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Abstract

Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring
depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in
this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated
thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted
discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial
community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial
populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC
community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward
depolymerizing grass cell wall components. Of these, ~10% were putative cellulases mostly belonging to families GH5
and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia
coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of
50°C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial
communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can
be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.
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Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract No. DE-
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Introduction

Enzymatic hydrolysis is one of the most expensive
steps in biofuel production from lignocellulosic
biomass primarily due to the need for high enzyme
loading caused by low catalytic efficiencies [1,2].
Microorganisms including bacteria and fungi are well-
known plant biomass decomposers in nature, making
them attractive targets for enzyme discovery. Since a
variety of biomass sources are envisioned for future
biofuel production (e.g. switchgrass, miscanthus,
poplar), a broad spectrum of lignocellulolytic enzymes
(cellulases, hemicellulases, ligninases) is required to
meet future demands. These enzymes are highly
modular and usually classified by their domain
structure [3]. Glycoside hydrolases (GHs) are a
prominent group of enzymes that hydrolyze the
glycosidic bond between carbohydrate molecules. The
GH families 5, 7 and 9 are the most diverse of the 115
currently recognized GH families, and are of great
interest for industrial applications due to their plant cell
wall depolymerizing activities [4]. Despite extensive
efforts to engineer existing glycoside hydrolases to
improve activity and stability, there is still a great need

to expand the current enzyme repertoire as well as
improve our understanding of how these enzymes
function in complex environments [5].

In the present study, we incubated compost-
inoculated switchgrass under high-solids and
thermophilic conditions to facilitate the enrichment
of switchgrass-adapted organisms and associated
lignocellulolytic enzymes using a sequencing-based
metagenomic approach. Composting is a very
dynamic high-solids decomposition process in which
microorganisms break down organic matter into
carbon dioxide, water, and stable humus-like
materials throughout mesophilic and thermophilic
phases [6]. Therefore, compost microbial
communities can tolerate large changes in
temperature, redox conditions, and water activity,
recovering quickly from major environmental
perturbations. This adaptation to extremes in
operating conditions suggests the potential for
discovering robust lignocellulolytic enzymes that will
also tolerate harsh pretreatment approaches under
industry-relevant production standards (e.g. dilute
acid, ionic liquid, ammonia fiber expansion).
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Figure 1. Temperature and respiration profiles during switchgrass incubation. A, temperature; B, carbon dioxide evolution rates (CER); C,

oxygen uptake rates (OUR). Brief drops in temperature, CER and OUR levels every three days indicate mixing and water addition.

doi:10.1371/journal.pone.0008812.g001

Results

The bioreactors were established using a switchgrass feedstock
inoculated with green-waste compost at a ratio of 9:1. During a
31-day incubation period, temperature was controlled to simulate
a typical composting process: the temperature was maintained at
30°C for 14 hours to allow compost microorganisms to establish,
then the temperature was increased from 30°C to 54°C over the
course of two days to simulate the self-heating phase, maintained
at 54°C for 7 days to simulate the thermophilic phase and slowly
decreased back to 30°C over the course of the remaining 21 days
to simulate the cooling and maturation phase (Figure 1A). Carbon
dioxide evolution (CER) and oxygen uptake rate (OUR) were
calculated from continuous measurements of carbon dioxide and
oxygen. Both CER and OUR peaked after one day of composting
corresponding to initial consumption of sugars [7] and again after
eight days during the thermophilic phase (Figure 1B & 1C). This
second peak in respiration corresponds to the increased activity
of thermophiles [8]. Respiration rates decreased by the end of
the incubation, but microorganisms were still active indicating
that substrate degradation continued. Periodic mixing and water
addition resulted in drops in respiration, followed by rapid
recovery (Figure 1B & 1C).

The initial and final samples were analyzed for substrate
composition. Total solids decreased 34% during the 31-day
incubation. Furthermore, total lignin decreased 17% and sugars

Table 1. Substrate analysis of initial and final sample.

associated with hemicellulose and cellulose decreased 28% on
average, with the exception of mannose, which was present in low
levels in the initial sample and was not detected in the final sample
(Table 1).

