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Abstract
Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the

Big Island of Hawaii have been dated using the *’Ar/*’Ar and U-Th/He methods. The
objective of the study is to compare the recently demonstrated U-Th/He age method,
which uses basaltic olivine phenocrysts, with **Ar/*’Ar ages measured on groundmass
from the same samples. As a corollary, the age data also increase the precision of the
chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He
concentrations and isotopes were measured to account for U-series disequilibrium and
initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are
87+40 ka to 119423 ka (20 uncertainties), which are in general equal to or younger
than “’Ar/*’Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age
of 354+54 ka and a *°Ar/*’Ar age of 450+40 ka. All of the U-Th/He ages, and all but
one spurious *’Ar/*’Ar ages conform to the previously proposed stratigraphy and
published '*C and K-Ar ages. The ages also compare favorably to U-Th whole rock-
olivine ages calculated from ***U - *°Th disequilibria. The U-Th/He and “°Ar/*Ar
results agree best where there is a relatively large amount of radiogenic *Ar (>10%),
and where the **Ar/*°Ar intercept calculated from the Ar isochron diagram is close to
the atmospheric value. In two cases, it is not clear why U-Th/He and *’Ar/*’Ar ages do
not agree within uncertainty. U-Th/He and **Ar/*’Ar results diverge the most on a low-
K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with
negligible olivine phenocrysts, U-Th/He ages were unattainable while “’Ar/*’Ar results
provide good precision even on ages as low as 19 + 4 ka. Hence, the strengths and

weaknesses of the U-Th/He and *°Ar/*° Ar methods are complimentary for basalts with



ages of order 100-500 ka.



1. Introduction

Hawaiian lavas are used extensively to probe the chemical composition of the
Hawaiian mantle plume (DIXON et al., 1997; FEIGENSON et al., 1983; FREY et al., 1991;
FREY et al., 1990; WEST et al., 1988). Multiple chemical components (HART et al.,
1992; RODEN et al., 1994), radial (DEPAOLO et al., 2001) and asymmetric
(ABOUCHAMI et al., 2005) zonation of the mantle plume source have been invoked to
explain the chemical heterogeneity found in the volcanoes. The ability to characterize
the temporal evolution of the volcanoes, and to tie the lava geochemistry to the
structure of the mantle plume, is critically dependent on accurate dating of the lavas.
Dating has proven to be challenging when using *°Ar/*’ Ar technique, because they are
young (< 750 ka) and have low concentrations of potassium (COUSENS et al., 2003;
SHARP and RENNE, 2005). In this study U-Th/He measurements of phenocrystic
olivine (ACIEGO et al., 2007) and *°Ar/*’ Ar measurements of groundmass (e.g., SHARP
and RENNE, 2005) are applied to Late Quaternary lava flows from Hawaii to further test
the U-Th/He method on basalts and to improve the detailed geochronology of the
youngest volcanoes. This work is in conjunction with a larger study of the trace
element and isotopic compositions of the post-shield stage lavas of the Big Island,
including samples from Hualalai (HANANO et al., in review). Detailed geochronology is
required in order to accurately compare temporal compositional variations of historical

lavas from Hualalai with those from the Mauna Kea and Kohala volcanoes.

Hawaiian lavas are challenging targets for the U-Th/He method because they typically

have a large component of trapped helium and low concentrations of uranium and



thorium. For this study, we focus on transitional tholeiitic to alkalic lavas, which are
largely degassed, and have higher K contents, theoretically allowing high precision
*Ar/*° Ar measurements. Future work will test the U-Th/He method on shield stage
tholeiitic basalts, which are traditionally more difficult to date using **Ar/*’Ar and may

have lower U and Th concentrations, but are older and have abundant olivine.

We present data on post shield lavas from the older Kohala and younger Mauna Kea
volcanoes, which constitute the northwest section of the Island of Hawaii (Figure 1).
On the Kohala volcano, the northern-most on the island, the volcanic units are
classified into two groups: the Polulu Volcanic member, containing the transitional
tholeiitic to alkali basalts, and the overlying Hawi Volcanic member, the evolved
alkalic cap lavas which range in composition from hawaiitic to trachytic. The Kohala
volcano entered the post-shield alkalic stage at about 400 to 500 ka (WOLF et al.,
1997). On the Mauna Kea volcano, the lower, transitional basalts are grouped into the
Hamakua Volcanic member and the upper, evolved alkalic cap lavas are named the
Laupahoehoe Volcanic member (STEARNS and MACDONALD, 1946). Mauna Kea
entered the post-shield alkalic stage at about 100 ka (WOLF et al., 1997). For this work,
we sampled both sequences of basalts, but found only the Polulu and Hamakua basalts

had high enough abundance of phenocrystic olivine for U-Th/He work.



2. Methods

2.1 Sample collection and descriptions

Samples were collected from lava flows on the flanks of the Mauna Kea and Kohala
volcanoes (Figure 1), exact locations and elevations are summarized in Table 1. The
collection points were road and gulch cuts, where the samples could be collected from
more than one meter below the original flow surface to minimize cosmogenic *He and
*He production, and more than 1m above the base of the flow which should minimize
quenching effects (e.g. glassy groundmass) on the **Ar/*’Ar ages. At the collection
points, sampled lava flows had no direct overlying units and were less than 50m thick.
The samples are fresh with some occasional minor alteration of the groundmass and,
where present, the olivine is unweathered and free of oxidation. The olivine grains have
abundant melt inclusions of glass mixed with microcrystalline plagioclase (Figure 2) as
well as minor inclusions of Fe-Ti-oxides and phosphates (likely apatite or
fluoroapatite). Major element compositions were measured by XRF on a Philips

PW2400 spectrometer at UC Berkeley and the results are summarized in Table 1.

The samples of Hamakua lava from Mauna Kea have abundant olivine and pyroxene
phenocrysts, and varying plagioclase phenocryst contents. Microprobe analyses
indicate olivine compositions in the range Fo7sto Fog, with no zonation in composition
across grains. Olivine observed in thin sections show a lack of textural indicators of
xenocrystic populations such as resorbtion rims or sieve cores. In general, all of the
samples from Mauna Kea have transitional chemical compositions (Table 1), with

more alkalic compositions corresponding to lower olivine abundance. Sample AMK?7 is
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from a flow originating near the summit, where glacial moraines provide additional
stratigraphic context. The samples from Kohala are all alkalic basalt and only one
sample contained olivine phenocrysts (AKAS, Fo7;). The ages of the flows overlying
sample AKAS5 have been measured multiple times using K/Ar analyses; the measured
ages range from 135 to 149 ka (MCDOUGALL, 1969). Figure 3 shows the stratigraphic

relationship between the collected samples and the nearest age markers.

