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Mapping Swamp Timothy (Cripsis schenoides) Seed Productivity Using
Spectral Values and Vegetation Indices in Managed Wetlands

Abstract

This work examines the potential to predict the seed productivity of a key wetland plant species
using spectral reflectance values and spectral vegetation indices. Specifically, the seed
productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds,
managed for waterfowl habitat, in California’s San Joaquin Valley. Spectral reflectance values
were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high
resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected
vegetation data. Vegetation data were collected and analyzed from 156 plots for total
aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed
biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference
Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted
Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global
Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in
situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases,
the June image provided better predictive capacity relative to May, a result that underscores the
importance of timing imagery to coincide with more favorable vegetation maturity. The north
pond with the June image using SR and the exponential function (R?=0.603) proved to be the
best predictor of swamp timothy seed productivity. The June image for the south pond was less
predictive, with TSAVI and the exponential function providing the best correlation (R?=0.448).
This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage
of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy
germination. The results of this work suggest that spectral reflectance can be used to estimate
seed productivity in managed seasonal wetlands.

1 Introduction

Prior to 1850, there were an estimated 5 million acres of wetlands in California. Today,
less than 6% remain (Hartmann 1994). The remaining wetlands are now intensively managed to
provide habitat for 19% of the wintering waterfowl in the continental U.S. and 60% of the
waterfowl of the Pacific Flyway (Gilmer et al., 1982). In 1986, The North American Waterfowl
Management Plan was drafted by the U.S. Fish and Wildlife Service in cooperation with
Canadian Wildlife Service. A goal of this plan is to increase waterfowl populations to their pre-
1970 numbers “by improving and securing long-term protection of 6 million acres of habitat
[nationally] in 34 areas of major concern” (USFWS 1986). Wetland health and productivity
greatly affects waterfowl populations (Fleskes et al. 2005, Mushet et al 1992). Wetland
managers are striving to provide habitat support to accommodate growing populations of
waterfowl.

The wetlands in California’s Central Valley are managed by controlled flooding in the
late summer, maintaining water levels through the winter, and then draining in the spring
(Fredrickson and Taylor 1982, Naylor 1999). The timing and rate of spring drawdown affect
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many aspects of habitat health including vegetation composition. The varieties of annual plants
that geminate on the exposed mudflats of the seasonal wetlands after water is drained are
collectively known as moist-soil plants. The seeds and tubers produced by moist-soil plants
during these summer months feed the wintering waterfowl. Soil moisture, soil salinity, and both
soil and air temperatures at time of germination are affected by timing and rate of drawdown and
directly affect the overall moist-soil plant species composition (Naylor 1999).

Swamp timothy (Cripsis schenoides) is one of the key forage species in managed
wetlands of the Central Valley (Fleskes et al. 2004 and 2005). It is a fast-growing annual
producing high quality seeds in great quantities. It is tolerant of both temporary inundation
induced by summer irrigation and moderate to high soil salinity levels inherent in Central
California wetland soils (Fredrickson and Taylor 1982, Mushet et al. 1992). Bird species that
forage on swamp timothy seeds are primarily ducks such as pintails, gadwalls, mallards, and teal
(Hothem and Ohlendorf 1989, Fleskes et al. 2004 and 2005, Burns et al. 2003). Wetlands
managed for swamp timothy are also utilized by many shorebird species such as dunlins,
sandpipers, and the American avocet due to its low growth habit (Isola et al. 2000). A challenge
facing wetland managers is to efficiently quantify the amount of seed mass produced annually.
Current techniques are both field and lab intensive and include manual biomass harvesting and
sorting of tiny seeds. Furthermore, because these labor-intensive methods can only be applied to
representative vegetation stands within large wetland areas, they are prone to bias. Remote
sensing techniques have the potential to enable large-scale assessment of feed biomass in this
wildland setting.

