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SUMMARY 
Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures are treated using 
generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose 
layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of 
the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, 
we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. 
This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured 
domains interact, and provides a direct (though approximate) means of predicting when and how such 
interactions lead to more dramatic weakening effects and ultimately to failure of these complicated 
systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that 
can all be analyzed, and provide a better understanding about which of these specific modes are expected to 
be most important to the evolving failure process.  
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1. INTRODUCTION 
 

Natural fractures in geological systems have important consequences for the geomechanical and 
seismic properties of rocks and reservoirs, as well as for the fluid flow through these fractured 
rock masses. Once rocks become highly fractured, it is often desirable to measure or estimate 
their effective properties for various scientific and/or engineering purposes. One reason for this 
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2 JAMES G. BERRYMAN AND ATILLA AYDIN

Figure 1. Field example of a fracture network having 90o intersection angles, commonly referred to as
“orthogonal” fracture sets.

study is therefore to describe a method to calculate such effective properties based on some
commonly observed fracture patterns.

Such natural fracture systems usually appear in one of two distinct types; so these networks
can be defined by two parameters: intersection angle and fracture lengths. Intersection angles
may be either right angles (Fig. 1) or dihedral angles (Fig. 2). Fracture patterns with right
angles at these intersections are usually called “orthogonal” in geosciences with the assurance
that both sets are opening mode fractures (Bai et al. [1]), whereas fracture sets having dihedral
intersection angles require that the set formed first was later subjected to shearing (Pollard and
Aydin [2]). Nevertheless, the sheared fracture set may also be represented as multi-collinear
opening mode fractures for our present purposes.

When fracture systems in the earth become sufficiently dense, it is natural to study such
systems using purely numerical methods. However, to gain some additional insight into the
behavior of these systems, it should also be fruitful to have an analytical approach to study the
elastic behavior as the fracture density increases, but before the system becomes mechanically
unstable. One goal of the present work is to develop such analytical methods. To accomplish
these goals, generalizations of the Backus [3] and Schoenberg and Muir [4] approaches are
used to analyze layered systems, whose layers are intrinsically anisotropic due to any physical
and/or mechanical mechanism. The pertinent mechanism considered here is due entirely to
locally aligned fractures. By permitting the axis of symmetry of locally anisotropic compliance
matrix/tensor for individual layers to differ from that of the layering direction, we derive
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ELASTIC BEHAVIOR FOR HIGHER FRACTURE DENSITIES 3

Figure 2. Field example of a fracture network composed of two or more sets of intersecting fractures
having a dihedral (i.e., oblique, or non-orthogonal) intersection angle between the fracture planes.

analytical formulas for interacting (i.e., neighboring, but not intersecting) fractured regions
with arbitrary orientations to each other. This procedure provides a convenient analytical tool
for studying how contiguous, but not yet overlapping, fractured domains interact mechanically.
The method also provides a straightforward means of predicting, via extrapolation, when and
how such interactions might lead to more dramatic weakening effects, and ultimately to overall
failure of these complicated systems.

Most of the detailed mathematical analysis of the paper is concentrated in the two
Appendices (A and B). Section 2 introduces a definition of the fracture density that will
be used throughout the paper. Section 3 provides further motivation for our chosen method of
analysis. Section 4 gives a brief statement of the new method itself. Section 5 defines the crack-
influence parameters which provide the analytical means of introducing fracture effects into
the elastic layers. Section 6 presents some examples of the direct application of the methods
developed. Section 7 gives a discussion of the main results. Section 8 makes use of these results
to extrapolate to higher fracture densities at which levels the system might be expected either
to fail, or to have already failed at some lower density due to mroe direct fracture-fracture
interactions (such as interesections) not included in our present analysis. Section 9 gives a
concise summary of the overall method, since it does include several fairly technically involved
sub-steps of processing. Section 10 summarizes our overall conclusions. Some additional details
of the mathematical routines used in this work are described in Appendices C and D.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
Prepared using nagauth.cls



4 JAMES G. BERRYMAN AND ATILLA AYDIN

2. FRACTURE DENSITY DEFINITIONS

It has been known since the paper of Bristow [5] that the pertinent fracture density that
influences physical properties of fractured media such as resistivity and elasticity is not the
fracture volume itself, but rather another related quantity that needs to be carefully defined.
This fracture density does depend on the shape of the fracture. But, assuming thin fractures
as we do here, it does not depend on this fracture thickness (or aspect ratio for ellipsoidal
fractures) in a strong way.

Two terms commonly used to describe common geometries associated with cracks are:
penny-shaped and ribbon-shaped. Penny-shaped cracks are cracks that have the approximate
shape of an oblate (planetary) ellipsoidal hole in the material. Ribbon-shaped cracks are cracks
that are more or less rectangular shaped holes, but possibly much longer in one dimension than
the other of the rectangle – hence the name “ribbon-shaped.” The third dimension in both
cases is treated as small compared to the other two, but surely not identically zero, as then
there would be no crack at all.

The easiest way to understand the pertinent fracture density is to start by studying what it
is for ellipsoidal fractures, and for the physical property of resistivity. For an ellipsoid having
equatorial radii a and b, and polar radius c, the volume of the ellipsoid differs from that of the
fitted rectangular box (which is Vr = 2a × 2b × 2c), and is given by

Ve =
4π

3
× abc. (1)

When a = b = c, the standard result for volume of a sphere is: 4πa3/3. But this volume differs
from that of a rectangular box in both cases (i.e., both for the general ellipsoid and for a
sphere) by a factor of 8/(4π/3) = 6/π ' 2, with the rectangle/square solid figure being always
about the same factor larger in volume than the ellipsoidal/sphere. Similarly, the area of the
main face of an oblate spheroid is πab, whereas that for a rectangle is 4ab, and that for a circle
(with a = b) is πa2. So the area of the fitted rectangular face is always larger by the factor
4/π.

We will not go into more details here because they are spelled out perhaps with sufficient
clarity in another recent paper [6], where Bristow’s arguments were re-examined and updated
somewhat by using modern theories, including Hashin-Shtrikman bounds [7, 8] that did not yet
exist at the time of Bristow’s work. Of course, the Hashin-Shtrikman bounds for multiphase
materials [7] are not useful in the limit of thin cracks, since these bounds are typically based
on inclusion volume, and this volume becomes very small for thin cracks. Therefore, volume of
the crack itself is the wrong way to measure crack influence in many cracked systems, as has
been shown by many authors including Bristow [6, 9, 10, 11, 12]. On the other hand, Hashin-
Shtrikman bounds for polycrystals [8] do not suffer from the same limitations, since they
are not based on volume fractions, but rather on random orientations of anisotropic crystals.
Nevertheless, these bounds also have limitations since they implicitly require welded contacts
between the crystalline grains composing the polycrystal. For applications to cracked systems,
such assumptions are likely to be far from the reality of these fractured polycrystals, as the
grain contacts are often precisely where some of the fractures are localized. In both types of
Hashin-Shtrikman style results, the bounds can typically be too narrow, and in particular we
would always expect a rigorous lower bound to be exactly zero — which, although also clearly
a correct bound, is nevertheless not a useful result. In particular, the paper by Berryman and
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ELASTIC BEHAVIOR FOR HIGHER FRACTURE DENSITIES 5

Grechka [13] shows explicitly in the figures that the Hashin-Shtrikman bounds are much too
narrow for the range of fractured systems being considered.

There has also been some recent controversy in the literature about the relative importance
of crack-crack interaction versus non-interaction in different modeling methods for fractured
systems [14, 15, 16]. These issues have not yet been resolved. So it is one purpose of the present
paper to suggest a middle ground that seems quite appropriate for the types of geological
systems of interest here. As we shall see, the present concept revolves around the idea that
parallel cracks can be treated successfully as mostly noninteracting, while nonparallel cracks
need to be treated differently. We establish this concept by introducing regions of parallel
cracks contiguous to other regions of parallel cracks, but the two types of contiguous regions
interact in ways to be established here due to the oblique angles between them — thus, leading
to some significantly different interactions, as we shall show directly.

2.1. Penny-shaped cracks

The main idea of our analysis is quite simple, therefore, and is essentially this: The problems
that concern us, whether resistivity or elasticity are basically at heart potential flow problems.
Such problems can be understood using a fluid analogy, as has been known since the early work
of Lord Kelvin [17] (also see, for example, Den Hartog [18] and Mehrabadi and Cowin [19]).
For example, this ellipsoidal fracture is a nonconductive obstruction to the flow of current. In
terms of potential theory, this picture is completely analogous to the hydrodynamic flow of
fluid around an ellipsoidal solid obstruction. It is well-known that, if a thin disk oscillates in
a fluid, it does so with an effective mass that is very different from the mass of the disk itself.
This effective mass has to do with the fact that some of the surrounding fluid is entrained
with the disk, and so the disk plus the entrained fluid becomes the effective object that is
actually oscillating (to a good first approximation). We can look up results like this in Lamb’s
[20] textbook on Hydrodynamics. For a circular disk, the entrained fluid basically forms a
sphere around the disk, and so the effective density of the disk is proportional (×2/π) to
the corresponding density of the fitted sphere of volume (4π/3) × a3, when a is the radius
of the circular disk. If the disk is not circular, but still ellipsoidal, then it turns out that
the longest dimension is not so important because the fluid tends to flow around the disk
by taking the path of least resistance — which involves significant potential flow mainly over
the long sides, thereby creating a virtual cylinder of entrained fluid having the dimensions
2a× 2a× 2b, if b > a, and volume ' (4π/3)a2b (approximately). This result is true even if the
third dimension c (parallel to the main direction of flow) is very, very small compared to the
other two dimensions, as it is for prolate spheroids or needles.

Analogous effects occur in both resistivity problems and elasticity problems, when fractures
are introduced. These obstructions result in the same mathematical consequences for current
flow and elastic potential flow in these geometrically related flow problems [17, 18, 20].

Thus, one convenient choice for effective fracture density in elasticity problems is given for
a set of ellipsoidal fractures by:

ρe = (N/V )
4π

3
a2b, (2)

assuming that c << a < b. The ratio N/V is the number density (i.e., number N per volume
V ). It is worth noting that, with the aspect ratio of the ellipsoids defined as α ≡ c/a, the total
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6 JAMES G. BERRYMAN AND ATILLA AYDIN

Table I. Induced mass factors k⊥ and k‖ for oblate (planetary) spheroids of aspect ratio α translating or
oscillating in an ideal fluid (following Lamb [20], pp. 144–146, 700–701). The last column is presented

as the product k‖ × α because this is the physical quantity that remains finite as α → 0.

α = c/a k⊥ k‖α

1 1/2 1/2
0.950 0.485 0.505
0.900 0.469 0.510
0.800 0.434 0.521
0.700 0.397 0.533
0.600 0.355 0.545
0.500 0.310 0.558
0.400 0.259 0.571
0.300 0.204 0.586
0.250 0.174 0.594
0.200 0.143 0.602
0.150 0.110 0.610
0.100 0.075 0.618
0.010 0.008 0.6347
0.001 0.001 0.6364

0 0 2/π

porosity due to fractures alone in this system is

φe = (N/V )
4π

3
abc, (3)

while the fracture density is given conveniently (and intuitively) by the ratio of the two
dimensionless quantities, porosity and aspect ratio, as :

ρe = φe/α. (4)

Some illustrative numerical values for oblate spheroidal fractures are presented in Table I.

2.2. Ribbon-shaped cracks

For rectangular or ribbon fractures, the ideas leading to an appropriate fracture density are very
similar, but the final results take a different form. If a typical ribbon fracture has dimensions
h × ` × t, where h is height, ` is length, and t is effective thickness (of the resulting thin, flat
hole), then the porosity of a set of such fractures is given – in a manner very similar to the
earlier arguments – by

φr = (N/V )h`t. (5)

But the number density N/V is now measured in a different way: For ribbon fractures, we
typically think in terms of spacing distance s between fractures. This distance might sometimes
be taken to be an average spacing 〈s〉. Then, the spacing volume vr = V/N associated with
each ribbon fracture (on average) is just vr ≡ h × ` × 〈s〉. So the porosity is simply

φr = t/ 〈s〉 , (6)
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ELASTIC BEHAVIOR FOR HIGHER FRACTURE DENSITIES 7

which is another intuitive result, since t/ 〈s〉 is the fraction of the spacing distance occupied by
the pores. The fracture density in this case is given now (since h is a diameter of the pertinent
hydrodynamic cylinder, instead of being related to any fracture radius) by

ρr = (N/V )
πh2

4
× ` = πh/4 〈s〉 = πφr/(4t/h). (7)

Noting that this factor π/4 is of order unity, we can choose to ignore it, or not, as a matter of
personal preference when defining the fracture density. Except for such factors of order unity,
this result agrees (for example) with the lecture notes of Thomsen [21], and both qualitatively
and semi-quantitatively with very similar discussions of fracture density by Budiansky and
O’Connell [9].

3. MOTIVATION FOR THIS APPROACH

Now our primary purpose is to produce semi-analytical estimates of quasi-static elastic moduli
for slowly evolving fractured systems. The basic idea is therefore to find means of obtaining
quantitative measures that are valid up a point just prior to that at which significant qualitative
changes take place — an example of which is the coalesence of smaller fractures into larger
fractures (which may in turn result in significant nonlinear behavior, up to and including
system failure, by which we mean here that one or more of the system stiffness eigenvalues
vanishes). Achieving this goal will require somewhat delicate analysis, and so we are careful
not to attempt to push it beyond the realm where it is obviously still valid. To implement the
quasi-static averaging method, we make use of the early work of Backus [3], as well as more
recent work of Schoenberg and Muir [4]. (Also see Milton [22].) Both of the primary works
have similar goals: in particular, the use of their two formalisms to describe elastic moduli
pertinent to long wavelength seismic waves. Our present goal differs somewhat from theirs,
since we intend to apply very similar means to the study of quasi-statics and slow fracture
evolution in a structural geology setting.

Whether studying stiffness or compliance, we typically use a well-known (Voigt [23], Nye
[24], Mehrabadi and Cowin [19]) prescription for transforming back and forth between tensor
and matrix notation. (At a later point in the analysis, we must also introduce the Kelvin form
[17, 19] of the elastic matrix — see Appendix C for a definition — for reasons that will become
apparent.) For studies of wave propagation, it is usually preferable to study stiffnesses, which
in the seismological community are typically represented by coefficients Cij of the six-by-six
stiffness matrix C (which is just the Voigt simplification of the corresponding fourth-rank
tensor). We will also use this Voigt six-by-six matrix approach, but instead of concentrating
on the stiffness, we consider its inverse Sij , which is the six-by-six compliance matrix S.

There are two important reasons for using the compliance version of the method, instead
of the stiffness version: (1) The system we choose to study has uniform background material,
perhaps isotropic (although this is not an essential feature of the method), to which oriented
fractures are added. Once added, these oriented fractures cause the system to become locally
anisotropic, which is exactly what we want to study. Adding fractures is most easily and
naturally done throughout our analysis by adding the effects of such holes/fractures via the
compliance moduli Sij . Holes introduce increased compliance through a linear mechanism
(Kachanov [25], Sayers and Kachanov [26]) in the compliance matrix (or tensor), but the same
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8 JAMES G. BERRYMAN AND ATILLA AYDIN

holes would instead provide a nonlinear decrease in the stiffness matrix (or tensor). (2) The
second reason for studying the analysis from the compliance point of view is that we can save
some steps later in our analysis, because the quantities that appear naturally this way are
Young’s moduli (E), Poisson’s ratios (ν), and shear moduli (G). Young’s moduli and shear
moduli will appear as inverse moduli along the matrix diagonal of the final results, while
the Poisson’s ratios are also most easily obtained from the off-diagonal components once the
Young’s moduli along the diagonal have been determined. Thus, we may sometimes avoid one
comparatively tedious step of matrix (tensor) inversion by the present choice of formulation.
There is nothing else fundamentally different in our chosen technical approach from that of
Backus [3] and/or Schoenberg and Muir [4], but our goals — and therefore our desired results
— take us in somewhat different directions.

4. QUASI-STATIC MODULI FOR COMPLICATED CRACKED SYSTEMS

We study systems that have fairly high densities of oriented (by which we mean here “aligned”
or “parallel”) fractures, and that have two (or more if desired) such systems that are differently
oriented, but nevertheless contiguous, but also nonintersecting. One semi-analytical way of
dealing with such systems is to treat them as if they are locally layered (see Fig. 3). Each layer
may be considered homogeneous (though still anisotropic), because it contains only fractures
having just one and the same orientation. So each layer can be “homogenized” to produce
effective elastic constants for that layer. These constants will be determined to some extent by
the axis of symmetry, but this axis will not necessarily (and for the present analysis usually

will not) be aligned with the direction of the layering itself. Figure 3 shows one example of the
type of layered systems we have in mind. The angle between the oriented fractures in the two
layers shown can be considered arbitrary, but we purposely design the layered system itself for
this analysis so that we can take advantage of the symmetry gained by aligning the fractures.
Then, the angular difference between the two layers is split exactly evenly between the two
layers. This approach takes maximal advantage of the symmetry, and also of the fact that the
layer-averaging method treats the boundaries between layers in a special way: namely, that
these boundaries are “welded.” This term means that, after the rotations, fractures in this
model do not ever appear parallel to these boundaries, and especially (most importantly) not
aligned right along the boundaries between the layers.

The layer-averaging scheme assumes that strains at these boundaries and in the planes of
the boundaries (i.e., ε11, ε22, and ε12) are continuous, and also that the corresponding stresses
are also continuous for components such as normal stress (say σ33) and torsional shear stresses
(say σ13 and σ23) perpendicular to the in-plane directions 2 and 1, respectively. Continuity
of the remaining components of stress and strain is not guaranteed, but also not prohibited.
But these particular jumps across the boundaries are physically nd mechanically correct in all
cases.

The formulation of the mathematical problem for elastic layers themselves is somewhat
different from previous treatments (for compliance rather than stiffness), but basically obtained
using a rather minor modification of earlier work by Backus [3] and also by Schoenberg and
Muir [4]. So this method is summarized here as review material in Appendices A and B.

One clearly artificial aspect of this approach is the assumption that the crack densities in the
layers are all identical in magnitude. We make this restrictive choice to simplify the modeling
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ELASTIC BEHAVIOR FOR HIGHER FRACTURE DENSITIES 9

Figure 3. Example of a side view of the main type of layered medium considered in the text. The layers
are stacked top to bottom with only two of these types of layers being shown. Individual layers being
fractured/fractured, each have the same fracture density but not necessarily exactly the same fracture
distribution. For the example shown, the planes of the flat fractures are all at either ±30o from the
planes of intersection. All fractures in a given layer have the same angular orientation. Cracks are seen

here edge on.

in a first treatment. Certainly this constraint can be relaxed, as there is no such requirement
imposed by the layer-averaging method itself, which is general and therefore can handle any
combination of different types of layers.

5. DEFINITION OF THE CRACK-INFLUENCE PARAMETERS

The main idea we use in order to quantify the effects of cracks distributed either randomly or in
an organized way in an otherwise elastic material is based on work of Kachanov [25]. This work
introduced an elastic potential energy that is quadratic in the stress tensor and that can be
expressed in terms of invariants of the stress tensor in various combinations involving the “crack
density tensor.” This method results in a fairly complicated energy potential function involving
nine distinct terms, seven of which characterize the influence of a dense crack distribution on
an isotropic (background or host) elastic medium. But this function has the advantage that,
upon linearization in the crack density, it reduces to only four terms. Two of these terms
are the standard ones for the pure (uncracked) medium and the remaining two terms contain
the linear contributions (increases in compliance) due to the cracks. Sayers and Kachanov
[26] introduced a very useful scheme based on these ideas that enables the calculation of
constants for anisotropic cracked media from estimates of the behavior for the isotropic case.
This approach is a great simplification of a difficult technical problem. Now it is also not
obvious that linearization is permissible in all the crack density ranges of interest, but Sayers
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10 JAMES G. BERRYMAN AND ATILLA AYDIN

and Kachanov [27] showed in later work that the remaining contributions from the fourth rank
crack-density tensor are often small — and therefore negligible in many situations of practical
interest. The neglect of these terms nevertheless implies a certain amount of error in any
calculation made based on their absence. But — if this error is of the size of our measurement
error or less — it should not be a serious impediment to studies and analysis of these systems.

We make use of standard Voigt definition of the compliance matrix S as displayed in
Appendix A, Eq. (18).

A simple example shows that the first order corrections to the compliance tensor — using
the Voigt 6 × 6 matrix notation Sij — due to the presence of a low crack density ρc and an
isotropic distribution of similarly shaped small cracks take the form:

∆S
(1)
ij = ρc

















2(η1 + η2)/3 2η1/3 2η1/3
2η1/3 2(η1 + η2)/3 2η1/3
2η1/3 2η1/3 2(η1 + η2)/3

4η2/3
4η2/3

4η2/3

















, (8)

where η1 and η2 are the first two coefficients appearing at lowest order in ρc for the Sayers
and Kachanov [26] theory. For example, ρc = Nb3/V is the crack density (here N/V is the
number density and b is the radius of the flat cracks when they are penny-shaped). These two
coefficients can be determined for any crack density by computing the analytical form of the
bulk and shear moduli from the compliance matrix S∗

ij = Sij + ∆Sij , and then comparing
the results one-to-one with the results from any effective medium theory one trusts. For these
purposes, the differential scheme (DS) is the one that Sayers and Kachanov [26] chose to use,
but other choices can also be made. It is known that the value of the magnitude |η1| is generally
much smaller than that of η2. In particular, |η1/η2| ≤ 0.01 is typical of the results obtained
from the most commonly used effective medium theories.