2.2 Sample Preparation and Analysis

2.2a U-Th/He.

Rock samples containing olivine were crushed to pea size, a split taken for whole rock
powdering, and the remainder sieved, and re-crushed. Olivine grains in the size range
850 to 1000 um were magnetically separated and handpicked. After picking, the
olivine separates, approximately 1 g of material, were air abraded to remove the effects
of alpha implantation from the decay of groundmass uranium on the helium
concentration or alpha ejection loss from the phenocrysts (ACIEGO et al., 2007;
BLACKBURN et al., 2007; MIN et al., 2006). Several attempts were made to separate
enough microphenocrysts from samples AMK3, AMK11, AKA2, and AKA7, but the
amount of material was not sufficient for helium and U-Th/He analysis. In order to
remove enough material by abrasion for microphenocrysts on the order of 100 um in
diameter, more than 70% of the mass must be removed, thereby requiring more than 2
grams of olivine grains to start, an amount unattainable with the 5 kg sample sizes

collected.



After abrading, the olivine grains were cleaned, air dried, and loaded into a magnetic
mortar and pestle for crushing. The crushing in vacuo releases the trapped (initial)
helium component leaving the radiogenic and cosmogenic components. Release of the
trapped component was optimized to minimize the effects of overcrushing or
undercrushing the samples. Overcrushing can result in the release of radiogenic *He
(e.g. HILTON et al., 1999) while undercrushing can result in trapped *He remaining,
between 0.2 and 10% (e.g. WILLIAMS et al., 2005; KURZ et al., 1996). Samples were
crushed using 300 beats in 5 minutes, then sieved to remove the remaining pieces

larger than 100 wm, which may have magmatic helium remaining.

The <100 um size fraction was loaded into platinum packets; powder weights ranged
from 0.37 to 0.82 g. The total possible contribution of U and Th from the Pt foil was
less than 24 pg. The Pt foil packets were loaded into a resistance furnace designed for
low abundance U-Th/He work. Gas release was measured at three temperatures: a
300°C extraction step to remove any adsorbed gases, a 1500°C step to melt and release
the cosmogenic *He and the radiogenic “He, and a third 1600°C step to check that gases
were fully released. In all cases we found that the gas concentrations released at the
300 °C and 1600 °C steps were at blank level, therefore numbers reported in Table 2 are
the blank subtracted 1500 °C step. Extracted gases were purified on a series of getters
and the helium concentrated by absorption on a charcoal trap prior and release directly
into the mass spectrometer prior to measurement. Helium abundance and isotopic
measurements were conducted on a VG5400 at Lawrence Berkeley National

Laboratory equipped with a Faraday cup and an electron multiplier operating in pulse



counting mode. Abundance measurements were calibrated using an aliquot of air and a
reference sample of helium of known isotopic composition: R = 2.4 Ra where Ra is the
helium isotopic composition of air (*He/*He = 1.39 x 10°). The detection limit for *He
on the multiplier is 5 x 10™" nmol; in theory the same detection limit for *He although
the blanks are significantly higher. Blanks were run prior to each sample for both
crushing and heating, and varied between 1.3 and 4.0 x 10 nmol *He for the crushers

and 1.0 and 3.6 x 10° nmol *He for the furnace, *He blanks were at the detection limits.

After total gas extraction, the samples packets are retrieved and the fused sample
removed from the foil. The samples were dissolved in an HNO;-HF-HCLO, acid
solution. Dissolutions are checked for completeness and formation of any fluorides by
centrifuging, and treating dark solids with HNO3;-HF-HCLO, again, white solids
(fluorides) with an HCI-Boric acid solution. Aliquots of the solutions were spiked with
*Th and 2°U; unspiked aliquots were analyzed for 24U/4*U and Z°Th/**Th.
Isolation of U and Th was accomplished using Tru-Spec® column resin following
established procedures (LUO et al., 1997). U and Th isotopic and concentration
measurements were made at the Woods Hole Oceanographic Institution. U and Th
concentration analyses were done by isotope dilution on a ThermoFinnegan Element 2
ICP-MS operating in pulse counting mode. Samples were introduced to the mass
spectrometer via a CETAC Aridus desolvator. Background counts were evaluated by
peak scanning between masses 227 and 240. Standard NBS960 was measured in
between every sample to correct for mass fractionation using the natural B O/l 6|

ratio. Samples were measured in triplicate, and the uncertainty in the concentrations,



0.75-1%, reflects the external reproducibility of the repeat measurements. U and Th
isotopic compositions were measured on a ThermoFinnegan Neptune MC-ICP-MS.
Thorium and uranium isotopic compositions were measured statically with ***Th, 2**U,
and *°U in Faraday cups and **°Th and ***U in the SEM. Thorium measurements were
made with the RPQ filter on, resulting in 85% transmission, abundance sensitivity of
50ppb over 2 amu, and tail corrections of >**Th on ***Th of ~0.3%. Sample
measurements were bracketed with measurements of UCSC ThA, which was used to
correct for mass bias and SEM/Faraday gain of the ***Th/**°Th. Sample measurements
for uranium were corrected for mass bias using an internal normalization, the natural
2¥U/*U ratio, and bracketed with NBS U10 measurements to determine SEM/Faraday
gain. WHOI ‘s analytical protocols for measuring U and Th isotopes and
concentrations are detailed in (BALL et al. 2007 and SIMS et al., 2008a). Accuracy of
the spike compositions, and thereby the concentration measurements, and isotopic
measurements were monitored by the measurement of rock standard TML, which is
well known to have an [2°Th/***U] activity ratio of one (see. e.g. SIMS et al., 2008a).
The TML powders dissolved and spiked at the same time as the olivine samples had a
[230Th/238U] activity ratio of 1.01, which is within the analytical uncertainties of the
measurements. Uranium isotopic compositions for all samples were found to be within

23477238
U/

error of equilibrium, U activity ratios were 1£0.01. The analytical techniques

used for U-Th/He dating are identical to those found in (ACIEGO et al., 2007).

2.2b “°Ar/®Ar.
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Lava rock chunks were crushed into fine chips. Phenocrysts were removed using
conventional Frantz magnetic separation. Groundmass grains (300-500 microns) that
showed no sign of alteration were further handpicked and leached in diluted (2N) HF
for one minute and then thoroughly rinsed with distilled water in an ultrasonic cleaner.
One irradiation of 15 minutes duration was performed in the Cd-shielded (to minimize
undesirable nuclear interference reactions) CLICIT facility of the TRIGA reactor at
Oregon State University. Samples were irradiated in aluminum discs along with the
Alder Creek sanidine standard, for which an age of 1.193 Ma is adopted (NOMADE et
al., 2005). *°Ar/*°Ar analyses were performed at the Berkeley Geochronology Center
using a CO; laser. The gas was purified in a stainless steel extraction line using two C-
50 getters and a cryogenic condensation trap. Ar isotopes were measured in static mode
using a MAP 215-50 mass spectrometer with a Balzers electron multiplier mostly using
10 cycles of peak-hopping. A more complete description of the mass spectrometer and
extraction line is given in (RENNE et al., 1998). Blank measurements were generally
obtained before and after every three sample runs. The correction factors for interfering
isotopes correspond to the weighted mean of 10 years of measurements of K-Fe and
CaSi, glasses and CaF, fluorite in the OSTR reactor: (*’Ar/*’Ar)c, = (7.60+0.09)x107*;
COAr7Ar)c, = (2.70+0.02)x10™%; and (*Ar/’Ar)k = (7.30+0.90)x10™. Ages were
calculated using the decay constants of (STEIGER and JAGER, 1977). J- and mass
discrimination values range from 0.0000680 + 0.0000003 (0.43%) to 0.0000701 +
0.0000001 (0.19%) and from 1.00634 + 0.00216 to 1.00682 = 0.00242 per dalton
(atomic mass unit), respectively. Our criteria for the determination of age plateaus are:

(1) to include at least 70% of *°Ar; and (2) to be distributed over a minimum of 3

11



consecutive steps agreeing at 95% confidence level and satisfying a probability of fit of
at least 0.05. Plateau ages are given at the 26 level and are calculated using the mean of
all the plateau steps, each weighted by the inverse variance of their individual
analytical error, and assuming that the initial “*Ar/*°Ar ratio is that of air (295.5 by
convention (STEIGER and JAGER, 1977) ). A more recent determination of atmospheric
Y Ar/*°Ar (LEE et al., 2006) yields indistinguishable ages because this value is also used
to determine mass discrimination and the effects almost entirely cancel out. Integrated
ages (20) are calculated using the total gas released for each Ar isotope. Data were also
cast in inverse isochron diagrams, and in cases where the “’Ar/*°Ar intercept ratio is
statistically higher than the atmospheric value, the inverse isochron age is used. Inverse
isochrons include the maximum number of consecutive steps with a probability of fit >
0.05. Complete descriptions of the analytical procedure are given in (SHARP and
RENNE, 2005) and (NOMADE et al., 2005). Detailed **Ar/*’Ar results are shown in

Appendix | and summarized in Table 2.
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3. Resaults

3.1 U, Th, and He concentrations and isotopic compositions

The U, Th and He concentrations are compiled in Table 2. The *He concentrations in
olivine are in the range 0.64 to 4.5 x 10 nmol/g; three of the samples have
concentrations lower than 1.8 x 10” nmol/g. The low concentrations limit the accuracy
with which *He concentration can be measured, and if the U and Th concentrations of
these samples are representative of Hawaiian olivine, it means that the lower limit age
for which the U-Th/He method can be useful for Hawaiian basalt geochronology is
about 50 ka using our measurement techniques. Only one sample (AMK7) had
cosmogenic “He (4.59 x 10™ nmol/g) after crushing. Gas released during crushing has a
helium R/Ra (helium isotopic composition normalized to air) of 7.5, while the gas
released in melting has an R/Ra of > 150 for sample AMK7. All other samples also
had crush-release helium compositions between 6.7 and 12 R/Ra, and corresponding

concentrations of *He released in heating below detection limits.

Hawaiian lavas reported in the literature have a large range of trapped helium
concentrations, from 2.2 to 1560 x 10~ nmol/g (KURZ et al., 2004). Even the lower
limit of this range is comparable to the amount of radiogenic helium measured in our
samples. The post-shield lavas, however, are apparently more thoroughly degassed, as
indicated by the low amounts of helium released in crushing. The crushing step
yielded small amounts of helium that we assume that if there was any trapped helium
remaining in the sample at the heating stage, it was minor compared to the amount of

helium released in heating. In the worst case, and 10% of the gas remained after
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crushing (e.g. KURZ et al., 1996), all of the samples would in fact have much younger
ages, which would make the U-Th/He ages less consistent with the “*Ar/*’Ar ages.
However, if the crushing and sieving procedures done were as adequate as those in
(WILLIAMS et al., 2005), and less than 1% of the trapped component remained than the

difference in age would be insignificant.

The olivine U and Th concentrations are compared to those of the whole rocks in Table
1. According to trace element partitioning studies, olivine should contain virtually no
U and Th (<0.05 ppb) if it forms in equilibrium with typical basalt liquid (BEATTIE,
1993). The olivine U and Th concentrations are far higher than expected based on
published distribution coefficients; instead of a concentration ratio between olivine and
whole rock of ca. 107, the measured ratios are about 0.01 to 0.1. The olivine U and Th
concentrations are much more variable than those of the whole rocks, and as shown in
the duplicate measurements of AMK12; olivine samples from the same lava flow have
variable U and Th concentrations. This variability demonstrates that the U and Th are
likely held in inclusions, and therefore the necessity to measure He concentration and
U and Th concentrations on the same olivine fraction. The Th/U ratios of the olivine
samples are typically lower than those of the whole rocks. The relatively large
differences between olivine Th/U and whole rock Th/U indicates that mineral
inclusions rather than melt inclusions play the largest role in determining the U-Th
concentrations in olivine. Our observations of oxides, phosphates and plagioclase
inclusions within the grains is consistent with this hypothesis; PEATE et al. (1996)

observed highly variable Th/U ratios in mineral separates of magnetite and plagioclase.
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3.2 Ar/*Ar ages

We obtained two plateau ages and one isochron age from Kohala (190+£20 to 450+40
ka) and four plateau ages and one isochron age from Mauna Kea (19+4 to 239+84 ka).
Associated MSWD and P range from 0.25 to 0.94 and from 0.51 to 0.99 respectively
(Figure 4 a,b and Table 3). Associated errors are reported as 2 sigma uncertainties

within the text.

Sample AMK7 yielded a well-defined plateau age of 123+5ka. For this sample, the
percentage of radiogenic *’Ar* is relatively high (11 - 17%), The isochron age (116
+14 ka) agrees very well with the plateau age and yielded a *’Ar/*°Ar intercept value of
298+4 indistinguishable from the argon atmospheric ratio. For samples AMK3,
AMKI11, AMK13, AKAS, and AKA7 the fraction of radiogenic A (less than 10%)
and their K concentration (i.e. ranging from 0.3 to 1.2%) are significantly lower than
for sample AMK7 which limits the age precision, although the estimated initial

Y Ar/*Ar are within 1% of the air value which lends confidence to the plateau age

estimates.

Samples AKA2 and AMK12 yielded plateau ages according to our definition of a
plateau, but the *’Ar/*°Ar intercept values (313+22 and 305+6; 26) are higher than the
atmospheric value and their age spectra follow a slight saddle-shaped pattern. These
features suggest the presence of excess *’Ar*. For these samples, we use the isochron

age calculation, which should provide a better estimate of the crystallization age
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(SHARP and RENNE, 2005). Additionally, AMK12 exhibits a strong tilde-shaped age
spectrum. This additional shape suggests that this sample underwent **Ar and *’Ar
redistribution during the neutron irradiation (JOURDAN et al., 2007; ONSTOTT et al.,
1995). If this is the case, the plateau and isochron calculation cannot be confidently
used to define the age of the sample. Furthermore, the fraction of radiogenic *°Ar* is 6
— 10% lower and the estimated initial **Ar/*°Ar is 6 +7% higher than the air value. The
low percentage of **Ar* in comparison to the uncertainty in the initial *’Ar/*°Ar makes

the AMK12 age the least reliable of those obtained.

Most of the samples show increasing age and Ca/K over the last 10-20% of the
spectrum, at high temperature. These steps also depart from the isochron mixing lines,
arguing for a distinct excess *’Ar* reservoirs included in refractory Ca-rich phases (i.e.
interstitial pyroxene). These steps were not included in the plateau and isochron age
calculation. Overall, all but one (AMK12) of the “°Ar/*’Ar ages obtained in this study
are in agreement with their inferred stratigraphic ages given by previous K/Ar and '*C
dates (Figure 3). Furthermore, the precision of these new **Ar/*’Ar ages far surpasses
the precision obtained by K/Ar dating on similar lavas, which have uncertainties of 10-

30% as shown in Figure 3.

3.3 U-Th/He Ages
Ages were calculated using the measured U, Th and He concentrations and isotopic
compositions coupled with the U-Th/He age equation given in (FARLEY et al., 2002)

and (ACIEGO et al., 2003). For samples with U-series out of radioactive equilibrium, a
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correction factor must be applied to take into account variations from secular
equilibrium. For samples older than 20 ka and less than 1 Ma, this departure from
equilibrium will be dominated by the Th-U fractionation. Therefore, the correction is
based on the estimate of the initial U-Th disequilibrium (initial **°Th/***U activity =
D;30) at the time of helium closure. D3y can be calculated using either the
concentrations of U and Th within the whole rock and olivine separates or by using the
SO9Th/28U of the olivine (see FARLEY et al. (2002) and ACIEGO et al. (2007) for
discussion). In this case we report the ages calculated directly from the olivine; use of
the whole rock-olivine concentrations change the ages by -10% for samples AMK12
and AMK13 and by +10% for sample AMK?7. Calculated ages are shown in Table 2
and range from 354 + 54 to 87 + 40 ka (2 sigma uncertainties). In general, relatively
small amounts of radiogenic *He limit the precision of the calculated ages from +30 to
+50 ka. Unlike the *’Ar/*’Ar ages, there is no additional information (plateau quality,
isochron fits, estimate of initial “°’Ar/*’ Ar) with which to assess the quality of the age
determinations. However, for one sample, AMK12, we have duplicate ages of 87+40
and 91436 ka, which are identical. Unfortunately, that sample has the lowest quality

“Ar/*’ Ar age determination of the samples we measured.

3.4 °*Hec Age

AMKY7 is unique because it was collected from a narrow, shallow gully where it was
not possible to collect a sample completely shielded from cosmic radiation exposure.
However, although exposed, there was significant cosmic ray shielding due to

obstruction of the gully face and the opposite gully wall. We calculated a minimum
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exposure age of the sample based on the *He concentration and a production rate. An
average equatorial, sea level production rate for *He in olivine, 103 atoms g"'yr', was
scaled for latitude and elevation to 415 atoms g"'yr' (DUNAL, 2001) and again to
account for 50% azimuthal shielding and a surface dip angle of 90° (DUNNE et al.,
1999) resulting in a production rate of 101 atoms g™'yr’'. The calculated age is ~28 ka.
This age is not the age of the bottom of the gully, but is an integrated age based on the
increasing exposure of the rock as the gully was cut. Given that the production rate of
cosmogenic He is negligible more than 10cm away from the exposed surface, we can
infer that the gully was close to 1 m deep at least 28 ka, which is consistent with an

eruption age of 120 ka.

18



4. Discussion

4.1 Comparison of “Ar/*Ar, U-Th/He, and U-series ages

As discussed earlier, the Mauna Kea summit lavas have the best age constraints
because of the broad glacial moraine coverage. Sample AMK7 must be older than 15
ka, because the Makanaka glacial moraine overlies it. It is also likely to be older than
the 100ka age of the overlying Laupahoehoe Volcanics. The new U-Th/He age of
119426 ka and *°Ar/*Ar plateau age of 12345 ka confirm this hypothesis. The *Hec
age of ~28 ka suggests a slow incision rate that is consistent with the aridity of this
region of the Mauna Kea volcano — both the sample collection point and the drainage
area for the gully are east of the coastal wet areas on the west coast of the island
(EHLMANN et al., 2005). Again, we underscore that for this sample, the *’Ar/*’Ar age

and the U-Th/He age agree well.

For sample AMK 12 we have the poorest agreement between the U-Th/He results
(8928 ka) and the **Ar/*’Ar result (239+84 ka). As noted above, the Ar results for
this sample are not likely to be as reliable as those of the other samples due to the
combined effects of low **Ar* and an uncertain initial **Ar/*°Ar. While there are both
large vertical and lateral stratigraphic distances between the collected samples and the
closest previously dated samples, all of the available ages in the region where this
sample was collected are between 70 and 150 ka (WOLF et al., 1997). Hence we infer
that in this instance the duplicated U-Th/He age may be accurate whereas the “’Ar/*’Ar
age is spuriously old, possibly beyond estimated uncertainty. The fact that this sample
is the most tholeiitic in composition (lowest alkalinity, Table 1) highlights the crux of
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this work: *°Ar/*°Ar is a powerful dating tool even for young samples, but tholeiites

require an alternate dating method, such as U-Th/He.

The minimum age of sample AKAS5 from Kohala is constrained by the ~137 ka K-Ar
age for a unit (MCDOUGALL, 1969) located 200m stratigraphically higher. The
sampled flow is also within the Polulu Volcanic series (Figure 1), which has a
documented age range of 250-500 ka based on several previous K-Ar analyses
(McDOUGALL, 1969; MCDOUGALL and SWANSON, 1972). The calculated U-Th/He age
of 354+54 and the **Ar/*’Ar age of 450+40 ka, therefore, are both broadly compatible

with the previous data although statistically distinguishable.

Our U-series results provide some additional perspective on the reliability of the U-
Th/He and *°Ar/*°Ar ages. The U and Th isotopic composition of the olivine and whole

rock samples are plotted on a >**Th- ***

U activity diagram (ALLEGRE and CONDOMINES,
1976) in Figure 5. Model ‘isochron’ ages, with errors based solely on the analytical
errors, can be calculated (Table 1) from each whole rock — olivine pair. The calculated
isochron age would be the eruption age if the olivine and whole rock had identical
initial 2**Th/***Th and had remained undisturbed since eruption. There are few olivine
U-Th isochron data available in the literature with which to compare these results, so
we are not certain how well the requirement of identical initial >**Th/***Th is likely to
be met. One possibility is that the olivine grains did not have an identical initial

#9Th/**Th to the host lava because they are xenocrystic rather than phenocrystic.

Based on the petrographic analysis, this is unlikely, but can not be completely ruled
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out. In previous work on olivine in basalts (SIMS et al., 2007) it was found that internal
U-series isochrons that include olivine separates form linear trends, but more accurate
and precise age results are generated by removing the olivine from the age calculation,

likely because the olivine grains were xenocrystic or antecrystic.

The whole rock and olivine samples from AKAS both lie on the equiline and have
U/Th ratios that differ only slightly. The U-Th data for AKAS do not define an age,
but are consistent with the age being in the 350 — 450 Ka range as determined by the
other methods. Sample AMK7 has an OL-WR U-Th age of 163 + 9 ka, which is
somewhat older than our new *’Ar/*’ Ar and U-Th/He ages of ca 120 ka. This
difference could be an indication that the olivine in this sample is partly xenocrystic,
which could skew the U-Th age to older values but not the U-Th/He age. Sample
AMK13 also has a well-defined OL-WR U-Th age of 102 £ 11 ka, which is
indistinguishable from the U-Th/He age (111+24 ka) and slightly younger than the
YAr?Ar (143 + 22 ka) age. The two olivine analyses from sample AMK12 give two
distinct ages of 20 = 9 ka and 50 = 10 ka. The older age is closer to the U-Th/He age
but much younger than the **Ar/*’ Ar age for this sample. This may be further evidence

that the *°Ar/*’ Ar age for AMK 2 is too old.

With the exception of sample AMK7, all of the samples have systematically younger
U-Th/He ages than **Ar/*’Ar ages. As discussed above, for AMK12, the most likely
cause of this discrepancy is *’Ar* excess and/or *’Ar and *’Ar recoil. However, the

reason for the age difference is much less clear for the two other samples. AKAS5 and
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AMK 13 both yielded **Ar/*°Ar intercepts of atmospheric composition on the isochron
plot, thereby suggesting that no excess *’Ar* component is present in these samples.
There are two possible reasons for the U-Th/He to produce erroneously low ages. The
first possibility is diffusive loss, where the higher diffusivity of helium than argon in
the crystallized lava flow would result in the observed difference in age. However, as
(HART, 1984) has shown, olivine in lava flows with thicknesses less than 50m cool too
rapidly for helium loss to occur. Similarly, heat from overlying lavas would dissipate
too rapidly for the samples to lose helium, at least at these collection locations where
the thicknesses of overlying lavas is 0-10m. The second possibility is a systematic error
in the estimation of U-series disequilibria (ACIEGO et al., 2007). For the young samples
(<300 ka), there is a general agreement (within 10%) between initial >**Th/**U (D,30)
disequilibrium calculated using the olivine and the initial value calculated using a Th-U
fractionation model for crystals and melts (e.g. FARLEY et al., 2002). Therefore, for
these samples we are confident in the errors in the U-Th/He ages due to U-series
disequilibria. However, sample AKAS5 does have an age that falls in the range of
maximum possible error due to uncertainty in D3y, between 300 ka and 1 Ma (FARLEY
et al., 2002; ACIEGO et al., 2007), which could result in uncertainties up to 12%. In this
case, using the Th-U fractionation model provides a best estimate for the D,3, which
lowers the error to 2-5%, well below the difference between the U-Th/He age and the

A/’ Ar age.

4.2 Implications for future U-Th-He work
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A potentially important overall observation is that the U-Th/He ages are consistently
either equal to or younger than the *°Ar/*°Ar (Figure 6, uncertainties shown are 1-
sigma). The sample with the highest percentage of radiogenic 40Ar* is the one that has
the best agreement. While the U-Th/He ages are relatively imprecise, this method may
yield accurate results as demonstrated by result on sample AMK?7 and these results are
encouraging. In any case, as noted above, the uncertainty in the “’Ar/*’Ar ages may be
as high as that for U-Th/He when the samples have low percentages of radiogenic *’Ar.
Thus, our results suggest that the U-Th/He chronometer may be a valuable additional
tool for dating young mafic volcanic rocks. Substantially more work will be needed,
however, before we can be confident about the generality of our conclusions. If the
reliability of olivine U-Th/He technique can be demonstrated, we may be able to
develop additional insight about which aspects of the Ar data are indicators of

unreliable ages by comparing *°Ar/*’Ar and U-Th/He ages.