Microbial Community Composition and Dynamics
Microbial community structure was determined for the initial
(day 0) and final (day 31) bioreactor sample and for a sample of
the compost inoculum using small-subunit (SSU) rRNA gene
amplicon pyrosequencing. The day 0 sample had a similar
microbial community structure to the inoculum (Bray-Curtis
dissimilarity 0.501), with the exception that the day 0 community
was dominated by switchgrass sequences (69.7% nuclear and 8.2%
chloroplast). This suggests that the indigenous microbiota on the
switchgrass contributed negligibly to the microbial biomass in the
day O system. By day 31, the microbial community profile had no
discernable correlation to the day O profile (Bray-Curtis dissim-
ilarity 0.854) suggesting adaptation of the compost community to
the switchgrass feedstock. Also, switchgrass sequences were
drastically reduced in the day 31 sample (0.2% nuclear and
chloroplast) suggesting that at least degradation of the switchgrass
DNA had occurred. Figure 2 shows the rank abundance of the
day O sample phylotypes overlaid with the day 31 phylotypes.
Numerous phylotypes (labeled in Figure 2) increased over the 31-
day incubation with up to 23-fold enrichments in relative
abundance, including taxa that were below the detection threshold

Initial (g/kg switchgrass + compost)

Final (g/kg switchgrass + compost)® Loss after incubation (%)

Acid-soluble lignin 64 23 64
Acid-insoluble lignin 250 237 5
Total lignin 314 260 17
Glucose 260 191 27
Xylose 170 118 31
Galactose 18 12 33
Arabinose 23 16 30
Mannose 0.4 0 100

respectively.
doi:10.1371/journal.pone.0008812.t001

“Final composition is presented assuming there was no depletion of ash during incubation. Initial and final ash contents were 11.5% and 17.5% of the total dry solids,
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Figure 2. Rank abundance profiles of SSU rRNA phylotypes identified in the initial (day 0) and final (day 31) samples of the

compost bioreactor. Overlapping bars indicate the same taxa.
doi:10.1371/journal.pone.0008812.g002

(0.09% populations) in the initial sample (Figure 2). The dominant
phylotype in the day 31 sample is closely related to the acti-
nobacterial genus, Stackebrandtia, a member of which, S. nassauensis
(acc. no. NZ_ABUS00000000) contains genes encoding cellulases
and hemicellulases (Table 2).

Metagenome Analysis

To 1vestigate the diversity of genes encoding glycoside
hydrolases in the switchgrass-adapted compost (SAC) community,
we shotgun sequenced DNA extracted from the day 31 sample
using 454-titanium technology. Metagenome sequencing resulted
in 548,733 reads with an average read length of 4322108 bp
totaling 225 Mbp of sequence data. A considerable proportion of
the reads could be assembled into contigs =1 kb (a total of 8,268
contigs) with the largest contig of 49,537 bp. This contig is circular
(and therefore complete) and encodes 84 putative genes, of which
27% have a highest match to, and shared gene order with, the
genome of a mnovel circular virus, lodobacteriophage (NCBI
acc. no. NC_011142), including capsid, baseplate and tail fiber
proteins (Figure SI). Interestingly, this virus also encodes a
putative family 43 glycoside hydrolase with 43% similarity to an
arabinosidase from the fungus Armullariella tabescens.

To compare global functional content of the SAC community
metagenome to other lignocellulosic habitats and to non-cellulosic
habitats, we performed a correspondence analysis using SEED [9]
annotation. The SAC metagenome did not cluster with other
lignocellulosic systems (Figure S2), and indeed the SAC commu-
nity was most closely related to non-lignocellulosic systems
including a hypersaline mat, whalefall and a phosphorus-removing
bioreactor community. This suggests that genes involved in or
associated with lignocellulose metabolism do not contribute

enough functional signal in this type of global analysis to cluster
lignocellulosic systems together.

