

Glucose copy
UNCLASSIFIED

CLASSIFICATION CHANGED TO **UNCLASSIFIED**

BY AUTHORITY: **DOC-H-6**

BY AUTHORITY: **DOC-H-6**
DATE: **JUN 15 1973**

CLASSIFICATION LEVEL
(S, C, OR U)
ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

This document is
PUBLICLY RELEASABLE

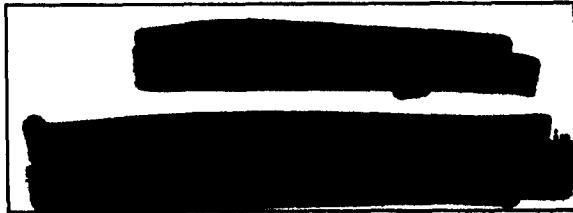
Jerry Kagan
Authorizing Official

Date: **2-11-09**

NAA-SR-MEMO **9258**

Do not remove
this sheet

This document contains _____ pages


This is copy **1**

CLASSIFICATION CHANGED TO

(Insert)

appropriate classification
OF **A.C.** **Class**
BY AUTHORITY **Person** **1-6**
EC-C-6 **Classification**

Change 1 **1** **1**
BY **Sign** **3-14-66**
and the date

CLASSIFICATION TYPE
(RD OR DI)

NAA-SR-MEMOs are working papers and may be expanded, modified, or withdrawn at any time, and are intended for internal use only.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy nor any of their employees, nor any of their contractors subcontractors or their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed or represented that its use would not infringe privately owned rights.

This report may not be published without the approval of the Patent Branch, AEC.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

MASTER

UNCLASSIFIED

CLASSIFICATION LEVEL
(S, C, OR U)

DEPARTMENT OF ENERGY DECLASSIFICATION REVIEW	
1st REVIEW DATE:	5-9-97
2ND REVIEW DATE:	5-7-97
AUTHORITY:	DOC ADD
NAME:	Jed Dace
DETERMINATION (IRCLE NUMBER(S))	
1. CLASSIFICATION RETAINED	<input type="checkbox"/>
2. CLASSIFICATION CHANGED TO	<input type="checkbox"/>
3. CONTAINS NO DOE CLASSIFIED INFO	<input type="checkbox"/>
4. COORDINATE WITH	<input type="checkbox"/>
5. CLASSIFICATION CANCELLED	<input checked="" type="checkbox"/>
6. CLASSIFIED INFO BRACKETED	<input type="checkbox"/>
7. OTHER (SPECIFY):	je S/legar

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UNCLASSIFIED

ATOMICS INTERNATIONAL A Division of North American Aviation, Inc.		NAA-SR-MEMO TDR NO 9258	APPROVALS
TECHNICAL DATA RECORD		PAGE 1 OF 22	
AUTHOR C. A. Willis <i>C. A. Willis</i>	DEPT & GROUP NO 727-75	DATE 11/19/63	
TITLE Radiological Hazards Comparison of SNAP 9A to SNAP 10A		GO NO 7611	<i>K. E. Buttrey</i>
PROGRAM Aerospace Safety <i>H.A. K. 3</i>	SUBACCOUNT TITLE Utilization of SNAP Reactor for - Short Orbital Lifetime Missions	S/A NO 3010	TWR 54159
DISTRIBUTION E. Ash 726 R. Balent 720 J. Brunings 726 K. Buttrey 727 G. Calkins 735 W. Cegelski 727 D. Cockeram 720 R. Courson 722 R. Cummings 727 R. Detterman 727 H. Dieckamp 720 R. Elliott 727 S. Fields 727 W. Flynn 727 R. Gimera 727 D. Gylfe 727 J. Hale 727 R. Hart 726 W. Henoch 724 C. Johnson 727 R. Johnson 727 J. Lewis 735 L. Maki 727 D. Mason 727 L. Mims 727 L. Moss 727 D. Oliver 727 A. Piccot 727 J. Rohlfs 727 V. Sanders 727 W. Scott 724 O. Steele 723 R. Stitt 724 Idaho J. Susnir 727 A. Thiele 724 R. Wallerstedt 722 E. Weisner 720 A. Weitzberg J. Wetch 720 R. Williams 720 R. Eilson R. Eggleston 724	(CHECK ONE BOX ONLY) AEC <input type="checkbox"/> DOD <input type="checkbox"/> UNCL. <input type="checkbox"/> CONF. <input type="checkbox"/> <i>[REDACTED]</i>	(CHECK ONE BOX ONLY) DEFENSE INFO. <input type="checkbox"/>	
		SECURITY CLASSIFICATION AUTHORIZED CLASSIFIER SIGNATURE <i>K. E. Buttrey</i> DATE <i>12/31/63</i>	
STATEMENT OF PROBLEM Review SNAP 9A radiological hazards, safety features, and criteria and develop criteria which limit SNAP 10A hazards to the same level.			
<p>ABSTRACT SNAP 10A radiological hazards are compared to those from SNAP 9A as presented in the final safeguards report for the transit mission. The SNAP 9A hazard is based on a 900 year decay in orbit plus reentry burnup. It is shown that the SNAP 10A hazards are always less than those from SNAP 9A, for the same orbit life, provided:</p> <ol style="list-style-type: none"> 1. Reactor shutdown is achieved prior to 8 years operation at full power. 2. Reentry burnup is achieved. <p>In the event that reentry burnup of SNAP 10A cannot be ensured, 400 years shutdown is required to reduce the external radiation hazard from one year of reactor operation to a safe level. Internal radiation hazards would have been reduced to the 9A level in 200 years. Post reentry criticality must also be prevented to allow meaningful comparison as criticality produces direct radiation hazards as well as short-lived radionuclides that otherwise would not be present in the case of radioisotope power source. It is, therefore, concluded that for those missions where long decay times in orbit cannot be ensured it is imperative that reentry burnup be achieved in order to eliminate external radiation hazards.</p> <p><i>[REDACTED]</i></p>			
UNCLASSIFIED			

UNCLASSIFIED

NO. NAA-SR-MEMO 9258

DATE 11/19/63

PAGE 2 OF 22

INTRODUCTION

Aerospace nuclear safety criteria are not necessarily the same as safety criteria for terrestrial reactors and no special criteria have been established. Thus it appears worthwhile to review pertinent cases in which decisions have been reached, particularly since safety criteria can be expected to remain primarily "de facto" for some time.

No reactors have been used in space but radioisotope fueled generators which also present radiological hazards, have been utilized in orbit. SNAP 9A (Reference 1) is of particular interest as it was recently approved and placed in service. Therefore, SNAP 9A radiological safety criteria and hazards are reviewed and used as a basis for SNAP 10A radiological safety criteria.

RADIOLOGICAL HAZARD

There are three types of radiological hazard, characterized by the manner in which the dose is inflicted, viz:

1. direct radiation
2. external radiation, and
3. internal radiation.

"Direct radiation" refers to the radiation emitted while the core is essentially intact and includes both the prompt radiation emitted during criticality and the radiation from fission product and activation product decay. "External radiation" denotes radiation emitted after the core is destroyed and while the radioactive material is outside the body of the person being irradiated, for example, radiation from a fuel element after core disassembly. The designation "internal radiation" means the radiation source is within the body of the exposed individual. For instance, fission products from a fuel element which fell into a reservoir might be ingested and the radiation emitted while the radioactive material was in the person's body is considered internal radiation.