This work reinforces the conclusions (ACIEGO et al., 2007) that U-Th/He dating can be
usefully applied to dating basalts in the age range of 50 — 500 ka, and provides further
evidence about the reliability of the U-Th/He method by comparison to the *°Ar/*’Ar
ages on the same samples. The *’Ar/*’Ar ages determined here also strengthen the
possibility of using *’Ar/*’Ar to precisely measure ages of increasingly younger alkalic
basalts, down to the range of radiocarbon dating, although the comparisons with U-
Th/He ages suggest that careful attention must be paid to the percentage of radiogenic
*Ar measured and the pattern defined by the age spectrum (i.e. sample AMK12 having

6-10% of **Ar* and a tilde-shaped age spectrum).
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The U-Th/He dating method using olivine of course requires that the samples contain
olivine phenocrysts. As noted above and shown by the fewer U-Th/He dates, samples
with ~1% microphenocrysts have inadequate olivine for U-Th/He dating. This could be
considered a disadvantage in that K-Ar and *°Ar/*’Ar ages can be determined on
groundmass and hence are more widely applicable. On the other hand, volcanic
groundmass phases may be more susceptible to cryptic alteration that can affect the age
determination. Olivine phenocrysts that are useful for U-Th/He dating are also large
enough that alteration can be assessed optically. Even in samples where there is some
olivine alteration it may be possible to isolate unaltered olivine. However, the
possibility of incomplete separation of the helium reservoirs within the olivine remains
an issue that has to be carefully considered. Incomplete release of trapped helium
would result in older calculated U-Th/He ages. And, while over-crushing could release
radiogenic and cosmogenic helium, a significant amount of in Situ produced helium
(>1%) is not likely to be released unless longer crushing times and greater crushing
force is used (MOREIRA and MADUREIRA, 2005). Ultimately, more comparison between
U-Th/He and *Ar/*’ Ar ages are desirable to fully assess the validity of the former
technique, and a particularly interesting comparison will be for submarine lavas, where
it is well known that there are issues with incomplete degassing of Ar (DALRYMPLE and

MOORE, 1968).

A stringent test of the U-Th/He method will come in applying it to a wider range of

lava compositions. Other ocean island lavas, (e.g. the Azores, Canary, Comores
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Islands, Samoa) have similar U and Th concentrations to the alkalic and transitional
lavas measured in this work, between 0.6 to 7 ppm U (BOURDON et al., 1998;
BOURDON et al., 2005; CHABAUX and ALLEGRE, 1994; CLAUDE-IVANAIJ et al., 1998;
CLAUDE-IVANATJ et al., 2001; SiMS and HART, 2006; SimMs et al., 1995; 1999; 2008b).
For these lavas, assuming U and Th distribution coefficients of order 0.01, the
radiogenic helium production will allow U-Th/He ages to be measured in the same age
range as in this work. Other ocean island (e.g. Galapagos, Iceland) and mid-ocean ridge
basalts (e.g., EPR) basalts have lower U and Th concentrations, between 0.01 and 0.6
ppm (HEMOND et al., 1988; LUNDSTROM et al., 1999; Sims et al., 2002; 2003; KOKFELT
et al., 2003; STRACKE et al. 2003; KOKFELT et al., 2005). Therefore, even given optimal
analysis conditions of large sample sizes and low blanks, the U-Th/He method will be
limited to an older age range, greater than 300 ka. At these low concentrations, the
measurement of the Z*°Th/?**U disequilibria within the olivine will be especially
difficult. However, the measurement may be unnecessary if the Th-U fractionation
model is valid. Even older samples (> 1 Ma) have the advantage of **°Th/***U activity
ratios close enough to one for multiple half-lives to make the ***Th/***U disequilibria

irrelevant in calculating the U-Th/He age (FARLEY et al., 2002).

One additional complication for future use of the U-Th/He method on OIBs and
MORB: is the likely higher initial helium concentration. If samples have both a high
initial helium concentration and cosmogenic helium, distinguishing between the
radiogenic and initial components of *He will be difficult, leading to large errors in the

age. However, one advantage of submarine samples is that they lack cosmogenic He.
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4.3 Implications for Hawaiian plume dynamics

One application of these new ages is to interpret the spatial-temporal evolution of the
volcanoes, and in particular, their relationship to the plume source. One way to do this
is to map the source of the lava flow, the individual vents, relative to the location of
maximum melt supply at the time of eruption (DEPAOLO et al., 2001). The petrology
and geochemistry of the lavas can then provide information about the section of the
plume it is sampling: the source material via radiogenic isotopes and melting dynamics
via U-series isotopes (see e.g. SIMS et al., 1999). However, the combination of
geochemical and spatial evidence depends on having reliable ages, which provide the
basis for this paleo-mapping. The geochronology of the Big Island has largely been
constrained by K-Ar and '*C ages; the sheer number of ages per stratigraphic unit (20-
25; WOLFE AND MORRIS, 1996) provides a “brute force” basis for the age ranges
assigned because the standard deviation of the mean for all of the ages is relatively low
(< 10%). But, individual K-Ar ages have poor errors — as much as 50%, therefore
reconstruction of the vent locations could be in error by as much as 40 km, the radius
of the melting region of the plume. Finer scale analysis of the plume structure and
temporal evolution requires more accurate, precise ages, such as those in this work.
Figure 7 illustrates the paleo-mapping for these samples, where the position of the
vents relative to the center of the plume, the position of maximum melt supply, is
determined based on a Pacific plate motion of N30W at 9 cm/yr. Based on these paleo-
locations, the sampled post-shield building lavas of Kohala and Mauna Kea erupted in

a front 80 — 100 km away from the melt supply maximum and 0 — 15 km away from
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the center of the plume. Therefore, variations in petrology and geochemistry must be
related to magma chamber processes, such as residence time and magma interaction, or
temporal variations in the composition of the plume. Both issues which are addressed

in (HANANO et al., in review).
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5. Conclusions

