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Mapping Swamp Timothy (Cripsis schenoides) Seed Productivity Using 

Spectral Values and Vegetation Indices in Managed Wetlands  
 
 
 
Abstract 
This work examines the potential to predict the seed productivity of a key wetland plant species 
using spectral reflectance values and spectral vegetation indices.  Specifically, the seed 
productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, 
managed for waterfowl habitat, in California’s San Joaquin Valley.  Spectral reflectance values 
were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high 
resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected 
vegetation data.  Vegetation data were collected and analyzed from 156 plots for total 
aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed 
biomass.  The SVI investigated included the Simple Ratio (SR), Normalized Difference 
Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted 
Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global 
Environment Monitoring Index (GEMI).  We evaluated the correlation of the various SVI with in 
situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, 
the June image provided better predictive capacity relative to May, a result that underscores the 
importance of timing imagery to coincide with more favorable vegetation maturity.  The north 
pond with the June image using SR and the exponential function (R2=0.603) proved to be the 
best predictor of swamp timothy seed productivity.  The June image for the south pond was less 
predictive, with TSAVI and the exponential function providing the best correlation (R2=0.448).  
This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage 
of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy 
germination.  The results of this work suggest that spectral reflectance can be used to estimate 
seed productivity in managed seasonal wetlands. 
 
 
1  Introduction 

Prior to 1850, there were an estimated 5 million acres of wetlands in California.  Today, 
less than 6% remain (Hartmann 1994).  The remaining wetlands are now intensively managed to 
provide habitat for 19% of the wintering waterfowl in the continental U.S. and 60% of the 
waterfowl of the Pacific Flyway (Gilmer et al., 1982).  In 1986, The North American Waterfowl 
Management Plan was drafted by the U.S. Fish and Wildlife Service in cooperation with 
Canadian Wildlife Service.  A goal of this plan is to increase waterfowl populations to their pre-
1970 numbers “by improving and securing long-term protection of 6 million acres of habitat 
[nationally] in 34 areas of major concern” (USFWS 1986).  Wetland health and productivity 
greatly affects waterfowl populations (Fleskes et al. 2005, Mushet et al 1992).  Wetland 
managers are striving to provide habitat support to accommodate growing populations of 
waterfowl.  

The wetlands in California’s Central Valley are managed by controlled flooding in the 
late summer, maintaining water levels through the winter, and then draining in the spring 
(Fredrickson and Taylor 1982, Naylor 1999).  The timing and rate of spring drawdown affect 
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many aspects of habitat health including vegetation composition.  The varieties of annual plants 
that geminate on the exposed mudflats of the seasonal wetlands after water is drained are 
collectively known as moist-soil plants.  The seeds and tubers produced by moist-soil plants 
during these summer months feed the wintering waterfowl.  Soil moisture, soil salinity, and both 
soil and air temperatures at time of germination are affected by timing and rate of drawdown and 
directly affect the overall moist-soil plant species composition (Naylor 1999).   
 Swamp timothy (Cripsis schenoides) is one of the key forage species in managed 
wetlands of the Central Valley (Fleskes et al. 2004 and 2005).  It is a fast-growing annual 
producing high quality seeds in great quantities.  It is tolerant of both temporary inundation 
induced by summer irrigation and moderate to high soil salinity levels inherent in Central 
California wetland soils (Fredrickson and Taylor 1982, Mushet et al. 1992). Bird species that 
forage on swamp timothy seeds are primarily ducks such as pintails, gadwalls, mallards, and teal 
(Hothem and Ohlendorf 1989, Fleskes et al. 2004 and 2005, Burns et al. 2003).  Wetlands 
managed for swamp timothy are also utilized by many shorebird species such as dunlins, 
sandpipers, and the American avocet due to its low growth habit (Isola et al. 2000).  A challenge 
facing wetland managers is to efficiently quantify the amount of seed mass produced annually.  
Current techniques are both field and lab intensive and include manual biomass harvesting and 
sorting of tiny seeds. Furthermore, because these labor-intensive methods can only be applied to 
representative vegetation stands within large wetland areas, they are prone to bias. Remote 
sensing techniques have the potential to enable large-scale assessment of feed biomass in this 
wildland setting. 
 It is well documented that digital spectral reflectance values, as well as vegetation indices 
derived from these spectral values, can be used to estimate the total aboveground biomass 
produced on an annual basis (Asrar 1989, Jenson 2007).  These techniques have been used to 
estimate crop yields (Richardson 1982, Moran et al. 1997, Godwin et al. 2003, Tao et al. 2005) 
and to quantify the areal extent of standing biomass in rangeland ecosystems (Everitt et al. 1989, 
Loris and Damiano 2006, Beeri et al. 2007, Cho et al. 2007).  Moreau et al. 2003 used this 
technique to successfully estimate the areal extent of Andean wetland forage grasses.  However, 
no one has assessed the potential of this technique to estimate annual seed mass production in a 
managed season wetland.   
 In our study which comprised pairs of managed wetland ponds, spatial vegetation data 
were collected and analyzed for total aboveground biomass, total aboveground swamp timothy 
biomass, and total swamp timothy seed mass.  Our working hypothesis is that there is a strong 
correlation between the total swamp timothy biomass and seed mass.  Assuming this to be true, 
the objective of this study is to assess the feasibility of using spectral reflectance values (red, and 
NIR bands) and their derived vegetation indices to estimate swamp timothy seed productivity.  
The analysis here is based on two sets of aerial imagery taken at different times approximately 4 
weeks apart after pond drawdown in the adjacent wetland units, and on manually collected plant 
and seed biomass samples for the units.     
  
