

1 **Microbial engineering of nano-heterostructures; biological synthesis of a**
2 **magnetically-recoverable palladium nanocatalyst**

3

4 Victoria S Coker^{1*}, James A Bennett², Neil Telling¹, Torsten Henkel¹, John M Charnock¹,
5 Gerrit van der Laan^{3,1}, Richard AD Pattrick¹, Carolyn I Pearce¹, Richard S Cutting¹,
6 Ian J Shannon², Joe Wood⁴, Elke Arenholz⁵, Ian C. Lyon¹ & Jonathan R. Lloyd¹

7

8 ¹*School of Earth, Atmospheric & Environmental Sciences and Williamson Research*
9 *Centre for Molecular Environmental Science, University of Manchester, Manchester M13*

10 *9PL, UK*

11 ²*School of Chemistry, University of Birmingham, Birmingham B15 2TT, UK*

12 ³*Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK*

13 ⁴*School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK*

14 ⁵*Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
15 USA*

16 *vicky.coker@manchester.ac.uk

17

18 **Abstract**

19 Precious metals supported on ferrimagnetic particles form a diverse range of
20 catalysts. Here we show a novel biotechnological route for the synthesis of a
21 heterogeneous catalyst consisting of reactive palladium nanoparticles arrayed on a
22 biomagnetite support. The magnetic support was synthesised at ambient temperature by
23 the Fe(III)-reducing bacterium, *Geobacter sulfurreducens*, and facilitated ease of

24 recovery of the catalyst with superior performance due to reduced agglomeration. Arrays
25 of palladium nanoparticles were deposited on the nanomagnetite using a simple one-step
26 method without the need to modify the biomineral surface most likely due to an organic
27 coating priming the surface for Pd adsorption. A combination of EXAFS and XPS
28 showed the particles to be predominantly metallic in nature. The Pd⁰-biomagnetite was
29 tested for catalytic activity in the Heck Reaction coupling iodobenzene to ethyl acrylate
30 or styrene and near complete conversion to ethyl cinnamate or stilbene was achieved
31 within 90 and 180 min, respectively.

32

33 **Introduction**

34 Nanoparticles make highly desirable catalysts, often offering unique properties
35 linked to their very high surface area. Palladium, placed on a suitable support material
36 makes an exceptional catalyst well known for mild reaction conditions and exhibiting
37 excellent compatibility with many polar functional groups and a high degree of chemo-,
38 regio- and even stereoselectivity¹. Magnetic nanoparticles are particularly useful support
39 materials for catalysts as they can combine the advantages of high dispersion through a
40 liquid with ease of recovery^{2,3}. Thus, coating magnetic nanoparticles with precious
41 metals such as palladium results in a highly functional catalyst⁴⁻⁷. Conventional chemical
42 approaches to make these materials have achieved varying degrees of success, as loss of
43 precious metal during recycling can be a problem, and complicated protocols are often
44 employed to functionalise the support material surface^{3,4,6,8-10}.

45

Building on earlier work ¹¹, recent studies have revealed biosynthetic routes can be harnessed to make nanoparticles of magnetite (Fe_3O_4) efficiently and at low cost with control over the magnetic properties by substitution of transition metals other than iron into the spinel ferrite structure ¹²⁻¹⁴. Two routes are possible for the biological synthesis of nanoscale magnetite. In the first, magnetotactic bacteria synthesise intracellular crystals of single domain magnetite. These are used by the bacteria to orientate the cell within the Earth's magnetic field, helping the organism to guide itself to the sediment-water interface, its preferred ecological niche ^{15,16}. However, for this route growth yields and indeed, final yields of intracellular magnetite are very low. In the second route, dissimilatory Fe(III)-reducing bacteria such as *Geobacter* species can produce copious quantities of extracellular nanoscale magnetite through the respiration of poorly crystalline Fe(III) oxides and oxyhydroxides ¹¹. These specialist anaerobic bacteria live in environments depleted of oxygen and therefore conserve energy for growth by transferring electrons from the oxidation of simple carbon sources, such as acetate, to Fe(III) or Mn(IV)-bearing minerals ¹⁷. This mechanism of nano-magnetite formation involves the extracellular reduction of Fe(III)-oxyhydroxides causing the release of soluble Fe(II), resulting in complete recrystallisation of the amorphous mineral into the new, relatively reduced, highly crystalline magnetic phase ^{18,19}. Especially relevant to manufacturing, these enzyme-driven reactions take place on the scale of hours, at ambient pressures and temperatures and use inexpensive feedstocks ¹⁸. Thus, nanoscale biomagnetite is a potential support material for industrial catalysts, especially if simplified protocols for functionalising the bionanomineral surface can be developed.

68

69 Here we describe the bio-production of such a catalyst comprising of
70 biomagnetite functionalised with palladium nanoparticles and involving a minimal level
71 of downstream processing. The effectiveness of this catalyst is demonstrated for the Heck
72 coupling of iodobenzene with styrene or ethyl acrylate. Heck chemistry is of wide-
73 ranging industrial importance, providing a single step route to the arylation, alkylation or
74 vinylation of various alkenes^{20,21}. Traditionally a palladium-phosphine catalyst is used,
75 although a large amount of literature is devoted to the study of a variety of different
76 catalysts for these reactions^{20,22}. This work opens the door to the development of an
77 energy efficient, environmentally friendly route to manufacture novel magnetic
78 heterostructures which can be employed in a wide range of applications.

79

80 Main text

81 A biogenic nanoscale magnetite support was first produced by anoxic washed cell
82 suspensions of *Geobacter sulfurreducens* challenged with Fe(III)-oxyhydroxide, an
83 electron donor (sodium acetate) and a redox mediator [9,10-anthraquinone-2,6-
84 disulphonate (AQDS)]. After approximately 8 h, the Fe(III)-oxyhydroxide had been
85 completely converted to magnetite. Production of the functionalised Pd-coated magnetite
86 was concluded through the addition of a solution of NaPdCl₄ to the water-washed nano-
87 magnetite suspension under an anoxic atmosphere (N₂:H₂ = 97%:3%); optimisation
88 studies revealed that removal of soluble palladium occurred rapidly, within an hour, and
89 was efficient over a range of Pd(II) concentrations up to 10 mol% Pd.

90

91 Detailed examination was undertaken of a nano-magnetite functionalised with a
92 ~5 mol% Pd loading, produced by mixing the Pd(II) solution and biomagnetite for 12 h
93 prior to washing in deionised water. Transmission electron microscope (TEM) images of
94 the material produced before (Fig 1a) and after (Fig 1b) precipitation of Pd onto the
95 surface of biomagnetite are shown. Fig. 1(a) shows the magnetite to have a consistent
96 particle size range of 20 nm to 30 nm. However, after addition of Pd, two sizes of particle
97 became clearly visible; the high-resolution inset in Fig. 1b shows how smaller particles
98 (~5 nm) are attached to the larger particles (~20 nm). Energy dispersive X-ray (EDX)
99 analysis using a relatively unfocussed beam showed the bulk sample (Fig 1b) to contain
100 ~3.5 at% Pd. Using an EDX spot size of 5-6 nm, analyses (Fig 1b inset, point 1) indicated
101 that the larger particles contained less than 1 at% Pd whereas analyses centred on the
102 smaller particles (Fig 1b inset, point 2) suggested that they were enriched for the precious
103 metal (9-10 at% Pd). These results indicate that the larger particles are the biomagnetite
104 crystals decorated with small Pd particles. Both small and large particles displayed
105 continuous lattice fringes, indicative of well-crystalline single crystals. TEM selected
106 area electron diffraction (SAED) analysis (Fig. 1c) of the particles with supporting data
107 from powder X-ray diffraction (PXRD) (Fig. 1d) confirmed that the material contained
108 Bragg reflections consistent with the presence of magnetite with less pronounced
109 reflections consistent with Pd metal; the latter are broader than those for magnetite owing
110 to their smaller particle size. Crystallite size was estimated by applying the Scherrer
111 equation to the (311) peak of magnetite in Fig. 1(d) which resulted in a mean crystallite
112 size of 27.2 nm consistent with the size estimate from electron microscopy imaging. In
113 addition, although much weaker it was possible to obtain an estimate of the Pd crystallite

114 size from the Pd (311) peak which gave a value of ~5 nm, again in good agreement with
115 TEM images.

116

117 In most examples of supported Pd catalyst manufacture, an organic ligand or
118 silica shell is used to aid attachment of the Pd to the support ^{4,5} for example 3-
119 aminopropyl triethoxysilane (APTS)⁵. However, in the case of biogenic magnetite no pre-
120 coating with a ligand was required to aid attachment of Pd. Thus, to characterise the
121 surface of biogenic magnetite, samples prior to Pd(II) addition were analysed using Time-
122 of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), as this technique is very
123 sensitive to both organic and inorganic compounds. Images of different secondary ions
124 (SI) associated with either Fe, Al or organic material on the surface of a washed biogenic
125 nanomagnetite (Fig. 2(a)) were compared to the maps from a synthetically produced
126 nanomagnetite (Alfa Aesar, Heysham, UK) (Fig. 2(b)). Fig. 2 illustrates that there is a
127 significant quantity of organic material associated with the biogenic magnetite, as the
128 representative secondary ion images of organic molecules spatially correlate with the Fe
129 map, whereas the inorganic magnetite showed no significant organic signature
130 corresponding to the spatial distribution of Fe. Depth profiling of the organic layer using
131 C₆₀ primary ions (PI) indicated that the organic layer is indeed a coating on the
132 nanomagnetite. One bombardment of ~10¹⁵PI/cm² resulted in a decrease of the SI-signals
133 associated with the organic material by a factor of approximately 100 (Fig 2(c)) whereas
134 the SI-signals associated with the nanomagnetite stayed almost constant. Some of the
135 secondary ion ratios for the Fe-bearing clusters in Fig 2(c) are below a value of one, as
136 ionisation efficiencies change slightly with decreasing amounts of organic material. The

137 presence of an organic coating explains the ability of the nanomagnetite to adsorb Pd
138 without the need to pre-coat the washed nanoparticles prior to introducing the Pd
139 solution. A likely source of the organic material is extracellular polymeric substance
140 (EPS), a common product of bacterial pure cultures and communities, as this has
141 previously been found bound to biogenic uranium nanoparticulate material²³. We are not,
142 however, excluding the presence of other cell exudates or constituents released after lysis
143 of dead cells.

144

145 Using X-ray absorption (XA) spectroscopy, the Fe *K*-edge absorption spectra of
146 biomagnetite before and after the addition of Pd were collected to provide the extended
147 X-ray absorption fine structure (EXAFS) [Fig. 3a (i, ii); Table 1] and their corresponding
148 Fourier transform [Fig. 3b (i, ii); Table 1]. The EXAFS data provided an excellent fit for
149 a magnetite structure for both samples, with the bond lengths for the tetrahedral (T_d) and
150 octahedral (O_h) sites showing slight shortening after addition of Pd from 1.85 to 1.80 Å
151 and from 2.03 to 2.00 Å, respectively. Incorporating Pd atoms did not improve the fit,
152 indicating that the nanoparticulate Pd attached directly to the iron cations in magnetite or
153 via bridging oxygens was below the limit of detection. XA was additionally used to
154 obtain the Fe *L*_{2,3}-edge within a magnetic field and thus provide the X-ray magnetic
155 circular dichroism (XMCD) difference spectra of these samples (Fig. 4a). The Fe *L*_{2,3}-
156 edge XMCD can distinguish between the three Fe cation environments present in ferrite
157 spinel structures to a depth of ~65 Å as the intensities of the peaks labelled in Fig. 3a(i)
158 relate to the amount of Fe²⁺ O_h (octahedral), Fe³⁺ T_d (tetrahedral), and Fe³⁺ O_h
159 respectively (see ²⁴⁻²⁶ for details). Fig. 4a(i) displays the Fe *L*_{2,3}-edge XMCD spectrum for
160 biomagnetite without addition of Pd that after fitting gave an Fe²⁺/Fe³⁺ ratio of 0.64,

161 indicating an excess of Fe^{2+} compared to a typical stoichiometric magnetite which would
162 have a ratio of 0.50, consistent with previous results for biogenic magnetites^{27,28}. The
163 addition of Pd resulted in an increase in the amount of Fe^{2+} , forming a spinel with a
164 $\text{Fe}^{2+}/\text{Fe}^{3+}$ ratio of 0.70 (Fig. 3b). The reduction of Fe^{3+} to Fe^{2+} in the spinel relates, most
165 likely, to the ability of Pd^0 nanoparticles to absorb large quantities of hydrogen which
166 then interacts with the outer Fe atoms causing reduction to Fe^{2+} .

167

168 EXAFS and X-ray photoelectron spectroscopy (XPS) were used to determine the
169 nature of the Pd particles deposited on the surface of the magnetite. EXAFS and the
170 related fourier transform from the Pd *K*-edge [Fig. 3(a,b)(iv)] for Pd-biomagnetite could
171 be fitted with 5 coordination shells of atoms the first shell containing 12 Pd scatterers in
172 at 2.74 Å and the second shell 6 Pd scatterers at 3.84 Å (see Table 1); these data have an
173 excellent correspondence to values for Pd metal foil [Fig. 3(a,b)(iii)]. Fitting the Pd 3d
174 XPS spectrum (Fig. 4b) indicated that the main Pd peak had a binding energy of 335.3 eV
175 with a minor peak (6% intensity) at a binding energy of 336.8 eV. These compare well
176 with literature values that show the main peak to be Pd^0 ²⁹ and the weak peak to be a
177 second phase that may be PdO or PdO_2 ³⁰. Pd-oxide could be present due to either
178 oxidation of the surface of the metallic Pd or the Pd nanoparticles could be attaching to
179 the magnetite via ‘bridging’ oxygens. Additional XPS data (not shown) indicated that the
180 surface of the nanoparticles had an Fe:Pd ratio of 1.00:0.22. Thus the TEM, XAS and
181 XPS data are consistent and confirm the presence of Pd^0 nanoparticles attached to a
182 biomagnetite support. Samples were kept under anoxic conditions throughout the

183 preparation and measurement when using the surface sensitive techniques XMCD and
184 XPS to ensure that the samples were not air oxidised.

185

186 The definitive test of the usefulness of the 5 mol% Pd-coated biomagnetite is its
187 catalytic potential and therefore Heck Reaction coupling of iodobenzene to styrene or
188 ethyl acrylate was performed. Identical catalytic testing was also carried out on colloid
189 stabilised nanoparticulate palladium³¹⁻³³ as a means of comparing the Pd-coated
190 biomagnetite to a highly active conventional catalyst. The Pd-coated biomagnetite was
191 found to be active in the coupling of both olefins, with the complete conversion of the
192 iodobenzene (plus ethyl acrylate or styrene) to ethyl cinnamate or stilbene within 90 and
193 180 min, respectively. Rates of reaction were equal or superior to those obtained with an
194 equimolar amount of Pd from the colloidal palladium catalyst. However, the advantage of
195 the magnetite-based catalyst was that it could be readily recovered at the end of the
196 reaction by simply decanting the solution from the reaction vessel while retaining the
197 solid catalyst by applying a magnetic field to the base of the flask. The solid was washed
198 and dried before use in subsequent reactions.

199

200 Successive runs were performed for the Heck coupling of iodobenzene and ethyl
201 acrylate to test the Pd-coated magnetite for recyclability. Although a small decrease in
202 initial reaction rate was observed in each successive cycle, virtually quantitative
203 conversions were reached in 120 min for each run, up to a fourth cycle (Fig. 5), an
204 improvement on some literature values for conventional catalysts⁵. These experiments
205 were conducted without attempting to exclude air and the decrease in activity is attributed

206 to the loss of a small amount of material due to oxidation of some of the magnetite
207 support to a non-magnetic phase material which was not recovered between runs, rather
208 than direct loss of Pd to solution. Indeed, ICP-AES analysis of the supernatant in each
209 cycle confirmed that there was negligible loss of Pd or indeed Fe to solution (data not
210 shown). By comparison although the palladium colloids remained catalytically active for
211 a second cycle of the ethyl acrylate coupling the halide conversion was only 89 %
212 compared to > 99% for Pd-coated biomagnetite (Fig. 5). In addition more than 75% of
213 the mass of the catalyst was lost during the recovery step, most likely due to the tertiary
214 butyl ammonium bromide capping layer dissolving in the solvent. This would lead to the
215 remaining palladium aggregating, reducing the active surface area substantially. Further
216 recycling after the second run was unfeasible due to the very low mass of remaining
217 material.

218

219 These results demonstrate that a novel biomagnetite-supported Pd-nanoparticle
220 catalyst has several major advantages over conventional colloidal Pd catalysts. First,
221 recovery and recycling is facile and, second, the biomagnetite support keeps the Pd
222 dispersed and prevents it from agglomerating and losing vital surface area. The
223 preparation method, apart from its novelty, provides an organics-coated ferrite particle in
224 a one-step process, allowing Pd nanoparticles to be attached to the support material
225 without further processing. Bacterial production is a low cost environmentally-friendly
226 biotechnological route of manufacture, which opens up a route to the manufacture of
227 other precious metal nanocatalysts. Recent success at applying gold and platinum derived
228 materials to biogenic magnetite as supported nanoparticles (unpublished data) indicates

229 the versatility of bacterial production of nanocatalysts, which could be applied to a wide
230 range of catalytic reactions.

231

232

233 **Methods**

234 As previously described, magnetite production was achieved by the reduction of
235 Fe(III)-oxyhydroxide in the presence of AQDS using *G. sulfurreducens*¹³, under an
236 atmosphere of N₂–CO₂ (80:20). Bottles were incubated in the dark at 30 °C for two days
237 after which magnetite had been produced. The resulting magnetite was washed twice in
238 degassed deionised water and then re-suspended in water using its magnetic properties to
239 separate the mineral from the supernatant. An aliquot of a solution of sodium
240 tetrachloropalladate (Na₂PdCl₄, Sigma-Aldrich CAS no. 13820-53-6) was then added so
241 that the final concentration of Pd was 5% by mass of the magnetite. The magnetite
242 suspension was left overnight in a shaking incubator at 150 rpm and 20 °C. The sample
243 was then washed again twice using degassed, distilled deionised water twice before
244 drying under anoxic conditions.

245

246 The Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) analyses
247 were carried out using the IDLE instrument³⁴ which was equipped with a C₆₀ primary ion
248 gun³⁵. Chemical damage by C₆₀ primary ions is far less than by any other primary ion
249 species so that depth profiling of organic samples becomes feasible³⁶. Analysis of
250 inorganic material is also improved³⁷ enabling comprehensive investigation of mixed
251 samples. Only a few atomic layers are sputtered during each measurement making TOF-

252 SIMS an ideal method to study thin layers on sample surfaces with sensitivities high
253 enough to analyze trace element abundances. As the beam is rastered over the measured
254 area a complete mass spectrum is recorded at each point allowing for comprehensive
255 offline analysis. Secondary ion distribution images have been reconstructed for all
256 interesting mass intervals and background-corrected count integrals for all these mass
257 intervals have been used for quantitative analysis. The magnetite samples have been
258 mounted on Al stubs in a thick layer of around one hundred micro-metres and analyses
259 have been carried out with a lateral resolution of $2\mu\text{m}$ and a field-of-view of
260 $480\times365\mu\text{m}^2$.

261

262 X-ray absorption (XA) spectra were collected for the Fe and Pd *K* edges on
263 beamline 9.3 at the Synchrotron Radiation Source (SRS), Daresbury Laboratory. A
264 double crystal Si(311) monochromator was used, detuned to 70% transmission for
265 harmonic rejection. Pd *K*-edges were collected at 80 K in fluorescence mode using a 9-
266 element Ge detector. Fe *K*-edges and a standard palladium foil were collected at 80 K in
267 transmission mode. Background subtracted EXAFS spectra were analyzed in EXCURV98
268 using full-curved-wave theory as described in Henderson et al. (2007)³⁸, which allows the
269 proportion of metal in each site to be refined as a single parameter. The metallic-phase Pd
270 *K*-edge spectra were analysed in EXCURV98 using a model based on the crystal
271 structure of Pd³⁹ the Fermi energy correction and the absorber-scatterer distances and
272 Debye-Waller factors were refined to minimise a least squares residual.

273

274 XA spectra for XMCD were collected on beamline 4.0.2 at the Advanced Light
275 Source (ALS), Berkeley, CA, using the octopole magnet endstation ⁴⁰. Powders were
276 mounted on carbon tape attached to the sample manipulator and kept in O₂-free
277 conditions throughout. XA was monitored in total-electron yield mode, which gives an
278 effective probing depth of ~4.5 nm. At each energy point the XA was measured for the
279 two opposite magnetisation directions by reversing the applied field of 0.6 T. The XA
280 spectra of the two magnetisation directions were normalised to the incident beam
281 intensity and subtracted from each other to give the XMCD spectrum ²⁴. Spectra were
282 fitted by means of a non-linear least-squares analysis, using calculations for each of the
283 Fe sites ²⁴. In these calculations, as described elsewhere ⁴¹, the Hartree-Fock Slater
284 integrals for the 3d-3d and 2p-3d Coulomb and exchange interactions were scaled to 70%
285 and 80%, respectively, and the crystal fields for the O_h and T_d sites were taken to be
286 $10Dq = 1.2$ eV and -0.6 eV, respectively. The calculated spectra were convoluted by a
287 Lorentzian of $\Gamma = 0.3$ (0.5) eV for the L_3 (L_2) edge to account for intrinsic core-hole
288 lifetime broadening and by a Gaussian of $\sigma = 0.15$ eV to account for instrumental
289 broadening.

290

291 TEM was conducted using a Phillips/FEI CM200 equipped with a field emission
292 Gun, EDX system (Oxford Instruments UTW ISIS) and a Gatan imaging filter. All TEM
293 images presented here are bright-field images obtained using an operating beam voltage
294 of 200 keV. Selected area electron diffraction (SAED) patterns were acquired using an
295 appropriate diffraction aperture. A droplet of washed sample was placed on a carbon grid
296 (Agar Scientific) and allowed to dry before imaging.

297

298 X-ray photoelectron spectroscopy (XPS) data were recorded using a Kratos Axis
299 Ultra employing a monochromated Al $K\alpha$ X-ray source and an analyser pass energy of
300 20eV, resulting in a total energy resolution of ~0.9eV. Uniform charge neutralisation of
301 the photoemitting surface was achieved by exposing the surface to low energy electrons
302 in a magnetic immersion lens system (Kratos Ltd.). The system base pressure was 5×10^{-10}
303 mbar. All samples were dried anaerobically and the resulting powders were loaded into
304 the spectrometer via a dry nitrogen glove box to avoid exposure to atmospheric oxygen.
305 Photoelectron binding energies (BE) were referenced to C1s adventitious carbon
306 contamination peaks set at 285eV BE. The electron energy analyser was calibrated using
307 elemental references: Au4f_{7/2} (83.98eV BE), Ag3d_{5/2} (368.26eV BE) and Cu2p_{3/2}
308 (932.67eV BE). An appropriate (Shirley) background was removed from all spectra ⁴².

309

310 To test the catalytic properties of the Pd-coated biomagnetite dry DMF (15 mL),
311 5% wt Pd magnetite catalyst (10.6 mg, 0.5 mol %), iodobenzene (204 mg, 1 mmol) and
312 triethylamine (0.21 mL, 1.5 mmol) were added to a 2-necked round bottomed flask,
313 equipped with reflux condenser under a nitrogen atmosphere, and the mixture heated to
314 120 °C with stirring. Olefin substrate (1.5 mmol) was added and the mixture stirred at 120
315 °C under nitrogen. Samples were taken from the reaction periodically for analysis by high
316 performance liquid chromatography using a Dionex Summit HPLC (with Chromeleon
317 software) with a Summit p580 quaternary low pressure gradient pump, Summit UVD
318 170s UV/VIS multichannel detector with analytical flow cell and a Phenomenex Luna
319 10u C18 (2) Column, 250 mm x 4.6 id. A flow rate of 1 ml/min was used with a solvent

320 gradient of 100 % water to 100 % MeCN over 40 min, hold for 10 min, and then back to
321 100 % water for 10 min. At the end of the reaction, the mixture was allowed to cool to
322 room temperature before decanting the solution from the flask whilst retaining the
323 catalyst by applying a magnetic field to outside of the flask. The solid was washed (5 mL
324 DMF followed by 5 mL acetone) and the solid dried for use in the next run.

325

326 **Acknowledgements**

327 This work was supported by the EPSRC grants EP/D057310/1 & EP/D058767/1 and
328 BBSRC grant BB/E003788/1. We would like to thank P Wincott for XPS analysis, M
329 Ward for TEM support and J Waters for XRD support. We thank the STFC, Daresbury
330 for beamtime and S Fiddy for assistance with EXAFS. The Advanced Light Source is
331 supported by the Director, Office of Science, Office of Basic Energy Sciences, of the
332 U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and is thanked for
333 XMCD beamtime.

334

335

336

337

References

- 338
339
340
341
342
343
344 1. D'Souza, D. M. & Muller, T. J. J. Multi-component syntheses of heterocycles by
345 transition-metal catalysis. *Chem Soc Rev* **36**, 1095-1108 (2007).
346 2. Lu, A.-H., Salabas, E. L. & Schuth, F. Magnetic nanoparticles: synthesis,
347 protection, functionalization and application. *Angewandte Chemie* **46**, 1222-1244
348 (2007).
349 3. Baruwati, B., Guin, D. & Manorama, S. V. Pd on surface-modified NiFe₂O₄
350 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions.
351 *Organic Letters* **9**, 5377-5380 (2007).
352 4. Rossi, L. et al. Superparamagnetic nanoparticle-supported palladium: a highly
353 stable magnetically recoverable and reusable catalyst for hydrogenation reactions.
354 *Green Chemistry* **9**, 379-385 (2007).
355 5. Wang, Z. L., Shen, B., Aihua, Z. & He, N. Synthesis of Pd/Fe₃O₄ nanoparticle-
356 based catalyst for the cross-coupling of acrylic acid with iodobenzene. *Chemical
357 Engineering Journal* **113**, 27-34 (2005).
358 6. Wang, Z., Xiao, P., Shen, B. & He, N. Synthesis of palladium-coated magnetic
359 nanoaprticle and its application in Heck reaction. *Colloids and Surfaces A:
360 Physicochem. Eng. Aspects* **276**, 116-121 (2006).
361 7. Mizukoshi, Y., Sato, K., Konno, T. J., Masahashi, N. & Tanabe, S. Magnetically
362 Retrievable Palladium/Maghemic Nanocomposite Catalysts Prepared by
363 Sonochemical Reduction Method. *Chemistry Letters* **37**, 922-923 (2008).

- 364 8. Kinoshita, T., Seino, S., Mizukoshi, Y., Nakagawa, T. & Yamamoto, T.
- 365 Functionalization of magnetic gold/iron-oxide composite nanoparticles with
- 366 oligonucleotides and magnetic separation of specific target. *Journal of Magnetism*
- 367 & *Magnetic Materials* **311**, 255-258 (2007).
- 368 9. Mandal, M. et al. Magnetite nanoparticles with a tunable gold or silver shell.
- 369 *Journal of Colloidal and Interface Science* **286**, 187-194 (2005).
- 370 10. Auer, E., Freund, A., Pietsch, J. & Tacke, T. Carbons as supports for industrial
- 371 precious metal catalysts. *Applied Catalysis A: General* **173**, 259-271 (1998).
- 372 11. Lovley, D. R., Stoltz, J. F., Nord Jr, G. L. & Phillips, E. J. P. Anaerobic
- 373 production of magnetite by a dissimilatory iron-reducing microorganism. *Nature*
- 374 **330**, 252-254 (1987).
- 375 12. Moon, J.-W. et al. Magnetic response of microbially synthesized transition metal-
- 376 and lanthanide-substituted nanosized magnetites. *J Magn Magn Mater* **313**, 283-
- 377 292 (2007).
- 378 13. Coker, V. S. et al. Probing the site occupancies of Co, Ni and Mn substituted
- 379 biogenic magnetite using XAS and XMCD. *Am. Mineral.* **93**, 1119-1132 (2008).
- 380 14. Staniland, S. et al. Controlled cobalt doping of magnetosomes *in vivo*. *Nature*
- 381 *Nanotechnology* **3**, 158-162 (2008).
- 382 15. Blakemore, R. Magnetotactic bacteria. *Science* **190**, 377-379 (1975).
- 383 16. Frankel, R. B., Blakemore, R. & Wolfe, R. S. Magnetite in freshwater magnetic
- 384 bacteria. *Science* **203**, 1355-1357 (1979).

- 385 17. Caccavo Jr, F. et al. *Geobacter sulfurreducens* sp. nov., a hydrogen and acetate-
386 oxidising dissimilatory matal reducing. *Appl Environ Microb* **60**, 3752-3759
387 (1994).
- 388 18. Coker, V. S. et al. Time-resolved synchrotron X-ray powder diffraction study of
389 magnetite formation by the Fe(III)-reducing bacterium, *Geobacter sulfurreducens*.
390 *Am Mineral* **93**, 540-547 (2008).
- 391 19. Hansel, C. M. et al. Secondary mineralization pathways induced by dissimilatory
392 iron reduction of ferrihydrite under advective flow. *Geochim Cosmochim Ac* **67**,
393 2977-2992 (2003).
- 394 20. Beletskaya, I. P. & Cheprakov, A. V. The Heck Reaction as a Sharpening Stone
395 of Palladium Catalysis. *Chemical Reviews* **100**, 3009-3066 (2000).
- 396 21. Polshettiwar, V. & Molnár, Á. Silica-supported Pd catalysts for Heck coupling
397 reactions. *Tetrahedron* **63**, 6949-6976 (2007).
- 398 22. Wang, Z., Chen, Z., Gu, J., Li, Y. & Li, W. Occurrence and environmental
399 implications of magnetic iron sulfides in stiff muds from the continental shelf of
400 the East China Sea. *Geo-Marine Lett* **25**, 300-305 (2005).
- 401 23. Marshall, M. J. et al. Microorganisms that catalyze changes in oxidation states of
402 metals can be used to decontaminate environments of radionuclides. Here, *c*-type
403 cytochromes on the outer membrane of a dissimilatory metal reducing bacterium
404 are shown to be essential for the reduction of uranium(VI). *PLoS Biol* **4**, e268
405 (2006).

- 406 24. Pattrick, R. A. D. et al. Cation site occupancy in spinel ferrites studied by X-ray
407 magnetic circular dichroism: developing a method for mineralogists. *Eur. J.*
408 *Mineral.* **14**, 1095-1102 (2002).
- 409 25. Pearce, C. I., Henderson, C. M. B., Pattrick, R. A. D., van der Laan, G. &
410 Vaughan, D. J. Direct determination of cation site occupancies in natural ferrite
411 spinels by $L_{2,3}$ x-ray absorption spectroscopy and x-ray magnetic circular
412 dichroism. *American Mineralogist* **91**, 880-893 (2006).
- 413 26. Coker, V. S. et al. XAS and XMCD evidence for species-dependent partitioning
414 of arsenic during microbial reduction of ferrihydrite to magnetite. *Environmental*
415 *Science & Technology* **40**, 7745-7750 (2006).
- 416 27. Carvallo, C. et al. Biogenic vs. abiogenic magnetite nanoparticles: A XMCD
417 study. *Am Mineral* **93**, 880-885 (2008).
- 418 28. Coker, V. S. et al. Cation site occupancy of biogenic magnetite compared to
419 polygenic ferrite spinels determined by X-ray magnetic circular dichroism. *Eur J*
420 *Mineral* **19**, 707-716 (2007).
- 421 29. Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F. & Muilenberg, G. E.
422 *Handbook of X-ray Photoelectron Spectroscopy* (Perkin Elmer Corporation, Eden
423 Prairie, Minnesota, 1979).
- 424 30. Kim, K. S., Gossman, A. F. & Winograd, N. X-ray photoelectron spectroscopic
425 studies of palladium oxides and the palladium-oxygen electrode. *Analytical*
426 *Chemistry* **46**, 197-200 (1974).

- 427 31. Bonnemann, H., Brinkmann, R. & Neiteler, P. Preparation and catalytic properties
428 of NR_4^+ -stabilized palladium colloids. *Appl Organometallic Chem* **8**, 361-378
429 (1994).
- 430 32. Reetz, M. T., Breinbauer, R. & Wanninger, K. Suzuki and Heck reactions
431 catalyzed by preformed palladium clusters and palladium/nickel bimetallic
432 clusters. *Tetrahedron Lett* **37**, 4499-4502 (1996).
- 433 33. Reetz, M. T. et al. Visualization of surfactants on nanostructured palladium
434 clusters by a combination of STM and high-resolution TEM. *Science* **267**, 367-
435 369 (1995).
- 436 34. Henkel, T., Tizard, J., Blagburn, D. & Lyon, I. IDLE - Interstellar Dust Laser
437 Explorer. A new instrument for elemental and isotopic analysis and imaging of
438 interstellar and interplanetary dust. *Review of Scientific Instruments* **78**, 055107
439 (2007).
- 440 35. Hill, R. & Blenkinsopp, P. W. M. The development of C_{60} and gold cluster ion
441 guns for static SIMS analysis. *Applied Surface Science* **231-232**, 936-939 (2004).
- 442 36. Fletcher, J. S. et al. TOF-SIMS analysis Using C_{60} . Effect of impact energy on
443 yield and damage. *Analytical Chemistry* **78**, 1827-1831 (2006).
- 444 37. Henkel, T., Rost, D. & Lyon, I. C. Improvements in quantification accuracy of
445 inorganic TOFSIMS analysis of silicate materials by using C_{60} primary ions.
446 *Rapid Communications in Mass Spectrometry*, in print (2009).
- 447 38. Henderson, C. M. B., Charnock, J. M. & Plant, D. A. Cation occupancies in Mg,
448 Co, Ni, Zn, Al ferrite spinels: a multi-element approach EXAFS study. *Journal of
449 Physics: Condensed Matter* **19**, 076214 (2007).

- 450 39. Rao, C. N. & Rao, K. K. Effect of Temperature on Lattice Parameters of Some
451 Silver-Palladium Alloys. *Canadian Journal of Physics* **42**, 1336-1342 (1964).
- 452 40. Arenholz, E. & Prestemon, S. O. Design and performance of an eight-pole
453 resistive magnet for soft X-ray magnetic dichroism measurements. *Reviews of*
454 *Scientific Instruments* **76**, 083908/1-8 (2005).
- 455 41. van der Laan, G. & Thole, B. T. Strong magnetic X-ray dichroism in $2p$
456 absorption spectra of $3d$ transition metal ions. *Phys Rev B* **43**, 13401-13411
457 (1991).
- 458 42. Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the Valence
459 Bands of Gold. *Physical Review B* **5**, 4709-4714 (1972).
- 460
- 461

462 **Table Caption**

463

464 **Table 1.** Parameters obtained from fitting the Fe and Pd *K*-edges EXAFS spectra of
465 biomagnetite samples. N is the coordination number, r is the interatomic distance and $2\sigma^2$
466 is the Debye-Waller factor.

467

468 **Figure captions**

469

470 **Figure 1.** TEM images of, **a**, biomagnetite and, **b**, Pd-coated biomagnetite, inset contains
471 annotation indicating where EDX spectra were taken. **c**, selected area electron diffraction
472 (SAED) pattern for Pd-coated biomagnetite with reflections labelled in black (magnetite)
473 and grey (palladium) and, **d**, X-ray diffraction (XRD) of Pd-coated biomagnetite.

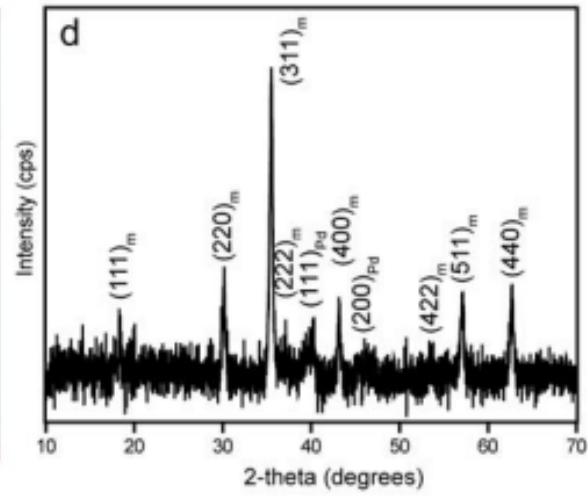
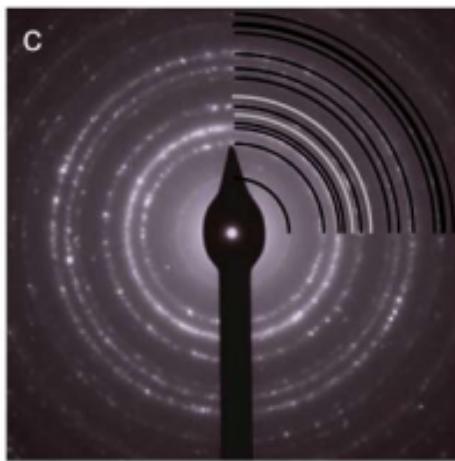
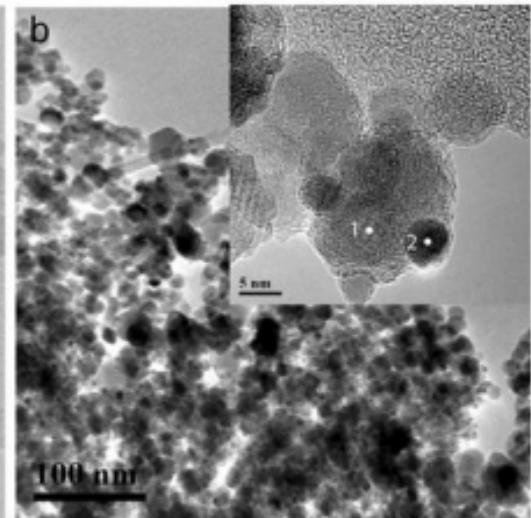
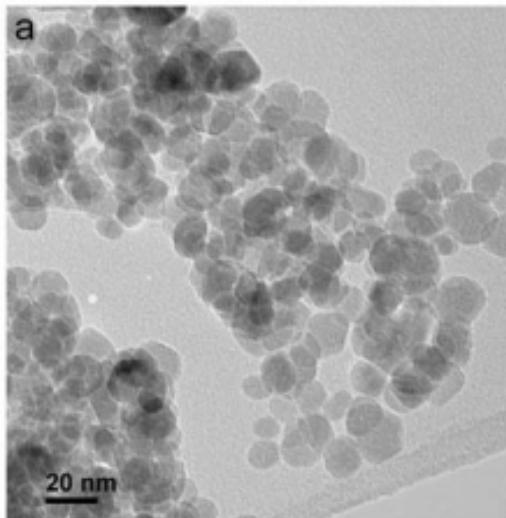
474

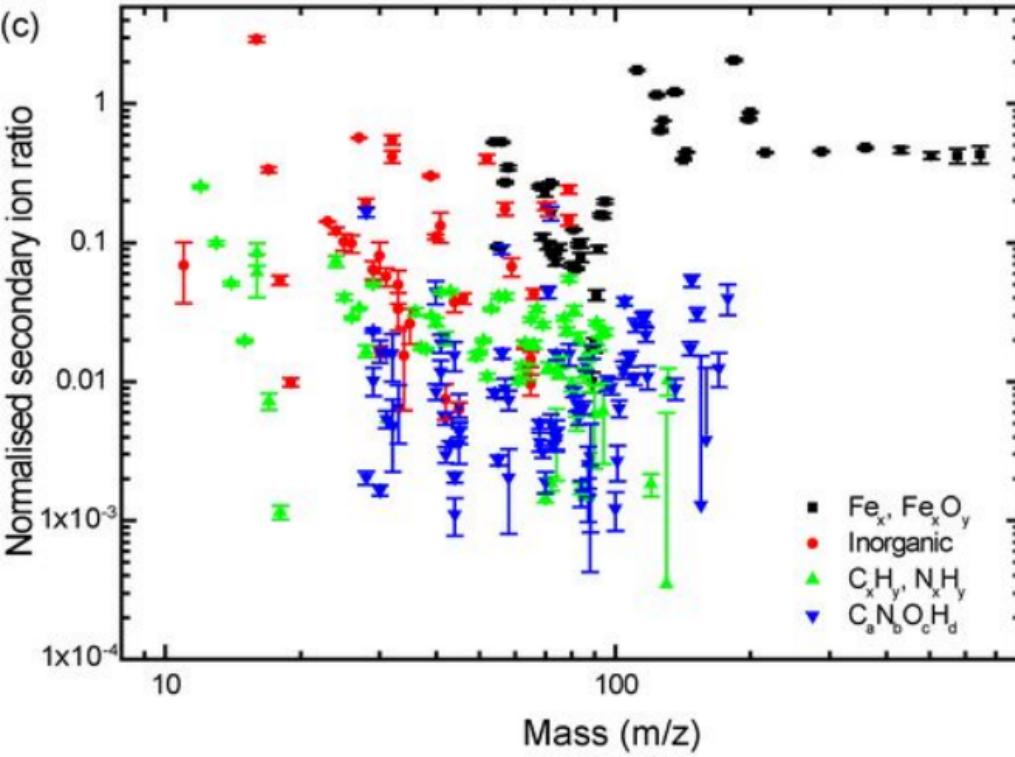
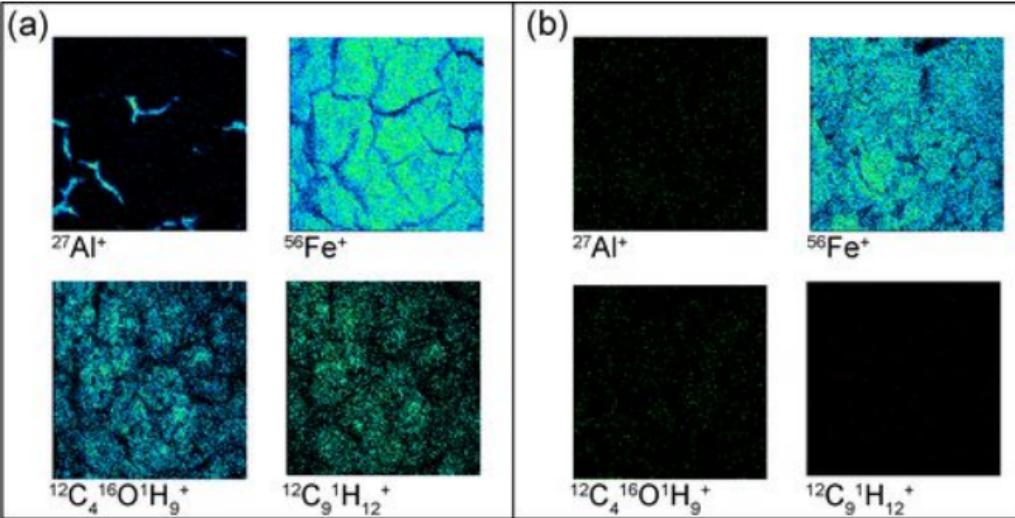
475 **Figure 2.** TOF-SIMS images of (a) washed biogenic nanomagnetite produced by
476 *Geobacter sulfurreducens* and (b) commercially available inorganic nanomagnetite.
477 Normalised secondary ion ratio of the surface of washed biogenic magnetite before and
478 after ablation of the surface with a C_{60} gun.

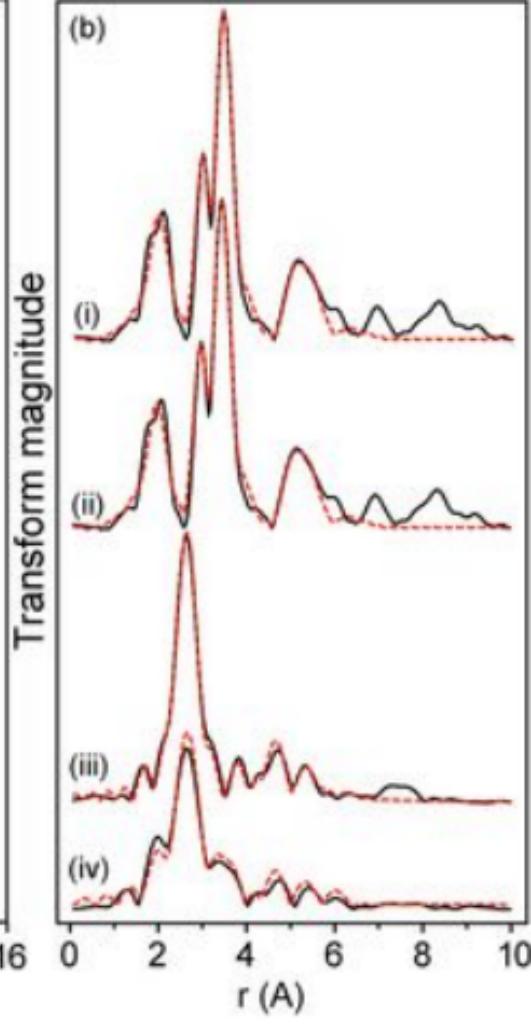
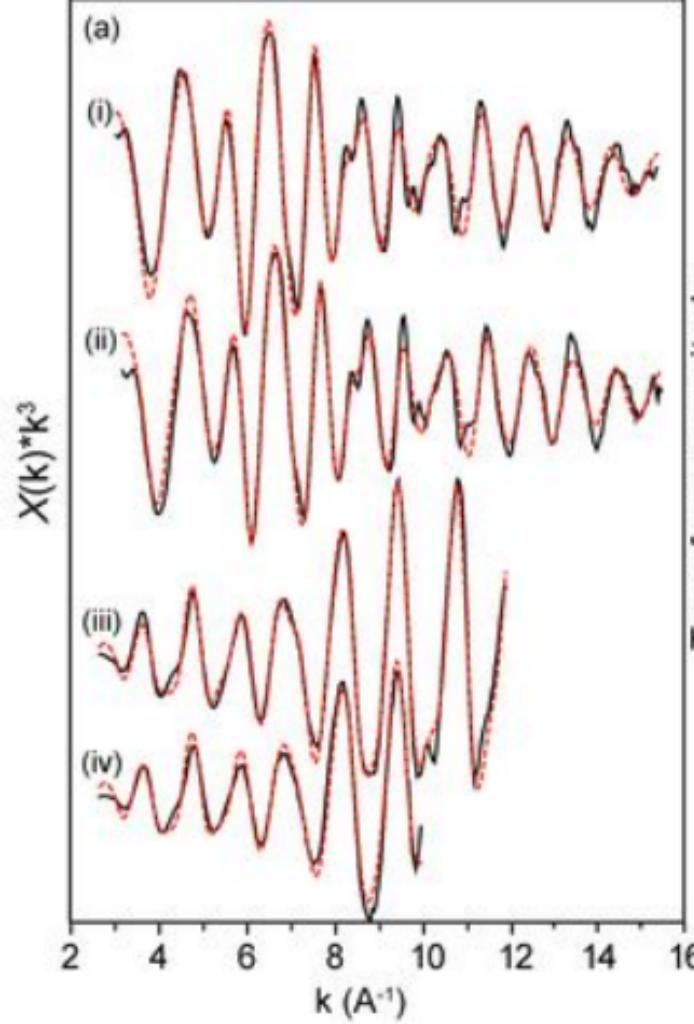
479

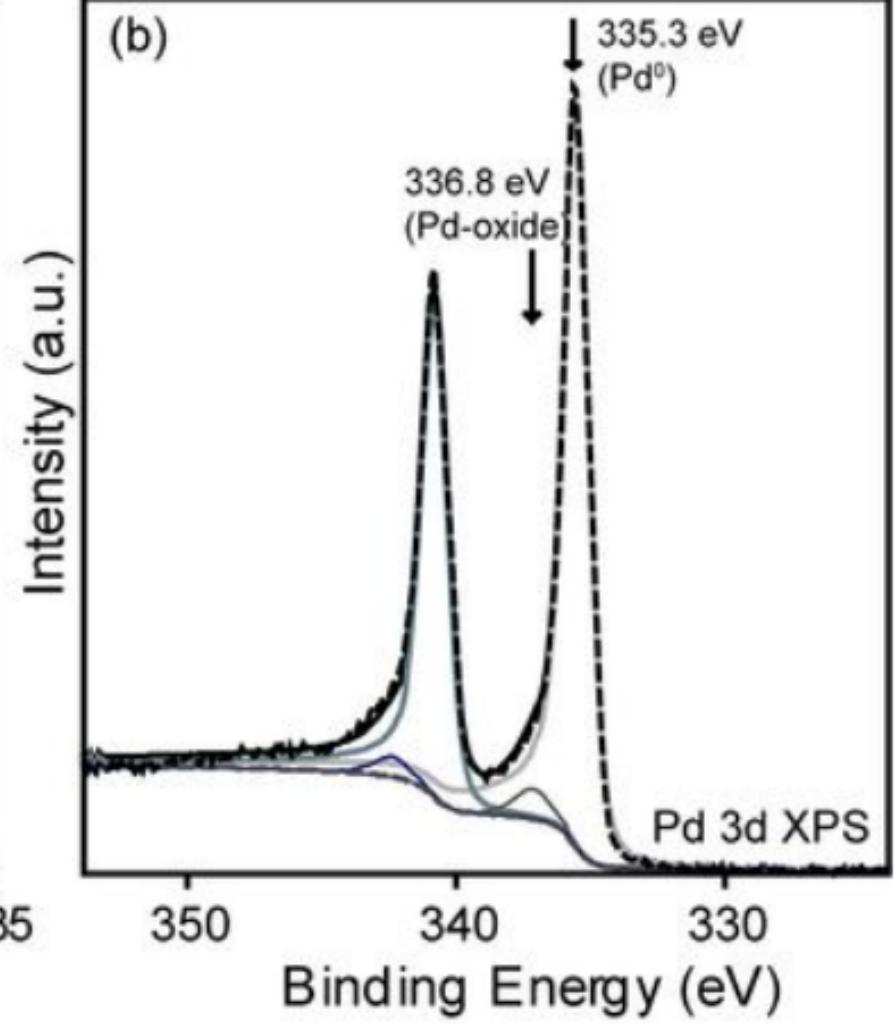
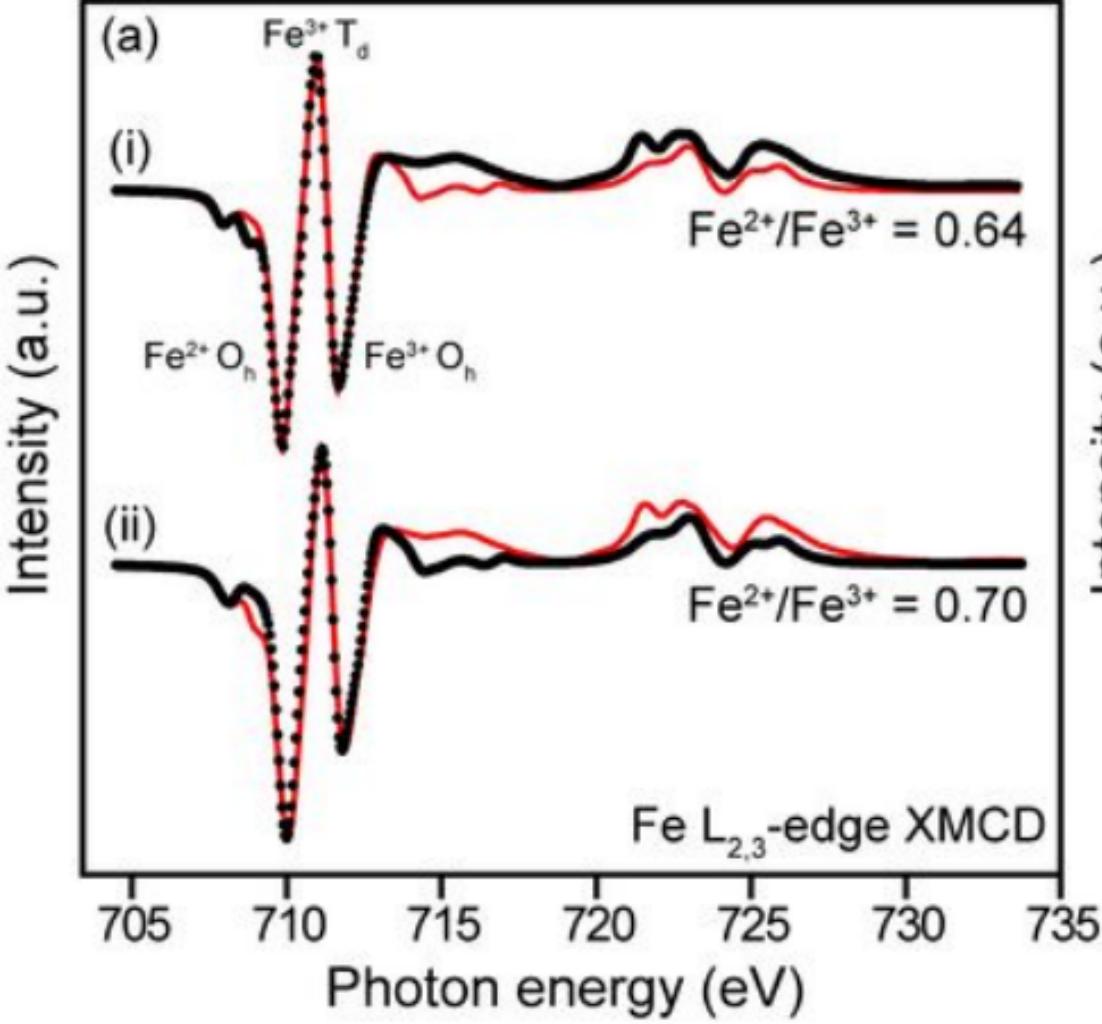
480 **Figure 3. a**, EXAFS and, **b**, corresponding Fourier transform for the Fe *K*-edge of (i)
481 biomagnetite and (ii) Pd-coated bio-magnetite and Pd *K*-edge of (iii) Pd foil and (iv) Pd-
482 coated biomagnetite. Data (black lines) and fits (dotted red lines).

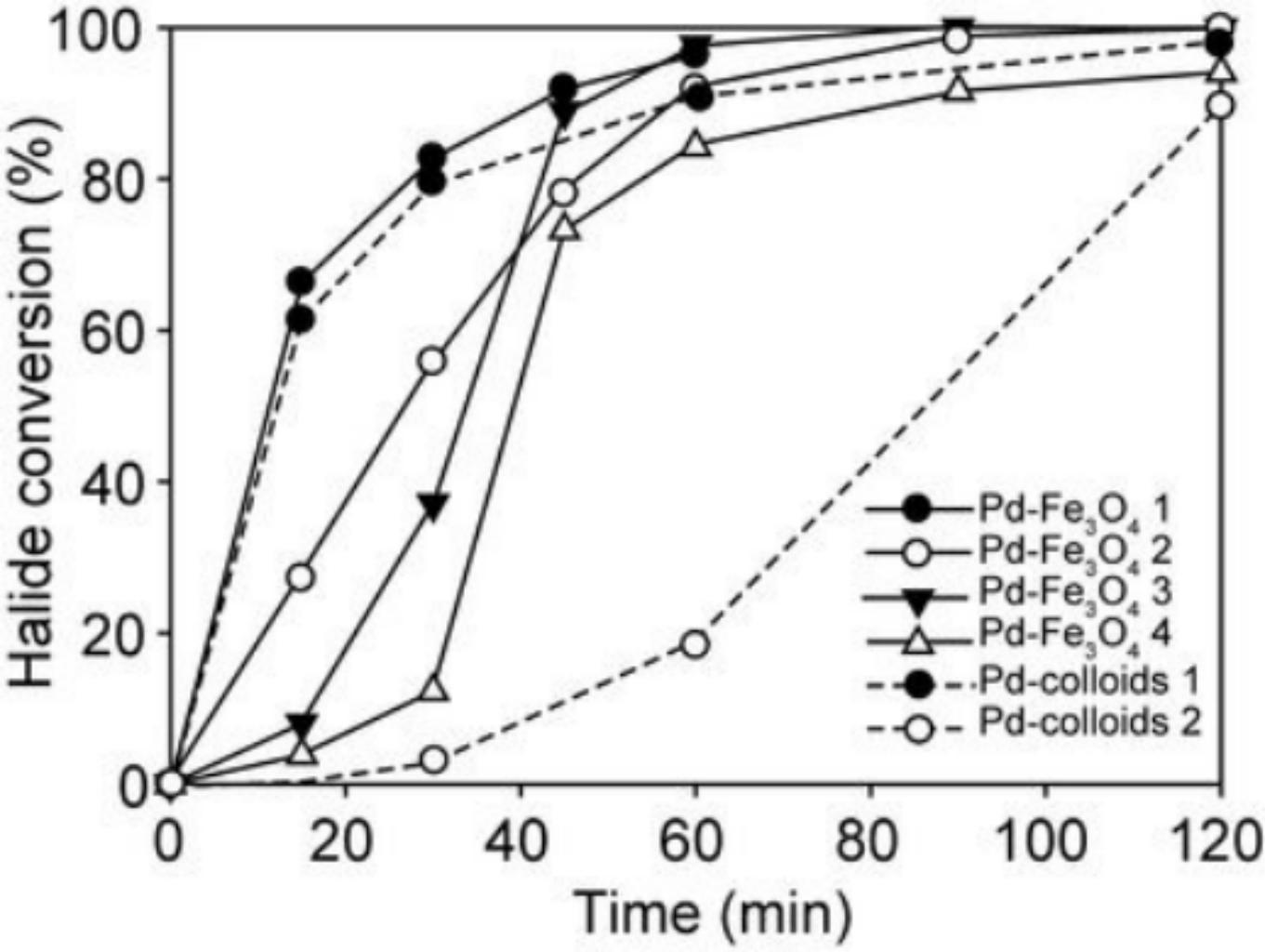
483





484 **Figure 4. a**, Fe $L_{2,3}$ -edge XMCD spectra of (i), biomagnetite and (ii), Pd-coated
485 biomagnetite and **b**, XPS of the Pd 3d peaks of biogenic Pd-coated magnetite



486



487 **Figure 5.** Rate of conversion during the Heck coupling of iodobenzene and ethyl acrylate
488 catalysed by Pd-coated biomagnetite (solid lines) or Pd colloids (dashed lines). Fresh
489 catalyst was used in run 1, runs 2 to 4 used recycled catalyst.



490


	Atom type	N	r(Å)	$2\sigma^2(\text{Å}^4)$
Fe K-edge				
Biomagnetite	O	1.3	1.85	0.039 ⁴⁹⁴
	O	4	2.03	0.025
	Fe	4	3.00	0.021
	Fe	8	3.50	0.012
	O	4	3.36	0.027
Pd biomagnetite	O	1.3	1.80	0.037
	O	4	2.00	0.024
	Fe	4	2.99	0.024
	Fe	8	3.48	0.012
	O	4	3.28	0.009
Pd K-edge				
Pd foil standard	Pd	12	2.74	0.012
	Pd	6	3.85	0.020
	Pd	24	4.77	0.020
	Pd	12	5.36	0.012
	Pd	24	6.14	0.029
Pd biomagnetite	Pd	12	2.74	0.014
	Pd	6	3.84	0.018
	Pd	24	4.79	0.030
	Pd	12	5.42	0.016
	Pd	24	6.08	0.030

