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ABSTRACT 
There are three kinds of adaptive mesh refinement (AMR) in 
structured meshes. Block-based AMR sometimes over refines 
meshes. Cell-based AMR treats cells cell by cell and thus loses 
the advantage of the nature of structured meshes. Patch-based 
AMR is intended to combine advantages of block- and cell-based 
AMR, Le., the nature of structured meshes and sharp regions of 
refinement. But, patch-based AMR has its own difficulties. For 
example, patch-based AMR typically cannot preserve symmetries 
of physics problems. In this paper, we will present an approach 
for a patch-based AMR for hydrodynamics simulations. The 
approach consists of clustering, symmetry preserving, mesh 
continuity, flux correction, communications, management of 
patches, and load balance. The special features of this patch-based 
AMR include symmetry preserving, efficiency of refinement 
across shock fronts and material interfaces, special 
implementation of flux correction, and patch management in 
parallel computing environments. To demonstrate the capability 
of the AMR framework, we will show both two- and three­
dimensional hydrodynamics simulations with many levels of 
refinement. 

Categories and Subject Descriptors 

1.2 [Computer Applications]: Physical Sciences and Engineering 
- Physics. 

General Terms 
Algorithms. 

Keywords 
adaptive mesh retinement, shock, Euler Equation, material 
interface. 

1. INTRODUCTION 

There are three kinds of adaptive mesh refinement (AMR) [1-22]. 
Block-based AMR, for example [2,20,21], refines a pre-defined 
block when any cell within the block is marked to be refined. The 
advantages of the block-based AMR include the nature of 
structured meshes of each block and relatively simple data 
structures for blocks. But it sometimes over refines meshes. Cell­
based AMR [22] refines only those cells that are supposed to be 
refined, and therefore refined regions are well focused. But in 
cell-based AMR, cells, including the cells that are not refined, are 
typically treated cell by celJ even for structured meshes. The 
connectivity of meshes is often described by connectivity arrays, 
not by i-, j-, and k-indices of structured meshes. Therefore cell­
based AMR often loses the advantage of the nature of structured 

meshes. Patch-based AMR, for example [2], dynamically group 
those cells, which are supposed to be refined, into several groups 
through clustering algorithms, and these groups then form 
rectangular patches. Therefore, patch-based AMR combines the 
advantages of block- and cell-based AMR, i.e., the nature of 
structured meshes and the sharp regions of refinement. But, patch­
based AMR has its own disadvantages. For example, existing 
patch-based AMR typically cannot preserve symmetries of 
physics problems. Since patches in patch-based AMR are 
dynamically generated and have different sizes, efficiently 
managing the patches in parallel environments presents a 
challenge when many levels of refinement are involved. 

In this paper, we will present patch-based AMR through which 
refined meshes are able to preserve symmetries of physics 
problems. Through the AMR, the grid cells near shock fronts and 
material interfaces are refined. We will also implement a strategy 
to efficiently manage patches and load balance. The plan of this 
paper is as follows. The second section describes the patch-based 
AMR that includes clustering, symmetry preserving, management 
of patches, the "smooth" nature of AMR, the requirement for 
conservation laws, communications involved in AMR, and load 
balance. The third section is for hydrodynamics solvers within the 
AMR framework, which include the basic Euler equations, linear 
interpolation for internal structure within cells, Riemann solvers 
on fIXed Eulerian grids, and the dimension-split technique. The 
section after that is for numerical examples for mesh refinement 
and hydrodynamics simulations within the framework. The last 
section is for conclusions of this paper and a brief discussion 
about symmetry and remaining issues we will work on. 

2. PATCH-BASED AMR 

In this section, we will present the algorithms and procedures we 
will use to form patches for a given set of prescribed cells, flagged 
cells, which normally are shock fronts and material interfaces 

2.1 Clustering 

K-means is one of simple learning algorithms developed by 
MacQueen [23] that solve the well known clustering problem. The 
procedure follows a simple way to classify a given data set 
through a certain number, k, clusters fixed a priori. The main idea 
is to define k centroids, one for each cluster. These centroids 
should be initially placed in a cunning way because of different 
locations cause different results of clustering. Therefore, a good 
choice is to place the initial centroids as much as possible far 
away from each other. The next step is to take each cell belonging 
to a given data set and associate it to the nearest centroid. When 
no cell is pending, the first step is completed. At this point we 



need to re-calculate k new centroids of the clusters resulting from 
the previous step. After we have these k new centroids, a new 
binding has to be done between the same data set points and the 
nearest new centroid, and so on. As a result of this loop, the k 
centroids changes their location step by step until no more 
changes are done or centroids do not move any more. 

One of important and desired requirements for a clustering 
algorithm to be used in AMR is the symmetry preserving. If 
flagged cells are symmetrical with respect to x- or y- or z-axis, the 
refined cells determined through clustering algorithms should 
preserve the symmetry. If this symmetry cannot be preserved in 
the mesh, physics solutions obtained from AMR will immediately 
loss the symmetry. Unfortunately, the most clustering algorithms 
used in AMR are unable to preserve the symmetry. 

We are trying to find a simple and practical approach to make sure 
that the resulting mesh after refinement preserves the symmetry of 
original data. We should point out that it is the area covered by 
patches, not the patches themselves that are important for 
symmetry preserving. 

For a given set of n cells that are to be refined on a part of mesh 
for which one computer processor is responsible, we pick a set of 
k points on the part of mesh to be used as initial centroids. The 
number k is on the scale of n. After the initial centroids are 
determined, we proceed with the k-means algorithm. The result of 
this procedure is the generation of k rectangles in space. But, in 
general, some rectangles can be merged to form a larger rectangle. 
Also, some rectangles may partially overlap with others, which 
are split and redundant parts are removed. 

As we stated before, generally the patches formed through this 
procedure do not have symmetries, but the area covered by these 
patches preserves symmetries, which is what we are actually 
looking for. Figure I show the patches we generated (the left 
image) and the mesh after one level of refinement (the right 
image). The mesh in Fig.1 clearly shows the symmetries with 
respect to the axes of x- and y-axes and the diagonal directions of 
the simulation domain. 

Figure I. Patches generated through our procedure (the left image) 
and the mesh after one level of refinement (the right image) that 
shows the symmetries with respect to the x- and y-axes and the 
diagonal directions. 

2.2 "Continuous" AMR 

After the first level of refinement, we have two levels of cells, the 
base cells or cells of level zero, and the cells of level one. After 
getting the cells of level one, we can check cells against the 
refinement criterion to be used and apply clustering algorithms 
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again to implement another level of refinement. Figure 2 shows 
the flagged cells that are to be further refined, the second level of 
patches, and the mesh after two levels of refinement. This 
procedure can continue until no more cells satisfY the refinement 
criterion. In this way, a mesh with a number of levels of 
refinement will be generated. 

Figure 2. The flagged cells that are to be further refined and the 
patches resulted from the second level of refinement (the left 
image) and the mesh after two level of refinement (the right 
image). 

It is often desired that mesh resolution smoothly change from 
locations to locations. If a cell of level m is to be further refined, 
any of its neighboring cells will be refined too if the neighboring 
cell is at (m-I) level. For example, if the cells marked with "+" in 
Fig.3 are to be further refined, their neighboring cells that are 
coarser are to be refined too. This requirement of continuous 
AMR will result in additional communications in parallel 
computer environments. 

... + i.....,. .... 
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Figure 3. If the cells marked with "+" are to be further refined, 
their neighboring cells that are coarser have to be refined too. If 
the neighboring cells belong to other processors, communications 
are needed. 

2.3 Ghost Cells and Their Communication 

Each patch formed from clustering algorithms is a structured 
mesh on which physics solvers will be implemented. Therefore, 
the values of physics variables on the ghost cells have to be 
obtained before physics solvers can be implemented. The 
thickness of the layer of ghost cells depends on physics solvers to 
be used. Typically, higher order a solver is, thicker the layer is. In 
our AMR framework, the thickness of the layer of ghost cells is a 
parameter, which can be set to anything appropriate for the 
solvers to be used. 



The values of physics variables on the ghost cells of a patch come 
from physics boundary conditions and the cells on the 
surrounding patches. The surrounding patches may be at the same 
level, or at a finer or coarser level. We require that the values of 
physics variables on any ghost cell come from the values of finest 
neighboring cells. 

In our code, before each time step, each computer processor find 
all the neighboring patches of each of its own patches, pack all the 
variables on the areas that will be the ghost cells of the 
neighboring patches, and then send each of these datum buffers 
containing the variables to each of neighboring processors. Each 
neighboring processor receives one butTer from each of the 
neighboring processors, unpack the butTer, and put the values onto 
the ghost cells of each patch. In this way, for each time step, each 
processor communicates to each of its neighboring processors 
only once. We should point out that the list of neighboring 
processors doesn't change until the mesh is changed. 

2.4 Management of Patches 

The number of patches in patch-based AMR may dramatically 
increase with the sizes of physics problems and the number of 
levels of refinement. The way to manage these patches may 
significantly influence the performance of AMR in parallel 
environments. 
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Figure 4. The base patch marked with the red square has eight 
neighboring base patches. Assume one processor owns only this 
patch. In addition to the patch owned by the processor, in Method 
I this processor knows all patches with all levels, in Method 2 this 
processor knows only patches reside in these eight neighboring 
patches, and in the approach we developed the processor knows 
only the patches overlapped by the bold black square. 

A primitive approach to manage these patches, which will be 
labeled "Method I" in subsequent figures, assumes the following. 
Each computer processor knows the metadata of all patches, no 
matter whether these patches are owned by the processor. Here 
"metadata" is used to stand for the locations, sizes, and level of 
patches . Metadata do not include the values of variables on 
patches. This approach is relatively simple in programming, but 
its performance is slower compared to other methods. More 
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significantly, this approach will fail when the number of computer 
processors gets very large. 

The second approach to manage patches, which will be labeled 
"Method 2" in our figures, is able to scale up with the processors 
and is faster in performance than the approach described above. In 
the second approach, in addition to the patches owned by the 
processor, each computer processor knows only those patches that 
reside in the neighboring base patches of each of the base patches 
owned by the processor. For example, as shown in Fig.4, if one 
processor owns only one base patch, for example, the base patch 
marked with the red square, the processor has eight (in two­
diinensions) or twenty-six (in three-dimensions) neighboring base 
patches. In general, each processor and each base patch may have 
more neighboring base patches. In the method 2, this processor 
knows the metadata of only the patches reside in the neighboring 
base patches. 

The third approach is the one we developed and used in this 
paper. For a given set of physics solvers, the thickness of ghost 
cells of each patch is determined. In addition to the patches owned 
by the processor, the computer processor knows only those 
patches that are needed for values of physics variables on the 
ghost cells 0 f the patches owned by the processor. For the base 
patch marked with the red color in Fig.4, the processor knows 
only the patches overlapped by the bold black square. Therefore, 
this is the list with the minimum number of patches that related to 
the processor. 

The performances of the three approaches to manage patches in 
parallel environments may be dramatically ditTerent when many 
levels 0 f refinements are involved. In performance, the first two 
approaches are close to each other if only a small number of 
processors are involved, and the second and third approaches are 
close to each other if only few levels of refinement are involved . 
Figure 5 shows the costs of three approaches excluding the costs 
of physics solvers in two-dimensional simulations. The third 
approach is much more superior in performance when many 
processors and many levels of refinement are involved . Figure 6 
shows the performance when more levels of refinement are 
involved. Figure 7 shows a three-dimensional case when five 
levels of cells are involved. 
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Figure 5. The costs to manage patches with five levels of cells in 
two-dimensional simulations. 
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Figure 6. The costs to manage patches with eleven levels of cells 
in two-dimensional simulations. 
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Figure 7. The costs to manage patches with five levels of cells in 
three-dimensional simulations. 