  
2   Site Description and Methods  
2.1  Site Description 
 An adjacent pair of privately owned wetland ponds within the Ducky Strike Duck Club, 
known as Ducky Strike North (DSN) and South (DSS), was chosen for this project because these 
ponds are dominated by swamp timothy (Figure 1).  The ponds are located in the south-west part 
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of Merced County, California (south of 37°0′0″N and east of 12°50′0″W) within the Grasslands 
Ecological Area (GEA).  The areas of DSN and DSS are 32.2 ha and 36.5 ha, respectively.  
Mean annual precipitation is 21cm and the mean annual temperature is 16.8°C (WRCC 2006).  
The soil series underlying the sites is Britto clay loam, ponded, derived from mixed alluvium 
dominantly of ocean sediments.  Some of the chemical elements of this series include 5% 
maximum calcium carbonate, 10% gypsum, electric conductivity of 1.0 to 11.0 dS/m, sodium 
adsorption ratio maximum of 30.0, and pH values ranging from 6.0 to 8.5 (NRCS 2007).  As 
noted above, this area is no longer naturally flooded but now diked and levied for controlled 
flooding typically lasting from the first of September to the middle of March.  Within the DSN 
pond, the water flows from south to north following a swale located along the eastern edge of the 
field.  DSS utilizes one inlet at the northeast corner of the field.  The fields both slope gradually 
from west to east.  Vegetation consists of swamp timothy, Rumex spp., Eleocharis spp., Scirpus 
maritimus, Scirpus acutus, Juncus balticus, Typha spp., and Xanthium strumarium as the major 
components.  The site is primarily managed for swamp timothy and often the emergent 
vegetation (rushes, tules, and cattails) are disked under to maintain maximum swamp timothy 
productivity while leaving some emergent vegetation for wildlife cover.  
 
2.2 Aerial Imagery 

False color composite high resolution aerial photographs were taken using a Zeiss RMK® 
Top 15 Aerial Survey Camera System on May 11 and June 9, 2006 (Figure 1).  Images were 
taken at noon, zero degrees off nadir to minimize shadow effects.  Missions were flown and 
imagery geo-rectified by HJW Geo-Spatial Inc. (Oakland, Ca).  Ground pixel resolution is 15cm 
x 15cm (maximum RMS error 7.5cm).  The coordinate system used for the images is UTM zone 
10, NAD 83.  Aerial images responded to green (G, 500-700 nm, red (R, 600-700 nm), and very 
near infrared (VNIR, 700-900 nm) spectral bands.  The scanner produced RGB digital images 
with 8-bit false color with pixels in each band ranging from 0 to 255. 

Calculations of vegetation indices are primarily based on reflectance while the aerial 
photographs record brightness.  Therefore, radiation readings need to be corrected in order to 
determine the actual reflectance values of the imagery.  As ground reflectance measurements 
were not made in 2006, a campaign was conducted in the study area in October 2008.   Ground 
reflectance data was collected using a field spectrometer (ASD FieldSpec Pro FR) with a spectral 
range of 350 to 2500 nm.  We collected spectra from 12 invariant targets (concrete and gravel 
surfaces) around the wetland ponds.  The reflectance of 12 targets at green, red, near infrared 
bands exhibited a highly linear correlation (R2 > 0.95) with brightness.  Because reflectance from 
these surfaces is not expected to change with time, we used these results to correct the 2006 
aerial images, yielding the reflectance products used in subsequent analyses. 
 
2.3 Vegetation Sampling and processing 
 Vegetation sampling was conducted in August of 2006 after the swamp timothy seeds had 
matured and the entire plant was desiccated.  Sampling granularity was one 1m x 1m sampling 
location per acre (DSS n=73, DSN n=83), with each location randomly generated using GIS 
software (ArcGIS 9.3, ESRI).  A Trimble Ag114 GPS receiver connected to a hand held PC 
(Allegro Cx, Juniper Systems) with determined 15cm accuracy was used to locate each sampling 
location.  At each location, a representative 10cm x 10cm core was removed from the pedon, 
allowing the entire aboveground biomass to be clipped.  Samples were oven-dried at 105°C for 
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24 hours.  Dry masses of total biomass, total swamp timothy, and swamp timothy seeds were 
determined gravimetrically for each sample.    
  
2.4 Spectral Reflectance and Vegetation Indices 

In this study, we tested the feasibility of two spectral reflectance bands (red and near 
infrared) and six vegetation indices as predictors of swamp timothy seed production.  Vegetation 
indices for quantifying biomass or vegetative vigor were derived from spectral bands, and were  
broadly separated into three categories: 1) intrinsic indices such as the simple ratio (Jordan 1969, 
Baret and Guyot 1991) and the NDVI (Kriegler et al.1969, Rouse et al. 1974) which does not 
involve any external factor other than the measured spectral reflectance; 2) soil-line related 
indices, which include soil-line parameters, such as the soil-adjusted vegetation index or SAVI 
(Huete 1988), the transformed SAVI (Baret 1989), and the modified SAVI (Qi et al., 1994); and 
3) atmospheric-corrected indices such as GEMI (Pinty 1992).  Mathematical descriptions of the 
indices are summarized in Table 1. 

The spectral reflectance of a plant canopy is a combination of the reflectance spectra of 
plant and soil components.  A linear relationship between the red and near infrared reflectance on 
bare soil (the soil line) can be developed from base soil areas at a site and incorporated into 
vegetation indices to reduce the influence of the soil on the vegetation response (Genevieve 
1996).  In this research, the soil line used to calculate the TSAVI was obtained by randomly 
selecting 113 and 104 bare soil pixels from the May and June imagery, respectively, and using 
these pixels to develop a regression between the red and near infrared band reflectance values.   

 
2.5 Statistical Analysis and Creating Swamp Timothy Productivity Maps 

To accurately analyze relationships between seed mass with spectral reflectance and 
vegetation indices, the cell size of the spectral reflectance and vegetation indices must be 
consistent with the 1m2 field sample scale.  Specifically, the cell size was altered to 7 by 7 pixels 
around each sample coordinate (equaling 1.05 m2, approximately equal to the field sample area).  
The VNIR and red pixel reflectance values for each cell were then averaged and used to calculate 
the vegetation indices are in Table 1. 

The relationship between vegetation index and biophysical variables has been modeled 
using a variety of mathematic functions: linear, exponential, power, quadratic, and logarithm 
terms (Lewis et al. 1998, Rasmussen 1992, Groten 1993, Pinter et al. 1981, Thenkabail et al. 
1994).  These models were tested with a regression analysis of spectral reflectance and 
vegetation indices with swamp timothy biomass and seed biomass (Pinter et al. 1981, Rasmussen 
1992, Groten 1993, Thenkabail et al. 1994, Lewis et al. 1998).  Determination coefficients (R2) 
were estimated using SPSS 16.0 (SPSS inc.) and used to differentiate model quality. 

To create swamp timothy seed mass maps, the best predictive models were used to assign 
swamp timothy seed mass to each 7 by 7 pixel.  Because the DSN and DSS ponds are not 
entirely swamp timothy inclusive habitat, those non-swamp timothy areas were eliminated from 
the map using a classification by a segmentation technique in eCognition,v2.0 (Definiens Inc.).   
 
 
3 Results  

Swamp timothy total biomass correlated strongly with swamp timothy seed mass (R2 = 
0.856) in the DSN pond and moderately (R2 = 0.653) in DSS (Figure 2), validating our working 
hypothesis and suggesting that swamp timothy seed production can be accurately estimated 
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across a broad landscape using spectral values and vegetation indices.  Coefficients of 
determination for all models tested are summarized in Table 2, and the best-fitting models for 
seed production are plotted in Figure 3.   

Overall, the best swamp timothy seed mass predictions were obtained using the DSN 
June image with the greatest values achieved using SR (R2 = 0.603), NDVI (0.581), and TSAVI 
(0.581) in exponential, exponential, and quadratic models, respectively.  Red (quadratic) SAVI 
(quadratic) and MSAVI (exponential) models yielded comparable but lower coefficients, while 
the GEMI and NIR model fits were inferior.   The Red band produced results that were 
consistently better than NIR.  In four of the six indices investigated, the exponential model 
outperformed the other models tested with the June DSN image.  Both May images and the June 
DSS image resulted in poorer seed production predictions in all cases.  In the case of June DSS, 
the same three indices--SR, NDVI, and TSAVI--were the top predictors, albeit weaker ones 
relative to the June DSN results.   

In most cases, total biomass and total swamp timothy biomasses (primary properties) 
produced better model fits than did swamp timothy seed mass (secondary property).  NDVI, SR, 
SAVI, TSAVI, MSAVI, and Red were found to be relatively good indicators for these properties, 
while again GEMI and NIR were found to be relatively weak indicators.    

Models resulting from the May images, and from the DSS June image, generally 
performed poorly relative to those obtained from the June DSN image.  The exception was the 
total biomass model obtained from the May DSN image, which yielded determination coefficient 
values comparable to those obtained using the June DSN image.  
 The swamp timothy seed productivity map (Figure 4) was created using the best 
vegetation index and June image for each pond.  The areas of the wetland units with relatively 
high swamp timothy seed productivity match the areas with lower soil salinity and the lower 
elevation areas of the fields (Rahilly 2008).  An overall trend observed with respect to swamp 
timothy seed production is for greater abundance in the east portion of the field relative to the the 
west .  The southern portions of both fields contain relatively little swamp timothy.   Note that 
the areas mapped in red indicate portions of the field that were determined to be non-inclusive 
swamp timothy habitat (e.g. tules, cattails, and Baltic rush).   
 
 
4 Discussion 
 The SR from the June DSN image exhibited moderately strong correlation with seed 
productivity (R2=0.603). This is a reasonable result considering within-field variability at the 
study sites, where soil moisture, salinity, and vegetative composition all vary across the 
landscape.  For example, moist soil plant growth on the east side of DSN was significantly 
greater than on the west side, and sufficiently high to cause saturation of the NDVI (Mutanga 
and Skidmore 2004, Loris and Damiano 2006, Jenson 2007) and the other spectral signatures.  
According to Muntanga and Skidmore (2004), this saturation problem can be overcome by using 
a narrow band NDVI (740nm – 755nm).  Unfortunately, this was not possible with our imagery 
because the NIR band in our imagery was an average of 700-900 nm, an artifact of the camera 
used. 
  Results for DSS seed productivity were inferior to those for DSN,  This result is A 
finding consistent with the fact that total aboveground biomass and swamp timothy seed mass is 
not as strong in DSS as it was in DSN.  This suggests that although the two ponds are adjacent, 
there are inherent differences between their soils which translated to differences in swamp 
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timothy seed production..  Based on EM surveys from the site, the apparent soil salinity in DSS 
is greater than that in DSN (Rahilly 2008).  Elevated salinity in DSS is most likely associated 
with less effective drainage in this pond due to isolated topographic depressions in the pond 
(Rahilly 2008).  In addition, the same hydraulic structure is employed for both flooding and 
draining in DSS, a situation which may contribute to its drainage inefficiencies.  The NIR band 
image of the two ponds (Figure 1) illustrates the poor and prolonged drainage time of DSS 
compared to DSN.  The dark spots in DSS May image are exposed mudflats where the annual 
plants have not yet begun to germinate.  In comparison, DSN exhibits vegetation across the 
entire field at this time.  While swamp timothy eventually germinates in DSS, the end result is 
less growth, probably due to the stressful growing conditions relative to those experienced in 
DSN .  The more stressful growing conditions in DSS would force the swamp timothy to focus 
its energy on seed production rather than biomass production which may explain the weaker 
correlation between total swamp timothy biomass and seed biomass in DSS.  
 Several issues with respect to the timing of sampling events in our investigation merit 
further discussion.  First, our clip samples were collected in August 2006, nearly two months 
after the June aerial imagery event and at a time when the vegetation was desiccated.  While this 
timing greatly facilitated seed collection, it precluded the preferred usage of wet over dried 
biomass in relating vegetation indices to productivity (Tucker, 1983).  A second and more crucial 
issue pertains to the timing of the aerial photography.  By the time of the June imagery, the 
vegetation in DSS and DSN was highly stressed and wilting.  This is evidenced by the fact that 
the red spectral reflectance band exhibited better correlation than the VNIR band in these images 
(Table 2), a finding in accord with Jenson (2007).  The correlations resulting from this work may 
have been stronger had the photography occurred before the onset of wilting.  Of course, if the 
images are taken too early in the season, the results will suffer from lack of vegetation cover 
resulting in high soil reflectance, as was the case with the May results.  Thus, it is clear that more 
research is warranted with respect to the optimal imagery timing for this type of investigation..  
 In field locations where vegetation is homogeneous, relationships between vegetation 
indices and biomass have produced satisfactory results (Frank and Aase 1994).  However, if 
plant communities are diverse, additional vegetation information about community structure may 
need to be collected.  In this context, it is worth noting that there may have been vegetation-
specific causes for elevated red reflectance in the June imagery.   Specifically, Rumex spp., a 
common species that grows in these fields, is bright rust red in color, and may bias the 
reflectance values by overwhelming the influence of the green chlorophylls.  Where there are 
different chlorophyll and carotenoids, such as may be found with Rumex, the use of the green 
band instead of the red band when calculating NDVI or SR may produce better results (Gitelson 
et al. 1996; Loris et al. 2006).    
 While it has been noted that SR-based correlations with crop yield outperform NDVI-
based models (Mutanga and Skidmore, 2004), less has been written about mixed vegetation.  
Both of the DSN images resulted in stronger correlations between the intrinsic (as opposed to the 
soil-adjusted) vegetation indices and swamp timothy seed production.  This was particularly the 
true for the May image although, as noted, all of the determination coefficients associated with 
seed production were relatively lower for May.  In both the May and June DSN results, the SR 
model outperformed the NDVI model.  In a somewhat related study, Loris and coworkers (2006) 
reported that SR was best for estimating meadow grass productivity from aerial imagery.  
Meadow grass is typically a diverse array of grasses and forbs, analogous in structure to the 
present wetland moist-soil plant community. 
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5 Conclusions 
 The results of this study suggest that the use of spectral reflectance-based vegetative 
indices to predict swamp timothy seed productivity in seasonally managed wetlands setting is 
feasible.  Accuracy of the resulting model depends on coordination of the imaging with the key 
management event (draw-down), which in turn triggers changes in the  drivers in swamp timothy 
production, namely soil moisture, temperature and salt accumulation. The results suggest that a 
less intensive field sampling effort can be utilized to calibrate a model in order to create swamp 
timothy biomass and seed productivity maps.  Methods for more efficient assessment of wetland 
seed productivity will enable wetland managers to adaptively manage the wetlands in support of 
waterfowl.   
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Fig. 1 Ducky Strike North (DSN) and Ducky Strike South (DSS):  NIR spectral reflectance 
band; A) May 11,2006; B) June 9,2006. 
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Fig. 2  Total aboveground biomass (grams) to swamp timothy (ST) seed mass (grams).  
Ducky Strike North, (B) Ducky Strike South.  
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Fig. 3 Observed swamp timothy seed mass(g/m2) plotted to the best correlated vegetation indices 
in two fields, Ducky Strike North (DSN) and Ducky Strike South (DSS) from aerial photos taken 
on two different dates (May 11,2006 and June 9,2006). 
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Table 1  Vegetation indices used in this study 
 
Vegetation 
Index Name 

Abbreviation Description Reference 

 
Normalized 
difference 
vegetation index 

 
NDVI 

nir red

nir red

NDVI ρ ρ
ρ ρ

−
=

+
, where redρ  and nirρ  stand for the spectral reflectance 

measurements acquired in the red and near-infrared regions, respectively. 

 
Rouse et al. 
1974, 
Kriegler et al. 
1969 
 

 
Simple ratio 

 
SR 

nir

red

SR ρ
ρ

= , Near-infrared/Red reflectance ratio. 
Baret and Guyot 
1991 
Jordan 1969 

 
Soil-adjusted 
vegetation index 

 
SAVI 

(1 )*( )L NIR RSAVI
NIR R L
+ −

=
+ +

  L ranges from 0 for very high vegetation cover to 1 

for very low vegetation cover. L=0.5 is used in this study.  

 
Huete 1988 
 

 
Transformed 
soil-adjusted 
vegetation index 

 
TSAVI 

( )nir red

red nir

a a bTSAVI
a a b

ρ ρ
ρ ρ
⋅ − ⋅ −

=
+ ⋅ − ⋅

Where a and b are, respectively, the slope and the 

intercept of soil line* ( *nir reda bρ ρ= + ) 

 
Baret 1989 
 

 
Modified soil-
adjusted 
vegetation index 

 
MSAVI 

(1 )*( ) , 1 2* * * , *nir red
nir red

nir red

LMSAVI L a NDVI WDVI WDVI a
L

ρ ρ ρ ρ
ρ ρ
+ −

= = − = −
+ +

 

Qi,et al. 1994 

 
Global 
environment 
monitoring 
index 

 
GEMI 

2 2[2(  - ) + 1.5*  + 0.5* ]*(1 0.25* ) ( 0.125) , =  
1  +  + 0.5

nir r nir rr

nir nir r

GEMI ρ ρ ρ ρη η ρ η
ρ ρ ρ

− − −
=

−
 

GEMI can reduce both the soil and the atmospheric effects on satellite data. 

Pinty  1992 
 

*Soil line models for this work based on site imagery for May: ρnir = 1.760(ρred) + 0.041 (R2 = 0.792); and (June):  ρnir = 1.742(ρred) + 
0.083 (R2 = 0.821). 
 
 



 

15 
 

 
 
Table 2   Ducky Strike (DS) R2 of best fit regression lines for various biomass measurements (g/m2) plotted against 

spectral reflectance and vegetation indices. L:Linar, Q:Quadratic,  E:Exponential, P:Power 

May: VNIR Red NDVI SR SAVI TSAVI MSAVI GEMI 

DSN         

Total Biomass 0.269 E 0.580 E 0.613P 0.622 E 0.501E 0.608 E 0.457 E 0.214 E 

Total ST 0.201 Q 0.404 Q 0.405 Q 0.469 Q 0.282 Q 0.399 Q 0.273 Q <0.1 

ST seed biomass 0.229 Q 0.404 Q 0.402 Q 0.483 Q 0.242 E 0.391 Q 0.235 E <0.1 

DSS         

Total Biomass <0.1 0.335 Q 0.426 L 0.443 E 0.409 Q 0.401E 0.406P 0.388 E 

Total ST <0.1 0.317 Q 0.446 L 0.403 Q 0.436 Q 0.418 Q 0.438 E <0.1 

ST seed biomass <0.1 0.316 Q 0.407 L 0.338 L 0.370 Q 0.378 E 0.372L <0.1 

June:        

DSN         

Total Biomass 0.455 E 0.660 E 0.656 Q 0.676 Q 0.650 P 0.663 P 0.631 E 0.549 E 

Total ST 0.375 P 0.649 Q 0.693 E 0.716 E 0.654 E 0.697 E 0.645 Q 0.482 E 

ST seed biomass 0.321 P 0.537 Q 0.581 E 0.603 E 0.539 Q 0.581 Q 0.537 E 0.440 E 

DSS         

Total Biomass <0.1 0.304 E 0.441 Q 0.443 Q 0.459 E 0.426 E 0.275 Q 0.181 Q 

Total ST <0.1 0.329Q 0.476 L 0.472 L 0.356 Q 0.465 L 0.488 E 0.201 Q 

ST seed biomass <0.1 0.309 E 0.407 L 0.421 L 0.344 Q 0.448 E 0.311 Q 0.202 Q 
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Figure 4. Swamp timothy seed production map for DSN and 
DSS wetland ponds based on the SR-seed biomass exponential 
model for the June imagery (see Table 2).   