The U-Th/He method, applied to olivine phenocrysts in four postshield basalt lavas
from the Mauna Kea and Kohala volcanoes in Hawaii yield ages for lavas in the age
range 90 to 350 ka. The uncertainty in the ages is estimated to be the larger of +10% or
20 ka at the 1-sigma level, although duplicate measurements on one lava agree to
within a few percent. The age determinations are consistent with previous geologic
mapping and geochronological data from the island of Hawaii. Olivine-whole rock U-
Th ages measured on the same samples also agree reasonably well with the U-Th/He
ages; and the observed discrepancies could have petrological significance. “°Ar/*’Ar
ages measured on groundmass from the same four samples yield identical ages in one
case, slightly older ages in two cases, a much older (2x) age in one case. The degree of
agreement between the **Ar/*Ar ages and the U-Th/He ages; the best agreement is for
the sample with the largest percent radiogenic *’Ar* and identical plateau and isochron
ages, the worst agreement is for the tholeiitic sample with a clearly identified perturbed
age spectrum, low **Ar* and higher-than-atmospheric *°Ar/*°Ar trapped component.
For the two intermediate cases, it is not clear yet why we observe some age
discrepancy between the two methods and further calibration work is needed. Samples
with insufficient olivine for U-Th/He dating yielded robust *°Ar/*’Ar ages, indicating

the advantages of *’Ar/*’Ar technique for groundmass samples.

The results presented here are encouraging regarding the applicability of U-Th/He
geochronology using olivine phenocrysts in sub aerially-erupted ocean island basalts.

The analytical uncertainty in the U-Th/He ages depends on the He content and age of
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olivine, and limits the usefulness of the method for samples like those measured here to
ages that are greater than about 50 ka. The data from this study and that of (ACIEGO et
al., 2007) show the method to be useful for lavas in the age range from 50 to 500 ka,
and that the U-Th/He ages can complement *’Ar/*’Ar ages. Further work needs to be
done to evaluate other circumstances where the method can complement existing
techniques, such as for both subaerial and submarine Quaternary shield stage tholeiitic

basalts.
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Figure 1.
General geologic map of the Kohala and Mauna Kea Volcanoes on the Big Island of
Hawaii, inset indicates location relative to the chain of Hawaiian islands. Most samples
were collected from lavas that could be traced back to a specific vent; those vents are

noted on the map.
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Figure 2.
XRF backscatter image of micro-inclusion within sample AMK12 showing plagioclase
crystallization nucleating at contact with the surrounding olivine grain. Also present:

quenched melt, Ti-Fe oxides and phosphates.
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Figure 3.

Simplified stratigraphic columns indicating relationship of samples to nearest age
marker and U-Th/He ages. (a) Sample AMK?7 constrained by the overlying Makanaka
moraine deposited after the last glacial maximum (PORTER, 1986), C-14 age of material
recovered from Laupahoehoe lavas (WOLF et al., 1997), and overlying lava flow dated
by K-Ar (WOLF et al., 1997). (b), (c), and (d) Samples constrained only by K-Ar ages

(McDOUGALL, 1969; WOLF and MORRIS, 1996; WOLF et al., 1997).
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Figure 4. “Ar/*Ar Release Patterns

(&) Age spectra: YAr?Ar apparent age and related Ca/K ratio spectra of the
groundmass separates versus the cumulative percentage of Ar released. Errors on
plateau (>70% *°Ar released) ages are quoted at 26 and do not include systematic
errors (i.e. uncertainties on the age of the monitor and on the decay constant). MSWD
and probability (P) are indicated. Ages in bold represent the most reliable ages for each
sample. * = age likely containing excess Ar; the isochron calculation technique has
been use for these samples.

(b) Isochron plots: Inverse isochron plot of **Ar/*Ar vs. *’Ar/*Ar of two samples
having **Ar/*°Ar intercept values higher than the atmospheric ratio. Isochron ages are

given at 26.



Figure 5.
Activity diagram for the Kohala and Mauna Kea basalts’ whole rock powders (WR)

and olivine (OL) pairs.



Figure6.
Comparison of measured *’Ar/*’Ar ages with U-Th/He ages; “°Ar/*’Ar ages are plateau
ages except for AMK12, which is an isochron age. Error bars are 1-sigma, and initial
Ar composition is noted. Argon plateau ages are older than U-Th/He ages in all

samples.



Figure?.
Reconstructed vent locations of the sampled lavas relative to the Hawaiian plume based

on the **Ar/* Ar and U-Th/He ages, and Pacific plate motion of N30W at 9 cm/yr.



Table 1.

Description of samples.



Table2.
U-Th concentrations and **°Th/**Th compositions of Hawaiian whole rock powders
and olivine separates are noted in ppb and square brackets denote activity ratios. Errors
in concentration and isotopic composition based on the external reproducibility of the
standard TML run at the same time as the samples. Helium concentrations and isotopic
compositions are in nmol and R/Ra, the *He/*He ratio in the sample normalized to air.
D values are the calculated distribution coefficients based on the measured whole rock-
olivine U and Th concentrations, Experimental* D values are the experimentally

determined values from BEATTIE (1993).

**uncertainties in whole rock U, Th concentrations and isotopic compositions are 1% (2-sigma), olivine

U, Th concentration and isotopic composition uncertainties are 1.5% (2-sigma)



Table 3. “Ar/ *Ar, U-Th/ Heand *He ages.
Indicates integrated, plateau, isochron “°Ar/*’Ar ages, U-Th/He crystallization and *He
exposure ages for Kohala and Mauna Kea samples. MSWD for plateau and isochron,
percentage of *’Ar degassed used in the plateau calculation, number of analysis
included in the isochron, and *’Ar/*°Ar intercept are indicated. Analytical uncertainties
on the ages and “’Ar/*°Ar intercept are quoted as 2 sigma (2c). Bold data indicates the

accepted *°Ar/*’Ar ages for a given sample.



Appendix 1.

Ar data summary for the Kohala and Mauna Kea samples. Relative Argon abundances
are given in nanoamperes (nA) of amplified beam current. Values are corrected for
mass discrimination, blanks, and radioactive decay. Errors in parentheses (1c) are for
the smallest significant digits when not otherwise mentioned. **Ar* = radiogenic argon.
Age is based on comparison with the Alder Creek sanidine monitor (1.194 Ma;
NOMADE et al., 2005) and on the decay constant of STEIGER AND JAGER (1977). J- and
discrimination values are provided. Laser beam power (W) is provided for step-heated
samples. The correction factors for interfering isotopes correspond to the weighted
mean of 10 years of measurements of K-Fe and CaSi, glasses and CaF, fluorite in the
OSTR reactor: (C°Ar/*’Ar)c, = (7.60+0.09)x10™; (°Ar/7Ar)c, = (2.70+0.02)x10™; and

(“Ar/°Ar)k = (7.30+0.90)x10™.
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Table 1

Sample
Location

Latitude

Longitude

Altitude (ft)

Shielding (slope; az; inclin (°))

Description

Magjor Elements (wt %)

SiO2
TiO2
Al2O3
FeaO3x*
MnO
MgO
CaO
NasO
K20
P20Os5
Total

Mauna Kea Kohala
AMK3 AMK7 AMKI11 AMKI12 AMK13 AKA2 AKA5 AKAT
19.77272 19.94378 19.94015 20.00908 19.90715 20.11615 20.04913 20.20917
155.47212 155.47448 155.83792 155.81372 155.7051 155.78838  155.83075  155.83312
9990 5312 259 362 2790 3052 442 1559
85; 180; 56
massive vesicular massive vesicular vesicular massive vesicular massive
<1% ol, cpx 5% ol, cpx <1% ol 5% ol, cpx 5% ol, cpx <1% ol >1% ol <2% ol
microphen 1-5mm microphen 1-10mm 1-5mm microphen Imm microphen
47.96 46.54 49.66 46.72 47.15 50.69 46.90 48.42
3.30 3.79 2.60 1.82 2.96 2.18 3.17 3.32
14.17 13.80 16.76 10.09 15.11 16.67 13.06 14.04
14.54 14.43 11.52 11.84 13.55 10.92 13.31 13.34
0.19 0.19 0.21 0.16 0.18 0.23 0.18 0.17
5.74 5.88 4.27 15.95 5.80 3.55 7.75 4.78
10.77 9.61 6.98 11.19 11.46 6.10 10.65 9.85
2.94 3.39 4.86 1.80 2.76 5.38 2.78 3.15
0.80 1.27 1.85 0.44 0.75 1.99 0.80 0.85
0.41 0.64 0.81 0.20 0.36 1.60 0.49 0.50
100.83 99.54 100.11 100.22 100.08 99.31 99.10 98.41
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Table 2.

Whole Rock Olivine

Sample U Th [?38U/232Th] [?3°Th/232Th] U Th [?38U/232Th] [?39Th/232Th)] 4He 3He R/R, Dy Dr, WR- Ol Age

(ppb) (ppb) (ppb) (ppb) (10~5nmol/g) (10~ nmol/g) ka
Kohala
02AKA5 crush 0.96 + 0.13 0.16 + 0.03 11.9
02AKAS5 melt 567 1744 0.99 1.00 14 41 1.05 1.04 4.51+ 0.34 n.d. 0.0229 0.0229
Mauna Kea
02AMK?7 crush 3.76 £ 0.28 0.43 +0.04 8.2
02AMKT7 melt 858 2973 0.88 0.99 28 19 4.68 3.96 1.81+ 0.19  4.59 4+ 0.04 179.2 0.0303 0.0057 163+ 9
02AMK12(1) crush 1.30 £ 0.30 0.19 £ 0.03 10.4
02AMKI12(1) melt 218 692 0.96 0.99 13 31 1.26 1.04 0.89 + 0.19 n.d. 0.0587 0.0419 20+ 9
02AMK12(2) crush 2.25 +0.09 0.34+0.05 8.9
02AMK12(2) melt 24 54 1.33 1.13 1.69 + 0.32 n.d. 0.1087 0.0730 50 + 10
02AMK13 crush 8.14 + 0.65 0.76 + 0.06 6.7
02AMK13 melt 531 1518 1.06 1.06 9 15 1.80 1.51 0.64 + 0.08 n.d. 0.0168 0.0092 102 + 11

Experimental™* 0.00001 0.00001
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Table 3

10Ar /3% Ar analyses

U-Th-*He-*He analyses

Sample Integrated ~ Plateau  Total *?Ar MSWD P Isochron n  *°Ar/3°Ar MSWD P U-Th/He *He exposure
age age released age intercept age age

(ka, + 20) (ka, &+ 20) (%) (ka, &+ 20) (£ 20) (ka, + 20) (ka, &+ 20)

Kohala

02AKA2 207 £ 7 206 =+ 4 100% 0.94 0.51 190 £ 20 12 313 + 22 0.77 0.66

02AKA5 500 & 120 450 £ 40 88% 0.25 0.99 505 £106 11 292 + 6 0.14 1.00 354 + 54 -

02AKAT 410+ 60 375 + 22 83% 0.40 0.96 460 £ 100 12 289 + 8 0.20 1.00

Mauna Kea

02AMK3 170 + 40 155 £ 11 94 % 0.47 0.93 180 £ 60 15 290 £ 8 0.18 1.00

02AMK?7 129 £+ 20 123 + 5 89% 0.60 0.87 116 £ 14 15 298 + 4 0.96 0.59 119 £+ 26 28 £ 6

02AMKI11 42 + 17 19 + 4 88% 0.39 0.96 n.d. 11 302 + 16 n.d. n.d.

02AMK12(1) 450 + 100 393 £ 35 76% 1.60 0.11 239 +84 14 305 £ 6 0.94 0.51 87 £ 40 -

02AMK12(2) 91 + 36 -

02AMK13 200 £ 80 142 + 22 81% 0.72 0.72 170 £ 60 11 294 + 6 0.69 0.72 111 +£ 24 -
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-ZI Hawi Volcanics

ZI Polulu Volcanics
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20 km
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Makanaka Moraine

(a) 119 £ 26

101 +24
Laupahoehoe Volcanic Units

I:I Basalt

Hamakua Volcanic Units

- Basalt
[] otivine basatt

- Plagioclase basalt
() [ Ankaramite basalt
- Porphyritic Basalt

(b)

Volcanic Units

Gras s— Il v
(d) 354 +54 [ Polutu

153 + 22
()

Waikahalulu Gorge Sequence

155+ 11

(U]

Figure 2
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Figure 6
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Distance from Ridge Axis, km
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