Lignocellulosic enzymes were identified by pfam HMMs and
grouped according to major functional role (Table 2). Like other
communities adapted to lignocellulose degradation, the SAC
community had >0.5% of its genes involved in cellulose and
hemicellulose deconstruction. Of these genes, 10.6% were putative
cellulases, mainly belonging to glycoside hydrolase families GH5 and
GH9. This relative abundance of cellulases in the SAC community
was ~5-fold higher than in cow rumen but only half of that in a
termite hindgut community. Similar to the cow rumen, a high
proportion of carbohydrate-active enzymes found in the SAC
community are involved in hemicellulose degradation, particularly
in side chain processing (debranching and cell wall elongation
enzymes), that may reflect the common substrate type — grass —
degraded in these ecosystems. Consistent with this inference is the
enrichment of GH families likely involved in depolymerization of the
major grass hemicellulose, glucoronoarabinoxylan [10], in the SAC
community. This includes putative o-arabinofuranosidases (GH51
and 62) that cleave off arabinose side chains, o-glucoronidases
(GH67) that remove glucoronic acid side chains and xylanases (GH10
and 11) that would break down the xylan backbone of glucoronoar-
abinoxylan (Table 2). Additionally, putative a-rhamnosidases (GH78)
were enriched in the SAC and rumen communities relative to the
drywood-eating termite hindgut microbiome, although the main
rhamnose-containing heteropolysaccharide, pectin, is more prevalent
i dicot cell walls than grass cell walls [10]. Oligosaccharide
processing enzymes reflect to some degree the inferred polymer
breakdown. For example, putative -xylosidases or B-arabinosidases
(GH43) that are involved in breakdown of glucoronoarabinoxylan
oligosaccharides are enriched in the SAC community (Table 2).



Table 2. Inventory of putative glycoside hydrolases (GHs) identified in the SAC microbiome.
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Termite Stackebrandtia
CAZy family  known activity pfam domain SAC Cow rumen¥ hindgut''® nassauensis**
Cellulases
GH5 cellulase PF00150 3.2 1.0 16.3 57
GHé6 endoglucanase PF01341 2.1 0 0 57
GH7 endoglucanase PF00840 0.1 0 0 0
GH9 endoglucanase PF00759 43 0.9 3.9 0
GH44 endoglucanase NA 0.4 0 1.0 0
GH45 endoglucanase PF02015 0 0 0.6 0
GH48 endo-processive cellulases PF02011 0.5 0 0 0
Total 10.6 1.9 21.8 1.4
Endohemicellulases
GH8 endo-xylanases PF02011 0.5 0.6 27 0
GH10 endo-1,4-B-xylanase PF00331 8.9 1.0 121 0
GH11 xylanase PF00457 1.4 0.1 25 0
GH12 endoglucanase & xyloglucan hydrolysis PF01670 0.6 0 0 0
GH26 B-mannanase & xylanase PF02156 15 0.7 2.8 29
GH28 galacturonases PF00295 0.9 0.7 1.7 0
GH53 endo-1,4-p-galactanase PF07745 0.2 25 27 0
Total 14 5.6 24,5 29
Cell wall elongation
GH16 xyloglucanases & xyloglycosyltransferases PF00722 2.0 0 0.3 1.4
GH17 1,3-B-glucosidases PF00332 0.1 0 0 0
GH74 endoglucanases & xyloglucanases NA 1.6 0 1.0 0
GH81 1,3-B-glucanase PF03639 0.3 0 0 0
Total 4 V] 1.3 1.4
Debranching enzymes
GH51 a-L-arabinofuranosidase NA 7.8 9.9 35 1
GH54 a-L-arabinofuranosidase PF09206 0 0.2 0 0
GH62 a-L-arabinofuranosidase PF03664 17 0 0 0
GHé67 a-glucuronidase PF07477, PF07488 3.6 0 23 0
GH78 a-L-rhamnosidase PF05592 8.1 5.1 0.9 29
Total 21.2 15.2 6.7 2.9
Oligosaccharide-degrading enzymes
GH1 B-glucosidase and many other B-linked dimers PF00232 9.2 1.5 3.1 5.7
GH2 B-galactosidases and other B-linked dimers PF02836, PF00703, PF02837 8.6 28.6 8.8 29
GH3 mainly B-glucosidases PF00933 12.2 27.0 12.8 17.1
GH29 a-L-fucosidase PFO1120 2.1 4.2 0 0
GH35 B-galactosidase PF01301 0.6 1.8 0.7 0
GH38 a-mannosidase PF01074, PF07748 26 2.6 5.6 57
GH39 B-xylosidase PF01229 1.0 0.3 13 0
GH42 B-galactosidase PF02449, PF08533, PF08532 25 1.7 4.8 229
GH43 arabinases & xylosidases PF04616 1.3 9.4 83 17.1
GH52 B-xylosidase PF03512 0 0 0.4 0
Total 50.1 771 45.8 71.4
Total GHs 801 651 653 35
%GHs in total ORFs 0.72 0.78 0.78 0.54

GHs are grouped according to major functional role and compared to other lignocellulosic systems. Both partial and full-length sequences are included. The indicated
values are percentages weighted according to species abundance distribution, meaning that the contribution of dominant populations is larger than rare populations.
*indicated numbers are average values of the four cow rumen metagenome data sets published in [19].

**Stackebrandtia nassauensis LLR-40K-21, DSM 44728 (GenBank acc. no. NZ_ABUS00000000).

NA: no pfam domains available for these GH families.
doi:10.1371/journal.pone.0008812.t002



Complete genes are desirable for enzyme characterization but
difficult to obtain from highly fragmented metagenomic datasets
[11], such as the SAC metagenome. After frame-shift corrections
(an artifact of 454-titanium data), we identified 25 candidate
enzymes with a significant match to characterized cellulases or
hemicellulases in the CAZy database [3], Table S1). These include
two divergent GHO representatives (36% amino acid similarity to
cach other) that are most closely related to members of the
Alphaproteobacteria (gene JMC20181_1; 68% similarity) and
Actinobacteria (gene JMCO00312_1; 84% similarity) (Figure S3).

Cellulase Characterization

The two full-length GH9 catalytic domains were synthesized
(GenScript, Piscataway, NJ) and codon-optimized for expression
in E. coli. Protein expression was detected for both enzymes with
much lower amounts of JMC00312_1 being produced. Soluble
extracts of both enzymes were used to test for enzymatic activity
on carboxymethyl-cellulose (CMC), 4-nitrophenyl-B-D-cellobio-
side (pNPC) and 4-nitrophenyl-p-D-glucopyranoside (pNPG).
Activity on CGMC was only detected for JMCO00312_1 despite its
low expression level and neither enzyme was active on pNPC or
pNPG (Table S2) suggesting that JMC00312_1 is an endogluca-
nase lacking cellobiosidase or B-glucosidase activity. Furthermore,
we suspect that JMCO00312_1 is truncated at the C-terminal
because its closest homolog (76% similarity) is a much longer
actinobacterial endo-/exocellulase (ZP_04475820.1) comprising a
conserved domain arrangement; GH9-CBM2-fn3-CBMS3. These
additional domains would likely enhance endoglucanase activity of
the enzyme or may confer endo-/exoglucanase activity to the
compost-derived enzyme. Soluble extracts of E. coli containing
over-expressed enzyme were used to determine temperature and
pH profiles of the JMC00312_1 cellulase. The enzyme had an
activity optimum of 50°C and pH 7, but retained >50% of its
optimum activity over a range of temperatures (30 to 55°C) and
pH (5.5 to 8) (Figure 3).

Discussion

The current dependency on fossil fuels for transportation has
put remarkable focus on sources of alternative renewable liquid
transportation fuels in recent years [12,13,14]. Much of the
current research in this area is focusing on so-called second-
generation biofuels made from cellulosic biomass of non-food
crops. Switchgrass is one of the leading feedstock candidates
(others are miscanthus and sorghum) for biofuel production
[15,16,17]. The goal of this study was to establish a switchgrass-
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Figure 3. Temperature and pH profiles of the GH9 cellulase
JMC00312_1. Soluble extracts from E. coli were used to determine
temperature (A) and pH (B) profiles of the heterologous expressed
enzyme.

doi:10.1371/journal.pone.0008812.g003
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adapted compost (SAC) community using simulated composting
conditions in order to select for enzymes capable of degrading
switchgrass lignocellulose. We chose to use random shotgun
sequencing (metagenomics) for enzyme discovery, an approach
that has been successfully used to mine other lignocellulosic
ecosystems for plant cell wall depolymerizing enzymes (e.g. termite
hindgut [18], cow rumen [19]).

Opver the course of a 31-day composting experiment, measure-
ments of reduction in solids, sugar content (Table 1) and Oy
uptake and COy evolution rates (Figure 1) indicated active
degradation of the switchgrass biomass. In a study examining the
decomposition of Miscanthus straw, 10-20% degradation of both
cellulose and hemicellulose was observed during the first three
months of composting [20]. During composting of ryegrass straw,
lignin loss measured using the Klason method was 15% over a 30-
day period [21]. Comparable decomposition levels for lignin (17%
loss in total lignin) and cellulose and hemicellulose (28%) in this
study (Table 1) indicate that the bioreactor management approach
sufficiently simulated an environment that might be encountered
In a straw-based composting process. Switchgrass can be
effectively degraded by microorganisms as shown in a previous
study investigating deconstruction of the leaf blade, leaf sheath and
stem of this species by cow rumen communities [22]. Results from
microcosm studies in which stems and leaves from switchgrass
(Sunburst) were separated, incorporated into soil and incubated at
25°C for 498 days also demonstrated that leaves and stems will
decompose in a high-solids soil environment [23].

Microbial community composition changed dramatically be-
tween the initial and final bioreactor sample (Figure 2) suggesting
selection of specific populations to degrade the switchgrass
biomass. Composting is a highly dynamic process selecting for
different species during the various composting stages [6,24,25].
Mesophilic bacteria and fungi dominate the initial composting
microbial communities utilizing the soluble and easily metabolized
carbohydrates from the fresh organic substrates [7]. During the
subsequent thermophilic phase, Actinobacteria feeding on recal-
citrant plant cell wall components dominate communities [26,27].
Consistent with these generalized compost observations, we noted
an increase in Actinobacteria from 16% to 23% between the initial
and switchgrass-adapted communities. Moreover, the dominant
population in the SAC community, enriched 22-fold from the
initial sample (Figure 2), was an actinobacterium related to the
genus Stackebrandtia. From only two time points, we cannot tell
when the Stackebrandtia-like population became enriched, i.e.
during the thermophilic or cooling and maturation phase.

Adaptation of the compost microbial community to the
switchgrass biomass is reflected in the number of glycoside
hydrolases identified in the metagenomic dataset which account
for >0.5% of all genes called (Table 2). This is characteristic of
ecosystems that have evolved to degrade lignocellulosic substrates
[18,19]. Unlike dicots, the major hemicellulose in grass cell walls is
glucoronoarabinoxylan composed of a B-1,4-linked xylose back-
bone with single arabinose and glucoronic acid side chains [10].
We identified a high proportion of genes encoding enzymes that
are likely to degrade this type of hemicellulose including
debranching GH families specific to the arabinose and glucoronic
acid side chains (GH51, 62, 67). These same families are present in
much lower proportions in the drywood-feeding termite hindgut
(Table 2). Conversely, the termite hindgut microbiome has a
higher proportion of cellulases than the SAC and rumen
communities possibly reflecting the typically higher cellulose
content in dicots than grasses [10].

Of the putative cellulases identified in the SAC community, the
highest proportion belongs to glycoside hydrolase family 9.



Enzymes of the GH9 family also can act as 1,4-B-cellobiosidases or
B—glucosidases (www.cazy.org, [3]) and have been found in a
variety of ecosystems including insects [18,28], cow rumen [19]
and human distal gut [29]. We synthesized two full-length GH9
domains from the metagenomic data with codon optimization for
expression in F. coli and demonstrate that one has endoglucanase
but not cellobiosidase or B-glucosidase activity. The active
cellulase, JMCO00312_1, is possibly of actinobacterial origin due
to its association with other actinobacterial sequences (Figure S3).
This is further supported by temperature and pH profiles of
the enzyme (Figure 3) suggesting that it is functional under
thermophilic and slightly alkaline conditions characteristic of
the thermophilic composting phase, which typically selects for
Actinobacteria [6]. Based on these findings we anticipate that the
combination of composting conditions (30-55°C, pH 6-8), use
of a targeted feedstock and codon optimization of identified
candidate enzymes to improve heterologous expression will
supply physiologically versatile and feedstock-specific enzymes
applicable to emerging pretreatment practices such as ionic-liquid
pretreatment [30].

Materials and Methods

Bioreactor Inoculation and Operation

A compost inoculum was obtained on August 6, 2007 from a
Grover Soil Solutions compost facility located in Zamora, CA.
This facility composts green waste and agricultural wastes (e.g.
prunings from perennial crops and hulls from nut and rice
processing) in turned and watered windrows. Prior to collection
the compost had been passed through a trommel screen to remove
large debris. Immediately upon collection compost was returned to
the laboratory and screened to 3.2 mm. The compost was then
solar-dried for 48 hours and stored at 4°C. At the time of the
experiment the compost had been stored for approximately five
months. The plant biomass was harvested from 2-year old plants
of the cultivar Kanlow grown in 6" pots in a greenhouse.
Greenhouse conditions were 75°F and minimum 12-hour day
length; plants were watered daily and fertilized monthly with 1 g
of fertilizer per pot. Harvested switchgrass was oven-dried at 50°C
for five days, milled with a knife mill and passed through a 2 mm
screen. Processed material was stored in a sealed container at
room temperature until experimentation.

Switchgrass was wetted with distilled water to a target moisture
content of 200% on a dry basis and placed at 4°C overnight to
allow water and feedstock equilibration. Switchgrass and compost
mixtures were prepared with 90% switchgrass and 10% dried
compost on a dry weight basis immediately before loading the
reactors. Microbial activity studies were conducted as previously
described [31] with the following modifications. Reactors with
a 0.9 L working volume were filled with 75 dry grams of the
switchgrass and compost mixture. Three reactors were connected
in series to simulate the oxygen gradient of a compost pile.
Reactors were aerated continuously with humidified air at
30 mL min~" and incubated for 31 days.

The temperature of the incubator was controlled to simulate a
typical composting process and monitored continuously with a
thermocouple connected to a 21x data logger (Campbell Scientific,
Logan, UT). Oxygen concentration was measured on the influent
and effluent air of the reactors using Zirconia oxide oxygen sensors
(Neuwghent Technologies, LaGrangeville, NY) and carbon
dioxide concentration was measured using an infrared COy sensor
(Vaisala, Woburn, MA). Oxygen and carbon dioxide data were
recorded every 20 minutes using a data acquisition system [31].
Carbon dioxide evolution rates (CER) and oxygen uptake rates
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(OUR) were calculated from mass balances on the reactors
according to the following equations:

CER=F(COour —CO2y)

OUR=F(Oyn — O200T)

where F is the air flow rate (mg air day ™' gdw™ "), COy oyt and
COgyx are the concentrations of carbon dioxide in the effluent
and influent air, respectively (mg COy mg air '), and Oy n and
Oy our are the concentrations of oxygen in the influent and
effluent air, respectively (mg Oy mg air ). JMP v.7 (SAS Institute
Inc. Cary, NC) statistical software was used to perform statistical
comparisons. Numerical integration of CER and OUR results was
performed using KaleidaGraph v. 4.0 (Synergy Software,
Reading, PA).

Biomass Composition Analysis

Moisture content was measured gravimetrically after drying
samples at 105°C for 24 hours. Acid insoluble, soluble lignin and
carbohydrate content of initial and final mixed samples were
determined by adapted NREL CAT Task Laboratory Analytical
Procedures #003 [32], #004 [33] and #002 [34], respectively.
Precisely weighed 0.5%0.1 mg samples were air-dried at 45°C
and suspended in 5 mL of 72% (w/w) HySOy4 in 200 mL serum
bottles. Samples were hydrolyzed at 30°C for 2 hours with
agitation every 30 minutes. After hydrolysis the contents of each
bottle were diluted to a 4% acid concentration with 140 mL of
distilled water. The sample bottles were sealed and autoclaved at
121°C and 21 psi for 1 hour. Cooled samples were vacuum
filtered through pre-weighed 2 pm glass fiber filters (Fisher
Scientific, Pittsburgh, PA). The filtrate was sampled for acid
soluble lignin and carbohydrate analysis. Acid soluble lignin was
measured by absorbance at 205 nm using 4% HySO, (w/w) as the
blank. Monosaccharide content of the filtrate was determined
using an HPLC equipped with a Bio-Rad Aminex HPX-87P
chromatography column and de-ashing guard cartridge. Samples
were passed through 0.2 mm PTFE syringe filters directly into
2 mL sample vials. Samples were injected by autosampler and
analyzed at 85°C with sterile-filtered and degassed distilled water
as the mobile phase at 0.6 mL/min. The filters were washed with
water to remove residual acid and dried in aluminum dishes at
105°C to a consistent weight. The filters were then ignited by
increasing the temperature of the furnace at a rate of 10°C min”~'
and then holding the sample at 550+25°C for 4 hours. Acid-
insoluble lignin was determined gravimetrically.

Nucleic Acid Extraction

Samples for DNA extraction were stored at —80°C. Before
extraction, samples were homogenized repeatedly using a
TissueLyser (Qiagen, Inc., Valencia, CA) for 30 seconds at
27.7 Hz until uniform particle size was achieved. Prior to each
homogenization jars holding the samples were frozen in liquid
nitrogen. Approximately 0.5 g of homogenized material was
loaded into bead-beating tubes (Lysing Matrix E; MP Biomedi-
cals Life Sciences Division, