvers in two-dimensional simulations. The third
approach is much more superior in performance when many
processors and many levels of refinement are involved. Figure 6
shows the performance when more levels of refinement are
involved. Figure 7 shows a three-dimensional case when five
levels of cells are involved.
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Figure 5. The costs to manage patches with five levels of cells in
two-dimensional simulations.
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Figure 6. The costs to manage patches with eleven levels of cells
in two-dimensional simulations.
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Figure 7. The costs to manage patches with five levels of cells in
three-dimensional simulations.

2.5 Flux Correction for Conservation Laws

As block- and cell-based AMR, patch-based AMR may go
through an additional step to enforce conservation laws in
simulations for hydrodynamics shocks. As stated before, after
patches are formed through clustering algorithms, a physics
solver, for example, hydrodynamics solver, will be run on
patches. Therefore, patch is a computational unit, and in principle,
we may run physics in any order, from coarse to fine patches, or
from fine to coarse patches. But, from the requirement of
conservation laws, we will run hydrodynamics on finest patches
first and then gradually to the coarsest patches.

As shown in Fig.8, there are two coarse patches and one fine
patch. When we run hydrodynamics solver on the fine patch, we
save the fluxes of mass, momentum, and energy at the four
boundaries of the fine patch, which will be used to correct the
fluxes on the coarse patches at the same physical locations when
we run the solver on the coarse patches. If any coarse patch
resides in other computer processors, communication is needed
from the fine patch to the coarse patch.

Figure 8. An illustration for flux correction. A hydrodynamics
solver is run on the fine patch first, and the fluxes at the
boundaries of the fine patch are saved and used to correct the
fluxes on the same locations of the coarse patches.
Communications are needed for the flux correction.

In our code, the flux correction is implemented as follows. When
we run hydrodynamics solver on a patch, we first calculate the
fluxes of mass, momentum, and energy at each cell interface.
Then at the boundaries of its child patches, we replace the fluxes
by those obtained during running hydrodynamics on the child
patches. After this, we save and collect the fluxes at the
boundaries of this patch for the flux correction of coarser patches.
After we run all the patches with this level, we do one
communication to send the fluxes at all the boundaries of the
patches to other computer processors for the flux correction at
coarser patches.

2.6 Load Balance

In a parallel computing environment, each computer processor is
responsible for certain amount of workload. Because of the
dynamics nature of shock fronts and material interfaces, the
workload of each processor dynamically changes. Even if each
processor has roughly same amount of workload initially, the
workload may be out of balance during a simulation if load
balance is not implemented.

For the load balance, we have to move data, variables, and
metadata, from processors to processors. But, we would like to
move as minimum data as possible. Therefore, the load balance is
not a redistribution of workload. Our purpose is to move
minimum data based on the current distribution of workload.
Also, during the load balance, we would like to keep any patch
and its child patches on the same processor.

Our procedure for the load balance is as follows. We first
calculate the total amount of workload of each base patch and its
all generations, for example, the total number of cells at all the
levels. Base on this information and the number of processors in
the simulation, we then estimate the optimized workload (e.g., the
number of cells) for which each processor will be responsible.
After this, we start to move base patches together with their
generations of child patches toward this optimized goal with
constraints. An example of the constraints is the connectivity of a
moved patch with the target region. We would like to have a
moved base patch physically connected to the target region
although our code will work even if the regions for which each
processor is responsible are physically disconnected.

We would like to point out that in our algorithm, the workload
(e.g. the number of cells) of each processor will not be exactly the



same after the load balance, since a parent and its child patches
will be in the same processor. Figure 9 shows the distributions of
cells in a mesh with ten levels among four processors before and
after the load balance, in which each color is the region for which
one processor is responsible. Before the load balance, two middle
processors each have about 0.6 million cells while other two
processors each have about 6000 cells. After the load balance, the
middle two processors have about 305,000 cells each and other
two processors have about 294,000 cells each.

Figure 9. The distributions of cells among four PEs in a mesh
with ten levels before (the left image) and after (the right image)
the load balance. Each color represents the cells for which one PE
is responsible. Before the balance, two middle processors each
have about 0.6 million cells while other two processors each have
about 6000 cells. After the balance, the middle two processors
have about 305,000 cells each and other two processors have
about 294,000 cells each.

3. NUMERICAL SCHEME FOR EULER
EUATIONS

In this section we will describe the numerical scheme we use for
multi-dimensional Euler equations in the framework of AMR
described in the section above. In this particular solver, the multi-
dimensionality is treated through the dimension split technique
[27]. In each dimensional pass, linear interpolation is used for
internal structure within cell. The nonlinear Riemann solver used
in this paper is an extension of the Riemann solver for Lagrangian
coordinate [28,29] to fixed Eulerian coordinate, which is based on
shock jump conditions.

3.1 Basic Equations

The basic equations we will solve are

ap
—+V: =0,
ot + V- (pu)

du
—+u-Vu)=-Vp,
‘D(&: ) P

p(%-m-VE)-—V-(pu).

Here p is density, u is the vector of flow velocity, p is thermal
pressure, and E is specific total energy, E=e+u’/2 with ¢
being the specific internal energy. The variables, p, p, and e, are

related to each other through the equation of state. We write the
Euler equations in the form

au oF dG oH

—+—+—+—=0.
ot  dx oy oz
Here
P pu
pu, puz+p
Uslpu, |, Fs=|puu,
pu: Pu.tn:
PE u (pE+p)

Here Ui, and i, are three component of vector u. G and H

have similar expressions,

3.2 One-dimensional Pass

We will use the dimension split technique [27]. One-dimensional
form of the basic equations becomes

Through any point in (x,t)-space, there exist three characteristic
curves defined by dx/dt =u (x,t) and dx/dt =u_ +c . Here

C, is the sound speed. Along the curve dx/dt =u (x,1),
dR, =0, duy =0, and du,=0. Along the
dxldt=u, %c,, dR_=0 respectively. Here C, = pc,, Ryand
R, are defined as

dR,=d(plp"),
dR_=dp+Cdu,.

Considering a numerical grid { x, } in a one-dimensional domain,
we integrate the basic equation within a grid cell x, sxsux,
and obtain

curves

At — =
Ui(Ar)= U,(O) +E[F(x;) = F(x,)l

Here Atr and Ax are the size of time step and the width of the
cell. U,(1) is the cell-average value of U within the cell at time t,
F(x,) is the time-averaged flux at cell interface x,, and they are
defined as

Fial

U= i f U(t,x)dx,

. - l At
F(x)= T Jo' FLU(t,x,))dr.

Therefore, one of the key points in the solver is the calculation of
the time-averaged flux at cell interfaces. The time-averaged flux is
approximately calculated through the time-averaged values of U
at cell interfaces,

F(x,)=~ F[U(x,)).

The time-averaged value of U is calculated through an
approximate Riemann solver.



A Riemann problem is an initial value problem with the initial
condition:

v, if x<0,

U, if x>0.

Here U, and U, are any two constant states. We will modify the

approximate Riemann solver developed in PPM [28,29] to fit to
fixed Eulerian grids, since we prefer thinner layers of ghost cells.
. The solver in PPM was originally developed for Lagrangian
hydrodynamics.

Un(x) - {

The solution of a Riemann problem generally includes either a
shock or a rarefaction wave in each direction and a contact
discontinuity. The waves in two directions and the contact
discontinuity divide the whole (x-t)-space into four regions, L, R2,
R3, and R, as shown in Fig.10. In the approximate solver, shock
jump conditions are used for rarefaction waves. For a given left
state U, the post-wave state for the wave propagating in the
negative x-direction should be on the Rankin-Hugoniot (R-H)
curve L (see Fig.I11), and for a given right state U, the post-
wave state for the wave propagating in the x-direction should be
on another R-H curve R. The pressure p and the component of
flow velocity & at the state U/ are what we are looking for,
which are the interaction of the two R-H curves in Fig.11.

t

R3
- R
0

Figure 10. For a given pair of left and right states, the solution of a
Riemann problem divides the whole x-t space into four possibly
different states.
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Figure 11. An illustration for iteration to find the state at the
intersection of two Rankine-Hugoniot curves.

The values of p and u_ at the intersection may be iteratively

obtained. Referring to Fig.11, as an initial step, we draw a pair of
tangential lines U, U and U U, of the R-H curves, which pass

through points {/, and U/, respectively. These two lines intersect
with each other at the point U ,(u ,, p, ), which is approximately
the initial solution of U". Then we draw a horizontal line p = p,,
which intersects with two R-H curves at points U ,,(u,,,,p,)

and U, (U 5, P, ) respectively. After this, we draw another pair
of tangential lines U, ,U,and U, U, of the R-H curves, which
pass through points U/, and U, respectively. The intersection
U, is an approximate solution after the first iteration. We may
repeat the steps stated above to obtain a more accurate solution.

The values of p and u_ at the intersection U'are the time-

averaged values in a Lagrangian coordinate. We have to
approximately obtain the time-averaged values of p and «, at the

cell interface of fixed Eulerian grids. To do that, we first calculate
the shock speeds in the Eulerian coordinate, §, and S, for the
shocks emerging from the cell interface, which propagate to the
positive and negative x-directions respectively, for example,

‘sr = wr it quR'J'

S =W, Uy .

Here W, and W, are the speed of the shocks in a Lagrangian

coordinate calculated from shock jump conditions. After we find
the shock speeds, the time-averaged-values at the interface of the
fixed Eulerian grid are obtained as the following

U, if
Up if

%(U,_+UR) if =0 and s =0,

5, >0,

s, <0,

|
I

U otherwise.

The left and right states in the Riemann problem at the interface
x, are obtained through the values of U within domains of
dependence with linear interpolations and a monotone condition
for the internal structure within cells, which in fact is the MUSCL
scheme [30].

3.3 Multi-dimensional Flows

The framework of the AMR described in Section 2 is suitable to
dimensionally both split and unsplit solvers, but multi-
dimensional flow to be presented in this paper is simulated
through the dimensionally split technique [27]. For the two-
dimensional case, the solution of Euler equation is obtained
through applying a one-dimensional operator to each row and
column of data in a two-dimensional domain. The solution of the
equations after two time steps may be written as

UQAL) = L, L, L, L, U 0).
Here L is the operator in the x-direction with time step Af,

which was described in the last subsection, and L, is the same

operator but acting on the y-direction. It is worth to mention that
the solution from this dimension split method will not preserve the
symmetry along the diagonal direction of a two-dimensional
square domain even for a uniform mesh without AMR involved.

For threc-dimensional flows, the solution afier two time steps may
be obtained through

UQRAL) = L, 1, I, L, B, L UCO).

2 . A .
Here Lm is the one-dimensional operator acting on the z-
direction. In a three-dimensional simulation with the dimension



split technique described through the formula, y-dimension is
special.

4. NUMERICAL EXAMPLES

In this section, we will present some examples to demonstrate the
capability of the AMR framework. The first set of examples is for
mesh refinement, in which there is no physics involved, and the
second set of examples is for calculations of hydrodynamics that
involve strong discontinuities.

4.1 Mesh Refinement

The first example is to show how the strategy of “continuous”
AMR discussed in Section 2.3 influence meshes. Figure 12 shows
meshes with five levels of cells without and with the continuous
AMR requirement implemented. In the left image, the
neighboring cells of a twice-refined cell may be not refined. In the
right image, the cells are gradually refined to the finest level from
location to location.

Figure 12. The left image is generated without and the right one is
generated with the “continuous” AMR requirement implemented.

The second example is to check the meshes obtained from the
different numbers of computer processor elements (PE) and the
different numbers of base patches. The mesh shown in the left
image of Fig.13 has ten levels of cells, obtained from a single PE
with four base patches. The mesh shown in the right image of the
figure is the mesh obtained from four PEs and sixteen base
patches. These two meshes are identical as they are expected.
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Figure 13. Two meshes generated through different numbers of
PEs and different numbers of base patches. The mesh to the left is
obtained through a single PE and four base patches, and the mesh
to the right is obtained through four PEs and sixteen base patches.
The two meshes are identical, as expected.

The third example is to show the capability to generate meshes
with many levels of refinement. Figure 14 shows an example

mesh that has twenty levels of cells near a circular shock front.
Each color in the upper left image represents one level of cells.
Only the first few levels of coarse cells are recognizable. The
upper right image in the figure shows the coarsest and finest cells.
As expected, the finest cells seem to be a thin line. The bottom
image in the figure shows the finest seven levels of cells near one
location. The numbers of the twenty levels of cells in this mesh,
from the coarsest to finest, are 256, 304, 592, 1166, 2320, 4624,
9232, 18448, 36880, 73744, 147440, 294864, 589520, 1178128,
2352432, 4690128, 9321936, 18406656, 35890816, 68047520
respectively. If one cell of a base patch were fully refined 19
times, the number of the finest cells in the cell would be
274,877,906,944.

Figure 14. A mesh with 20 levels of cell near a circular shock
front (the upper left image), the coarsest and finest levels of cell
(the upper right image), and the finest seven levels of cell near
one location (the bottom image).
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Figure 15. Eighteen levels of refinement near a circular material
interface (the inner circle) and a circular shock front (the outer
circle).

The fourth example is about the refinement near material
interfaces as well as shock fronts. Figure 15 displays eighteen



levels of refinement near a circular material interface (the inner
circle) and a circular shock front (the outer circle). As stated
before, we refine any cell that contain more than one material or
whose neighboring cells have different materials. The cells at the
same level are painted with one color in the figure.

As stated before, the mesh refinement will be applied to shock
fronts as well as material interfaces. For material interfaces, we
will refine any cell with more than one material or mixed cell, and
any pure cell whose neighboring cells contain other materials.
Figure 15 shows a refined mesh with nineteen levels of cells, a
circular shock front, and a circular material interface

Figure 16. The first level of refinement near a spherical shock
front (the left image) and the patches after the second level of
refinement.

Although we have not specifically mentioned AMR for the three-
dimensional case in Section 2, the statements in that section are
applicable to the three-dimensional meshes. The next two
examples involve three-dimensional meshes. The left image in
Fig.16 shows the first level of patches near a spherical shock
front, and the image to the right shows the patches resulting from
the second level of refinement. It is possible to visually check the
symmetries of the refinement with respect to the x- and y-axes.
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Figure 17. One eighth of ten levels of cell near a spherical shock
front. The cells at each level are supposed to be buried in the cells
of the previous level.

Figure 17 shows one eighth of refined cells near a spherical shock
front with ten levels of cells. Cells at each level are actually
buried in the cells of the previous level. The white dots in the last
image indicates that the cells of the second finest do not undergo
the refinement at these spots.

4.2 Hydrodynamics Calculations

In this subsection, we will present two hydrodynamics
calculations. In these calculations, the periodic boundary
condition is used, and initial conditions are p =1, u =(0,0,0),
and

p = pinner 'lf rs r!'l
pourﬂ l.f rie rﬂ} .

Here p, D, @0d Iy are constants, and they are 0.1, 1000,
and 0.5 respectively. The simulation domain is (8x8) for two
dimensions or (8x8x8) for three dimensions. The size of the base
mesh is (16x 16) or (16x16x16). The jump in pressure is used as
the criterion for the refinement of cells.

In the first calculation, Figure 18 shows the distribution of
pressure at t = 0 and 0.68. In this example there are ten levels of
cells, the location of refinement follows the shock propagating
outward. Through careful examination of the images in the figure,
it is found out that the mesh preserves symmetries with respect to
x- and y-axes.

Figure 18. A calculation of two-dimensional flow. The simulation
domain is 8x8x8. Initial density is constant, flow is at rest, and
pressure is 1000 at the center r < 0.5, and 0.1 when r > 0.5. The
periodic boundary condition is used. The image to the left is the
initial pressure, and the image to the right is pressure at t= 0.68.
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Figure 19. The pressure at t = 0 (the left) and t = 0.405 (the right
image) in a 3D simulation. Periodic boundary condition is used.



The second example is a three-dimensional problem, which is the
extension of problem described above in three dimensions. Here
we limit the number of refinement to 4, and there are five levels of
cells in the problem. Figure 19 shows the pressure and meshes at
the initial time (the left image) and at £ =0.405 (the right
image).

5. CONCLUSIONS and DISCUSSIONS

In this paper, we have developed and implemented a patch-based
AMR that preserves symmetries of original physics problems. In
the implementation, we have emphasized symmetry preserving,
effective patch management, smoothness of refinement, efficient
communication for the values on ghost cells of patches; we have
compared three different approaches to manage patches. The
approach, in which each computer processor holds the metadata of
the minimum number of patches, performs much better than other
two in both two- and three-dimensions. For hydrodynamics
algorithms, we modified a nonlinear Riemann solver in
Lagrangian coordinate for its use in fixed Eulerian grids.
Preliminary numerical examples show that this patch-based AMR
is able to keep shocks front very sharp.

— . ————

Figure 20. The resulting meshes of two simulations with the same
code, one with double precision (the upper left image) and the
other with single precision (the upper right image). The lower two
images are detailed parts of the upper two. The symmetry with
respect to x-axis is broken in the lower right image of single
precision.

The capability for a computer code to preserve symmetries in a
numerical simulation depends on many factors, including physics
solvers and machine rounding-off errors. Rounding-off errors are
much more visible in the simulations involving AMR than in
those without AMR involved.

Whether a cell is to be refined may be determined by rounding-off
errors. Also rounding-off errors may destroy the symmetries of
problems. To demonstrate this point, we use the same computer
code to simulate the same problem twice, one through double

precision and the other through single precision. Figure 20 shows
two meshes at one instant, one (the upper left image) from the
simulation with double precision and the other (the upper right
image) from single precision. Because of machine rounding-off
errors, the two meshes are different. Furthermore, the simulation
with single precision breaks the symmetries, for example, with
respect to the x-axis. To see more details of the two meshes, the
parts marked with ovals are enlarged, as shown in the lower two
images of Fig.20.

There are several remaining issues to be addressed in our work. It
is in our plan to add multi-materials physics solvers to the AMR
package to demonstrate the advantages of compressed material
data structures. We have noticed that in applications with many
materials involved, sparse material data structures will eventually
consume all the computer memories, which will limit the
capability of computer codes to do large-scale simulations with
many materials.
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