2.5 Flux Correction for Conservation Laws 

As block- and cell-based AMR, patch-based AMR may go 
through an additional step to enforce conservation laws in 
simulations for hydrodynamics shocks. As stated before, after 
patches are formed through clustering algorithms, a physics 
solver, for example, hydrodynamics solver, will be run on 
patches. Therefore, patch is a computational unit, and in principle, 
we may run physics in any order, from coarse to fine patches, or 
from fine to coarse patches. But, from the requirement of 
conservation laws, we will run hydrodynamics on finest patches 
first and then gradually to the coarsest patches. 

As shown in Fig.8, there are two coarse patches and one fine 
patch . When we run hydrodynamics solver on the fine patch, we 
save the fluxes of mass, momentum, and energy at the four 
boundaries of the fine patch, which will be used to correct the 
fluxes on the coarse patches at the same physical locations when 
we run the solver on the coarse patches. If any coarse patch 
resides in other computer processors, communication is needed 
from the fUle patch to the coarse patch. 
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Figure 8. An illustration for flux correction. A hydrodynamics 
solver is run on the fine patch first, and the fluxes at the 
boundaries of the fUle patch are saved and used to correct the 
fluxes on the same locations of the coarse patches . 
Communications are needed for the flux correction. 

In our code, the flux correction is implemented as follows. When 
we run hydrodynamics solver on a patch, we fIrst calculate the 
fluxes of mass, momentum, and energy at each cell interface. 
Then at the boundaries of its child patches, we replace the fluxes 
by those obtained during running hydrodynamics on the child 
patches. After this, we save and collect the fluxes at the 
boundaries of this patch for the flux correction of coarser patches. 
After we run all the patches with this level, we do one 
communication to send the fluxes at all the boundaries of the 
patches to other computer processors for the flux correction at 
coarser patches. 

2.6 Load Balance 

In a parallel computing environment, each computer processor is 
responsible for certain amount of workload. Because of the 
dynamics nature of shock fronts and material interfaces, the 
workload of each processor dynamically changes . Even if each 
processor has roughly same amount of workload initially, the 
workload may be out of balance during a simulation if load 
balance is not implemented. 

For the load balance, we have to move data, variables, and 
metadata, from processors to processors. But, we would like to 
move as minimum data as possible. Therefore, the load balance is 
not a redistribution of workload. Our purpose is to move 
minimum data based on the current distribution of workload. 
Also, during the load balance, we would like to keep any patch 
and its child patches on the same processor. 

Our procedure for the load balance is as follows. We first 
calculate the total amount of workload of each base patch and its 
all generations, for example, the total number of cells at all the 
levels. Base on this information and the number of processors in 
the simulation, we then estimate the optimized workload (e.g. , the 
number of cells) for which each processor will be responsible. 
After this, we start to move base patches together with their 
generations of child patches toward this optimized goal with 
constraints. An example of the constraints is the connectivity of a 
moved patch with the target region. We woul.d like to have a 
moved base patch physically connected to the target region 
although our code will work even if the regions for which each 
processor is responsible are physically disconnected. 

We would like to point out that in our algorithm, the workload 
(e .g. the number of cells) of each processor will not be exactly the 



same after the load balance, since a parent and its child patches 
will be in the same processor. Figure 9 shows the distributions of 
cells in a mesh with ten levels among four processors before and 
after the load balance, in which each color is the region for which 
one processor is responsible. Before the load balance, two middle 
processors each have about 0.6 million cells while other two 
processors each have about 6000 cel.ls. After the load balance, the 
middle two processors have about 305,000 cells each and other 
two processors have about 294,000 cells each. 
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Figure 9. The distributions of cells among four PEs in a mesh 
with ten levels before (the left image) and after (the right image) 
the load balance. Each color represents the cells for which one PE 
is responsible. Before the balance, two middle processors each 
have about 0.6 million cells while other two processors each have 
about 6000 ceIJs. After the balance, the middle two processors 
have about 305,000 cells each and other two processors have 
about 294,000 cells each . 

3. NUMERICAL SCHEME FOR EULER 
EUATIONS 

In this section we will describe the numerical scheme we use for 
multi-dimensional Euler equations in the framework of AMR 
described in the section above. In this particular solver, the multi­
dimensionality is treated through the dimension split technique 
[27]. In each dimensional pass, linear interpolation is used for 
internal structure within cell. The nonlinear Riemann solver used 
in this paper is an extension of the Riemann solver for Lagrangian 
coordinate [28,29] to fixed Eulerian coordinate, which is based on 
shock jump conditions. 

3.1 Basic Equations 

The basic equations we will solve are 

ap 
a;+ V·(pu) =0, 

au 
p(-+ u· Vu) = -Vp, 

at 
aE 

p(-+u· VE) = -V·(pu). at 
Here p is density, u is the vector of flow velocity, p is thennal 

pressure, and E is specific total energy, E = e + u2 /2 with e 
being the specific internal energy. The variables, p, p, and e, are 

related to each other through the equation of state. We write the 
Euler equations in the fonn 

au aF aG aH 
-+-+-+-=0. 
at ax By az 

Here 

p pUx 

pUx pu~+ p 

U==. pUy , F==. pUxuy 

pUt puxuz 

pE ux(pE+p) 
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Here Ux ,uy' and u, are three component of vector u. G and H 

have similar expressions. 

3.2 One-dimensional Pass 

We will use the dimension split technique [27]. One-dimensional 
fonn of the basic equations becomes 

au + aF =0. 
at ax 

Through any point in (x,t)-space, there exist three characteristic 
curves defined by dx / dt = ux(x,t) and dx / dt = Llx ± c,. Here 

C s is the sound speed. A long the curve dx / dt = U x (x, t), 
dRo = 0, duy = 0, and du, = O. Along the curves 

d.x / dt = Ux ± C" dR± = 0 respectively. Here Cs ==. rx" Roand 

R are defined as 
± 

dRo ==. d(p/ pY), 

dR± ==. dp ± Csdux . 

Considering a numerical grid { x
j

} in a one-dimensional domain, 

we integrate the basic equation within a grid cell x j :$ x :$ Xj+l 

and obtain 

M - -
Up· .. t) = Uj(O) +-[F(xj) - F(xj+1 )]. 

. tuj 

Here 111 and I1x are the size of time step and the width of the 
cell. U,(t) is the cell-average value of U within the cell at time t, 

F(xJ is the time-averaged flux at ce II interface X;, and they are 

defined as 

I .1101 

Uj(t) .. tu f U(t,x)dx, 
x, 

1 6t 

F(x)=-f F[U(t,xj)]dt. 
/',.to 

Therefore, One of the key points in the solver is the calculation of 
the time-averaged flux at cell interfaces. The time-averaged flux is 
approximately calculated through the time-averaged values of U 
at cell interfaces, 

F(xJ"'" F[U(x)]. 

The time-averaged value of U IS calculated through an 
approximate Riemann solver. 



A Riemann problem is an initial value problem with the initial 
condition: 

if x < 0, 

if x> 0. 

Here V L and V R are any two constant states. We will modify the 

approximate Riemann solver developed in PPM [28,29] to fit to 
fixed Eulerian grids, since we prefer thinner layers of ghost cells. 

. The solver in PPM was originally developed for Lagrangian 
hydrodynamics. 

The solution of a Riemann problem generally includes either a 
shock or a rarefaction wave in each direction and a contact 
discontinuity. The waves in two directions and the contact 
discontinuity divide the whole (x-t)-space into four regions, L, R2, 
R3, and R, as shown in Fig . IO. In the approximate solver, shock 
jump conditions are used for rarefaction waves. For a given left 
state V L' the post-wave state for the wave propagating in the 

negative x-direction should be on the Rankin-Hugoniot (R-H) 
curve L (see Fig.II), and for a given right state V R' the post-

wave state for the wave propagating in the x-direction should be 
on another R-H curve R. The pressure p and the component of 

flow velocity U x at the state U· are what we are looking for, 

which are the interaction of the two R-H curves in Fig . ll. 

t 

L~.x 
o 

Figure 10. For a given pair of left and right states, the solution of a 
Riemann problem divides the whole x-t space into four possibly 
ditTerent states. 

p* 

U R1 

PR 
---

PL 
UR 

UXR U~ UXl 

Figure II. An illustration for iteration to find the state at the 
intersection of two Rankine-Hugoniot curves. 

The values of p and u, at the intersection may be iteratively 

obtained. Referring to Fig.ll, as an initial step, we draw a pair of 
tangential lines VLVoand VRVoofthe R-H curves, which pass 

through points ULand U R respectively. These two lines intersect 

with each other at the point Vo(uxo,Po) ' which is approximately 

the initial solution of U·. Then we draw a horizontal line P = Po' 
which intersects with two R-H curves at points V LI (u,L1' Po) 
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and V RI (u xRI ,Po)' respectively. A fter this, we draw another pair 

of tangential lines V L1VI and V RPI of the R-H curves, which 

pass through points V LI and V RI respectively. The intersection 

VI is an approximate solution after the first iteration. We may 

repeat the steps stated above to obtain a more accurate solution. 

The values of p and U x at the intersection V' are the time­

averaged values in a Lagrangian coordinate. We have to 
approximately obtain the time-averaged values of p and u, at the 

cell interface of fIXed Eulerian grids. To do that, we first calculate 

the shock speeds in the Eulerian coordinate, Sr and SI' for the 

shocks emerging from the cell interface, which propagate to the 
positive and negative x-directions respectively, for example, 

Sr = Wr + UxR ' 

S, = WI - UxL ' 

Here W rand WI are the speed of the shocks in a Lagrangian 

coordinate calculated from shock jump conditions. After we find 
the shock speeds, the time-averaged-values at the interface of the 
fixed Eulerian grid are obtained as the following 

UL if s, > 0, 

UR if S, < 0, 

U= I 
-(UL+UR ) if s,=O and s,=O, 
2 

U· otherwise. 

The left and right states in the Riemann problem at the interface 
Xi are obtained through the values of U within domains of 

dependence with linear interpolations and a monotone condition 
for the internal structure within cells, which in fact is the MUSCL 
scheme [30]. 

3.3 Multi-dimensional Flows 

The framework of the AMR described in Section 2 is suitable to 
dimensionally both split and unsplit solvers, but multi­
dimensional flow to be presented in this paper is simulated 
through the dimensionally split technique [27]. For the two­
dimensional case, the solution of Euler equation is obtained 
through applying a one-dimensional operator to each row and 
column of data in a two-dimensional domain. The solution of the 
equations after two time steps may be written as 

V(26.t) = L"ruIIa,l!fljL"ruV(O). 

Here L~ is the operator in the x-direction with time step I1t, 
which was described in the last subsection, and ll"" is the same 

operator but acting on the y-direction. It is worth to mention that 
the solution from this dimension split method will not preserve the 
symmetry along the diagonal direction of a two-dimensional 
square domain even for a uniform mesh without AMR involved. 

For three-dimensional flows, the solution after two time steps may 
be obtained through 

V(26./) = ~,IIa,L~,L~4.,L~,u(O). 

Here L~, is the one-dimensional operator acting on the z­
direction. In a three-dimensional simulation with the dimension 



split technique described through the formula, y-dimension is 
special. 

4. NUMERICAL EXAMPLES 

In this section, we will present some examples to demonstrate the 
capability of the AMR framework. The first set of examples is for 
mesh refinement, in which there is no physics involved, and the 
second set of examples is for calculations of hydrodynamics that 
involve strong discontinuities. 

4.1 Mesh Refinement 

The first example is to show how the strategy of "continuous" 
AMR discussed in Section 2.3 influence meshes. Figure 12 shows 
meshes with five levels of cells without and with the continuous 
AMR requirement implemented. In the left image, the 
neighboring cells of a twice-refined cell may be not refined. In the 
right image, the cells are gradually refined to the finest level from 
location to location. 

~§ I 
~ ________ -L ________ ~L-________ -L~ ________ '--

Figure 12. The left image is generated without and the right one is 
generated with the "continuous" AMR requirement implemented. 

The second example is to check the meshes obtained from the 
different numbers of computer processor elements (PE) and the 
different numbers of base patches. The mesh shown in the left 
image of Fig.13 has ten levels of cells, obtained from a single PE 
with four base patches. The mesh shown in the right image of the 
figure is the mesh obtained from four PEs and sixteen base 
patches. These two meshes are identical as they are expected. 

:::1 , ...... 
l..-________ --L ________ ---.JI....-__ -L ____ .....L ____ .L.-. __ .....-J ,,,,-.If-iII 

Figure 13. Two meshes generated through different numbers of 
PEs and different numbers of base patches. The mesh to the left is 
obtained through a single PE and four base patches, and the mesh 
to the right is obtained through four PEs and sixteen base patches. 
The two meshes are identical, as expected. 

The third example is to show the capability to generate meshes 
with many levels of refmement. Figure 14 shows an example 
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mesh that has twenty levels of cells near a circular shock front. 
Each color in the upper left image represents one level of cells. 
Only the first few levels of coarse cells are recognizable. The 
upper right image in the figure shows the coarsest and finest cells. 
As expected, the finest cells seem to be a thin line. The bottom 
image in the figure shows the finest seven levels of cells near one 
location. The numbers of the twenty levels of cells in this mesh, 
from the coarsest to finest, are 256, 304, 592, 1166, 2320, 4624, 
9232, 18448, 36880, 73744, 147440, 294864, 589520, 1178128, 
2352432, 4690128, 9321936, 18406656, 35890816, 68047520 
respectively. If one cell of a base patch were fully refined 19 
times, the number of the finest cells in the cell would be 
274,877,906,944. 

Figure 14. A mesh with 20 levels of cell near a circular shock 
front (the upper left image), the coarsest and finest levels of cell 
(the upper right image), and the finest seven levels of cell near 
one location (the bottom image). 

I 

J J 

1+If :"!T ,.l, 

1-

Figure 15 . Eighteen levels of refinement near a circular material 
interface (the inner circle) and a circular shock front (the outer 
circle). 

The fourth example is about the refinement near material 
interfaces as well as shock fronts . Figure 15 displays eighteen 



levels of refinement near a circular material interface (the inner 
circle) and a circular shock front (the outer circle). As stated 
before, we refine any cell that contain more than one material or 
whose neighboring cells have different materials. The cells at the 
same level are painted with one color in the figure . 

As stated before, the mesh refinement will be applied to shock 
fronts as well as material interfaces. For material interfaces, we 
will refine any cell with more than one material or mixed cell, and 
any pure cell whose neighboring cells contain other materials. 
Figure 15 shows a refined mesh with nineteen levels of cells, a 
circular shock front, and a circular material interface 

Figure 16. The first level of refinement near a spherical shock 
front (the left image) and the patches after the second level of 
refinement. 

Although we have not specifically mentioned AMR for the three­
dimensional case in Section 2, the statements in that section are 
applicable to the three-dimensional meshes. The next two 
examples involve three-dimensional meshes. The left image in 
Fig.16 shows the first level of patches near a spherical shock 
front, and the image to the right shows the patches resulting from 
the second level of refinement. It is possible to visually check the 
symmetries of the refinement with respect to the x- and y-axes. 

~
. ',,' 'I' • :;';11,' 

". J,··V .. ·11 

Figure 17. One eighth of ten levels of cell near a spherical shock 
front. The cells at each level are supposed to be buried in the cells 
of the previous level. 

8 

Figure 17 shows one eighth of refined cells near a spherical shock 
front with ten levels of cells. Cells at each level are actually 
buried in the cells of the previous level. The white dots in the last 
image indicates that the cells of the second finest do not undergo 
the refinement at these spots. 

4.2 Hydrodynamics Calculations 

In this subsection, we will present two hydrodynamics 
calculations. In these calculations, the periodic boundary 
condition is used, and initial conditions are p = 1, U = (0,0,0), 
and 

{

Pillller 
P= 

P ower 

if ,< '0 
if ,> '0 

Here Pi,mer' P outer' and ro are constants, and they are 0.1, 1000, 
and 0.5 respectively. The simulation domain is (8 x 8) for two 

dimensions or (8x8x8) for three dimensions . The size of the base 

mesh is (16 x 16) or (16 x 16 x 16). The jump in pressure is used as 

the criterion for the refinement of cells. 

In the first calculation, Figure 18 shows the distribution of 
pressure at t = 0 and 0.68. In this example there are ten levels of 
cells, the location of refinement foJJows the shock propagating 
outward. Through careful examination of the images in the figure, 
it is found out that the mesh preserves symmetries with respect to 
x- and y-axes. 

Figure 18. A calculation of two-dimensional flow . The simulation 
domain is 8x8x8. Initial density is constant, flow is at rest, and 
pressure is 1000 at the center r < 0.5, and 0.1 when r > 0.5. The 
periodic boundary condition is used. The image to the left is the 
initial pressure, and the image to the right is pressure at t = 0.68. 

Figure 19. The pressure at t = 0 (the left) and t = 0.405 (the right 
image) in a 3D simulation. Periodic boundary condition is used. 



The second example is a three-dimensional problem, which is the 
extension of problem described above in three dimensions. Here 
we limit the number of refinement to 4, and there are five levels of 
cells in the problem. Figure 19 shows the pressure and meshes at 
the initial time (the left image) and at t = 0.405 (the right 
image). 

s. CONCLUSIONS and DISCUSSIONS 

In this paper, we have developed and implemented a patch-based 
AMR that preserves symmetries of original physics problems. In 
the implementation, we have emphasized symmetry preserving, 
effective patch management, smoothness of refinement, efficient 
communication for the values on ghost cells of patches; we have 
compared three different approaches to manage patches. The 
approach, in which each computer processor holds the metadata of 
the minimum number of patches, performs much better than other 
two in both two- and three-dimensions. For hydrodynamics 
algorithms, we modified a nonlinear Riemann solver in 
Lagrangian coordinate for its use in fixed Eulerian grids. 
Preliminary numerical examples show that this patch-based AMR 
is able to keep shocks front very sharp. 

Figure 20. The resulting meshes of two simulations with the same 
code, one with double precision (the upper left image) and the 
other with single precision (the upper right image). The lower two 
images are detailed parts of the upper two. The symmetry with 
respect to x-axis is broken in the lower right image of single 
precision. 

The capability for a computer code to preserve symmetries in a 
numerical simulation depends on many factors, including physics 
solvers and machine rounding-off errors. Rounding-off errors are 
much more visible in the simulations involving AMR than in 
those without AMR involved. 

Whether a cell is to be refined may be determined by rounding-off 
errors. Also rounding-off errors may destroy the symmetries of 
problems. To demonstrate this point, we use the same computer 
code to simulate the same problem twice, one through double 
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precision and the other through single precision . Figure 20 shows 
two meshes at one instant, one (the upper left image) from the 
simulation with double precision and the other (the upper right 
image) from single precision. Because of machine rounding-off 
errors, the two meshes are different. Furthermore, the simulation 
with single precision breaks the symmetries, for example, with 
respect to the x-axis. To see more details of the two meshes, the 
parts marked with ovals are enlarged , as shown in the lower two 
images ofFig .20. 

There are several remaining issues to be addressed in our work. It 
is in our plan to add multi-materials physics solvers to the AMR 
package to demonstrate the advantages of compressed material 
data structures. We have noticed that in applications with many 
materials involved, sparse material data structures will eventually 
consume all the computer memories, which will limit the 
capability of computer codes to do large-scale simulations with 
many materials. 
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