The advantage of this approach can now be demonstrated very simply by considering a
pertinent example. If all the cracks in the system have the same vertical (z-)axis of symmetry,
then the cracked/fractured system is not isotropic, and we have the first-order compliance
correction matrix for horizontal fractures is:

∆S
(1)
ij = ρc

















0 0 η1

0 0 η1

η1 η1 2(η1 + η2)
2η2

2η2

0

















. (9)

It is not difficult to see that, if the cracks were oriented instead so that all their normals were
pointed horizontally along the x-axis, then we have one permutation of this matrix and, if
instead they were all pointed horizontally along the y-axis, then we have a third permutation
of the matrix. If we then want to understand the isotropic correction matrix in (8), we can
just average these three permutations: i.e., simply add the three ∆S’s together and then
divide by three. Having done that, we exactly recover the isotropic compliance corrections
matrix displayed in (8). This construction shows in part both the power and the simplicity of
the Sayers and Kachanov [26] approach, and how the neglect of small nonlinear terms leads
naturally to useful linearization techniques.
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6. SOME EXAMPLES USING THE METHOD

For our present application, we need estimates first of the effects of fractures on the compliances
S of the elastic systems of interest. Using the methods of Sayers and Kachanov [26], the paper
of Berryman and Grechka [13] shows how to obtain such estimates of fracture effects, together
with a specially designed fitting method for the numerical simulation results of Grechka and
Kachanov [14]. These results provide the values that we need to use in the explicit model
analysis that follows.

6.1. An explicit example

For final results, we also need a broad range of values from our fracture density simulations.
Such results are readily available for fracture densities up to ρ = 0.2 in the paper by Berryman
and Grechka [13]. We illustrate the approach with just one explicit example (but many more
were treated while developing the Figures that follow). Results of Berryman and Grechka [13]
lead to the conclusion that the effective compliance matrix for oriented fractures at the fracture
density ρ = 0.10, when the fractures are imbedded in a sandstone-like medium such as the
one studied in that paper having Poisson’s ratio ν ' 0.4375, should be given approximately in
units of GPa−1 by

S =

















0.15810 −0.06917 −0.07109
−0.06917 0.15810 −0.07109
−0.07109 −0.07109 0.21764

0.50549
0.50549

0.45455

















, (10)

based on extensive numerical simulations (hundreds of examples of interacting cracks were
studied) by Grechka and Kachanov [14]. This case corresponds to an elastic system having
Young’s moduli E11 = E22 = 6.3251, E33 = 4.5947 GPa, and torsional shear moduli
G44 = G55 = 1.9783, G66 = 2.2000 GPa. Blanks in the matrix are zeroes.

The fracture influence parameters (in units of GPa−1) used to arrive at (10) are: η1(0) =
−0.0192, η2(0) = 0.3994, η3(0) = −1.3750, η4(0) = 0.0000, and η5(0) = 0.5500. Coefficients
η1 and η2 contribute to the compliance results after multiplication by ρ to the first power.
Coefficients η3 and η5 contribute to the compliance results after multiplication by ρ to the
second power. Coefficient η4 was found not to influence the results in any significant way, so
its value is neglected. Higher powers of ρ than the second power were not treated in Berryman
and Grechka [13], as the numerical data used in the fitting procedure stopped at ρ = 0.20, and
fitting higher order coefficients to a satisfactory level of accuracy requires numerical data at ρ
values higher than 0.20, which were unfortunately not available at that time.

Now we want to study the effects when at least two sets of fractures are present; these
fractures are locally oriented, but contiguous groupings of fractures (in different layers in our
model) have different orientations, with angles of near-intersection at either dihedral or right
angles as shown previously in the photographs of natural fractures in Figs. 1 and 2. We treat
this aspect of the problem by rotating the fracture orientation in five distinct cases, so that
two sets of fractures have orientations that differ by ΘF = 15o, 30o, 45o, 60o, and 90o. We
accomplish this by rotating one set by half the total angle in one direction, and the other set
by half the total angle in the opposite direction: ±7.5o, ±15o, 22.5o, ±30o, ±45o. (See Fig. 3.)
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12 JAMES G. BERRYMAN AND ATILLA AYDIN

Table II. Values of three eigenvalues of stiffness and their sum for the layered system as a function of
fracture density ρ and rotation angle ΘF .

ρ ΘF 3qK (GPa) 2qGp (GPa) 2qGu (GPa) Sum (GPa)

0.00 all 50.60 4.40 4.40 59.40
0.05 0o 34.86 4.40 3.97 43.22

15o 34.79 4.40 3.97 43.16
30o 34.61 4.38 4.01 43.00
45o 34.38 4.37 4.05 42.80
60o 34.15 4.33 4.11 42.59
90o 33.92 4.28 4.19 42.39

0.10 0o 29.49 4.40 3.67 37.55
15o 29.36 4.39 3.68 37.44
30o 29.02 4.37 3.72 37.11
45o 28.57 4.32 3.78 36.67
60o 28.12 4.27 3.85 36.24
90o 27.69 3.96 4.19 35.84

0.20 0o 26.75 4.40 3.38 34.53
15o 26.55 4.38 3.39 34.31
30o 26.00 4.32 3.40 33.72
45o 25.32 4.25 3.41 32.98
60o 24.69 4.17 3.43 32.29
90o 24.11 3.45 4.08 31.65

To perform the actual matrix rotation, we use methods and codes supplied online by
Dellinger [28]. These codes assume input of stiffness matrices and then provide output also in
the form of stiffness matrices. So we first invert the compliance matrices shown into stiffness
matrices, and then — after the rotation — we invert them back into our desired compliance
form. [Technical Note: We need to perform these extra steps because the eigenvalue structure
of the stiffness matrices is preserved correctly in Dellinger’s codes for the stiffnesses, but —
because of differences in Voigt matrix structures for stiffness and compliance matrices (see Nye
[24]) — the eigenvalue structure for compliances is unfortunately not preserved.]

For example, after the unrotated stiffness matrix is known from the inversion step, we can
use the rotation code, and find that the rotated stiffness matrix for a rotation angle (for
example) of +15o around the x-axis (or 1-axis, or x1-axis) is:

C
′ =

















13.97 9.442 7.814 −0.47
9.442 13.66 7.706 −0.576
7.814 7.706 9.89 −0.512
−0.47 −0.576 −0.512 1.997

1.993 −0.055
−0.055 2.185

















. (11)

For comparison purposes, consider that the sum c11 + c22 + c33 = 37.52 GPa and note that
for the unrotated case, the corresponding trace value (≡ Sum) in Table II is 37.55 GPa.
Since the layer-average result for the pertinent rotation value of 30o is c11 + c22 + c33 = 37.11
GPa, we see that there is a decline in overall stiffness due to these combined rotations and
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ELASTIC BEHAVIOR FOR HIGHER FRACTURE DENSITIES 13

layer-averages, but this decline is really quite small.
Then, after using results of Appendix C again to invert this matrix back to compliance form,

the resulting rotated compliance matrix is:

S
′ =

















0.15805 −0.06926 −0.07096
−0.06926 0.25340 −0.07029
−0.07096 −0.07029 0.21285

0.50855
0.50211 0.01274
0.01274 0.45799

















. (12)

This result corresponds to an elastic system having Young’s moduli E11 = 6.3272, E22 =
6.2019, E33 = 4.6981 GPa, and torsional shear moduli G44 = 1.9664, G55 = 1.9916,
G66 = 2.1835 GPa. When the rotation is performed in the opposite direction (i.e., −15o),
the only difference in the resulting compliance matrix is that the off-diagonal terms S56 = S65

have opposite signs. All the other coefficients remain exactly the same. This exact type of
symmetric behavior was observed to be characteristic of all the examples considered here, and
shows explicitly why orthorhombic systems are important and ubiquitous in fractured media.

Figure 4 shows results for effective Young’s moduli E11, E22, E33, and shear moduli G44,
G55, G66, for ρ = 0.05, 0.10 and 0.20. Angles considered form a subset in the range ΘF = 0o

to 90o. One general characteristic we observe is that, for ΘF = 0o, E11 = E22 and G44 = G55

– behavior corresponding to transversely isotropic (TI) media with symmetry axis x3 = z.
Similarly, for ΘF = 90o, E22 = E33 and G55 = G66 – corresponding to transversely isotropic
(TI) media having symmetry axis x1 = x. This transition is entirely expected, since the
rotations are all performed around the x-axis.

Figure 5 shows that the weakening of the system for the Young’s moduli E11, E22, E33 and
also for the torsional shear modes G44, G55, G66 ranges from an 11% to 20% effect for G44

and G55, while the effect on G66 ranges from being negligible up to about 11%.
The effect of rotations on Young’s modulus E11 is zero at all angles and all fracture densities,

since the rotations are all performed around the x-axis. Changes in the modulus E22 carry it
from the values of E11 to those of E33, as the rotation angle changes from 0o to 90o. E33 is
the most interesting case, having lost from 24% to 33% of its initial value, depending on the
magnitude of the rotation angle.

Figure 6 displays the results for the three “quasi-modes” (this term is defined carefully
in the following three paragraphs) of elastic response: qK, qGp, and qGu. These modes are
true eigenvalues [11] of the layer-averaged system, but they are nevertheless not so easily
identified in terms of bulk and shear modulus, or compressional and torsional behavior.
Relating the symbols to actual eigenvalues λ1, λ2, λ3, we can express these three quasi-moduli
as qK = 1/3λ1 for the quasi-bulk modulus, qGp = 1/2λ2 for the quasi-pure shear modulus,
and qGu = 1/2λ3 for the quasi-uniaxial shear modulus. The values λ1, λ2, λ3 are the three
eigenvalues of the 3 × 3 matrix in the upper left corner of the compliance matrix Sij for the
layered system. As a rule, we found it was not at all difficult to determine which of these
modes was which in the cases considered in our examples. The only problematic region is that
around ΘF ' 75o, where the values of qGp and qGu become comparable and then crossover.
These two eigenvalue branches actually change character form pure to uniaxial shear in this
region. This region is therefore more difficult to treat carefully than the rest of those treated
in the paper, so we are not showing these details in the present work.
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Figure 4. Effective Young’s moduli and torsional shear moduli, respectively, overall for the layered
systems considered: (a) and (b) are for ρ = 0.05, (c) and (d) are for ρ = 0.10, (e) and (f) are for
ρ = 0.20 fracture densities. Note that these results indicate transversely isotropic symmetry, but

having different (and orthogonal) axes of symmetry at ΘF = 0o and 90o.

6.2. Motivating the quasi-modes

For comparison, it is common in the seismic wave and acoustic wave propagation literatures to
call the three wave modes that are actually dependent on these same moduli, respectively, the
quasi-compressional or quasi-P wave, the quasi-SV wave (meaning shear wave with vertical
plane of polarization), and the SH wave (for the shear wave having horizontal plane of
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Figure 5. Effective Young’s moduli E and torsional shear moduli G, respectively, for the layered
systems considered to a fracture density of ρ = 0.2: (a) E11, (b) G44, (c) E22, (d) G55, (e) E33, and
(f) G66. Relative orientations of the fractures in different layers for the five cases are: ΘF = 15o, 30o,
45o, 60o, and 90o. For the orthorhombic systems considered, these torsional shear moduli are three
of the six eigenvalues for the elastic response. The other three eigenvalues are presented separately in

Figs. 8 and 9.

polarization). For present purposes, these designations are not directly pertinent. But we can
nevertheless define three quasi-modes having these effective moduli: the quasi-bulk modulus
qK, the quasi-pure shear modulus qGp, and the quasi-uniaxial shear modulus qGu. The quasi-
compressional mode having eigenvalue qK is found to be the only one of the three modes
having all three components in the corresponding eigenvector of the same sign. A true bulk
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Figure 6. Quasi-bulk moduli, qK and KR, and quasi-shear moduli, qGp and qGu, for the layered
systems considered: (a) and (b) are for ρ = 0.05, (c) and (d) are for ρ = 0.10, (e) and (f) are for
ρ = 0.2 fracture densities. Note the change of character in the qGp and qGu, which results in the

crossing of these curves in (b), (d), and (f) for large ΘF .

modulus mode would have all three components of the eigenvector equal in magnitude and
also of the same sign. However, this hydrostatic state is usually not an eigenmode for most
anisotropic elastic media. (Cubic symmetry media provide one anisotropic counter-example to
this otherwise general statement.)

The quasi-pure shear modulus qGp corresponds to a mode with one eigenvector component
significantly smaller than the other two, and these two are comparable in magnitude, but
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opposite in sign. A true pure-shear mode would have one component exactly zero, and the
other two of equal magnitude, but opposite sign. Table III presents some examples of the
observed results for this mode. In particular, it is seen here that this mode is exactly of the
pure-shear type, having eigenvectors (1,−1, 0)/

√
2 and (0,−1, 1)/

√
2, respectively, for ΘF = 0o

and ΘF = 90o.
The remaining mode has eigenvalue qGu, and is termed the quasi-uniaxial shear mode.

A true uniaxial shear mode [29, 30] is the eigenmode remaining when an applied uniaxial
compression (or tension) is decomposed into a pure hydrostatic compression (or tension), and
a shear mode. Thus, in pure uniaxial-shear, the stresses satisfy σ33 = −2σ11 = −2σ22, or the
equivalent statement for strain, and/or any appropriate permutations of the indices 1,2,3. The
quasi-uniaxial mode is therefore the only one having two components of comparable magnitude
and also the same sign, while the third component is of opposite sign, and approximately twice
the magnitude of the other two.

In general we have also found that both the Reuss average KR and the Voigt average
KV bulk moduli were nearly constant, as a function of the rotation angle ΘF [30] for fixed
fracture density ρ. Hill [31] has shown that these effective moduli are lower and upper bounds
respectively on the true effective bulk modulus that can be defined for such anisotropic systems.
Hill’s average is either the arithmetic or geometric mean of KR and KV , although experience
shows that the arithmetic mean usually fits rock data better.

The quasi-uniaxial shear modulus qGu is the smaller of the two quasi-shear modes, but
it also tends to increase with rotation angle. The quasi-bulk modulus qK and the quasi-pure
shear modulus qGp were both variable, and showed qualitatively very similar behavior over the
range of values considered. However, the quantitative behavior of these two modes was quite
different, as the quasi-bulk modulus declined from 5 to 10% in value, whereas the quasi-pure
shear modulus lost from 5 to 25% of its initial value as the rotation range varied from 0o to
90o, depending on the fracture density value. The quasi-pure shear mode is therefore the one
that is most strongly influenced by the angle between the fracture sets in the two types of
layers considered in our modeling.

The torsional shear moduli G44 and G55 both behave similarly to qGu, while G66 behaves
similarly to qGp. Overall decrease in modulus magnitude as ρ increases (see Fig. 9) is about
the same in all the shear modes, although G66 and some of the smaller rotation angles for qGp

result in slower fall off in these shear modulus values.

7. DISCUSSION

Figure 3 shows the concept being used in the sets of examples in Figs. 4–7. The results from
Appendices A and B were used to generate numerical estimates of six effective layer-averaged
compliances (specifically, the diagonal components of S): 1/E11, 1/E22, 1/E33, 1/G44, 1/G55,
and 1/G66. Results in (a) and (b) were generated for rotations of the fractures to angles ±15o,
so the total angle ΘF between the fractures in the layers is 30o. Similarly, for (c) and (d), the
angles were ±30o of rotation and ΘF = 60o relative to each other; and, for (e) and (f), the
angles were ±45o of rotation and, therefore, relative fracture angle ΘF = 90o.

[Technical Note: We have only used available numerical data at the four fracture densities:
ρ = 0.0, 0.05, 0.10, and 0.20. That is why the curves shown typically have breaks in curvature
at these particular values of fracture density in Figs. 5 and 7.]
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Table III. Compliance eigenvalues x2 ≡ 1
2(qGp)

and normalized eigenvectors (α, β, γ) for the quasi-pure

shear mode at various values of the fracture density ρ and rotation angle ΘF .

ρ ΘF x2 (GPa−1) (α, β, γ)

0.05 0o 0.22727 (0.70711, −0.70711, 0.00000)
15o 0.22751 (0.70551, −0.70870, 0.00147)
45o 0.22905 (0.69996, −0.71418, −0.00240)
60o 0.23069 (0.70712, −0.70638, −0.03181)
90o 0.23849 (0.00000, −0.70711, 0.70711)

0.10 0o 0.22727 (0.70711, −0.70711, 0.00000)
15o 0.22763 (0.70656, −0.70764, −0.00307)
45o 0.22245 (0.66009, −0.74663, 0.08262)
60o 0.23411 (0.71692, −0.69136, −0.08969)
90o 0.25263 (−0.00082, −0.70655, 0.70766)

0.20 0o 0.22727 (0.70711, −0.70711, 0.00000)
15o 0.22838 (0.70801, −0.70612, −0.01045)
45o 0.23553 (0.72207, −0.68251, −0.11310)
60o 0.23999 (0.73577, −0.64484, −0.20697)
90o 0.28952 (0.00000, −0.70711, 0.70711)
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Figure 7. Quasi-bulk moduli, qK, KR, and KV , are displayed in (a) and the quasi-shear moduli, qGp

and qGu are displayed in (b), for the rotation angles considered in the text. The Reuss average KR

is a rigorous lower bound on effective bulk modulus, while the Voigt average KV is a rigorous upper
bound. Although the quasi-bulk modulus qK is a rigorous eigenvalue of the elastic system under study,

it is not necessarily simply related to an overall effective bulk modulus of the composite system.

The changes in Young’s moduli (E) are relatively straightforward to explain: For each
Young’s modulus, the main issue is how much the presence of one fracture, or one set of
similarly oriented fractures, changes the compliance in the given direction. The situation for
E11 is very simple, as it does not ever change as the angle between these fractures change. This
modulus depends on ρ, but otherwise is clearly independent of the presence of the fracture-
angle changes as it should be, since the fracture rotations are all being performed around the
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x-axis.
So 1/E11 is the compliance directly into the diagram in Fig. 3, i.e., normal to the printed

page. The presence of the fractures has minimal (actually negligible) effect in this direction
on Young’s modulus E. On the other hand, it has its greatest effect on E33, since this is
the modulus pertinent to the layering direction in Fig. 3. The effect is already quite large
at ΘF = 30o, and only increases slightly as the angle continues increasing up to ΘF = 90o.
In contrast, the effect of the increasing angle on E22 is intermediate between the effects on
E11 and E33, until the angle reaches ΘF = 90o, at which point is is clear that E22 ≡ E33 is
a requirement (as observed), since the two oppositely rotated fracture sets are now exactly
orthogonal to each other at this point (producing a distinctly different TI medium from the
one for ΘF = 0o, in which case all the fractures are still parallel to each other). So stresses
in the z-direction or in the y-direction both experience exactly the same environment, and
therefore we must also see the same elastic response.

8. SUMMARY OF MAIN METHOD

Since the methods of analysis presented so far have multiple steps, each of which has its own
inherent complications and associated questions, it seems appropriate to reprise these steps
and attempt to summarize what has been accomplished at this point.

First, we applied the Sayers and Kachanov [26] method, using fracture influence coefficients
obtained peviously in the work of Berryman and Grechka [13], and based upon results from
numerical simulations by Grechka and Kachanov [14]. This step is the only one that introduces
fractures into our effective medium model system. So this is the only step that explicitly makes
use of fractures to weaken the elastic matrix, while simultaneously introducing anisotropy —
due to the fact that the fractures introduced are all locally aligned within a layer — into the
otherwise isotropic elastic background medium.

Second, we rotate the axes of the system of aligned fractures twice: each time the rotation
is about the x-axis (for a system originally having z-axis of symmetry). One of these rotations
is positive (+θ), and the other negative (−θ) — both being of exactly the same magnitude.
These two rotations do nothing in themselves to weaken or strengthen the previously fractured
systems that become the layers of the model. Because rotations of the axes do not change either
the trace or the determinant of a matrix, taking these actions leaves the eigenvalues of each
rotated matrix completely unchanged. It is observed however that the positive and negative
rotations do change the values in the matrices in the upper left 3 × 3 corner of the matrix,
and also along the diagonal of the lower right 3 × 3 submatrix. Furthermore, these rotations
produce nearly identical matrices overall, the only differences being in certain off-diagonal
components, nonzero values not previously present in the unrotated matrices. Furthermore,
these new matrix elements all have opposite signs, by which we mean that the ones that
have ± signs for the positive rotation have ∓ signs for the negative rotation. (This particular
result is special for equal angular rotations combined with equal crack densities. The current
method can certainly be generalized in this regard, but the results then become cumbersome
to tabulate – i.e., multidimensional results for different angles and/or different crack densities.
So this extension was beyond our current scope.)

The third step then involves stacking these two rotated systems and using the Backus [3]
or Schoenberg-Muir [4] layer-averaging methods to determine the effective properties of the
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resulting composite system. One remarkable fact discovered is that those new off-diagonal
terms (and this would also be true even for off-off-diagonal terms if they occurred at a
non-negligible magnitude) introduced in the second step exactly cancel out in the layer-
averaging process, i.e., they layer-average exactly to zero. Therefore, we are always left with
an orthorhombic system having fractures located relative to each other at twice the magnitude
of the original rotation angles [2 × θ = ΘF ].

This final orthorhombic anisotropic elastic system compliance matrix is relatively easy to
analyze, and the results show that there is one mode (out of six) of this system that is always
the weakest one. This mode is the one we have termed the quasi-pure shear mode, having
effective eigenvalue qGp. This mode has the characteristic that, of the three eigenmodes in the
upper left 3 × 3 of the matrix, it is the one closest to that of a pure shear (i.e., σ11 = −σ22,
while σ33 = 0). The other two quasi-modes are a quasi-bulk mode closest to σ11 = σ22 = σ33,
and a quasi-uniaxial shear mode closest to σ33 = −2σ11 = −2σ22. Both of the other two
quasi-modes have modest changes in modulus values as rotation angle changes from 0o to 90o.

Because the resulting effective medium system (for the special choices made here) is generally
orthorhombic, there are three more shear modes, and these correspond to the three torsional
shear modes of the system. These modes are the ones associated specifically with the torsional
shear moduli G44, G55, and G66. Of these three moduli, the shear modulus G44 changes least
with rotation angle. The two shear moduli G55 and G66 do change more substantially, however,
with G55 generally increasing in value while G66 decreases. The observed increase seen in G55

is essentially required for this system of equations, because of the fact that both the trace and
determinant of the rotated matrices in the second step must have (because of the invariance
of these quantities for all matrices) constant values before and after the rotations.

So, if any of the eigenvalues goes down due to the rotations (which is seen to be true for
both qGp and G66 in Figs. 4 and 6), then at least one of others (i.e., G44, G55, and/or qGu)
must necessarily go up at this stage of the calculation. Thus, we find that qGu and G55 always
go up with rotation angle, while shear modulus G44 has more complicated behavior depending
also on the fracture density value. Table V shows explicitly how this works out in the trace
and determinant values for the cases covered in our examples. The traces and determinants
displayed here should be completely invariant (constant) as a function of rotation — except for
the fact that these values are computed after the layer-averaging step, which causes some off-
off-diagonal terms to average to zero. That they have a small (apparently random) deviation
from perfect invariance provides a measure of the accuracy of our computational methods,
for which it is believed that the largest numerical errors actually occur in the rotation step
itself. Another test of the accuracy of the methods used is the fact that xthe Reuss and Voigt
averages for the bulk modulus should both also remain invariant under these rotations [30].
This invariance (to numerical accuracy) is also demonstrated in Fig. 6, and provides another
measure of the accuracy of the numerical procedures we used.

A fourth step in our analysis, which will be presented in the next section, is an attempt
to estimate via extrapolation what happens at higher fracture densities, i.e., beyond the
region where the numerical results of Grechka and Kachanov [14] were available to help
with quantification of the fracture influence parameters. This step uses a simple straight-line
extrapolation method based on the best information currently available.
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9. ESTIMATING FAILURE POINT VIA EXTRAPOLATION

One long-term goal of the work presented is to provide insight into modes of failure for
fractured systems of the type considered. However, so far we have limited our discussion to
fracture densities only up to ρ = 0.2, as this is the highest value considered in the numerical
experiments of Grechka and Kachanov [14] that were subsequently used as the basis of the
fitting techniques of Berryman and Grechka [13]. To do any more analysis, we need to come
up with another approach.

One way to go beyond the available data would require extensive additional numerical
modeling of the types discussed already. An alternative approach (but clearly one to be treated
with special caution) is to develop an extrapolation method based on those numerical results
already in hand. We present the results of such an extrapolation method in the present section
of the paper.

9.1. Extrapolation technique

As already mentioned, a method of obtaining estimates beyond the range of our more certain
knowledge is to use an extrapolation technique. One such approach would be to extrapolate
simply by using the same expansion in powers of ρ that we have been using; but unfortuantely
this approach will surely give misleading results, since it is clear that higher order fracture-
influence coefficients (those multiplying higher powers of fracture density ρ) should come into
play, and at the moment we have no way of knowing appropriate values for these purposes.

Another way of extrapolating is simply to extend the last line segment connecting certain
values (say two of our fracture density values at ρ = 0.1 and 0.2) of the computed moduli
to higher fracture density until the resulting line crosses zero (so the extrapolated modulus
value is predicted to vanish approximaxtely at that fracture density by implication). Various
effective moduli can be used for this purpose, including qGp, G55, G66, and E33, which are the
smallest moduli and the ones that will clearly extrapolate to zero at the smallest values of ρ.

Using such an approach presumably does not give a very accurate value for the critical
fracture density ρcrit. However, since it is most likely that, as true critical values are
approached, stronger fracture-fracture interactions will come into play (see [32, 33, 34]) —
which have clearly been neglected here and which will necessarily cause the failure to happen
even more quickly than our simple extrapolation procedure would predict. It seems plausible
therefore that the extrapolated values obtained this way should prove to be reasonably reliable
upper bounds on the true zero-modulus or failure point.

To summarize the details of the extrapolation method, consider M to be any modulus, and
fit its changing value with ρ to a straight line according to:

M(ρ) = A + Bρ, (13)

Then, if M(ρ1) = M1 and M(ρ2) = M2, it is not difficult to show that

A =
ρ2M1 − ρ1M2

ρ2 − ρ1
and B = −M1 − M2

ρ2 − ρ1
. (14)

The extrapolated value for the critical fracture density is therefore:

ρcrit = −A/B. (15)
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Table IV. Extrapolated values of the critical crack density ρcrit for failure (i.e., being defined for
present purposes as any elastic modulus M going to zero), using the procedure outlined in the main
text. Values of various moduli at ρ = 0.10 and = 0.20 are extrapolated to zero for various angles
(most often for angles of either 15o or 90o, and a few other examples for intermediate angles are also
presented) between fractures in adjacent layers. Examples are listed in order of increasing values of

their computed ρcrit.

M A B ρcrit

qGp(90
o) 2.231 -2.522 0.885

E33(45
o) 5.101 -5.758 0.886

G55(15
o) 2.228 -2.463 0.904

E33(60
o) 5.601 -6.105 0.917

G44(15
o) 2.215 -2.403 0.922

E22 & E33(90
o) 6.041 -6.269 0.964

E33(30
o) 5.201 -5.376 0.968

E33(15
o) 5.130 -5.091 1.008

qGu(60o) 2.136 -2.095 1.020
KR 9.967 -9.652 1.033

G44(45
o) 2.133 -1.793 1.190

G55 & G66(90
o) 2.231 -1.474 1.513

G44(90
o) 2.037 -1.067 1.909

Table IV presents the results obtained by extrapolating the curves for qGp, G44, G55,
G66, E33, E22, and KR to zero according to the ideas just outlined. These results seem to
give reasonable predictions, since the best (i.e., lowest) extrapolated values are in the range
ρcrit ' 0.8-1.0. We view these numbers as likely upper bounds on the true critical fracture
density. So the results are showing us that values in the range ρcrit ' 0.5− 1.0 are reasonable
predictions, based on our extrapolations. These values are also consistent with the field results
of Wu and Pollard [35] on the Fracture Spacing Index, among many others. The technical
implications of this point are discussed more fully in the next subsection.

9.2. Comparisons to field observations

It turns out that the numerical estimates obtained using this procedure are nevertheless
(perhaps surprisingly) consistent with field data on joint spacing in outcrops. Wu and Pollard
[35] show that a typical relationship between joint spacing and layering thickness is given by

αi = D/T, (16)

where D is mean joint spacing and T is bed thickness. The proportionality between the two
is therefore the straight line (with zero intercept): D = αiT .

It is typically believed that these lines do not change with bed thickness, and that they are
in fact functions of both lithology and mechanical properties. The so-called Fracture Spacing
Index (FSI ≡ 1/αi) has been observed by these and other authors to lie typically in the range
0.1 ≤ 1/αi ≤ 0.5, with some observed FSI values being as high as 1.3. Note that, in equation
(7), we defined the crack density for flat and ribbon-shaped fractures to be ρr = πh/4s ' h/s,
where h was height, and s was spacing of fractures. But, if we compare these definitions to
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Table V. Trace Tr(S) and determinant Det(S) of the effective compliance matrix S (in the Kelvin
form) for the layered system as a function of fracture density ρ and rotation angle ΘF . This quantitative

information provides a useful check on the matrix rotation processing step of the calculation.

ρ ΘF Tr(S) (GPa−1) Det(S) (GPa−6)

0.00 all 1.156127 1.1984×10−5

0.05 15o 1.2129 2.130×10−5

30o 1.2128 2.144×10−5

45o 1.2128 2.129×10−5

60o 1.2130 2.174×10−5

90o 1.2128 2.128×10−5

0.10 15o 1.2666 3.064×10−5

30o 1.2665 3.099×10−5

45o 1.2665 3.150×10−5

60o 1.2663 3.201×10−5

90o 1.2665 3.249×10−5

0.20 15o 1.3662 4.809×10−5

30o 1.3665 4.842×10−5

45o 1.3662 4.965×10−5

60o 1.3661 5.099×10−5

90o 1.3668 5.382×10−5

those of Wu and Pollard [35], we find that h = T and s = D. So, except for the numerical
factor π/4 of order unity, we have:

ρr ' FSI = 1/αi = T/D = h/s. (17)

We find therefore that the predictions of the relatively simple effective medium theory
presented here is giving reasonable numbers for these fractured systems up to, but not all
the way into, the complicated region of failure and rubblization. In particular, the methods
employed have all been deterministic, and it is clear that important effects in geological, and
other systems as well, involve randomness of fracture occurrence, orientation, and relative
placement, none of which has been treated directly in the preceding analysis.

It is believed that the most appropriate view to take of these extrapolated values is that
they are likely (though possibly quite crude) upper bounds on the true critical fracture density
for failure of the systems studied. No more rigorous interpretation of these results is possible
at the present time.

10. CONCLUSIONS

The method developed here uses some fairly standard methods from effective medium theories
to treat complicated fracture systems and thus quantify their elastic behavior when fractures
at moderately high densities are contiguous, but not intersecting. We find that one of the
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weakest modes of the system studied is a quasi-pure shear mode that is an exact eigenmode of
the constructed system, but not a true pure shear mode in the usual sense. Table IV shows
these results. Other shear modes, including those correspoinding to shear moduli G44 and G55

at a rotation angle of about 15o, also lead to similar conclusions, and these modes are true
torsional shear modes, as well as also being true eigenvalues of the system.

Results therefore indicate that the approach has some promise for enabling prediction of
system failure (as a function of fracture density) and also prediction of which specific modes
of failure are most likely to be active.

It may also be worth noting that, while we have phrased the problem here in terms of
fractures in a field setting, the same ideas apply with equal validity to smaller scale systems
such as laboratory scale rock deformation studies [36]. Indeed, the types of failure modes seen in
the laboratory fall equally well within the general framework discussed here, and the analysis
may prove useful for analyzing specific laboratory test data sets. Such directions for data
analysis will provide a further motivation for future efforts along these, and similar related,
lines of inquiry.

Finally, we have not yet discussed the influences that fluids in the fractures might have on
the preceding analysis. Berryman [37] shows how Skempton’s coefficient B [38, 39] may be used
to introduce fluid effects simply into the Sayers and Kachanov [26] fractured systems analysis
scheme that we also used here. This approach automatically makes the equations for fractured
systems Gassmann consistent [37]. The mathematical approach presented here can be easily
modified to account for these effects in the same way as in Ref. [37]. The main conclusion will
follow that, due to the very slow changes inherent in the geological processes, these systems
will typically (especially for rock outcrops) act as drained systems, and therefore will be largely
unaffected mechanically by the presence of pore fluids. This story would change, however, if
any liquid is trapped, so it is an undrained fluid with a significant bulk modulus (i.e., a liquid).
Such confined fluid would then tend to stiffen the system, and the corrections in [37] could be
applied to account for these changes. We will say no more about these interesting effects here,
as further elaboration of this story will need to be continued in another contribution.
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APPENDIX A: SCHOENBERG-MUIR METHOD

The compliance form of the quasi-static equations of elasticity are typically written in the following
way when the Voigt six-by-six matrix notation is being used:
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where S is the symmetric 6× 6 compliance matrix. The numbers 1,2,3 always indicate Cartesian axes
(say, x,y,z respectively). In many geological and geophysical applications, the 3-axis (or z-axis) is
taken to be vertical, but we do NOT typically use this convention here. Instead, the z-direction is
usually the layering direction, which can be oriented any direction in the earth. The principal stresses
are σ11, σ22, σ33, in the directions 1,2,3, respectively. Similarly, the principal strains are ε11, ε22, ε33.
The stresses σ23, σ31, σ12 are the called the torsional shear stresses, associated with rotation-based
strains around the 1, 2, or 3 axes. Again, the corresponding torsional strains are ε23, ε31, and ε12,
where the torsional motion is a rotational straining motion around the 1, 2, or 3 axis, respectively.
The compliance matrix is symmetric, so Sij = Sji, and this fact could have been used when writing
out this matrix. However, there will be some advantages for our later analysis to leave the notation
in this form for now. The axis pairs in the subscripts 11, 22, 33, 23, 31, and 12, are often labelled
(following the conventions of Voigt [16, 17]) as 1,2,3,4,5,6, respectively. This choice of notation also
clarifies the significance of the remaining pairs of subscripts appearing in the compliance matrix in
(18).

The important contribution made by Backus [3] (also see Postma [40]) is the observation that,
in a horizontally layered system, there are certain strains εij and stresses σij that are necessarily
continuous across boundaries between layers, while the others are not necessarily continuous. We have
been implicitly (and now explicitly by calling this fact out) assuming that the interfaces between layers
are in welded contact, which means practically that the in-plane strains are always continuous: so if
axis 3 (or z) is the symmetry axis (as is most often chosen for our layering problem), we have ε11,
ε12 = ε21, and ε22 are all continuous. Similarly, in welded contact, we must have continuity of the all
the stresses involving the 3 (or z) direction: so σ33, σ13 = σ31, and σ23 = σ32 must all be continuous.

Then, following Backus [3] and/or Schoenberg and Muir [4], but now considering instead the
compliance (inverse of stiffness) matrix, we have rearranged the statement of the problem so that:
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. (19)

Note that this equation, although similar to (18) is quite different because of the rearrangement of
the matrix elements and the reordering of the strains and stresses. Expression of this equation can be
made more compact by writing it as:

„
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where

STT ≡
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1

A , (21)
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SNN ≡
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and
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with STN = ST
NT (with T superscript indicating the matrix transpose), and also where
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and
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A . (25)

It is most helpful to distinguish between “slow” and “fast” variables in this analysis, since this
distinction makes it easy to decide when and how averaging should be performed. The “slow” variables,
that are those continuous across the boundaries and also essentially constant for the present quasi-
static application, are those contained in XT and ΣN . So, after averaging 〈·〉 along the layering
direction, we will have:

„
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«
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„
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«„
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, (26)

where S∗
TN = (S∗

NT )T , and all the starred quantities are the nontrivial average compliances we seek.
They are defined in terms of layer average quantities where the symbol 〈·〉 indicates a simple volume
average of all the layers. By this we mean that a quantity Q that takes on different values in different
layers has the layer average 〈Q〉 ≡ xaQa + xbQb + . . .. The definition is general and applies to an
arbitrary number of different layers where the fraction of the total volume occupied by layer a is xa,
etc. Total fractional volume is xa + xb + . . . ≡ 1. In our present application, we will treat only two
types of layers, and each occupies half the volume, so 〈Q〉 = 1

2
(Qa + Qb). The method is however

immediately generalized to an arbitrary number of different layers, and any relative weighting, when
needed. Specific results presented here are however limited to the two-layer case.

Of the three final results, the ones easiest to compute are these two:

S∗
TT =

˙

S−1
TT

¸−1
, (27)

S∗
TN = (S∗

NT )T =
˙

S−1
TT

¸−1 ˙
S−1

TT STN

¸

= S∗
TT

˙

S−1
TT STN

¸

, (28)

where 〈·〉 is the layer average of some quantity. These results follow from this equation:

˙

S−1
TT

¸

XT = 〈ΣT 〉 +
˙

S−1
TT STN

¸

ΣN , (29)

which followed immediately from the formula

XT = STT ΣT + STNΣN (30)

multiplying through first by the inverse of STT , and then performing the layer average. [Note that STT

and SNN are both normally square and invertibxle matrices, whereas there will be many systems for
which the off-diagonal matrix SNT is not invertible. But, this fact is not an issue, because we do not
need to invert SNT in order to solve the averaging problem at hand.] These averages are meaningful
because when the matrix equations presented are multiplied out, we never have any cross products
of two quantities that are both unknown. [From this view point, Eq. (29) is an equation for 〈ΣT 〉,
just as the unaveraged version of (29) is an equation for ΣT in each layer.] So simple layer averaging
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suffices (thereby providing the main motivation and value of this method). Multiplying (29) through

by
˙

S−1
TT

¸−1
then gives the results (27) and (28).

The remaining result needed here requires more steps to compute, but the final result is given by:
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¸
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TN . (31)

To provide some clues to the derivation, again consider:

ΣT = S−1
TT XT − S−1

TT STNΣN , (32)

which is just a rearrangement of (30). The point is that 〈ΣT 〉 is then given immediately in terms of
the quantities XT and ΣN , which are both “slow” variables and therefore essentially constant. An
intermediate result that helps to explain the form of this relation (31) is:
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Substituting for ΣT from (32) into

XN = SNT ΣT + SNNΣN (34)

and then averaging, we find that
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which completely determines all the remaining coefficients. After some more algebra, we find the
formula determining the final result is actually given explicitly by:
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Equation (36) contains all the information needed to produce the third and final result found in (31).
Another way to check these formulas is to compare them to those found in Schoenberg and Muir [4].

Direct comparison is not trivial; their analysis treats the stiffness version of the equations, while we
are considering the compliance version here. Nevertheless, the symmetries of the equations are almost
identical, so these useful comparisons and cross-checks will be left to the motivated reader.

APPENDIX B: BACKUS METHOD

The preceding Appendix A presented one method (that of Schoenberg and Muir [4]) for applying the
general approach of Backus [3] to layer averaging in elasticity. Another method will be adopted in this
Appendix B. The point of the second method is to make the details visible, and show in particular that
the method does result in the appropriate stress/strain continuity relations at the layer boundaries.
These details are suppressed in the preceding method, but — as will be shown explicitly here — the
desired conditions are nevertheless being automatically satisfied.

The key idea that is used in the Backus method is to note that certain subsets of the elastic
stress and strain variables are necessarily continuous across the layer interfaces, for if they were not
continuous then the layers could not be considered to be in welded contact. If – as is commonly
assumed – the layering direction is the z (or 3) direction, then welded contact implies continuity
of the transverse strains XT

T = (ε11, ε22, ε12) and also the longitudinal stresses ΣT
N = (σ33, σ32, σ31).

This choice of layering direction is completely arbitrary, and (as we will show here) other choices of
layering direction are also equally valid. This concept leads to the idea of “slow” and “fast” stresses
and strains. For quasi-statics, “slow” implies constant, and “fast” implies varying from layer to layer.
For seismic wave propagation (being the subject of Backus’s original work), “slow” and “fast” have
slightly different interpretations, because the applied stresses and strains are varying locally as the
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seismic wave passes through the layered medium. We are treating only the quasi-static problem in
this paper, but will nevertheless continue to use the fast/slow terminology. To emphasize the “slow”
(or constant) character of certain sets of variables, we will put bars over the variables or vectors of
variables as appropriate. Thus, the “slow”-ness of vectors just discussed above will be emphasized by

using the notations: X
T

T and Σ
T

N . The remaining variables without overbars, are all “fast” variables,
and determine the desired quantities at the end of our calculations by performing the layer average,
so, for example, XN is a “fast” variable, but 〈XN 〉 is its layer average. The layer average itself has
exactly the same meaning here as in Appendix A.

B.1 – Schoenberg-Muir revisited

To show quickly how this approach works, we can start from equation (20):

„

XT

XN

«

=

„

STT STN

SNT SNN

«„

ΣT

ΣN

«

. (37)

However, this time we will rearrange equation (37) in a different manner, so that the slow variables
form a vector mutliplying a matrix that, when mutliplied by this vector, gives the corresponding vector
of the fast variables:

„

ΣT

XN

«

=

„

S−1
TT S−1

TT STN

SNT S−1
TT

ˆ

SNT S−1
TT STN − SNN

˜

«„

XT

−ΣN

«

. (38)

We are not showing the algebra required to arrive at this equation, as it was already implicit in the
work of the previous Appendix A.

One advantage of the Backus [3] method is that once we have our equation in the form shown in
(38), the layer averaging step is conceptually trivial:

„

〈ΣT 〉
〈XN 〉

«

=

„ ˙

S−1
TT

¸ ˙

S−1
TT STN

¸

˙

SNT S−1
TT

¸ ˙

SNT S−1
TT STN − SNN

¸

«„

XT

−ΣN

«

. (39)

It is straightforward to check that these results for the effective coefficients are identical to the ones
obtained using the original Schoenberg-Muir [4] approach. This is not at all surprising, but it is
nevertheless useful in order to check that the boundary conditions are being applied consistently and
correctly in both cases.

For simple elasticity problems, there is no particular advantage of one of these implementation
methods over the other. However, for generalizations to more complex problems such as poroelasticity
and thermoelasticity having additional stresses (such as pore pressure) and strain-related quantities
such as the increment of fluid content (see Berryman [41]), and/or temperature variables and thermal
expansion responses, the original method of Backus [3] continues to be straightforward for such
applications and extensions.

B.2 – Averaging along the z-direction

Because the Schoenberg-Muir [4] approach is a top-down method, we do not see explicitly what is
happening within the details. In particular, it is important to emphasize here that it is possible to
construct our layered medium in more than one way from the same building blocks of fractured layers
that we are describing here. To make this point more concretely, we will show now in some detail
how to do the actual averaging in two orthogonal directions. We emphasize that the results are then
for two distinct final composites. The first will have the structure as seen from a side view in Fig.
3. The second will have the structure as seen from a top-down view in Fig. 8. Both are perfectly
valid applications of the methods considered, but Fig. 3 is probably the more interesting case for the
geologically motivated problems of most interest to the authors at the present time.

Using the overline notation to designate the “slow” variables, we now explicitly treat the problem
of layering as seen in Fig. 3, where the rotations of the fractures have been performed around the 1-

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
Prepared using nagauth.cls



ELASTIC BEHAVIOR FOR HIGHER FRACTURE DENSITIES 29

or x-axis. The compliance matrix has the form shown in (12) after the rotations of the fractures from
the 12- or xy-plane. The general form is:

0

B

B

B

B

B

@

ε11
ε22
ε33
ε23
ε31
ε12

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44

S55 S56

S56 S66

1

C

C

C

C

C

A

0

B

B

B

B

B

@

σ11

σ22

σ33

σ23

σ31

σ12

1

C

C

C

C

C

A

, (40)

where blank entries in the matrix are zeroes.
To produce the desired result, we need to rearrange these equations so that the “fast” variables are

on the left, the “slow” variables are on the far right. Then, the matrix is adjusted accordingly. The
steps in this procedure are somewhat tedious, but otherwise straightforward. The final result is:

0

B

B

B

B

B

@

σ11

σ22

ε33
ε23
ε31
σ12

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

X11 X12 X13 X14

X12 X22 X23 X24

X13 X23 X33 X34

X14 X24 X34 X44

X55 −S56/S66

−S56/S66 −1/S66

1

C

C

C

C

C

A

0

B

B

B

B

B

@

ε11
ε22
σ33

σ23

σ31

−ε12

1

C

C

C

C

C

A

, (41)

where D is the determinant
D = S11S22 − S2

12, (42)

of the 2 × 2 submatrix, and with the X-component definitions:

„

X11 X12

X12 X22

«

= 1
D

„

S22 −S12

−S12 S11

«

(43)

„

X13 X14

X23 X24

«

= − 1
D

„

S22 −S12

−S12 S11

«„

S13 S14

S23 S24

«

, (44)

and
„

X33 X34

X34 X44

«

=

„

S33 S34

S34 S44

«

− 1
D

„

S13 S23

S14 S24

«„

S22 −S12

−S12 S11

«„

S13 S14

S23 S24

«

.

(45)
The final X-component needed is

X55 = S55 − S2
56/S66. (46)

Once we have the equations rewritten in the form (41), the final layer averaging step is immediate.
All the displayed matrix coefficients can be averaged directly, and the results for the averaged
stresses and strains in terms of the boundary interface quantities are easily found. For example,
〈ε33〉 = 〈X13〉 ε11 + 〈X23〉 ε22 + 〈X33〉σ33 + 〈X43〉σ23, gives the relationships between the averaged
strain 〈ε33〉 (recall that the averaged strain/stress is also the macroscopic strain/stress in such a
layered medium), and the boundary values of those stresses and strains are continuous across the
layer boundaries. For this case, the averaging is along the z (or 3) direction. A similar calculation will
be performed in the following subsection (B.3) for averaging along the x (or 1) direction. In general
the averaging can be performed in any arbitrary direction, but, the farther this direction is from a
symmetry axis of the elastic matrix (tensor), the fuller is the elastic matrix and the harder it is to
write down the details explicitly, as is being done here.

One immediately useful observation about these coefficients is this: The coefficients S14,S24, S34,
and S56 are the only coefficients in the matrix of (40) that prevent the matrix symmetry from being
orthorhombic. But these four possibly nonzero components off-off-diagonal coefficients have been
shown to have opposite signs in the two layers we are considering for the averaging step of this
calculation. Thus, 〈S14〉 = 〈S24〉 = 〈S34〉 = 〈S56〉 ≡ 0, after the indicated layer averaging. Since all
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Figure 8. Example of a top view of another type of layered medium that can also be treated by the
methods presented in the text. The layers are stacked top to bottom with only two types of these
layers being shown. Individual layers are fractured/fractured, each having the same fracture density
but not necessarily the same spatial distribution of fractures. For this example, the planes of the flat
fractures shown are all at either ±30o from the planes of intersection. All fractures in a given layer
have the same angular orientation. Solid lines are the fractures in the layer nearer to the viewer. The
dashed lines (also in blue) are for the fractures in the hidden layer below the nearer layer. As in Fig.

5, all fractures are seen edge on.

the remaining elastic coefficients in the two layers are identical [i.e., having Sa
12 = Sb

12, etc.], then
all averages must vanish when they have one of these three changeable coefficients either standing
alone, or multiplying other coefficients that do not change sign between layers; thus, for example,
〈S56/S66〉 = 〈S56〉 /S66 = 0. [Obviously, squares or cross-products of the coefficients having this
symmetry property do NOT average to zero, but such terms appear mostly along the diagonal of
the elastic matrix, and therefore do not affect our main arguments.] This observation shows that
the final degree of symmetry of the layer-averaged system will not be any more complicated than
orthorhombic. [A small amount of additional mathematics is required to prove this, but these details
will be left as an exercise for the reader.] The authors had also tried the Schoenberg-Muir [4] version
of the averaging scheme first, and discovered that this orthorhombic symmetry was in fact always
obtained. But, unfortunately, the explanation for the behavior was not so obvious from this alternate
point of view. The argument just given shows, in a relatively simple way, why this must always happen
for the choices of layer symmetry that we have made here.

B.3 – Averaging along the x-direction

In this subsection, we repeat the calculations of the preceding subsection in order to illustrate how the
results of the method can differ when the layering (and therefore averaging) direction is chosen along
another orthogonal direction. The starting point is exactly the same as in the preceding subsection,
namely Eq. (40), except that now the choices of continuous stresses and strains (as indicated by the
overlines) is different:

0

B

B

B

B

B

@

ε11
ε22
ε33
ε23
ε31
ε12

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

S11 S12 S13 S14

S12 S22 S23 S24

S13 S23 S33 S34

S14 S24 S34 S44

S55 S56

S56 S66

1

C

C

C

C

C

A

0

B

B

B

B

B

@

σ11

σ22

σ33

σ23

σ31

σ12

1

C

C

C

C

C

A

, (47)

In this case, the lower 2 × 2 submatrix problem is already in the form we want, so we need only to
deal with the upper 4× 4 submatrix problem. Using the same types of manipulations displayed in the
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previous subsection, we find:
0

B

B

B

B

B

@

ε11
σ22

σ33

σ23

ε31
ε12

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

Y11 − S11 Y12 Y13 Y14

Y12 Z22 Z23 Z24

Y13 Z23 Z33 Z34

Y14 Z24 Z34 Z44

S55 S56

S56 S66

1

C

C

C

C

C

A

0

B

B

B

B

B

@

−σ11

ε22
ε33
ε23
σ31

σ12

1

C

C

C

C

C

A

, (48)

where
0

@

Z22 Z23 Z24

Z23 Z33 Z34

Z24 Z34 Z44

1

A ≡

0

@

S22 S23 S24

S23 S33 S34

S24 S34 S44

1

A

−1

, (49)

0

@

Y12

Y13

Y14

1

A =

0

@

Z22 Z23 Z24

Z23 Z33 Z34

Z24 Z34 Z44

1

A

0

@

S12

S13

S14

1

A , (50)

and

Y11 ≡
`

S12 S13 S14

´

0

@

Y12

Y13

Y14

1

A . (51)

Finally, it is not difficult to show that the layer-averaged terms 〈Y14〉, 〈Z24〉, 〈Z34〉, and 〈S56〉 all
vanish, for the same reasons as discussed in the previous subsection. So once again, the symmetry
of the layer-averaged problem is generally no more complicated than orthorhombic for the types of
problems under consideration.

Although the x-averaging method just presented may prove useful is some contexts, our main
interest in this paper concerns the z-averaging method – as this is the one that most closely mimics
the behavior of fracture patterns observed in the field (see Figs. 1 and 2). So examples of the application
of formulas (48) through (51) will not be included among our examples at the present time.

APPENDIX C: INVERTING THE 6 × 6 ELASTIC MATRICES

The elastic matrices for compliance and stiffness have very particular forms that make them relatively
easy to invert. This fact is useful since we need to move back and forth between the two forms in the
analysis of this paper.

Let A, B, and C be three 3 × 3 matrices, where A and C are invertible and symmetric, while B

is, usually, neither invertible nor symmetric. Then, if the matrix
„

A B

B
T

C

«

(52)

is one of the 6 × 6 elastic matrices, either compliance or stiffness, and
„

X Y

Y
T

Z

«

(53)

is the inverse of (52), then we have
„

AX + BY
T

AY + BZ

B
T
X + CY

T
B

T
Y + CZ

«

=

„

I 0

0 I

«

(54)

where I is the 3 × 3 identity matrix, and 0 a 3 × 3 matrix of zeroes. Then, we make use of the facts
that A and C are invertible matrices, while B is usually not invertible, to obtain:

Y = −A
−1

BZ, and Y
T = −C

−1
B

T
X, (55)
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and so we have

X =
h

A− BC
−1

B
T
i−1

, and Z =
h

C −B
T
A

−1
B

i−1

. (56)

If (52) is the stiffness matrix in Voigt form, then it can be translated easily into the Kelvin form
[9,11] as:

„

A
√

2B√
2BT 2C

«

(57)

while the Kelvin form [9,11] of the compliance matrix is then

 

X
1√
2
Y

1√
2
Y

T 1
2
Z

!

. (58)

It is easy to see that these transformations result in the same inverse relationships as shown previously
in (55) and (56).

APPENDIX D: NUMERICAL PROCEDURE FOR OBTAINING ELASTIC
EIGENVALUES AND EIGENVECTORS

Because the compliance matrix is 6 × 6, no matter what the symmetry of this matrix happens to be,
it will have exactly six eigenvalues. For the cases that are well-approximated as being orthorhombic
considered here, three of these eigenvalues may be correctly identified as shear moduli associated
with torsional (twisting) shear. The remaining three eigenvalues however may or may not have
simple physical interpretations, as it is commonly recognized that these other three eigenvalues can
involve coupling between pure shear and pure compression. One of these modes may generrally be
characterized as a quasi-compressional mode having an effective bulk modulus (really a multiple of its
inverse since we are considering the compliance matrix here) value associated with it. The other two
modes may be characterized as quasi-shear modes.

D.1 – Eigenvalues

If we suppose this 3 × 3 submatrix of the elastic matrix can be written as

0

@

1
E11

S12 S13

S12
1

E22

S23

S13 S23
1

E33

1

A , (59)

where the matrix elements shown all have their standard meanings (although in the present context
this is also assumed to be true for the effective behavior of the homogenized/averaged medium), then
it is always possible to compute the Reuss averages [42] for an effective bulk modulus and also for one
effective shear modulus using this matrix. These averages turn out to be rigorous lower bounds on the
bulk and shear moduli (alternatively, the inverse results correspond to upper bounds on the bulk and
shear compliances) for isotropic polycrystals composed of a jumble of such single crystals, and they
are pertinent to the stresses σ11, σ22, and σ33, and the strains ε11, ε22, and ε33 of such a composite
mixture of locally orthorhombic constituents.

Of these Reuss averages, the one for the bulk modulus has the further advantage that, even though
it is usually not an actual eigenvalue of the matrix, it is nevertheless truly the bulk modulus of the
locally anisotropic constituents. To see that this is so, apply a constant hydrostatic stress (pressure if
you like) to the system having σ = σ11 = σ22 = σ33. Then, the volumetric strain is

ε = ε11 + ε22 + ε33 =
σ

KR

, (60)
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where
1

KR

≡ 1

E11
+

1

E22
+

1

E33
+ 2 (S12 + S13 + S23) . (61)

We see that this prescription clearly gives the correct value for the bulk modulus in the isotropic case,
where 1/3K = (1 − 2ν)/E and S12 = S13 = S23 = −ν/E, with ν being Poisson’s ratio. Our point is
that a single crystal of any anisotropic elastic material has a meaningful bulk modulus that can be
experimentally determined in exactly this way (e.g., through immersion in a pressurized water bath).

One reason for stressing this point now is that we need to obtain three meaningful and easily
interpretable constants from our computed anisotropic elastic tensor/matrix (59) as efficiently as
possible. The eigenvalue equation for this 3×3 submatrix is cubic. Cubic equations with real coefficients
can be solved analytically as described in standard references [43, 44], or it can also be solved
starting with a Newton-Raphson iteration scheme [45] to find a single eigenvalue. The eigenvalue
associated with the Reuss estimate of the bulk modulus is clearly a good choice for starting such a
numerical iteration procedure. So, after iterating to convergence and having thus presumably found
the eigenvalue most closely associated will compression and/or tension, we can subsequently deflate
the cubic eigenvalue problem [45] to a quadratic equation, which can then be solved analytically with
no further difficulty, using the very well-known quadratic formula.

The approach this works well as has been described previously in a different physical context by
Berryman and Wang [46]. Our cubic polynomial equation is

P (x) =
3
X

n=0

Pn(−x)n = (x1 − x)(x2 − x)(x3 − x) = 0, (62)

where P3 = 1, P2 = (x1 + x2 + x3), P1 = (x1x2 + x2x3 + x3x1), and P0 = x1x2x3. And also we have
from (59), the determinant

det

0

@

1
E11

− x S12 S13

S12
1

E22
− x S23

S13 S23
1

E33

− x

1

A = 0, (63)

which implies that

P0 = 1
E11E22E33

+ 2S12S23S13 − S2

23

E11
− S2

13

E22
− S2

12

E33
,

P1 = 1
E11E22

+ 1
E22E33

+ 1
E33E11

+ S2
12 + S2

23 + S2
13,

P2 = 1
E11

+ 1
E22

+ 1
E33

,
P3 = 1.

(64)

Using the linear independence of the terms in powers of x in (62), we also have the following three
equations showing that

x1 = P2 − x2 − x3 =
P1 − x2x3

x2 + x3
=

P0

x2x3
. (65)

But, in this form, (65) is only useful if we have already found two of the three solutions.
Instead we shall start with a guess based on the Reuss average for the system bulk modulus (as

already discussed here), and then iterate according to

X(i) = X(i−1) − P (X(i−1))/P ′(X(i−1)), for i = 1, 2, . . . , Nc, (66)

where P ′ is the first derivative of the polynomial P (x). Iteration continues until some choice of
convergence criterion has been satisfied when i = Nc. Since we are proposing to start the iteration
with X(0) = 1/3KR, which is a rigorous upper bound on the value sought, we expect this iteration to

proceed smoothly to the right root. The result of this process is x1 ' X(Nc), with a small numerical
error based on our choice of convergence criterion.
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Once such an approximation to the first root x1 has been obtained, then the other two roots are
found by deflation of the cubic to a quadratic equation. One formula for doing this is based on (65),
and given by

x2,3 =
1

2

h

(P2 − x1) ±
p

(P2 − x1)2 − 4P0/x1

i

. (67)

This result follows from the observation that the desired quadratic formula has the form:

(x − x2)(x − x3) = x2 − (x2 + x3)x + x2x3 = 0, (68)

while (65) shows that

(x2 + x3) = P2 − x1 and x2x3 =
P0

x1
. (69)

Equation (67) follows after substituting (69) into (68) and solving for x2 and x3. Thus, we find both the
quasi-shear effective moduli simultaneously and consistently, based xon the previously computed value
of compliance associated with the initial guess 1/3KR, which is expected to produce the compliance
associated with quasi-compression/quasi-tension.

It is also possible to solve the cubic equation (62) semi-analytically using either the Cardan or
the trigonometric solutions [43, 44]. However, the other method proposed here is actually easier to
implement numerically. Both methods were used in this work, and found useful for purposes of cross-
checking and code debugging.

D.2 – Eigenvectors

One technical point still remaining is how these three compliances (i.e., the eigenvalues λ = x1, x2, and
x3) should be interpreted. While the diagonal components of the compliance 1/E11, 1/E22, and 1/E33

all have easy interpretations in terms of directionality, the three eigenvalues are more fundamental
quantities, yet they also require further work before they can be precisely interpreted.

For a 3× 3 system, the hardest step is finding the first eigenvalue. Then, as shown in the preceding
subsection, the other two eigenvalues are easy to find. Similarly, once we have all three eigenvalues, the
three corresponding eigenvectors are also very easy to compute. In general [46], if λ = x1, x2, or x3,
then an eigenvector associated with one of these λ values is proportional to:

0

@

α
β
γ

1

A =

0

B

B

B

@

S12S23 − S13

“

1
E22

− λ
”

S13S12 − S23

“

1
E11

− λ
”

“

1
E11

− λ
”“

1
E22

− λ
”

− S2
12

1

C

C

C

A

. (70)

It is straightforward to verify that (70) is an eigenvector of (59) whenever λ is any one of the
eigenvalues. The verification step for the first two entries (i.e., a and b) is simple algebra. The third
entry needs a bit of extra work to verify; this work involves the equation for the eigenvalues themselves,
which can be rewritten as

S13

h

S12S23 − S13(
1

E22
− λ)

i

+ S23

h

S13S12 − S23(
1

E11
− λ)

i

+
“

1
E33

− λ
” h“

1
E11

− λ
”“

1
E22

− λ
”

− S2
12

i

= 0,
(71)

which is seen to be identical to the statements that

S13α + S23β +

„

1

E33
− λ

«

γ = 0, (72)

or, equivalently, that

S13α + S23β +
1

E33
γ = λγ. (73)
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This step is the final one needed in the proof that vector (α, β, γ)T is an eigenvector of (59), when the
value of λ is chosen to be one of the three eigenvalues.

One caveat that is worthy of note concerns the special case when S12 ≡ 0, while simultaneously
E11 ≡ E22. Then, the analysis degenerates, and the proposed form of the eigenvector in (70) will
produce all zeroes. This degeneracy of the proposed form also occurs in the other very special case of
perfect isotropy. Neither of these special cases is expected to play any role in the systems of interest to
us in this paper, but the reader should be aware of these potential pitfalls associated with the formulas
if an attempt were made to apply them to systems other than the ones we are considering here.

Another special case (although not so special that it is not pertinent to the cases actually considered
here) is when the axes are perfectly aligned with the symmetry axes of the elastic matrix, in which
case the resulting compliance matrix can be diagonal. This means that all the off-diagonal values
satisfy S12 = S23 = S13 = 0. The formulas (70) are again degenerate as written in this case, since
they always give α = β = 0 if the off-diagonal components vanish. But having a truly diagonal system
makes life very simple for such calculations, as it is then quite obvious what eigenvector corresponds
to each eigenvalue. So this issue will play no role in the following analysis.

Figure 6 shows the results we obtained for the quasi-bulk modulus and the quasi-shear moduli. In
addition, we have also plotted the Reuss average of the bulk modulus KR, defined by

1

3KR

=
1

3

X

i,j=1,3

Sij , (74)

which is well-known not to be an eigenvalue either for orthorhombic elastic media. nstead KR is a
rigorous lower bound on the effective bulk modulus of any anisotropic elastic system [24]. Figure 6
shows in particular that the Reuss average KR is indeed proportional to a lower bound on the computed
quasi-bulk modulus of these systems, and furthermore that KR is also approximately constant for fixed
fracture density ρ.
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in Zürich 1951; 96:1–23.
39. Skempton AW. The pore-pressure coefficients A and B. Geotechnique 1954; 4:143–147.
40. Postma GW. Wave propagation in a stratified medium. Geophysics 1955; 20:780–806.
41. Berryman JG. Transversely isotropic poroelasticity arising from thin isotropic layers. Mathematics of

Multiscale Materials, Golden KM, Grimmett GR, James RD, Milton GW, Sen PN (eds.). Springer: New
York, 1998; 37–50.

42. Reuss A. Berechung der Fliessgrenze von Mischkristallen. Z. Angew. Math. Mech. 1929; 9:49–58.
43. Abramowitz M, Stegun IA. Handbook of Mathematical Functions. Dover: New York, 1965.
44. Korn GA, Korn TM. Mathematical Handbook for Scientists and Engineers: Definitioins, Theorems, and

Formulas for Reference and Review. Dover: Mineola, New York, 1968.
45. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes in C. Cambridge University

Press: Cambridge, UK, 1988.
46. Berryman JG, Wang HF. Elastic wave propagation and attenuation in a double-porosity dual-permeability

medium. International Journal of Rock Mechanics and Mining Sciences 2000; 37:63–78.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
Prepared using nagauth.cls




