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Abstract. Analysis of compression wave propagation in a poroelastic
medium predicts a peak of reflection from a high-permeability layer in
the low-frequency end of the spectrum. An explicit formula expresses
the resonant frequency through the elastic moduli of the solid skeleton,
the permeability of the reservoir rock, the fluid viscosity and compress-
ibility, and the reservoir thickness. This result is obtained through a
low-frequency asymptotic analysis of Biot’s model of poroelasticity. A
review of the derivation of the main equations from the Hooke’s law,
momentum and mass balance equations, and Darcy’s law suggests an
alternative new physical interpretation of some coefficients of the clas-
sical poroelasticity. The velocity of wave propagation, the attenuation
factor, and the wave number, are expressed in the form of power series
with respect to a small dimensionless parameter. The absolute value
of this parameter is equal to the product of the kinematic reservoir
fluid mobility and the wave frequency. Retaining only the leading terms
of the series leads to explicit and relatively simple expressions for the
reflection and transmission coefficients for a planar wave crossing an in-
terface between two permeable media, as well as wave reflection from
a thin highly-permeable layer (a lens). Practical applications of the
obtained asymptotic formulae are seismic modeling, inversion, and at-
tribute analysis.

Hooke’s law; Darcy’s law; poroelasticity; low frequency; permeability;
asymptotic analysis; seismic imaging

1. Introduction

The classical theory of elasticity associates anomalously high reflection
from a layer in a homogeneous medium with the tuning effect, which takes
place when the thickness of the layer is equal to one-fourth of the wave-
length [53]. However, field observation demonstrate anomalous seismic sig-
nal reflection from a thin fluid-saturated permeable layer in the low-frequency
end of the spectrum, where the thickness of the reservoir is much smaller
than a quarter of the wavelength. Moreover, frequency-dependent data
analysis identifies the most productive spots in the reservoir [16, 25–31, 52].
In this work, we explain this seemingly abnormal reflection by the interac-
tion between the elastic wave and fluid flow.

The theoretical foundations of seismic wave propagation in a fluid-saturated
porous medium have been established in the pioneer works by Frenkel,
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Gassmann, Biot, and others [7, 8, 19, 22–24, 41]. Nikolaevskii [44, 45] has
developed a comprehensive theory of deformation, flow and heat transfer
in porous media. Overviews of the Frenkel, Gassmann, and Biot theories
and further development of poroelasticity are presented in [3, 5, 45, 47, 50].
Extensions accounting for local heterogeneities including double-porosity or
layered media have been developed in [6, 14, 15, 33, 35, 48, 49]. The re-
flection and transmission coefficients predicted by Biot’s theory for a wave
crossing a planar interface have been calculated in [21, 32]. The complex-
ity of the expressions for the reflection and transmission coefficients derived
from the exact Biot’s solution makes unclear what is the relative impact of
the rock and fluid properties on the magnitudes of the reflection and trans-
mission coefficients. On the contrary, the simplified low-frequency asymp-
totic relationships obtained in this study yield approximate but relatively
simple and practically useful expressions for the reflection and transmission
coefficients.

The small parameter used in the asymptotic analysis below is equal to
the product of the reservoir fluid mobility and density, and the frequency
of the signal, multiplied by an imaginary unit. The velocities of the slow
and fast Biot’s waves, and the respective wave numbers and attenuation
factors are expressed as power series with respect to this small parameter.
The coefficients of the series are real-valued functions of the properties of
the reservoir rock and fluid. Retaining only the leading terms of the series
produce relatively simple mathematical expressions, which are valid in the
low-frequency end of the spectrum including the seismic frequency band (10–
100 Hz). Using these expressions, we study the reflection and transmission
coefficients for a planar wave crossing a permeable interface at a normal inci-
dent angle. We further obtain that the fast-wave reflection coefficient from a
thin permeable layer (a lens) attains a peak value. The corresponding peak
frequency is expressed through the reservoir rock and the fluid properties.
The magnitude of this frequency predicted by the obtained formulae is in
agreement with the field observations [25, 29]. The practical implications
of the theory developed here are seismic modeling, inversion, and attribute
analysis.

We review the equations of poroelasticty by relating them to Darcy’s law,
Hooke’s law, and momentum and mass balance equations. Although the
obtained equations are essentially the same the original Biot’s equations [7,
8], our approach provides new physical interpretations of some poroelasticity
coefficients. For instance, we demonstrate that the Biot–Willis coefficient
α [10] is related to the relative surface area of the grains, which is not
exposed to the fluid. Gassmann’s results [23] appear as the zero-frequency
limit of the asymptotic solution presented in this study.

We assume that the deformations are small and the macroscopic stress-
strain relationship for the skeleton are adequately described by the Hooke’s
law [43]. We have to modify Darcy’s law to account for dynamic and non-
equilibrium effects in fluid flow. We demonstrate that this modification
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of Darcy’s law is equivalent to a linearization of the dynamic permeability
discussed in [15, 17, 39] for a periodic oscillatory flow. The dynamic com-
ponent of the modified Darcy’s law does not enter the leading terms of the
asymptotic expressions. Thus, we conclude that the classical Darcy’s law
formulation [2, 18, 37, 38] is sufficient for the low-frequency analysis.

The present work, to a certain degree, is an extension of the work [51].
Besides a slightly different choice of the small parameter, we abandon the
assumption of grain stiffness employed in [51]. More importantly, in the
study of reflection and transmission coefficients for a permeable interface.

The paper is organized as follows. In Section 2, we briefly overview the
derivation of the equations of poroelasticity from the basic theoretical prin-
ciples of flow and deformation in porous media. In Section 3, we obtain
an asymptotic harmonic-wave solution valid in the low-frequency range. In
Section 4 we obtain explicit expressions for the reflection and transmission
coefficients for a planar compression wave crossing a permeable interface.
The resonant frequency of a fast wave reflection from a permeable layer is
studied in Section 5. Finally, Section 6 summarizes the findings and formu-
lates the conclusions.

2. The Model

Throughout this work, the porous medium is assumed to be homogeneous
and isotropic and the fluid is newtonian. The linear dimensions of an ele-
mentary volume of the medium are small relative to the linear dimensions
of the entire medium, but large relative to the size of individual pores or
grains constituting the solid skeleton. The total stress in bulk medium is
the resultant of three components: the elastic stress in the solid skeleton,
the fluid pressure, and viscous friction in the fluid flow relative to the solid
skeleton. In a linear approximation, these components are decoupled, so
they can be considered separately and then summed up.