It is well documented that digital spectral reflectance values, as well as vegetation indices
derived from these spectral values, can be used to estimate the total aboveground biomass
produced on an annual basis (Asrar 1989, Jenson 2007). These techniques have been used to
estimate crop yields (Richardson 1982, Moran et al. 1997, Godwin et al. 2003, Tao et al. 2005)
and to quantify the areal extent of standing biomass in rangeland ecosystems (Everitt et al. 1989,
Loris and Damiano 2006, Beeri et al. 2007, Cho et al. 2007). Moreau et al. 2003 used this
technique to successfully estimate the areal extent of Andean wetland forage grasses. However,
no one has assessed the potential of this technique to estimate annual seed mass production in a
managed season wetland.

In our study which comprised pairs of managed wetland ponds, spatial vegetation data
were collected and analyzed for total aboveground biomass, total aboveground swamp timothy
biomass, and total swamp timothy seed mass. Our working hypothesis is that there is a strong
correlation between the total swamp timothy biomass and seed mass. Assuming this to be true,
the objective of this study is to assess the feasibility of using spectral reflectance values (red, and
NIR bands) and their derived vegetation indices to estimate swamp timothy seed productivity.
The analysis here is based on two sets of aerial imagery taken at different times approximately 4
weeks apart after pond drawdown in the adjacent wetland units, and on manually collected plant
and seed biomass samples for the units.

2 Site Description and Methods
2.1 Site Description

An adjacent pair of privately owned wetland ponds within the Ducky Strike Duck Club,
known as Ducky Strike North (DSN) and South (DSS), was chosen for this project because these
ponds are dominated by swamp timothy (Figure 1). The ponds are located in the south-west part



of Merced County, California (south of 37°0’0”N and east of 12'50'0”"W) within the Grasslands
Ecological Area (GEA). The areas of DSN and DSS are 32.2 ha and 36.5 ha, respectively.
Mean annual precipitation is 21cm and the mean annual temperature is 16.8'C (WRCC 2006).
The soil series underlying the sites is Britto clay loam, ponded, derived from mixed alluvium
dominantly of ocean sediments. Some of the chemical elements of this series include 5%
maximum calcium carbonate, 10% gypsum, electric conductivity of 1.0 to 11.0 dS/m, sodium
adsorption ratio maximum of 30.0, and pH values ranging from 6.0 to 8.5 (NRCS 2007). As
noted above, this area is no longer naturally flooded but now diked and levied for controlled
flooding typically lasting from the first of September to the middle of March. Within the DSN
pond, the water flows from south to north following a swale located along the eastern edge of the
field. DSS utilizes one inlet at the northeast corner of the field. The fields both slope gradually
from west to east. Vegetation consists of swamp timothy, Rumex spp., Eleocharis spp., Scirpus
maritimus, Scirpus acutus, Juncus balticus, Typha spp., and Xanthium strumarium as the major
components. The site is primarily managed for swamp timothy and often the emergent
vegetation (rushes, tules, and cattails) are disked under to maintain maximum swamp timothy
productivity while leaving some emergent vegetation for wildlife cover.

2.2 Aerial Imagery

False color composite high resolution aerial photographs were taken using a Zeiss RMK®
Top 15 Aerial Survey Camera System on May 11 and June 9, 2006 (Figure 1). Images were
taken at noon, zero degrees off nadir to minimize shadow effects. Missions were flown and
imagery geo-rectified by HIW Geo-Spatial Inc. (Oakland, Ca). Ground pixel resolution is 15cm
x 15cm (maximum RMS error 7.5cm). The coordinate system used for the images is UTM zone
10, NAD 83. Aerial images responded to green (G, 500-700 nm, red (R, 600-700 nm), and very
near infrared (VNIR, 700-900 nm) spectral bands. The scanner produced RGB digital images
with 8-bit false color with pixels in each band ranging from 0 to 255.

Calculations of vegetation indices are primarily based on reflectance while the aerial
photographs record brightness. Therefore, radiation readings need to be corrected in order to
determine the actual reflectance values of the imagery. As ground reflectance measurements
were not made in 2006, a campaign was conducted in the study area in October 2008. Ground
reflectance data was collected using a field spectrometer (ASD FieldSpec Pro FR) with a spectral
range of 350 to 2500 nm. We collected spectra from 12 invariant targets (concrete and gravel
surfaces) around the wetland ponds. The reflectance of 12 targets at green, red, near infrared
bands exhibited a highly linear correlation (R? > 0.95) with brightness. Because reflectance from
these surfaces is not expected to change with time, we used these results to correct the 2006
aerial images, yielding the reflectance products used in subsequent analyses.

2.3 Vegetation Sampling and processing

Vegetation sampling was conducted in August of 2006 after the swamp timothy seeds had
matured and the entire plant was desiccated. Sampling granularity was one 1m x 1m sampling
location per acre (DSS n=73, DSN n=83), with each location randomly generated using GIS
software (ArcGIS 9.3, ESRI). A Trimble Agl14 GPS receiver connected to a hand held PC
(Allegro Cx, Juniper Systems) with determined 15cm accuracy was used to locate each sampling
location. At each location, a representative 10cm x 10cm core was removed from the pedon,
allowing the entire aboveground biomass to be clipped. Samples were oven-dried at 105°C for



24 hours. Dry masses of total biomass, total swamp timothy, and swamp timothy seeds were
determined gravimetrically for each sample.

2.4 Spectral Reflectance and Vegetation Indices

In this study, we tested the feasibility of two spectral reflectance bands (red and near
infrared) and six vegetation indices as predictors of swamp timothy seed production. Vegetation
indices for quantifying biomass or vegetative vigor were derived from spectral bands, and were
broadly separated into three categories: 1) intrinsic indices such as the simple ratio (Jordan 19609,
Baret and Guyot 1991) and the NDVI (Kriegler et al.1969, Rouse et al. 1974) which does not
involve any external factor other than the measured spectral reflectance; 2) soil-line related
indices, which include soil-line parameters, such as the soil-adjusted vegetation index or SAVI
(Huete 1988), the transformed SAVI (Baret 1989), and the modified SAVI (Qi et al., 1994); and
3) atmospheric-corrected indices such as GEMI (Pinty 1992). Mathematical descriptions of the
indices are summarized in Table 1.

The spectral reflectance of a plant canopy is a combination of the reflectance spectra of
plant and soil components. A linear relationship between the red and near infrared reflectance on
bare soil (the soil line) can be developed from base soil areas at a site and incorporated into
vegetation indices to reduce the influence of the soil on the vegetation response (Genevieve
1996). In this research, the soil line used to calculate the TSAVI was obtained by randomly
selecting 113 and 104 bare soil pixels from the May and June imagery, respectively, and using
these pixels to develop a regression between the red and near infrared band reflectance values.

2.5 Statistical Analysis and Creating Swamp Timothy Productivity Maps

To accurately analyze relationships between seed mass with spectral reflectance and
vegetation indices, the cell size of the spectral reflectance and vegetation indices must be
consistent with the 1m? field sample scale. Specifically, the cell size was altered to 7 by 7 pixels
around each sample coordinate (equaling 1.05 m?, approximately equal to the field sample area).
The VNIR and red pixel reflectance values for each cell were then averaged and used to calculate
the vegetation indices are in Table 1.

The relationship between vegetation index and biophysical variables has been modeled
using a variety of mathematic functions: linear, exponential, power, quadratic, and logarithm
terms (Lewis et al. 1998, Rasmussen 1992, Groten 1993, Pinter et al. 1981, Thenkabail et al.
1994). These models were tested with a regression analysis of spectral reflectance and
vegetation indices with swamp timothy biomass and seed biomass (Pinter et al. 1981, Rasmussen
1992, Groten 1993, Thenkabail et al. 1994, Lewis et al. 1998). Determination coefficients (R?)
were estimated using SPSS 16.0 (SPSS inc.) and used to differentiate model quality.

To create swamp timothy seed mass maps, the best predictive models were used to assign
swamp timothy seed mass to each 7 by 7 pixel. Because the DSN and DSS ponds are not
entirely swamp timothy inclusive habitat, those non-swamp timothy areas were eliminated from
the map using a classification by a segmentation technique in eCognition,v2.0 (Definiens Inc.).

3 Results

Swamp timothy total biomass correlated strongly with swamp timothy seed mass (R? =
0.856) in the DSN pond and moderately (R? = 0.653) in DSS (Figure 2), validating our working
hypothesis and suggesting that swamp timothy seed production can be accurately estimated



across a broad landscape using spectral values and vegetation indices. Coefficients of
determination for all models tested are summarized in Table 2, and the best-fitting models for
seed production are plotted in Figure 3.

Overall, the best swamp timothy seed mass predictions were obtained using the DSN
June image with the greatest values achieved using SR (R?= 0.603), NDVI (0.581), and TSAVI
(0.581) in exponential, exponential, and quadratic models, respectively. Red (quadratic) SAVI
(quadratic) and MSAVI (exponential) models yielded comparable but lower coefficients, while
the GEMI and NIR model fits were inferior.  The Red band produced results that were
consistently better than NIR. In four of the six indices investigated, the exponential model
outperformed the other models tested with the June DSN image. Both May images and the June
DSS image resulted in poorer seed production predictions in all cases. In the case of June DSS,
the same three indices--SR, NDVI, and TSAVI--were the top predictors, albeit weaker ones
relative to the June DSN results.

In most cases, total biomass and total swamp timothy biomasses (primary properties)
produced better model fits than did swamp timothy seed mass (secondary property). NDVI, SR,
SAVI, TSAVI, MSAVI, and Red were found to be relatively good indicators for these properties,
while again GEMI and NIR were found to be relatively weak indicators.

Models resulting from the May images, and from the DSS June image, generally
performed poorly relative to those obtained from the June DSN image. The exception was the
total biomass model obtained from the May DSN image, which yielded determination coefficient
values comparable to those obtained using the June DSN image.

The swamp timothy seed productivity map (Figure 4) was created using the best
vegetation index and June image for each pond. The areas of the wetland units with relatively
high swamp timothy seed productivity match the areas with lower soil salinity and the lower
elevation areas of the fields (Rahilly 2008). An overall trend observed with respect to swamp
timothy seed production is for greater abundance in the east portion of the field relative to the the
west . The southern portions of both fields contain relatively little swamp timothy. Note that
the areas mapped in red indicate portions of the field that were determined to be non-inclusive
swamp timothy habitat (e.g. tules, cattails, and Baltic rush).

4 Discussion

The SR from the June DSN image exhibited moderately strong correlation with seed
productivity (R?=0.603). This is a reasonable result considering within-field variability at the
study sites, where soil moisture, salinity, and vegetative composition all vary across the
landscape. For example, moist soil plant growth on the east side of DSN was significantly
greater than on the west side, and sufficiently high to cause saturation of the NDVI (Mutanga
and Skidmore 2004, Loris and Damiano 2006, Jenson 2007) and the other spectral signatures.
According to Muntanga and Skidmore (2004), this saturation problem can be overcome by using
a narrow band NDVI (740nm — 755nm). Unfortunately, this was not possible with our imagery
because the NIR band in our imagery was an average of 700-900 nm, an artifact of the camera
used.

Results for DSS seed productivity were inferior to those for DSN, This result is A
finding consistent with the fact that total aboveground biomass and swamp timothy seed mass is
not as strong in DSS as it was in DSN. This suggests that although the two ponds are adjacent,
there are inherent differences between their soils which translated to differences in swamp

5



timothy seed production.. Based on EM surveys from the site, the apparent soil salinity in DSS
is greater than that in DSN (Rahilly 2008). Elevated salinity in DSS is most likely associated
with less effective drainage in this pond due to isolated topographic depressions in the pond
(Rahilly 2008). In addition, the same hydraulic structure is employed for both flooding and
draining in DSS, a situation which may contribute to its drainage inefficiencies. The NIR band
image of the two ponds (Figure 1) illustrates the poor and prolonged drainage time of DSS
compared to DSN. The dark spots in DSS May image are exposed mudflats where the annual
plants have not yet begun to germinate. In comparison, DSN exhibits vegetation across the
entire field at this time. While swamp timothy eventually germinates in DSS, the end result is
less growth, probably due to the stressful growing conditions relative to those experienced in
DSN . The more stressful growing conditions in DSS would force the swamp timothy to focus
its energy on seed production rather than biomass production which may explain the weaker
correlation between total swamp timothy biomass and seed biomass in DSS.

Several issues with respect to the timing of sampling events in our investigation merit
further discussion. First, our clip samples were collected in August 2006, nearly two months
after the June aerial imagery event and at a time when the vegetation was desiccated. While this
timing greatly facilitated seed collection, it precluded the preferred usage of wet over dried
biomass in relating vegetation indices to productivity (Tucker, 1983). A second and more crucial
issue pertains to the timing of the aerial photography. By the time of the June imagery, the
vegetation in DSS and DSN was highly stressed and wilting. This is evidenced by the fact that
the red spectral reflectance band exhibited better correlation than the VNIR band in these images
(Table 2), a finding in accord with Jenson (2007). The correlations resulting from this work may
have been stronger had the photography occurred before the onset of wilting. Of course, if the
images are taken too early in the season, the results will suffer from lack of vegetation cover
resulting in high soil reflectance, as was the case with the May results. Thus, it is clear that more
research is warranted with respect to the optimal imagery timing for this type of investigation..

In field locations where vegetation is homogeneous, relationships between vegetation
indices and biomass have produced satisfactory results (Frank and Aase 1994). However, if
plant communities are diverse, additional vegetation information about community structure may
need to be collected. In this context, it is worth noting that there may have been vegetation-
specific causes for elevated red reflectance in the June imagery. Specifically, Rumex spp., a
common species that grows in these fields, is bright rust red in color, and may bias the
reflectance values by overwhelming the influence of the green chlorophylls. Where there are
different chlorophyll and carotenoids, such as may be found with Rumex, the use of the green
band instead of the red band when calculating NDV1 or SR may produce better results (Gitelson
et al. 1996; Loris et al. 2006).

While it has been noted that SR-based correlations with crop yield outperform NDVI-
based models (Mutanga and Skidmore, 2004), less has been written about mixed vegetation.
Both of the DSN images resulted in stronger correlations between the intrinsic (as opposed to the
soil-adjusted) vegetation indices and swamp timothy seed production. This was particularly the
true for the May image although, as noted, all of the determination coefficients associated with
seed production were relatively lower for May. In both the May and June DSN results, the SR
model outperformed the NDVI model. In a somewhat related study, Loris and coworkers (2006)
reported that SR was best for estimating meadow grass productivity from aerial imagery.
Meadow grass is typically a diverse array of grasses and forbs, analogous in structure to the
present wetland moist-soil plant community.



5 Conclusions

The results of this study suggest that the use of spectral reflectance-based vegetative
indices to predict swamp timothy seed productivity in seasonally managed wetlands setting is
feasible. Accuracy of the resulting model depends on coordination of the imaging with the key
management event (draw-down), which in turn triggers changes in the drivers in swamp timothy
production, namely soil moisture, temperature and salt accumulation. The results suggest that a
less intensive field sampling effort can be utilized to calibrate a model in order to create swamp
timothy biomass and seed productivity maps. Methods for more efficient assessment of wetland
seed productivity will enable wetland managers to adaptively manage the wetlands in support of
waterfowl.
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Fig. 1 Ducky Strike North (DSN) and Ducky Strike South (DSS): NIR spectral reflectance
band; A) May 11,2006; B) June 9,2006.
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Fig. 2 Total aboveground biomass (grams) to swamp timothy (ST) seed mass (grams).
Ducky Strike North, (B) Ducky Strike South.
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Fig. 3 Observed swamp timothy seed mass(g/m?) plotted to the best correlated vegetation indices
in two fields, Ducky Strike North (DSN) and Ducky Strike South (DSS) from aerial photos taken
on two different dates (May 11,2006 and June 9,2006).
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Table 1 Vegetation indices used in this study

Vegetation
Index Name

Normalized
difference
vegetation index

Simple ratio

Soil-adjusted
vegetation index

Transformed
soil-adjusted
vegetation index

Modified soil-
adjusted
vegetation index

Global
environment
monitoring
index

Abbreviation

NDVI

SR

SAVI

TSAVI

MSAVI

GEMI

Description

NDVI = £nir "Pred \here Pq and p,.. stand for the spectral reflectance
pnir+pred

measurements acquired in the red and near-infrared regions, respectively.

SR = £ir | Near-infrared/Red reflectance ratio.
pred
* —
sayl - A+ L*(NIR-R)
NIR+R+L
for very low vegetation cover. L=0.5 is used in this study.

TSAVI = 3 (P =8 Preog D) Where a and b are, respectively, the slope and the
Prea TA° Prir —-a-b
intercept of soil line” (p,,, =a* p,,, +b)

L ranges from O for very high vegetation cover to 1

* —
MSAVI = A+ L)* (Pur = Pres) ,L=1-2*a*NDVI *WDVI,WDVI = p_. —a*p,,
pnir +pred +L

* _ * _ _ - 2 } 2 * - -
cem = 172=025%7) = (p, ~0.125) E [2(on:” - ") + 1.5%p,, +0.5%p]
1_10nir Phir +10r +05
GEMI can reduce both the soil and the atmospheric effects on satellite data.

Reference

Rouse et al.
1974,

Kriegler et al.
1969

Baret and Guyot
1991

Jordan 1969

Huete 1988

Baret 1989

Qi,et al. 1994

Pinty 1992

“Soil line models for this work based on site imagery for May: pnir = 1.760(preq) + 0.041 (R? = 0.792); and (June): pnir = 1.742(pred) +

0.083 (R*=0.821).
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Table 2 Ducky Strike (DS) R® of best fit regression lines for various biomass measurements (g/m?) plotted against
spectral reflectance and vegetation indices. L:Linar, Q:Quadratic, E:Exponential, P:Power

May: VNIR Red NDVI SR SAVI TSAVI MSAVI GEMI
DSN

Total Biomass 0.269F 0.580°F 0.613" 0.622F 0.501% 0.608F 0.457F  0.214F
Total ST 0.201° 0.404° 0.405° 0.469° 0.282° 0.399° 0.273° <0.1
ST seed biomass  0.229° 0.404° 0.402° 0.483° 0.242F 0.391° 0.235F  <0.1
DSS

Total Biomass <0.1 0.335° 0.426 - 0.443F 0.409° 0.401% 0.406"  0.388F
Total ST <0.1 0.317° 0.446" 0.403° 0.436° 0.418° 0.438% <01
ST seed biomass  <0.1 0.316° 0.407" 0.338" 0.370° 0.378F 0.372- <0.1
June:

DSN

Total Biomass 0.455°F 0.660 0.656 © 0.676° 0.650" 0.663"° 0.631%  0.549F
Total ST 0.375° 0.649° 0.693F 0.716F 0.654F 0.697F 0.645%  0.482°F
ST seed biomass  0.321° 0.537° 0.581°F 0.603° 0.539° 0.581° 0.537F  0.440F
DSS

Total Biomass <0.1 0.304F 0.441° 0.443° 0.459°F 0.426F 0.275%  0.181°
Total ST <0.1 0.329° 0.476" 0.472" 0.356 2 0.465" 0.488%F  0.201°
ST seed biomass  <0.1 0.309F 0.407" 0.421" 0.344° 0.448F 0.311%  0.202°
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Figure 4. Swamp timothy seed production map for DSN and
DSS wetland ponds based on the SR-seed biomass exponential
model for the June imagery (see Table 2).
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