The hazards from direct and external radiation normally are directly proportional to the observed or specified quantities -- rem or rem/hour-- but the situation is not so straightforward for internal radiation. The quantity of radioactive material is usually given in curies and, for any specific isotope, the internal radiation (or radiotoxicity) hazard is pro-

UNCLASSIFIED

UNCLASSIFIEDNO. NAA-SR-MEMO 9258DATE 11/19/63PAGE 3 OF 22

portional to the number of curies. However, the quantity of radioactive material in curies is no measure of the relative hazard where different isotopes are to be compared. For example, from internal radiation the hazard from one curie of highly radiotoxic Pu-238 is 2.8×10^6 times the hazard from one curie of mildly radiotoxic H-3, Ge-71, Nb-97 or In-131m (Reference 2).

The internal radiation hazard from a quantity of long-lived radioactive material released to the biosphere is perhaps best characterized by the following three quantities:

1. the number of maximum permissible body burdens (MPBB)
2. the water volume required to dilute the material to its maximum permissible concentration (MPC), and
3. the air volume required to dilute to the maximum permissible concentration

The maximum permissible body burden is the amount of a radioisotope which would be expected to cause no observable damage if maintained inside a person's body indefinitely. The maximum permissible concentrations are those concentrations of an isotope in air or drinking water which would keep the amount of material in the body at the MPBB. For example, the MPBB for Pu-238 is 4×10^{-8} curies and this body burden would be maintained by continuous exposure to air containing 7×10^{-13} curies per cubic meter or to drinking water containing 5×10^{-5} curies per cubic meter.

SNAP 9A

SNAP 9A is a 22 watt thermoelectric generator fueled with 16,175 curies of Plutonium-238. The generator is expected to have a useful life of five years. In the transit mission it was placed in a polar orbit with an expected orbit-life of 900 years.

Pu-238 presents essentially no direct or external radiation hazard since both it and its daughter U-234 are alpha emitters. However, Pu-238 is one of the most hazardous radionuclides as an internal radiation source. Thus, there is no radiological hazard as long as the fuel is contained but release in the biosphere could occur and hazards could result.

Obviously the SNAP 9A radiological hazards are greatest early in the life of the device. For the original Pu-239 inventory the three characteristic quantities are:

UNCLASSIFIED

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO 9258
DATE 11/19/63
PAGE 4 OF 22

1. Maximum permissible body burdens: 4×10^{11}
2. Water volume for dilution to MPC: 3.2×10^8 cubic meters*
3. Air volume for dilution to MPC: 2.3×10^{16} cubic meters**

Each of these factors might be increased by a factor of ten for non-occupational exposure. Nine hundred years decay (Figure 1) reduces each of the quantities by the factor 10^{-3} so the reentry values are 4×10^8 MPBB, 3.2×10^{13} cubic meters of water and 2.3×10^5 cubic meters of air. The total activity essentially ceases to decline after a thousand years because Pu-238 decays to radioactive U-234 which has a very long (2.48×10^5 years) half life. Subsequent decay periods will be measured in millenia. However, U-234 is slightly less radiotoxic than Pu-238 (Table 1) the quasi-equilibrium quantity, 5.7 curies, constitutes 1.15×10^8 MPBB and can be diluted to occupational MPC by 3×10^{10} cubic meters of air or 2×10^4 cubic meters of water. An increase in decay time beyond the 900 years planned for the transit mission would not significantly reduce radiological hazards.

The safety objectives for SNAP 9A were complete fuel containment prior to reentry, maximum radiological decay in orbit, and complete reentry burnup. These objectives could not be completely achieved but were modified to the following design safety criteria:

1. absolute containment of the fuel except after (a) aerodynamic heating or (b) more than a year of corrosive attack by sea water, and
2. complete burnup and dispersal of the fuel in particles of no more than ten microns diameter above 10^5 feet for any reentry mode.

The first criteria requires that the device maintain integrity through (1) a missile propellant explosion, (2) a missile propellant fire, (3) corrosive attack by missile propellant, sea water, the atmosphere, etc., (4) a terminal velocity impact on rock, (5) internal pressure from helium buildup, or (6) thermal conditions resulting from land burial. The second criteria requires complete burnup, even in the event of "package" (intact satellite) reentry.

Obviously, if SNAP 9A will burn up in the stratosphere, upon reentering the atmosphere from orbit, suborbital paths must be possible that will

UNCLASSIFIED

*Eighty-five billion gallons, about one-fourth the total quantity used and wasted daily in the United States.

**5.6 million cubic miles, enough air to cover the earth's surface to a depth of 100 feet.

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO 9258

DATE 11/19/63

PAGE 5 OF 22

result in complete or partial release of the fuel to the biosphere. Consequently, a range safety criterion requires that the device be restricted to isolated areas when incomplete or low altitude burnup is possible.

Obviously these criteria are stringent. In fact, they may constitute the maximum attainable with this isotope without resorting to injection to a solar orbit. Even so, this is not an instance of zero hazard for the following reasons:

1. Failure to achieve orbit could have resulted in a large release of long lived radioactive material to the lower atmosphere and/or to the ocean.
2. A low orbit could have caused the release of a large quantity of Pu-238 to the upper atmosphere.
3. A significant quantity of Pu-238 will be released to the upper atmosphere as a consequence of the intended operation.

SNAP 10A

SNAP 10A is a compact reactor designed to operate for one year at 33 thermal kilowatts. As with other reactors, radiological hazards are a strong function of operating history. Before startup the important radioisotope is uranium-234 since there is no startup neutron source. The inventory is only 0.33 curies so that pre-startup radiological hazard is little more than one-twentieth the ultimate (minimum) SNAP 9A hazard. However, once criticality is achieved*, either accidentally or in orbit, the situation changes radically.

During criticality the radiological hazard is from direct (neutron and gamma) radiation. A "maximum credible" 70 megajoule excursion may produce lethal doses as far as twenty meters away and "emergency permissible doses" (25 rem) out to about 70 meters. Average annual permissible doses (5 rem) could be incurred 150 meters away. Direct radiation constitutes the hazard during steady power operation also. At full power (33 kilowatts) the above doses could be received at the same distances in about 35 minutes. Obviously, direct radiation is important only within a few hundred meters of the reactor. Quasi-steady-state operation releasing 2×10^4 megajoules is conceivable if an optimum quantity of water is encountered.

*The activity produced in the zero power acceptance testing operation is negligible after a few hours shutdown.

INCLASSIFIED

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO 9258
DATE 11/19/63
PAGE 6 OF 22

After shutdown, radiological hazards decrease monotonically with time but several kinds of hazard must be considered. Direct radiation will persist, though with greatly reduced intensity, and core destruction could permit internal radiation hazards and external radiation hazards from reactor debris.

If criticality consisted of a power excursion without significant previous power operation -- a launch accident, for example -- the resulting radioactive material would be short lived. Release fission products might be transported downwind and the cloud containing the radioactive debris would present both external and internal radiation hazards. However, radioactive decay and atmospheric dispersal would reduce the hazard as the cloud moved so the hazard from the cloud would be confined to essentially the same area that was exposed to direct radiation. The release of excursion generated activity to water would constitute an even smaller hazard since human ingestion of contaminated water would not be likely to occur before dilution and decay minimized the hazard. Furthermore water shielding would minimize the external radiation dose. Thus, normal launch and range safety precautions provide adequate protection for both launch personnel and the public against hazards from an excursion prior to power operation. However, a power excursion after return from orbit would be in a completely uncontrolled location and obviously is unacceptable.