Linear elasticity of drained skeleton. The macroscopic stress in the
drained skeleton σs is a bulk-area average of the the grain-to-grain contact
forces, Figure 1. Let u = (ux, uy, uz) denote the vector of macroscopic
displacement of the solid skeleton and Ξ = {uij} denote the macroscopic
strain tensor:

u11 =
∂ux

∂x
, u12 =

1

2

(
∂ux

∂y
+
∂uy

∂x

)
, u13 =

1

2

(
∂ux

∂z
+
∂uz

∂x

)
, etc (1)

The Hooke’s law for an isotropic and uniform medium says:

σs = K∇ · uI + 2µ

(
Ξ − 1

3
∇ · uI

)
(2)

where K and µ are the bulk and shear moduli of the drained skeleton, and
I is an identity tensor [43]. Note that the macroscopic skeleton moduli are
different from the bulk and shear moduli of the grain material.
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Figure 1. Force balance at an individual grain in a clean
rock. The force Fg at a plane cross-section orthogonal to a
unit normal ez equals the sum of contact forces Fi shown as
solid arrows, and fluid pressure acting at the part of the grain
surface in located the positive with respect to ez half-space,
shown as dashed arrows.

Fluid pressure. In order to evaluate the fluid pressure contribution to
the total stress, consider forces acting in the planar cross-section, which
Figure 1 displays as the horizontal axis. We assume that the cross-section
intersects sufficiently many grains. The fluid pressure portion of the total
stress includes two components: the pore pressure and the portion of the
stress in the skeleton which is the reaction on the pore pressure. Inside the
pores, the fluid pressure contribution amounts to pφ, where p denotes the
pressure of the fluid and φ is the porosity of the medium. In an individual
grain, the fluid pressure acts through the grain surface. In general, only a
portion of this surface is exposed to the fluid, whereas the remaining part is
excluded from the fluid-solid interaction by the contacts with the neighbor
grains. The force Fg in Figure 1 equilibrates the sum of contact forces,
Fi, and the integral of the pressure over the portion of the grain surface
which is in contact with the pore fluid. Summing up over all grains in the
cross-section, the total action of the fluid pressure inside the skeleton is
characterized by (1 − φ)αφp, where αφ is a dimensionless geometric factor
accounting for the portion of the average portion of the grain surface, which
is excluded from a contact with the fluid. Clearly, 0 ≤ αφ ≤ 1. After adding
pφ, the pore pressure contribution in the pores, one obtains:

σp = −αpI (3)

where α = φ + αφ(1 − φ), and σp is the entire pore pressure contribution
to the total stress. Note that φ ≤ α ≤ 1. The two extreme values of α
are α = 1 and α = φ. The first one describes a medium where the average
grain-to-grain contact area is negligibly small, for example in unconsolidated
sand. The other extreme case can be represented by a medium where the
skeleton is a bundle of infinite cylindrical columns.
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The argument above is not new: our approach is similar to that developed
in [40].

Fluid flow. If the skeleton moves with a constant acceleration, then
Darcy’s law for the flow relative to the skeleton can be written in the form:

η

κ
W = −∇p− ̺f

∂2u

∂t2
(4)

where W denotes the Dracy velocity of the fluid relative to the skeleton,
η and ̺f denote fluid viscosity and density, and κ is the absolute perme-
ability of the medium. The left-hand side expresses the viscous drag force
acting between the fluid and the solid skeleton, whereas the second term
on the right-hand side accounts for the body force acting on the fluid in a
non-inertial reference frame associated with the skeleton. Equation (4) is
an expression of force balance. In an oscillating system, the fluid flows rel-
ative to the skeleton with an acceleration. Therefore the body force on the

right hand side of Equation (4) must include an additional term ̺f
1

φ

∂W

∂t
.

In addition, the steady flow paths in the tortuous pore channels establish
not instantaneously, the drag force on the left-hand side depends not only
on the instantaneous Darcy velocity, but also on its variation. In a linear
approximation, we write

η

κ

(
W + τ∗

∂W

∂t

)
= −∇p− ̺f

∂2u

∂t2
− ̺f

1

φ

∂W

∂t
(5)

where τ∗ is a parameter having the dimensionality of time. Thus, finally,
one obtains:

W + τ
∂W

∂t
= −κ

η

(
∇p+ ̺f

∂2u

∂t2

)
(6)

where parameter τ = τ∗+
κ̺f

ηφ
accounts both for the non-equilibrium effects

of non-steady fluid flow and fluid inertia. We will call Equation (6) dynamic

Darcy’s law. If the motion of the skeleton can be neglected, Equation (6)
reduces to the model of filtration with relaxation [1]. If, in addition, the flow
is steady, Equation (6) yields the classical Darcy’s law (gravity is neglected
throughout this work).

Different Darcy’s law modifications accounting for dynamic and non-
steady effects have been developed in the past and are discussed below,
after deriving the asymptotic low-frequency solution. Equation (6) with
τ∗ = 0 has been obtained by Frenkel [22] and Nikolaevskii [44, 45]. We
have found the form of Equation (6) most convenient for the low-frequency
asymptotic analysis below. This analysis shows that the parameter τ enters
only the higher-order terms. On other words, one can assume τ = 0 in the
low-frequency end of the spectrum.

Flow-imposed shear stress. A shear wave preserves the volume and
porosity, and does not affect the pore pressure. The viscose friction between
the fluid flowing in the pores and the skeleton develops a distributed drag
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Figure 2. Darcy velocity direction and variation in a shear
wave propagating in direction x.

force proportional to the Darcy velocity of the fluid relative to the skeleton.
The Darcy velocity is orthogonal to the wave propagation, see Figure 2.
Interaction of the porous layer between planes with coordinates x and x+dx
with the rest of the formation includes the shear stress in the skeleton, and
the drag force by the fluid flowing relative to the skeleton on both sides of
the layer. Since the Darcy velocities of the fluid at the two sides of the layer
are different, the drag forces are different as well. Therefore, in addition
to the shear stress in the skeleton, there is a component coming from the
Darcy velocity variation in direction orthogonal to the wave propagation.
We denote this stress by σf .

More generally, the shear stress σf is a linear function of the following
tensor:

σf = −ϕ




0
∂Wy

∂x
+
∂Wx

∂y

∂Wx

∂z
+
∂Wz

∂x

∂Wy

∂x
+
∂Wx

∂y
0

∂Wy

∂z
+
∂Wz

∂y

∂Wx

∂z
+
∂Wz

∂x

∂Wy

∂z
+
∂Wz

∂y
0




(7)

The coefficient ϕ is a function of the fluid viscosity η and the geometry of
the pore space. Dimensional considerations suggest that ϕ = ϕ0η, where ϕ0

is a dimensionless shape factor.
Equation (7) has been written down by analogy with the classical fluid

mechanics [42]. The stress σf acts on saturated porous medium, whereas
the flow is governed by Darcy’s law. Therefore, this is different from the
shear stress in the Brinkmann model [11]. We do not know any experimental
data on stress σf . The asymptotic analysis below shows that σf enters only
higher order terms and can be ignored in the low-frequency range.
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Momentum balance in a planar wave. From the previous sections,
the total stress, σt, is the sum of all three stresses components defined in
Equations (2), (3), and (7): σt = σs + σp + σf . Let us denote by ̺g

the density of the solid constituent,so that the bulk density is equal to ̺b =
φ̺f+(1−φ)̺g. The linearized momentum balance equation has the following
from

̺b
∂2u

∂t2
+ ̺f

∂W

∂t
= ∇ · σt (8)

For a planar wave propagating in direction x, all the derivatives with respect
to y and z vanish. A substitution of Equations (2), (3), and (7) reduces
Equations (8) to

̺b
∂2ux

∂t2
+ ̺f

∂Wx

∂t
= M

∂2ux

∂x2
− α

∂p

∂x

̺b
∂2uy

∂t2
+ ̺f

∂Wy

∂t
= µ

∂2uy

∂x2
− ϕ

∂2Wy

∂x2

̺b
∂2uz

∂t2
+ ̺f

∂Wz

∂t
= µ

∂2uz

∂x2
− ϕ

∂2Wz

∂x2

(9)

where M = K +
4

3
µ.

Mass balance. The variation of the fluid mass in an elementary volume
due to the deformation of the skeleton and fluid compression equals the total
mass flux through the boundary of the volume. Assuming adiabatic linear
fluid compressibility and retaining only the first-order terms, one obtains

βfφ
∂p

∂t
+
∂φ

∂t
+ ∇ · W + φ∇ · ∂u

∂t
= 0 (10)

Here βf is the coefficient of adiabatic compressibility of the fluid:
d̺f

̺f
=

βfdp. The linearized mass balance equation for the skeleton is:

(1 − φ)
1

̺g

∂̺g

∂t
− ∂φ

∂t
= −(1 − φ)∇ · ∂u

∂t
(11)

We assume that the compression of the grains is determined by the com-
ponent of the skeleton stress coming from the volumetric strain (described
by the term K∇ · u in Equation (2)) and the fluid pressure variations. In a
linearized form, one obtains:

1

̺g

d̺g = − 1

Ksg
K∇ · u +

1

Kfg
dp (12)

Here Ksg and Kfg are the elastic moduli quantifying the compression of
the grains by the volumetric strain of the skeleton and the fluid pressure
variations, respectively. Thus, in terms of time derivatives, one obtains

1

̺g

∂̺g

∂t
= − K

Ksg
∇ · ∂u

∂t
+

1

Kfg

∂p

∂t
(13)
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The time derivative of the porosity can be eliminated from Equations (10)
and (11). After gathering similar terms, one obtains:

γβ

K

∂p

∂t
+ γK∇ · ∂u

∂t
+ ∇ · W = 0 (14)

where thee dimensionless coefficients γK and γβ are defined by

γβ = K

(
βfφ+

1 − φ

Kfg

)
and γK = 1 − (1 − φ)K

Ksg
(15)

Some remarks. The skeleton is less stiff than the grain material: K ≤
Ksg. Thus, φ ≤ γK ≤ 1. At vanishing porosity, φ → 0, the skeleton
strength approaches that of the grain material, K/Ksg → 1. Therefore, if
the transition to the zero porosity is smooth, which according to [13, 34]
holds true for a variety of heterogeneous media, then

γK ∼ φ as φ→ 0 (16)

Equation (15) implies that γβ ≥ Kβfφ. The compressibility of the fluid, βf ,
is independent of the porosity, whereas the bulk modulus of the skeleton, K,
converges to that of the grain material as φ → 0. Thus, the product Kβf

does not vanish and Equation (16) imply that

γβ ≫ φ2 ∼ γ2
K as φ→ 0 (17)

This estimate will be used below.
To compare the introduced coefficients to those of Biot and Willis [10],

one can introduce a fluid displacement vector, w, as the integral of the Darcy
velocity:

W =
d

dt
w (18)

Integration of Equation (14) with respect to t yields

p = −KγK

γβ
∇ · u − K

γβ
∇ · w (19)

The divergence in the last term, ∇ · w, is equal to the fluid content para-
meter [4, 10, 20]. A comparison of the last equation to Equation [10, (30)]
shows that

αBW = γK , and MBW =
K

γβ
(20)

where the subscript BW refers to the Biot–Willis coefficients in the notations
of [10], and γK and γβ are defined in Equation (15). Equation (32) below
shows that in fact γK = α, where α is the geometric factor in Equation (3)
and (9).



AN ASYMPTOTIC MODEL OF SEISMIC REFLECTION FROM A PERMEABLE LAYER9

3. Asymptotic harmonic wave solution

Let us seek a harmonic planar-wave solution to the obtained system of
equations. That is, put

u = U0e
i(ωt−kxx), W = W0e

i(ωt−kxx), and p = p0e
i(ωt−kxx) (21)

Here kx denotes the x-component of the complex-valued wave vector: k =
(kx, 0, 0). A substitution of Equation (21) into equations (9), (6), and (10)
yields

−ω2̺bU0x + iω̺fW0x = −Mk2
xU0x + ikxαp0

−ω2̺bU0y + i̺fωW0y = −µk2
xU0y + ϕk2

xW0y

−ω2̺bU0z + i̺fωW0z = −µk2
xU0z + ϕk2

xW0z

W0x + iωτW0x =
κ

η

(
ikxp0 + ω2̺fU0x

)

W0y + iωτW0y =
κ

η
ω2̺fU0y (22)

W0z + iωτW0z =
κ

η
ω2̺fU0z

iω
γβ

M
p0 + γKkxωU0x = ikxW0x

Like in the classical case, the compression and shear waves decouple and
each component of the solution can be calculated separately.

Compression wave. The system of compression wave equations consists
of only those equations (22), which involve the x-components of the skeleton
displacement and the Darcy velocity:

−ω2̺bU0x + i̺fωW0x = −Mk2
xU0x + ikxαp0

W0x + iωτW0x =
κ

η

(
ikxp0 + ω2̺fU0x

)

iω
γβ

M
p0 + γKkxωU0x = ikxW0x

(23)

For low frequencies, formula ε = iλω defines a dimensionless small para-

meter, where the quantity λ = ̺f
κ

η
can be called kinematic reservoir fluid

mobility. Let us define unknown dimensionless parameters:

ζ =
v2

v2
f

, ξ = −i p0

kxMU0x
, and χ = i

W0x

ωU0x
(24)

Here v2 =
ω2

k2
x

and v2
f =

M

̺f
. Then, the system of equations (23) takes on

the form:

γ̺ζ − ζχ− αξ = 1 (25)

ε(ζ − ϑζχ− ξ) − ζχ = 0 (26)

γβξ + χ = γK (27)
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where γ̺ =
̺b

̺f
and ϑ =

τ

λ
. We seek a solution to the system (25)–(27) in

the form of power series in ε:

ζ = ζ0 + ζ1ε+ ζ2ε
2 + . . . , χ = χ0 + χ1ε+ χ2ε

2 + . . . ,

ξ = ξ0 + ξ1ε+ ξ2ε
2 + . . . (28)

where “. . . ” denotes the higher order terms.
At ε = 0, Equation (26) implies ζ0χ0 = 0. One obtains two zero-order

solutions:

ζS
0 =0 ζF

0 =
αγK + γβ

γβγ̺

ξS
0 = − 1

α
ξF
0 =

γK

γβ

χS
0 =γK +

γβ

α
χF

0 =0

(29)

The superscripts S and F stand for the slow and fast waves. To determine
the first-order terms, one has to solve the following system of equations:

γ̺ζ1 − ζ0χ1 − χ0ζ1 − αξ1 =0

ζ0χ1 + χ0ζ1 =ζ0 − ϑχ0ζ0 − ξ0

γβξ1 + χ1 =0

(30)

Note that ϑ is the only dimensionless parameter depending on the parameter
τ in the dynamic Darcy’s law, Equation (6). Since χ0ζ0 = 0, the term
involving ϑ vanishes both for the slow-wave and the fast-wave solutions.
Consequently, the classical steady-state Darcy’s law formulation is sufficient
for the first-order asymptotic analysis.

The solution to the system of equations (30) is:

ζS
1 =

1

αγK + γβ
ζF
1 =

ζF
0 − α

γβ

γ̺ζF
0

(
ζF
0 − ξF

0

)

ξS
1 =

1

α

γ̺

αγK + γβ
− 1

α
ξF
1 =

γKγ̺

(αγK + γβ)γβ
− 1

γβ
(31)

χS
1 = − 1

α

γ̺γβ

αγK + γβ
+
γβ

α
χF

1 =1 − γKγ̺

αγK + γβ

From equations (29), ζF
0 > 0. The solution is physically sensible only if ζF

1

is a positive quantity. This requirement is fulfilled for an arbitrary ζF
0 only

if
α

γβ
= ξF

0 . Substituting the expression for ξF
0 from Equation (29), one

obtains:

α = γK = 1 − (1 − φ)K

Ksg
(32)
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Finally, Equations (29) and (31) can be rewritten in the form:

ζS
0 =0 ζF

0 =
γK

2 + γβ

γβγ̺

ξS
0 = − 1

γK

ξF
0 =

γK

γβ

χS
0 =

γK
2 + γβ

γK
χF

0 =0

(33)

and

ζS
1 =

1

γK
2 + γβ

ζF
1 =

1

γβ(γK
2 + γβ)

(
γK

2 + γβ

γ̺
− γK

)2

ξS
1 =

1

γK

γ̺

γK
2 + γβ

− 1

γK
ξF
1 =

γKγ̺

(γK
2 + γβ)γβ

− 1

γβ
(34)

χS
1 = − 1

γK

γ̺γβ

γK
2 + γβ

+
γβ

γK
χF

1 =1 − γKγ̺

γK
2 + γβ

From the leftmost equation (24), k2
x =

̺f

Mζ
ω2. Hence, for the fast wave,

kF
x =

ω

vb

√
γβ

γβ + γK
2

(
1 − ζF

1

2ζF
0

ε+O(|ε|2)
)

(35)

where v2
b =

M

̺b
. For the slow wave,

kS
x =

ω

vf

√
γK

2 + γβ

2 |ε| (1 − i) (1 +O(|ε|)) (36)

In the last equation, the branch of the square root has been selected to guar-
antee that Im(kS

x ) < 0, that is,
√
ε = 1+i√

2

√
|ε| =

√
|ε|ei π

4 . Equations (35)

and (36) can be rearranged into the from:

kF
x = ω

(
kF

0 + kF
1 ε+O(|ε|2)

)
(37)

kS
x = ω

(
kS

0

1√
ε

+ kS
1

√
ε+O(|ε|3/2)

)
(38)

where

kF
0 =

1

vb

√
γβ

γβ + γK
2 and kS

0 =
1

vf

√
γβ + γK

2 (39)
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Note that the estimate in Equation (17) implies kF
0 ≈ 1

vb
as φ → 0. The

velocities and attenuation factors for the fast and slow waves are

V F =vb

√

1 +
γK

2

γβ

(
1 +O(|ε|2)

)
(40)

V S =vf

√
2 |ε|

γβ + γK
2

(1 +O(|ε|)) (41)

aF =
ω

vb

√
γβ

γβ + γK
2

ζF
1

2ζF
0

|ε|
(
1 +O(|ε|2)

)
(42)

aS =
ω

vf

√
γβ + γK

2

2 |ε| (1 +O(|ε|)) (43)

By the definition of ε, the angular frequency ω is present both in the nu-
merator and the denominator in the last equation. It is useful to rewrite it
in an alternative from

aS =
η

κ

√
γβ + γ2

K

2M̺f

√
|ε| (44)

Clearly, V F ≫ V S = O
(√

|ε|
)

and aF ≪ aS as ε → 0. Equation (16)

also implies that, for φ → 0, the fast compressive wave velocity approaches
the velocity of sound in a medium whose density is equal to the density
of the grains and elastic moduli are those of the drained skeleton. Finally,
the power series asymptotic expressions for the Darcy velocity and the fluid
pressure have the following forms:

WF
0x = − iωε

(
χF

1 +O(|ε|)
)
UF

0x (45)

WS
0x = − iω

γβ + γK
2

γK

(
1 +

χS
1

χS
0

ε+O(|ε|2)
)
US

0x (46)

pF
0 =ω

[
kF

0 + (kF
1 ξ

F
0 + kF

0 ξ
F
1 )ε+O(|ε|2)

]
MUF

0x (47)

pS
0 =

ω√
|ε|

[
kS

0 + (kS
1 ξ

S
0 + kS

0 ξ
S
1 )ε+O(|ε|2)

]
MUS

0x (48)

Shear wave. The shear waves in the directions y and z are analogous to
each other, so we consider in detail only the shear wave in the direction y.
Since shear deformation includes zero volumetric strain, the mass balance
equation (14) is an identity. Thus, only the following system of two equations
needs be solved:

−ω2̺bU0y + i̺fωW0y =µkx
2U0y − χkx

2W0y

W0y + iωτW0y =
κ

η
ω2̺fU0y

(49)
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A convenient set of dimensionless variables is provided by the first and last
equations (24), where the x-components are replaced with the respective
y-components. The system of equations (49) transforms into the following:

γ̺ζ − ζχ+ ε
χη

µ̺fκ
χ =1

χ+ εϑχ =ε
(50)

which is equivalent to Equations (25)–(26) if one puts ξ = 0 and replaces M
with µ. The solution to the system (50) is:

ζ =

1 − ε2

1 + εϑ

χη

µ̺fκ

γ̺ −
ε

1 + εϑ

and χ =
ε

1 + εϑ
(51)

In the form of a power series in ε, this solution takes on the form:

ζ =
1

γ̺
+

1

γ̺
2
ε+O(|ε|2), χ = ε(1 − ϑε+O(|ε|2)) (52)

Note that the shear wave solution has no slow-wave component.
Returning to the physical quantities, one obtains

kH
x =

√
̺b

µ
ω

(
1 − 1

2γ̺
ε+O

(
|ε|2

))
(53)

where the superscript H denotes a shear wave. Thus, kH
0 =

√
̺b/µ in the

power-series expansion kH = ω
(
kH

0 + kH
1 ε+O(|ε|2)

)
. For the attenuation

factor, aH , and the velocity, V H , one obtains

aH =

√
̺b

µ

|ε|
2γ̺

ω
(
1 +O

(
|ε|2

))
, V H =

√
µ

̺b

(
1 +O

(
|ε|2

))
(54)

Further remarks Let us demonstrate that the equations above are
consistent with the classical theory of poroelasticity.

Dynamic Darcy’s law and flow-imposed shear stress. For an oscillatory
fluid flow in a porous medium, Johnson et al. [39] have obtained a modifica-
tion of Darcy’s law, in which the coefficient of permeability depends on the
frequency of the oscillations:

W = − κ̃(ω)

η
∇P (55)

At the zero frequency limit, the frequency-dependent coefficient of perme-
ability must be equal to the classical Darcy permeability: κ̃(0) = κ. There-
fore, one can write:

A(iω)κ̃(ω) = κ with A(0) = 1 (56)
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Using Taylor expansion, A(iω) = 1 + A′(0)iω + . . ., and truncating the
higher-order terms, one obtains from Equation (55):

W +A′(0)iωW = −κ
η
∇P (57)

The last equation is equivalent to Equation (6) for τ = A′(0).
Equations (29), (31), and (52) imply that both, the dynamic term in

the dynamic Darcy’s law, Equation (6), and the flow-induced shear stress,

affect only the power series terms of the order of O(|ε|2) or higher. Thus,
the classical steady-state formulation of Darcy’s law is sufficient for the first-
order asymptotic approximation of the compression wave solution.

Elastic moduli. The compressibility of the fluid and the moduli of drained
skeleton can be determined in laboratory tests. The other two moduli in-
troduces in Equation (12) also can be determined experimentally. For the
first test, one can change the pore pressure by injecting or withdrawing fluid
while maintaining the total stress constant. From the fluid compressibility
and the variation of the fluid volume, one can evaluate the variation of the
pore volume and, consequently, the variation of the total volume of the solid
grains. Hence, from the known mass of the solid skeleton one obtains the
variation of the average density of the grains. In an undrained uniaxial test,
one also can measure the variation of the fluid pressure and the total volume
of the saturated sample. Therefore, the variation of the average density of
the grains can be calculated as well. Thus, knowing K from independent
measurements, one obtains a system of two equations, which can be solved
for the moduli Ksg and Kfg.

Biot’s equations. Equations (32) and (20) show that the coefficient α
introduced in Section (3) and the Biot–Willis coefficients alpha are the same.
Further on, Equation (19) makes possible to eliminate the fluid pressure p
from the first Equation (9) and Equation (6). Thus, using the notation (18),
one obtains:

̺b
∂2ux

∂t2
+ ̺f

∂2wx

∂t2
=

[
K

(
1 +

γK
2

γβ

)
+

4

3
µ

]
∂2ux

∂x2
+
KγK

γβ

∂2w

∂x2
(58)

̺f
∂2ux

∂t2
+ τ

η

κ

∂2wx

∂t2
=
KγK

γβ

∂2ux

∂x2
+
K

γβ

∂2w

∂x2
− η

κ

∂wx

∂t
(59)

The last system of equations is equivalent to Biot’s equations [9] with the
following mapping rule:

A↔K

(
1 +

γK
2

γβ

)
+

4

3
µ M11 ↔KγK

γβ

M ↔ K

γβ
m↔ τ

η

κ

(60)

The notations and the parameters on the left-hand sides of these relation-
ships are from [9].
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In some works, parameter m is associated with the formation resistivity
factor [12]. In any case, parameter τ does not affect the zero and first-order
terms in the asymptotic analysis above.

Nikolaevskii’s model. Nikolaevskii [44, 45] has developed a general model
of poroelasticity based on mass, momentum, and energy balance. Besides
purely mechanical deformation, his model accounts for the impact of heat-
ing on stress and deformation. For isothermal creeping flow, the model
developed here is consistent with the Nikolaevskii model. The mass bal-
ance equations (10) and (11) are equivalent to Equations [44, (2.1)–(2.2)].
We neglect the gravity, therefore the momentum balance equation for the
bulk medium, Equation (8), is equivalent to the linearized Equation [44,
(2.3)]. Let us demonstrate that Equation (6) is equivalent to linearized
Nikolaevskii’s equation of momentum balance for the fluid in an isotropic
medium. In our notations, a linearization of Equation [44, (2.5)] yields:

∂

∂t

(
̺fW + ̺fφ

∂u

∂t

)
= −φ∇p+ R (61)

where R is called the viscose resistance to the fluid flow [44]. In an isotropic
medium, linearized Equations [44, (2.31), (2.65)] imply the following expres-
sion for R:

R = −φ2 η

κ

(
1

φ
W

)
(62)

Since the Darcy velocity and skeleton displacement are small, a substitution
of Equation (62) into (61), after cancelling φ, gives:

W +
̺fκ

ηφ

∂W

∂t
= −κ

η

(
∇p+ ̺f

∂2u

∂t2

)
(63)

The latter equation is identical to Equation (6) if one puts and τ∗ = 0

τ =
̺fκ

ηφ
.

Gassmann’s model. The two elastic moduli, Ksg and Kfg, defined in
Equation (12) relate the grain volumetric strain to the skeleton stress and
fluid pressure, respectively. If the relationships

Ksg =
Kg

1 − φ
and Kfg =

Kg

1 − K

Kg

(64)

hold true, then the expression K

(
1 +

γK
2

γβ

)
yields Gassmann’s bulk mod-

ulus [23, 46].
Vanishing attenuation. For some combinations of parameters, the coeffi-

cient ζF
1 defined in Equation (31) can vanish. In such a case, the first-order

approximation of the the fast wave attenuation, Equation (42), is equal to
zero. For example, ζF

1 = 0 if γK =
√
γβ and γ̺ = 2γK simultaneously.



16 DMITRIY SILIN AND GENNADY GOLOSHUBIN

Figure 3. Fast or slow incident normal wave generates four
waves at a planar interface: a reflected and transmitted fast
wave, and a reflected and transmitted slow wave.

4. Normal reflection of a compression wave

Let two poroelastic media labelled by the superscripts 1 and 2 have a
permeable plane interface at x = 0. A fast or slow incident wave generates
four waves: fast and slow reflected waves, and fast and slow transmitted
waves, Figure 3. Let us consider fast and slow incident waves separately.

Fast incident wave. A fast incident wave arriving from the half-space
x < 0 generates four waves: the fast and slow reflected waves and the fast
and slow transmitted waves. Thus, in the medium 1, the displacement can
be characterized as

u1(t, x) = U0e
i(ωt−k1F x) +RFFU0e

i(ωt+k1F x) +RFSU0e
i(ωt+k1Sx) (65)

whereas in medium 2, the skeleton displacement is

u2(t, x) = TFFU0e
i(ωt−k2F x) + TFSU0e

i(ωt−k2Sx) (66)

Here RFF , RFS , TFF , and TFS are the respective reflection and transmis-
sion coefficients. The first letter in the superscript denotes the fast incident
wave, whereas the second one denotes the fast or slow reflected or transmit-
ted wave.

The mass and momentum balance imply that the skeleton displacement,
the Darcy velocity of the fluid, the total stress, and the fluid pressure must be
continuous at the interface. Using notations (24), one obtains the following
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system of boundary conditions

1 +RFF +RFS = TFF + TFS (67)

χ1F (1 +RFF ) + χ1SRFS = χ2FTFF + χ2STFS (68)

M1k1F (1 + γ1
Kξ

1F )(1 −RFF ) −M1k1S(1 + γ1
Kξ

1S)RFS

= M2k2F (1 + γ2
Kξ

2F )TFF +M2k2S(1 + γ2
Kξ

2S)TFS
(69)

M1k1F ξ1F (1 −RFF ) −M1k1Sξ1SRFS

= M2k2F ξ2FTFF +M2k2Sξ2STFS
(70)

To obtain asymptotic expressions for the reflection and transmission coef-
ficients, we rewrite Equations (67)–(70) in an approximate form, retaining
only the leading zero-order and the next after zero-order terms. For the
first two equations, these terms are the constant ones and the ones which
are linear in ε. For the last two equations, these terms are the constant ones
and the ones proportional to

√
|ε|. One obtains:

1 +RFF +RFS = TFF + TFS (71)

εχ1F
1 (1 +RFF ) + (χ1S

0 + εχ1S
1 )RFS

= γκεχ
2F
1 TFF + (χ2S

0 + χ2S
1 γκε)T

FS
(72)

√
εM1k1F

0

(
1 + γ1

Kξ
1F
0

)
(1 −RFF ) −M1k1S

0

(
1 + γ1

Kξ
1S
0

)
RFS

=
√
εM2k2F

0 (1 + γ2
Kξ

2F
0 )TFF +

1√
γκ
M2k2S

0 (1 + γ2
Kξ

2S
0 )TFS (73)

√
εM1k1F

0 ξ1F
0 (1 −RFF ) −M1k1S

0 ξ1S
0 RFS

=
√
εM2k2F

0 ξ2F
0 TFF +

1√
γκ
M2k2S

0 ξ2S
0 TFS (74)

Here

γκ =
ε2
ε1

=
κ2

κ1
= 1 +

κ2 − κ1

κ1
(75)

By virtue of Equations (33),

1 + γi
Kξ

iF
0 =

γi
β +

(
γi

K

)2

γi
β

and 1 + γi
Kξ

1S
0 = 0, i = 1, 2 (76)

Thus, the slow-wave reflection and transmission terms vanish in Equation (73).
Taking into account Equation (39), Equation (73) reduces to

Z1(1 −RFF ) = Z2T
FF (77)

where Zi, i = 1, 2, are the modified acoustic impedances:

Zi =
M i

vi
b

√√√√γi
β + (γi

K)2

γi
β

(78)
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We seek asymptotic expressions for the transmission and reflection coeffi-
cients in the form

R = R0 +R1

√
ε+R2ε+ . . . and T = T0 + T1

√
ε+ T2ε+ . . . (79)

We limit our calculations to the two leading terms only. Putting ε = 0
yields:

RFS
0 =TFS

0 = 0 (80)

RFF
0 =

Z1 − Z2

Z1 + Z2
and TFF

0 =
2Z1

Z1 + Z2
(81)

Equations (72) and (74) imply

(γ1
K)2 + γ1

β

γ1
K

RFS
1 −

(γ2
K)2 + γ2

β

γ2
K

TFS
1 = 0 (82)

M1

v1
F

√
(γ1

K)2 + γ1
β

γ1
K

RFS
1 +

1√
γκ

M2

v2
F

√
(γ2

K)2 + γ2
β

γ2
K

TFS
1

= M1k1F
0 ξ1F

0 (1 −RFF
0 ) −M2k2F

0 ξ2F
0 TFF

0

(83)

The determinant of the linear system of equations (82)–(83)

D =
1√
γκ

M2

v2
F

(γ1
K)

2
+ γ1

β

γ1
K

√
(γ2

K)
2
+ γ2

β

γ2
K

+
M1

v1
F

(γ2
K)

2
+ γ2

β

γ2
K

√
(γ1

K)
2
+ γ1

β

γ1
K

(84)

is obviously positive: D > 0. Hence,

RFS
1 =

A

D

(γ2
K)

2
+ γ2

β

γ2
K

and TFS
1 =

A

D

(γ1
K)

2
+ γ1

β

γ1
K

(85)

where

A =

[
γ1

K

(γ1
K)2 + γ1

β

− γ2
K

(γ2
K)2 + γ2

β

]
2Z1Z2

Z1 + Z2
(86)

For the next terms of the fast wave reflection and transmission coefficients,
one obtains

RFF
1 =

Z2(T
FS
1 −RFS

1 )

Z1 + Z2
and TFF

1 =
Z1(R

FS
1 − TFS

1 )

Z1 + Z2
(87)

Finally,

RFF =
ZF

1 − ZF
2

ZF
1 + ZF

2

+RFF
1

1 + i√
2

√
|ε| + . . . (88)

TFF = 1 +
ZF

1 − ZF
2

ZF
1 + ZF

2

+ TFF
1

1 + i√
2

√
|ε| + . . . (89)
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Slow incident wave. A slow incident wave also generates four waves:
the fast and slow reflected waves and the fast and slow transmitted waves.
In the Medium 1, for a slow incident wave, one obtains

u1(t, x) = U0e
i(ωt−k1Sx) +RSSU0e

i(ωt+k1Sx) +RSFU0e
i(ωt+k1F x) (90)

whereas in the Medium 2,

u2(t, x) = TSFU0e
i(ωt−k2F x) + TSSU0e

i(ωt−k2Sx) (91)

Here RSS , RSF , TSF , and TSS are the respective reflection and transmission
coefficients. Equation (67)–(70) transform into

1 +RSS +RSF = TSF + TSS (92)

χ1S(1 +RSS) + χ1FRSF = χ2FTSF + χ2STSS (93)

−M1k1F (1 + γ1
Kξ

1F )RSF +M1k1S(1 + γ1
Kξ

1S)(1 −RSS)

= M2k2F (1 + γ2
Kξ

2F )TSF +M2k2S(1 + γ2
Kξ

2S)TSS
(94)

−M1k1F ξ1FRSF +M1k1Sξ1S(1 −RSS)

= M2k2F ξ2FTSF +M2k2Sξ2STSS
(95)

After dropping the higher-order terms, one obtains

1 +RSS +RSF = TSF + TSS (96)

εχ1F
1 RSF + (χ1S

0 + εχ1S
1 )(1 +RSS) = γκεχ

2F
1 TSF (χ2S

0 + χ2S
1 γκε)T

SS (97)

−Z1R
SF = Z2T

SF (98)

−
√
εM1k1F

0 ξ1F
0 RSF +M1k1S

0 ξ1S
0 (1 −RSS)

=
√
εM2k2F

0 ξ2F
0 TSF +

1√
γκ
M2k2S

0 ξ2S
0 TSS (99)

As in the previous subsection, we seek asymptotic expressions for the
transmission and reflection coefficients in the form (79) limiting our analysis
by the two leading terms only. Putting ε = 0 yields:

RSS
0 =

−χ1S
0

1√
γκ
M2k2S

0 ξ2S
0 + χ2S

0 M1k1S
0 ξ1S

0

χ1S
0

1√
γκ
M2k2S

0 ξ2S
0 + χ2S

0 M1k1S
0 ξ1S

0

(100)

TSS
0 =

χ2S
0

1√
γκ
M2k2S

0 ξ2S
0 + χ1S

0 M1k1S
0 ξ1S

0

χ1S
0

1√
γκ
M2k2S

0 ξ2S
0 + χ2S

0 M1k1S
0 ξ1S

0

(101)

Hence, using Equations (96) and (98), we obtain

RSF
0 =

Z2(−1 −RSS
0 + TSS

0 )

Z1 + Z2
, TSF

0 =
−Z1(−1 −RSS

0 + TSS
0 )

Z1 + Z2
(102)
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Figure 4. Reflection from a permeable layer of type 2 sand-
wiched between media of type 1. A fast incident wave gen-
erates two coherent reflected fast wave.

Equations (80)–(81) show that a fast incident wave generates reflected
and transmitted slow waves of the first-order in ε. On the contrary, by
virtues of Equations (102), the slow and the fast waves generated by a slow
incident wave are both of the zero order.

5. Reflection from a permeable layer

Consider reflection of a fast incident wave from a permeable layer of thick-
ness H. Let this layer, labelled by the superscript 2, be sandwiched between
two media whose properties will be labelled by the superscript 1, Figure 4.

Both at the top and at the bottom of the layer, an incident wave generates
two pairs of transmitted and reflected slow and fast waves. We consider two
signals generated by reflection of an incident fast wave from the layer. In the
first case, the signal is transmitted into the layer as a slow wave, reflected
from the bottom of the layer as a fast wave, and further transmitted back
into the upper medium 1 as a fast wave. In the second case, the signal is
transmitted into the layer as a fast wave, reflected from the bottom as a
slow wave, and transmitted into the upper medium as a fast wave. Figure 4
shows schematically the path of the signal for each of the two configurations.
In both cases, the slow wave constitutes only one of the four segments of
the whole path. Since the fast wave reflections from the top and bottom of
the layer cancel each other, the considered paths generate reflected signals
neglecting multiple reflections.

Both paths are similar to each other, so we consider in detail only the first
one. Let U0 be the amplitude of the incident fast wave. Then, by virtue of
Equations (80) and (85), the amplitude of the transmitted slow wave inside

the layer is equal to U
1f2s

0 = TFS
1

√
|ε|U0. The amplitude of the fast wave
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reflected from the bottom of the layer is equal to

U
1f2s2f

0 = RSF
0 TFS

1

√
|ε|e−aSHU0 (103)

The exponential function in the last equation comes from the slow-wave
attenuation. The fast-wave attenuation factor, aF , is small of higher order
relative to aS , see Equation (42). Note that the indices 1 and 2 must be per-
mutated in the left Equation (102) for a correct evaluation of the reflection
coefficient from the bottom RSF

0 . Finally, for the amplitude of the signal
reflected from the layer, one obtains the following expression through the
amplitude of the original incident wave:

U
1f2s2f1f

0 = TFF
0 RSF

0 TFS
1

√
|ε|e−aSHU0 (104)

For a correct evaluation of TFF
0 , the transmission coefficient for the sig-

nal reflected from the bottom and crossing the top interface, the indices
1 and 2 must be permutated in Equation (81). Using Equation (44), the
ε-dependent factors in the product on the right-hand side of Equation (104)
can be gathered in the form:

ψ(|ε|) =
√
|ε|e−

η
κ

r
γβ+γK

2

2M̺f

√
|ε|H

(105)

This function is the permeability-based reflection factor. It attains a maxi-
mum value of

ψmax =
1

H

κ

η

√
2M̺f

γβ + γK
2
e−1 at

√
|ε|max =

1

H

κ

η

√
2M̺f

γβ + γK
2

(106)

The peak frequency is

νmax =
κ

2πηH2

2M

γβ + γK
2

(107)

For example, if M = 10+10 Pa, γβ + γ2
K ≈ 2.5, κ = 1 Darcy, η = 10−3 Pa-s,

and H = 0.5 m, then νmax ≈ 8 Hz, Figure 5. This estimate is in a agreement
with field observations of the low-frequency gas shadow [16].

Similarly, for the second path, the reflected signal amplitude is

U
1f2f2s1f

0 = TFF
0 RFS

1 TSF
0 ψ(|ε|)U0 (108)

The transmission coefficients TFF
0 in Equations (103) and (104) correspond

to different direction of wave propagation through the top interface and, in
general, are different.

The travel times for both pathes are the same (approximately 30 ms for
the numerical parameters mentioned above), as well as the peak frequencies.
The phase shifts due to the travel times also are the same. Therefore, in the
superposition of the reflected signals, the amplitudes (104) and (108) sum
up.

Reflection from a layered reservoir. Due to the factor of
√
|ε|, the absolute

value of the reflection coefficient is not large. However, frequently, a reservoir
has a layered structure, where the permeability can differ between the layers



22 DMITRIY SILIN AND GENNADY GOLOSHUBIN

0 5 10 15 20 25 30 35 40 45 50
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Frequency [Hz]

P
er

m
ea

b
il
it
y
-b

as
ed

re
fl
ec

ti
on

,
ψ

Figure 5. The permeability-based reflection factor ψ, Equa-
tion (105), attains a peak value at a low seismic frequency.

by orders of magnitude. Summation of the reflections from multiple layer
enhances the peak reflection effect with a noticeable time delay relative to the
first arrival. In the numerical example below, such a summation produces a
noticeable effect on the reflection coefficient.

For evaluation of the impedance contrasts and reflection coefficients for
thick layered porous media, the conventional seismic amplitude analysis rely
on Gassmann’s model [23]. The relative easiness of assigning sensible values
to the parameters in Gassmann’s equation makes this model popular among
exploration geophysicists [36]. In case of thin-layered heterogeneous reser-
voir, especially with significant variation of the porosity and permeability of
the rock between the layers, the situation may be different. At the end of
Section 3, we have demonstrated that Gassmann’s equation can be obtained
as the zero-frequency limit of the asymptotical solution obtained in the same
section.

To evaluate the influence of the first-order terms on the reflection coeffi-
cients from a thin-layered reservoir, we consider a model of a 22 meter thick
reservoir consisting of 22 one-meter thick layers of different porosities and
permeabilities. Figure 6 (a) shows a plot of the computed fast-wave reflec-
tion coefficient, R, versus two way travel time from reservoir surface. The
calculation accounts for the multiple reflections and the fast-slow and slow-
fast wave conversions at the interfaces, using Equations (80)–(81), (85)–(89),
and (100)–(102). There is remarkable 10% difference between the result of
application of asymptotic analysis and the result of calculation based solely
on the zero-order terms (Gassmann’s model), see Figure 6 (b). This differ-
ence is due the first-order terms in the expressions for asymptotic reflection
coefficients and it is a product of the fluid motion relatively skeleton.
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Figure 6. Example of an inhomogeneous 22-meter thick
layered reservoir model. a) Reflection coefficient R computed
using Equations (80)–(81), (85)–(89), and (100)–(102) versus
two-way travel time from the reservoir surface. b) The differ-
ence △R between R and the reflection coefficients evaluated
from the zero-order approximation (Gassmann’s model).

6. Summary and conclusions

A review of the derivation of Biot’s equations of poroelasticity from the
basic principles: momentum and mass balance equations, Hooke’s law, and
Darcy’s law, suggests new physical interpretations for some coefficients of the
classical poroelasticity. For example, the Biot-Willis coefficient α is related
to the distribution of the surface of the grains between grain-to-grain and
grain-to fluid contact.

Asymptotic analysis of a plane-wave solution at low frequencies leads to
explicit relatively simple expressions for the velocity and attenuation of the
fast and slow waves. The small parameter is a dimensionless quantity pro-
portional to the product of the fluid mobility, density, and the frequency of
the signal. The wave number, velocity, and attenuation factor are expressed
as power series with respect to this parameter. The calculations yield that
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all the coefficients in the power series depend on the mechanical properties
of the medium, but neither on the fluid mobility nor on the signal frequency.

The obtained asymptotic solutions lead to power-series expressions of the
reflection and transmission coefficients for an elastic compression wave nor-
mally crossing a permeable planar interface between two media. It turns out
that the leading frequency-dependent term is proportional to the square root
of the frequency of the signal. The zero-order terms have been expressed
through the acoustic impedances of the media, similarly to the classical
theory.

Analysis of the reflection coefficient from a permeable layer (a lens) shows
that the reflection of an incident fast wave including one slow-wave segment
inside the layer is frequency-dependent and has a peak. The asymptotic re-
lationships make possible an explicit evaluation of the maximum reflection
coefficient and the peak-reflection frequency. For a realistic set of parame-
ters, the maximum is attained at a low seismic frequency. Although the
amplitude of the reflected signal is proportional to the absolute value of the
small parameter and is small, the reflection from a number of such lenses
can produce a noticeable effect. Such frequencies have been successfully
used for imaging the most permeable areas of a hydrocarbon-bearing reser-
voir [25, 29]. The results of asymptotic analysis have been applied for nu-
merical evaluation of the reflection coefficient in a model of layered reservoir
with variable permeability. Calculations with account for multiple reflec-
tions show a significant contribution of the frequency-dependent part of the
asymptotic expansion. The practical applications of the theory developed
here are seismic modeling, inversion, and attribute analysis.
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