After power operation and shutdown the dominant hazard is determined by the operating history, the shutdown time and the physical form of the radioactive material. If the activity is contained in clad fuel elements the only hazard is external (gamma) radiation which is proportional to the gross fission product inventory. The core inventory in curies, as approximated by the Way-Wigner formula* is

$$A = 0.288 P T_d^{-0.2} \left[1 - \left(1 + T_o/T_d \right)^{-0.2} \right]$$

UNCLASSIFIED

*The empirical Way-Wigner formula is not assumed superior to detailed calculations but is used here for convenience and for comparison with NAA SR MEMO 7774 calculations. The Way-Wigner formula has been shown to give reasonable agreement with detailed calculations for decay times up to a few centuries and confidence in any calculation is limited for extremely long decay times due to uncertainties in yields and decay constants.

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO 9258

DATE 11/19/63

PAGE 7 OF 22

after T_o years at P watts and shutdown for T_d years. For one fuel element (of 37) the self shielding factor can be taken as 0.6, geometry effects can be neglected at distances greater than one meter (Figure 2), and air shielding can be neglected at distances less than 200 meters, so in this range the dose rate is

$$\dot{D} = 60T_d^{-0.2} \left[1 - (1 + T_o/T_d)^{-0.2} \right] R^{-2} \quad \dots \text{ (rem/hr)}$$

where R is the separation distance in meters and the power is 33.5 kilowatts. Obviously the dose rate variation with time is a strong function of the operating time (Figure 3). After a year at full power about 400 years of decay reduces the dose rate to 0.01 rem per hr at a meter (Figure 4) -- a level which might be considered acceptable because it is the limit for shipment by common carrier.

Power operation also builds up radiological poisons, of which Sr-90 and I-131 are generally most important. Of these I-131 can be neglected if there is a shutdown period of even a few months before exposure because the half-life is only 8.05 days (Figure 5). Conversely, Sr-90 has a 28 year half life and so builds up and decays slowly. The Sr-90 inventory in curies is given by

$$A = 1670 (1 - e^{-\lambda T_o}) e^{-\lambda T_d}$$

for a constant power of 33.5 kilowatts prior to shutdown. The decay constant (λ) is 0.0248 per year. The maximum possible activity, corresponding to a long operating time ($T_o \gg 28$ years) and short shutdown time ($T_d \ll 28$ years) is 1670 curies, for which the characteristic quantities are

1. Maximum permissible body burdens: 8.4×10^8
2. Water volume for dilution to MPC: 1.7×10^9 cubic meters
3. Air volume for dilution to MPC: 1.7×10^{13} cubic meters

Obviously, Sr-90 compares most unfavorably with Pu-238 as a water contaminant. For the same dilution volume as the reentering SNAP 9A (3.2×10^5 cubic meters of water) the Sr-90 inventory must be 0.32 curies. Thus, one year at 33.5 kilowatts necessitates 200 years decay after shutdown (Figure 6).

NAK LOSS

UNCLASSIFIED

SNAP 10A is designed to shut down after a year of operation but, if the mechanism fails, operation will continue at essentially full power

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO 9258

DATE 11/19/63

PAGE 8 OF 22

until the cooling system fails. After a few years the NaK will escape, or at least cease to flow, thus reducing the system's capacity for removing heat from the core and thereby reducing power due to the temperature coefficient. Reactor power variation with time after NaK loss as calculated by Fields (Reference 3) is presented in Figure 7.

Power reduction will result in a fission product inventory decrease. Since power will vary slowly with time, after about sixty years the Sr-90 inventory will remain essentially in equilibrium with the fission process. However, the activity produced at full power adds significantly and may constitute the major portion of the Sr-90 inventory for the first century after NaK loss. The Sr-90 inventory (Figure 8) falls to 0.32 curies only after 10^4 years.

The gross fission product inventory also remains near equilibrium with reactor power. However, reentry disassembly will cause shutdown and some radioactive decay will take place in the approximately 120 seconds between disassembly and impact. Thus, the quantity of interest is not the dose rate but the average dose rate for the exposure period. The "first hour dose"; the dose received one meter from a fuel element during the first hour after a 120-second shutdown is

$$D_1 = 0.014 P \quad \dots (\text{rem})$$

where P is the power in watts just before shutdown. The first hour dose is depicted in Figure 9 as a function of time after NaK loss. If the first hour dose is to be held to the non-occupational annual permissible dose (0.5 rem), an orbit life of 3000 years is required and further reduction to the more acceptable 0.01 rem limit would necessitate a very long orbit life.

Shutdown is significantly more desirable than NaK loss, and indeed, is necessary if SNAP 9A hazards are not to be exceeded.

CONCLUSION

Three considerations dominate the radiological hazards picture. First the possibility of a power excursion in an uncontrolled area must be eliminated, therefore reentry disassembly is required. Second, external dose rates in uncontrolled areas must be acceptably small so reentry burnup or 400 years decay after shutdown is necessary. Finally, the

UNCLASSIFIED

UNCLASSIFIED

NO. NAA-SR-MEMO 9258
DATE 11/19/63
PAGE 9 OF 22

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

internal radiation hazard should not exceed that presented by SNAP 9A so there must be a decay period of 200 years after shutdown before reentry.

It is significant that if shutdown and reentry burnup are achieved SNAP 10A is less hazardous than SNAP 9A for any orbit life (Figure 10 and 11). Moreover, inhalation is a much more likely exposure mode than is ingestion and the air contamination hazard from SNAP 9A is much greater than from SNAP 10A. In fact, only after nine centuries decay does the 9A air dilution volume fall to the maximum attainable by 10A assuming infinite operation!

UNCLASSIFIED

UNCLASSIFIED

ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO 9258

DATE 11/19/63

PAGE 10 OF 22

REFERENCES

1. T. J. Dobry, "SNAP 9A Radioisotope - Fueled Generator, Final Safety Analysis for Transit Mission," MND-P-2775-2 (SnD) March, 1963
2. "Report of Committee II on Permissible Dose for Internal Radiation," (1959) Health Physics, Volume 3, June 1960
3. S. R. Fields, "Thermo-Physics Technical Note No. 24: SNAP 10A Reactor Temperatures and Power Decay in Space for Zero NaK Flow and Loss of NaK," NAA-SR-TDR 8498, May 10, 1963

UNCLASSIFIED

UNCLASSIFIED

████████████████████
ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NO. NAA-SR-MEMO
DATE 11/19/63
PAGE 11 OF 22

TABLE 1
ISOTOPE CHARACTERISTICS

	S_R^{90}	Pu^{238}	U^{234}
Maximum permissible body burden, μC	2.	0.04	0.05
Continuous occupational MPC in water, c/m^3	10^{-6}	5×10^5	3×10^{-4}
Continuous occupational MPC in air, c/m^3	10^{-10}	7×10^{-13}	2×10^{-10}
Specific dilution volume, water, m^3/c	10^6	2×10^4	3×10^3
Specific dilution volume, air, m^3/c	10^{10}	1.4×10^{12}	5×10^9
Half life, years	28	89	2.48×10^5
Annual permissible inhalation, μC	0.73	5×10^{-3}	0.3
Annual permissible ingestion, μC	0.9	45	270

UNCLASSIFIED

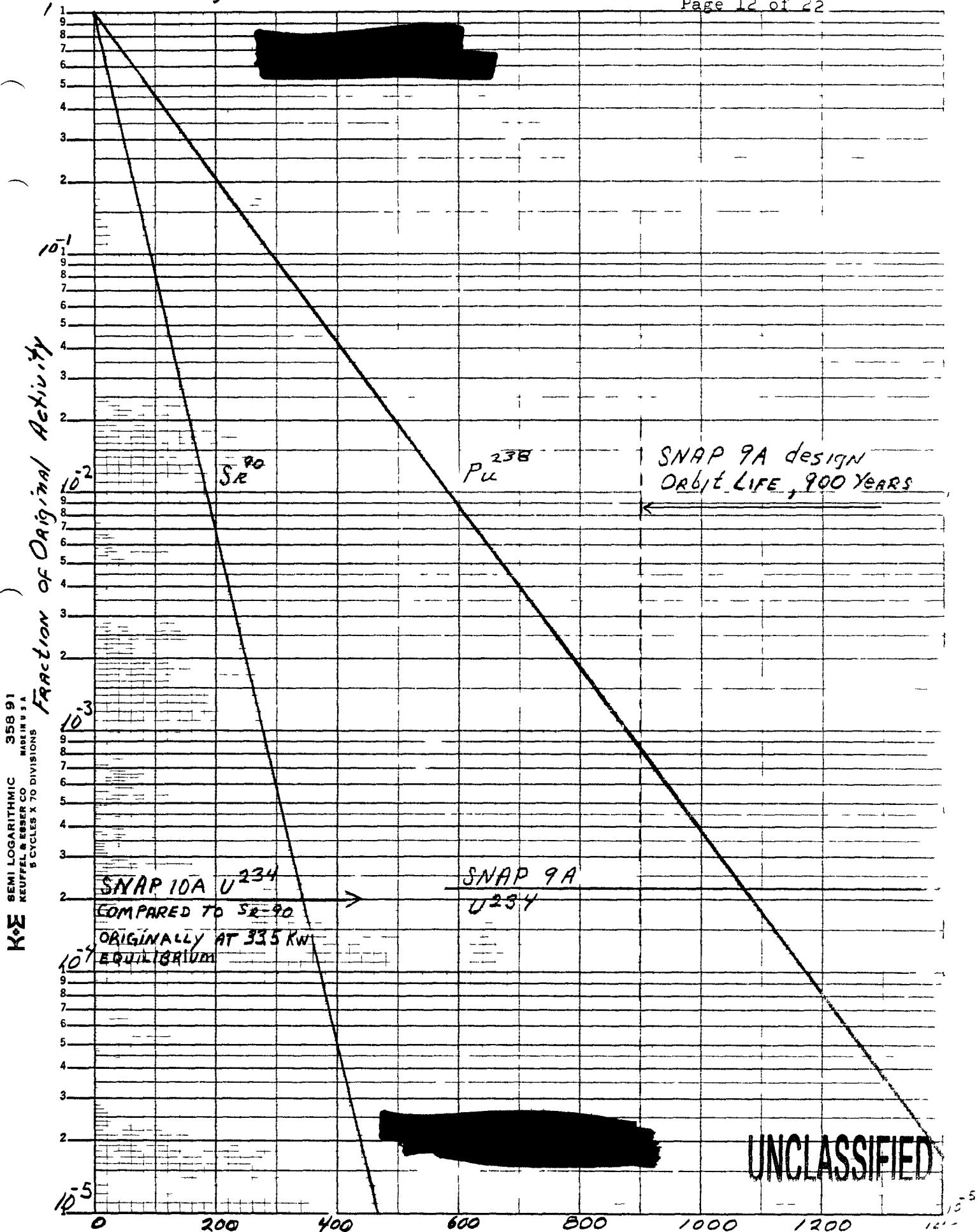
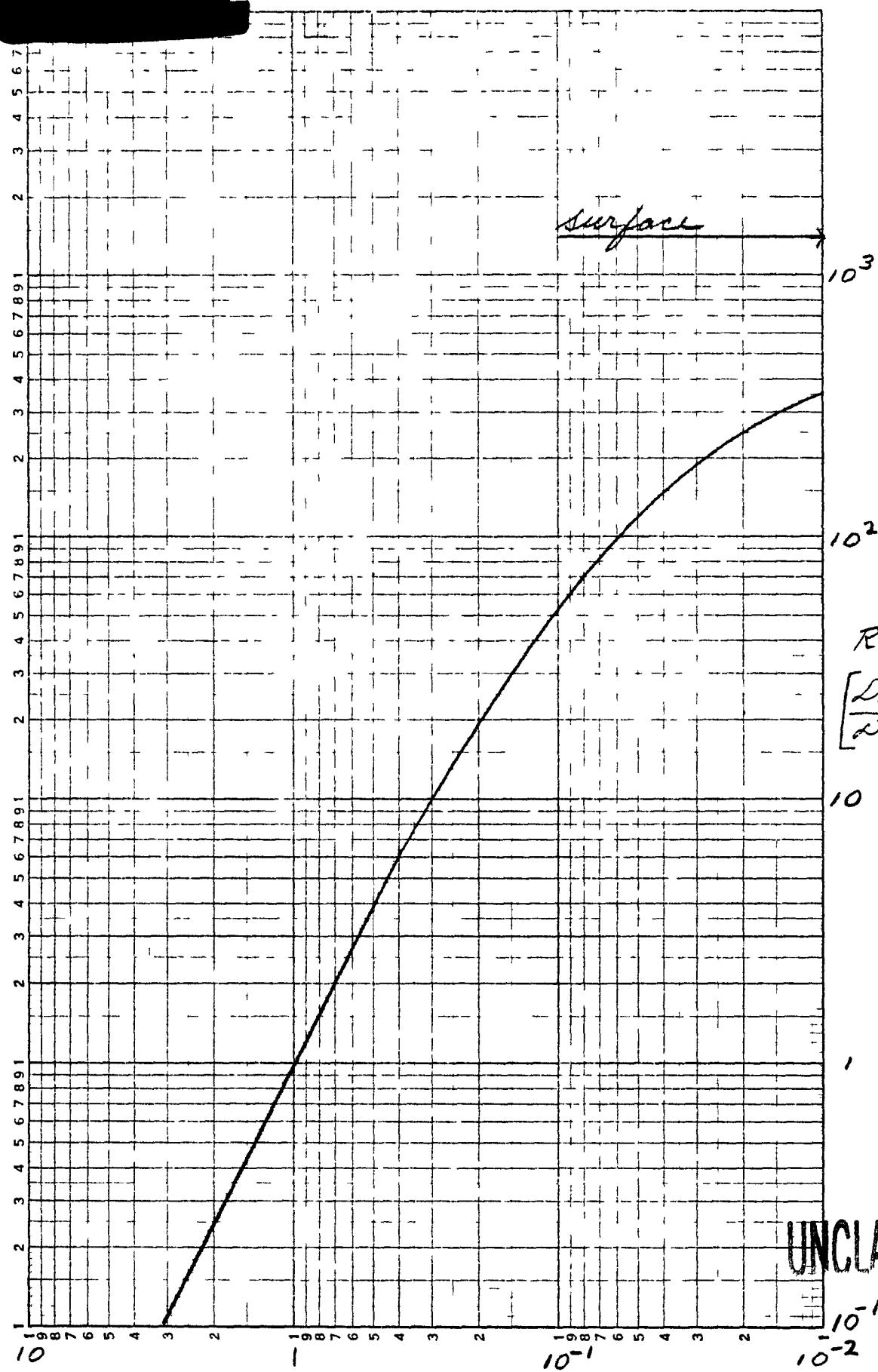

UNCLASSIFIED

Figure 1. Pu^{238} and Sr^{90} decay

NAA-SR-MEMO 9258

Date: 11/10/63

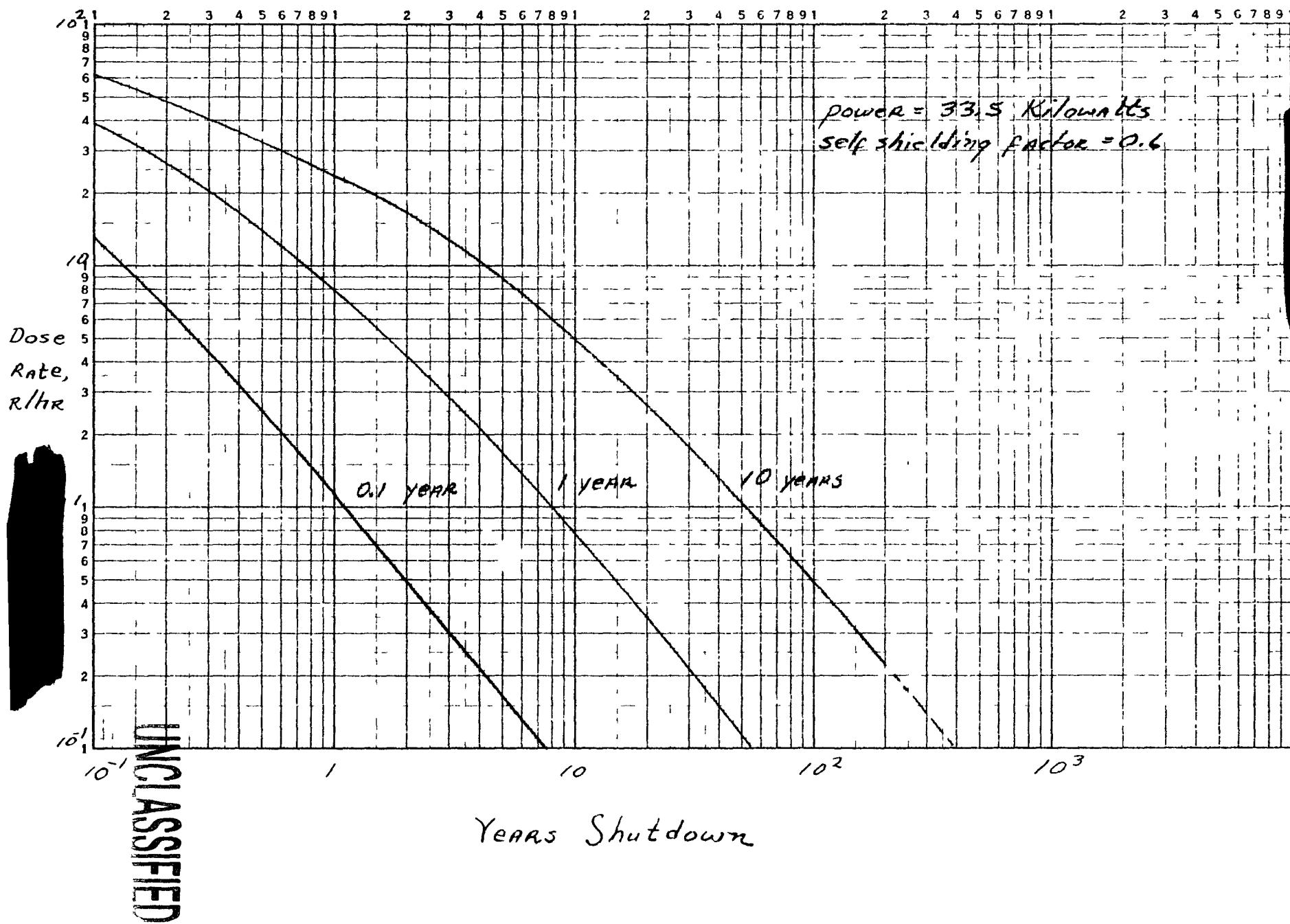
Page 12 of 22



UNCLASSIFIED

NAA-SR-MEMO 9258

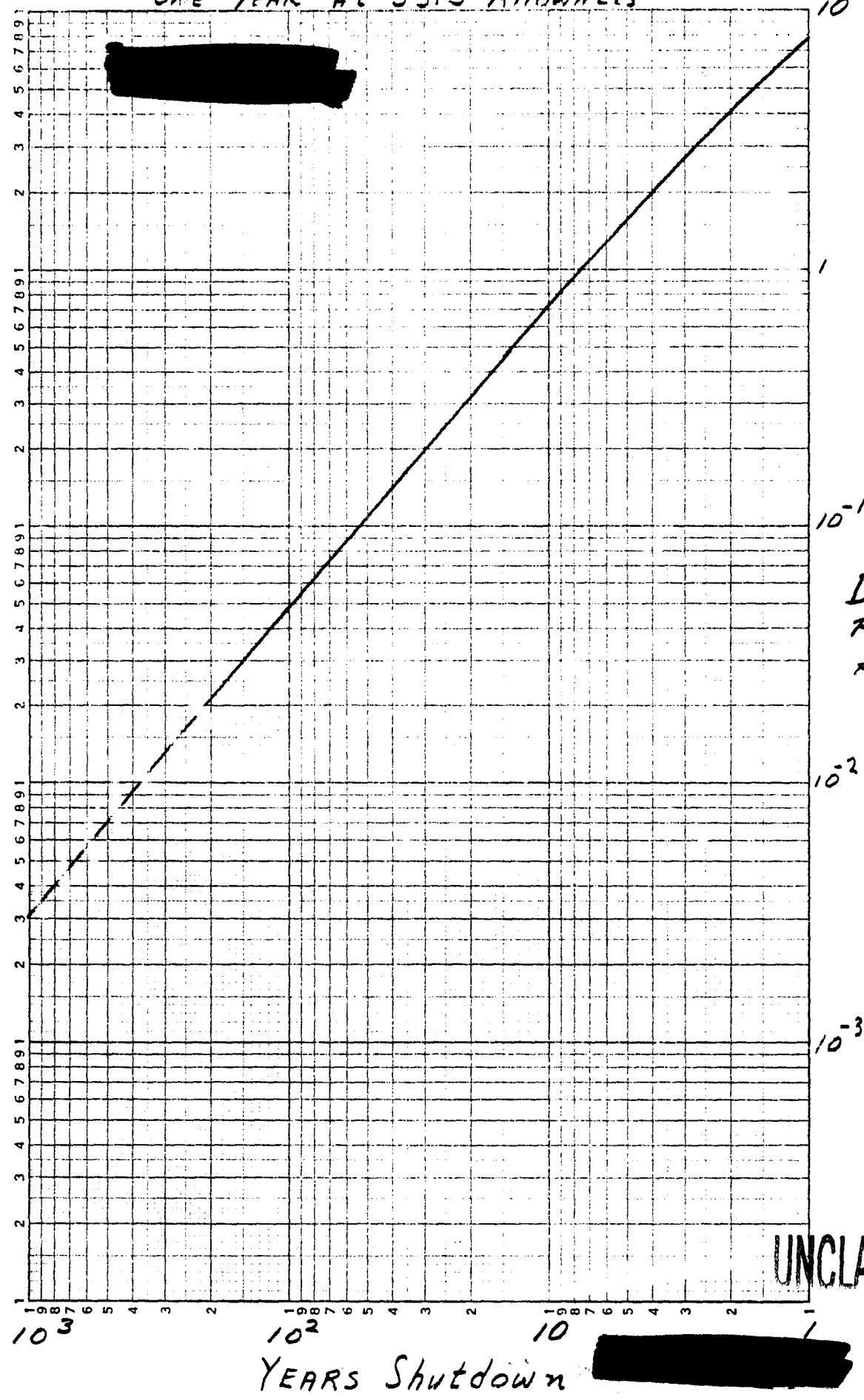
Figure 2
VARIATION OF DOSE RATE WITH DISTANCE FROM ONE
FUEL ELEMENT


Date: 11/19/63
Page 13 of 22

LOGARITHMIC
KEUFFEL & ESSER CO
MADE IN U.S.A.
3 X 5 CYCLES

UNCLASSIFIED

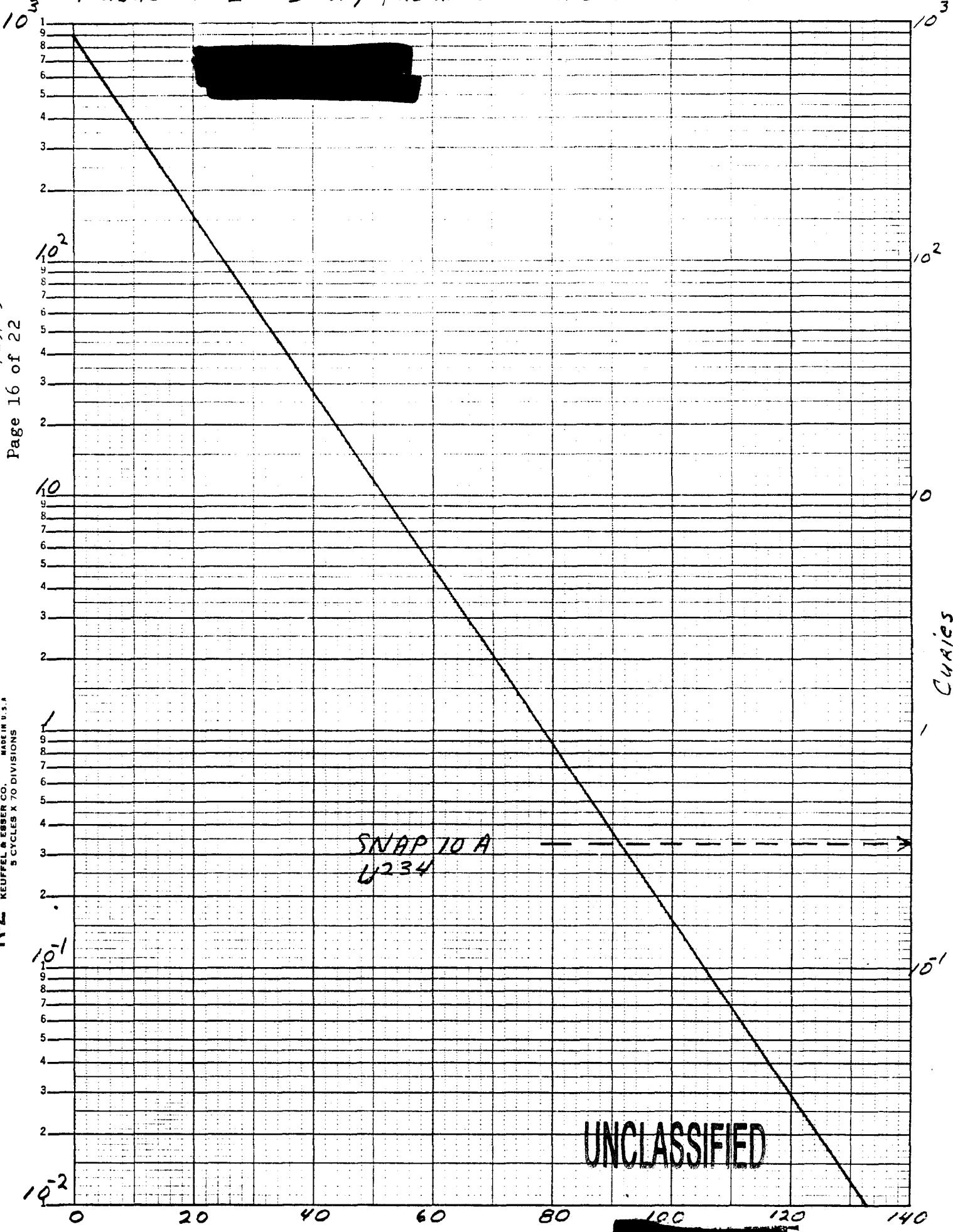
figure 3.
Dose Rate at one Meter from a fuel Element for Various Operating Times


UNCLASSIFIED

NAA-SR-MEMO 9258
Date: 11/19/63
Page 14 of 22

UNCLASSIFIED

NAA-SR-MEMO 9258
Date: 11/19/63
Page 15 of 28


FIGURE 4
Dose Rate at a Meter from a Fuel Element After
One YEAR at 33.5 Kilowatts

K* LOGARITHMIC 359-125G
KEUFFEL &LESSER CO. MADE IN U.S.A.
3 X 5 CYCLES

UNCLASSIFIED

FIGURE 5. I^{131} Decay from 33.5 Kilowatt Saturation

NAA-SR-MEMO 9258
Date: 11/19/63
Page 16 of 22

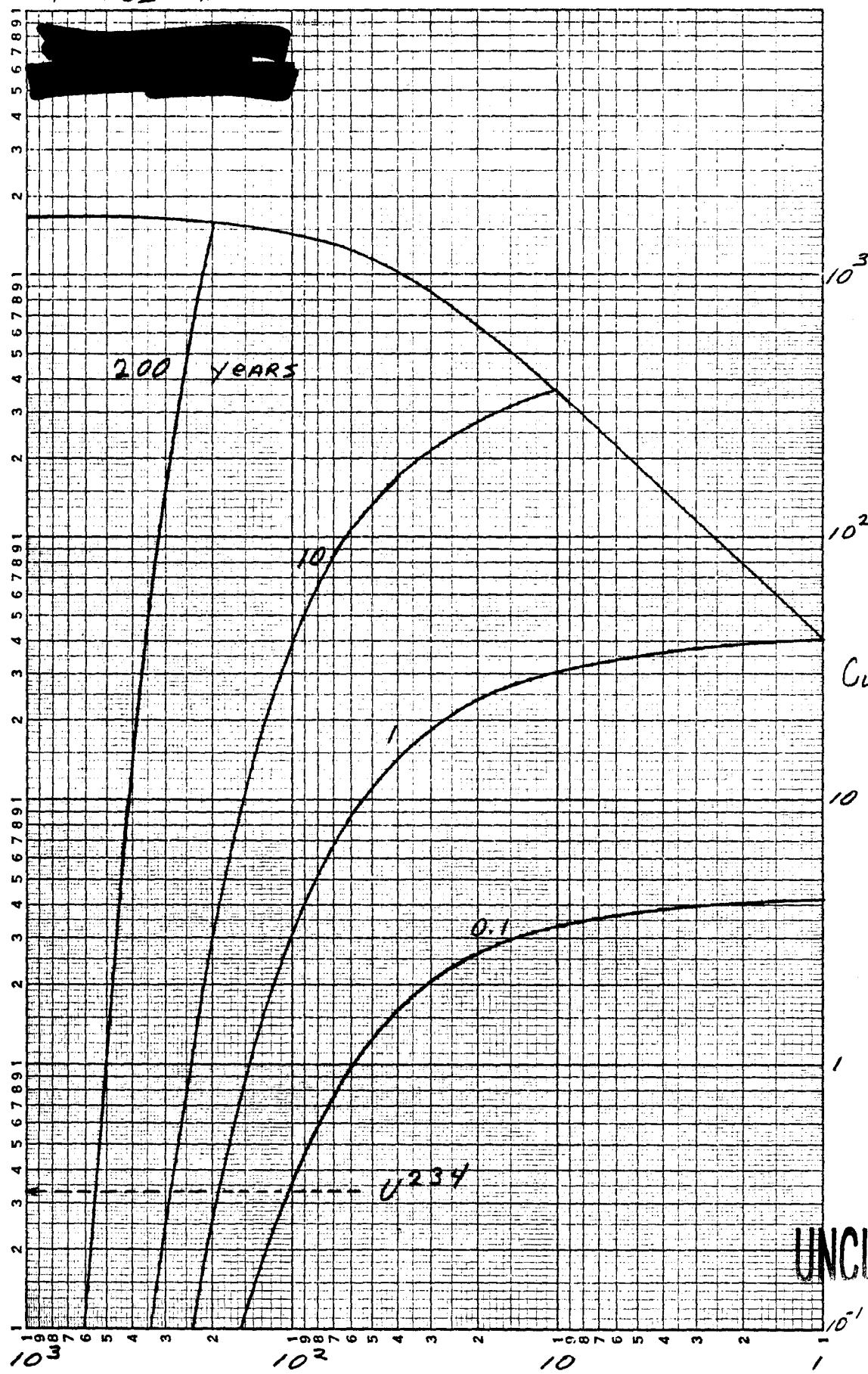
K-E SEMI-LOGARITHMIC 358-91
KEUFFEL & ESSER CO., MADE IN U.S.A.
5 CYCLES X 70 DIVISIONS

SNAP 10 A
U234

UNCLASSIFIED

UNCLASSIFIED

NAA-SR-MEMO 9258


Date: 11/19/63

OPERATING Page

OPERATING Page 17 of 22

Figure 6

SR⁹⁰ Buildup and Decay for Various Operating Periods at 33.5 Kilowatts Date: 11/19/63 Page 17 of 22

K-E LOGARITHMIC 359-125G
KEUFFEL & ESSER CO. MADE IN U.S.A.
3 X 5 CYCLES

FIGURE 7

NAA-SR-MEMO 9258

Date: 11/19/63

Page 18 of 22

Date: 11/19/63
Power Decline after NAK Loss Page 18 of 29

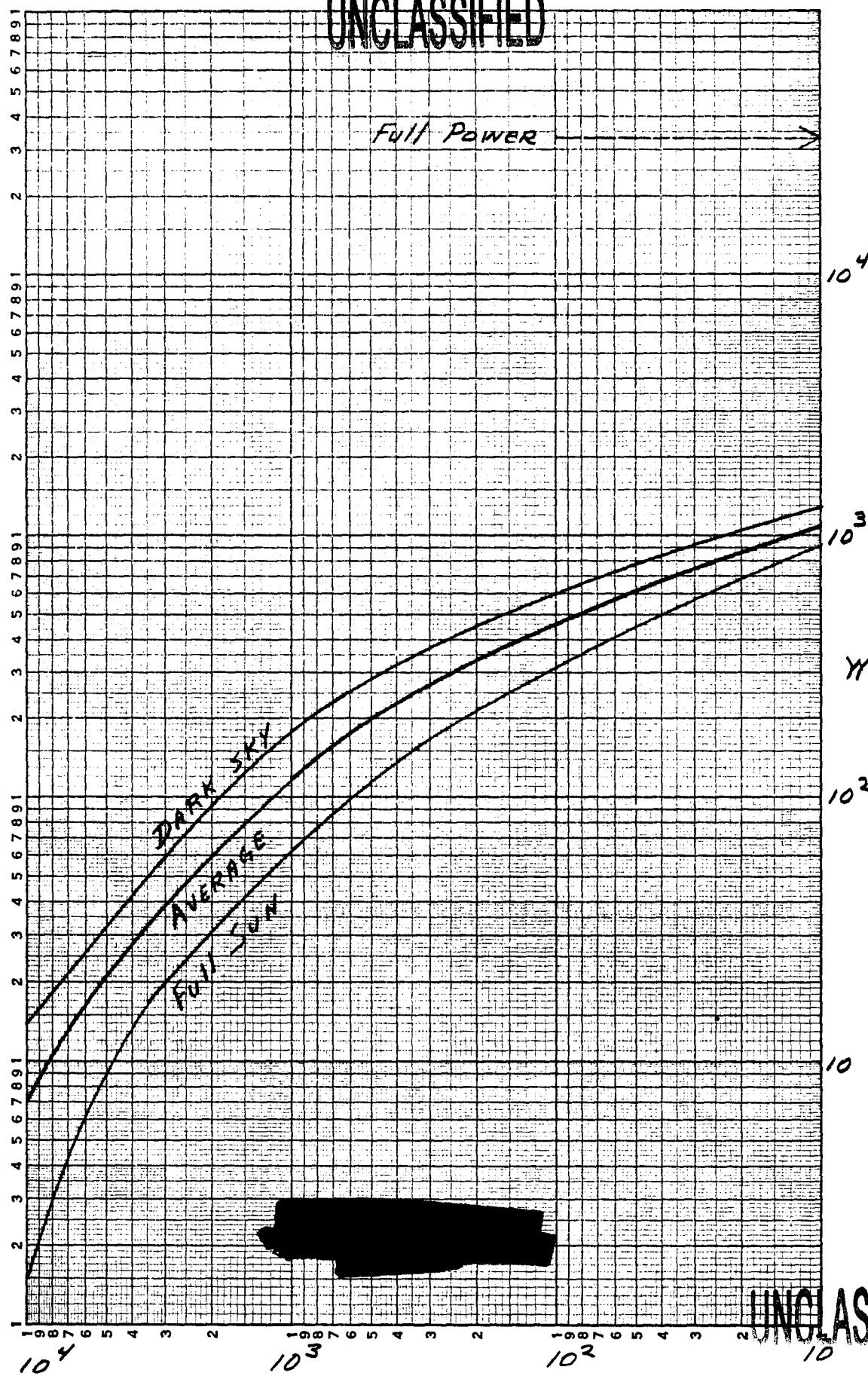
UNCLASSIFIED

Full Power

10⁴

3

Watts


10^2

10

—

ARITHMIC 359-125G
FIFEL & ESSER CO. MADE IN U.S.A.
3 X 5 CYCLES

三

² UNCLASSIFIED

Years after Nak Lee

FIGURE 8
SR⁹⁰ INVENTORY AFTER NaK LOSS

NAA-SR-MEMO 9258
Date: 11/19/63
Page 19 of 20

UNCLASSIFIED

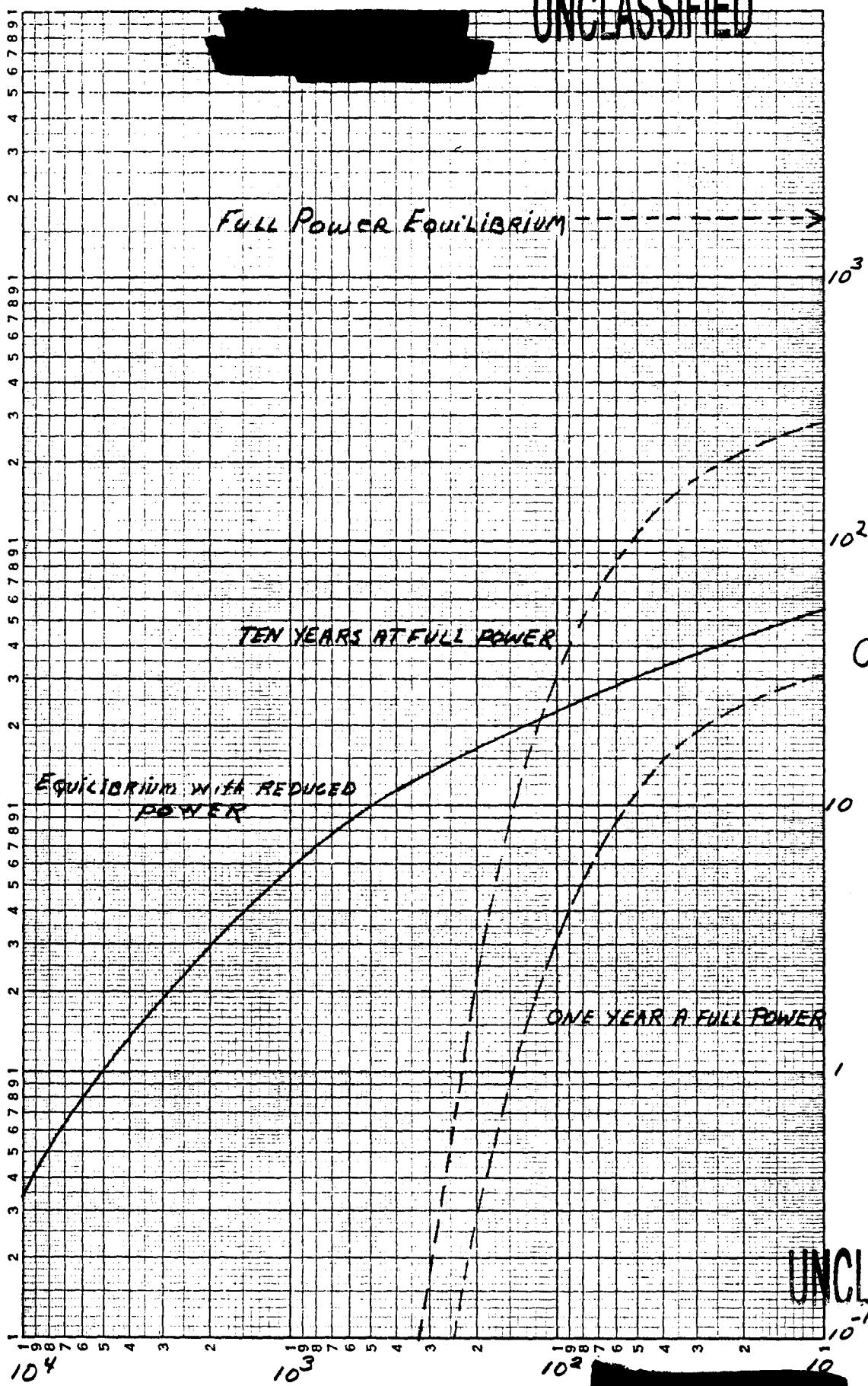


FIGURE 9

NAA-SR-MEMO 9258
fuel Date: 11/19/63
Page 20 of 22

AVERAGE DOSE RATE AT A METER FROM A FU
ELEMENT DURING THE FIRST HOUR AFTER IMPACT

UNCLASSIFIED

NAA-SR-MEMO 9258

Date: 11/19/63

Page 21 of 22

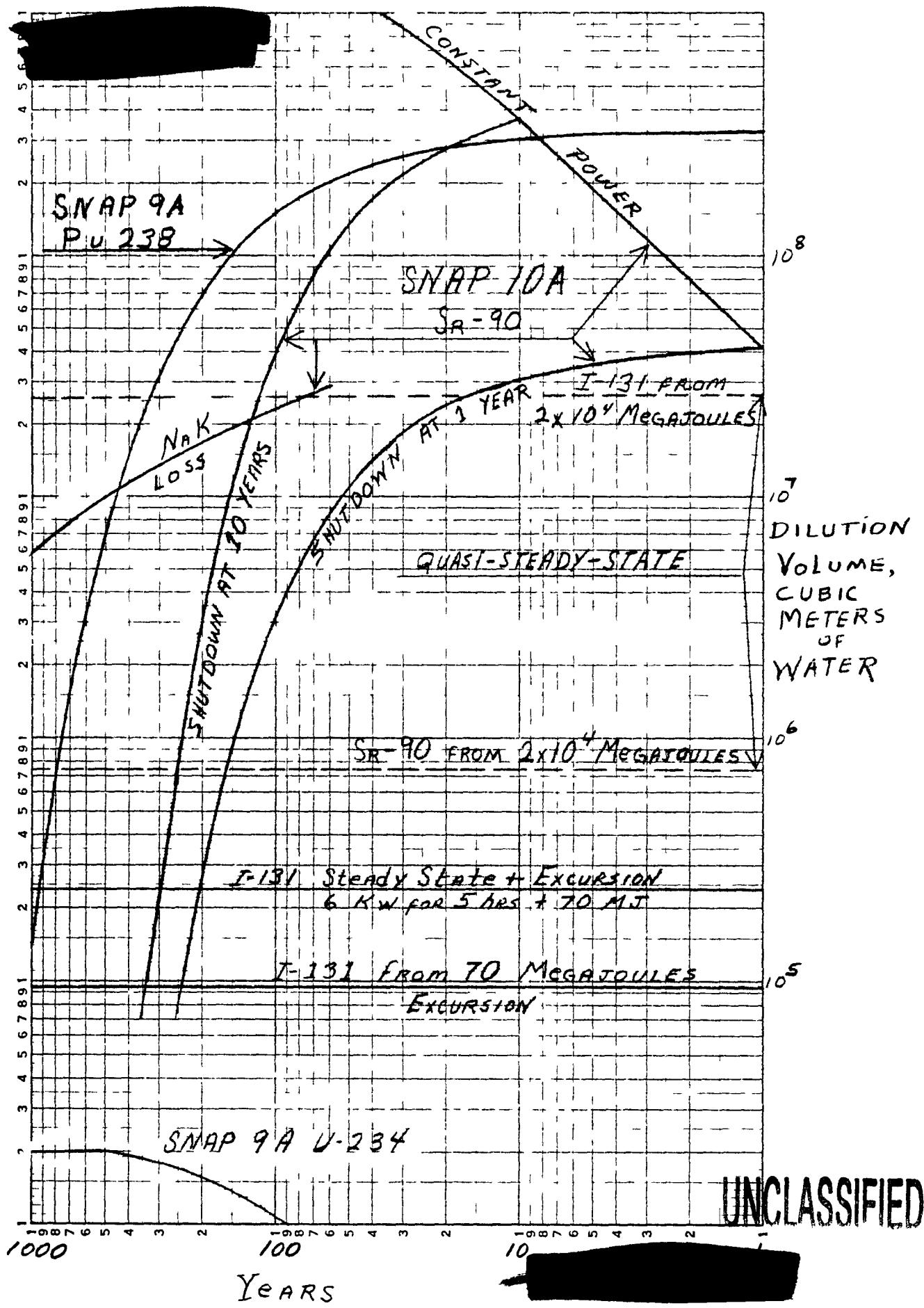


FIGURE 11
 AIR DILUTION VOLUMES
 UNCLASSIFIED

NAA-SR-MEMO 9258
 Date: 11/19/63
 Page 22 of 22

MODEL

DATE

10^{16}

10^{15}

10^{14}

10^{13}

10^{12}

10^{11}

10^{10}

10^9

SNAP 9A PU-238

CONSTANT POWER

QUASI-STEADY-STATE, 2×10^9 MJ, I-131

NUK LOSS SR-90

SNAP-9A U-238

QUASI-STEADY-STATE, 2×10^9 MJ, SR-90

SNAP 10A U-234

OR STEADY STATE + EXCURSION I-151

10¹⁰
 10⁹
 10⁸
 10⁷
 10⁶
 10⁵
 10⁴
 10³
 10²
 10¹
 10⁰

0 1 2 3 4 5 6 7 8 9 10 11 12

Centuries

UNCLASSIFIED

.....

.....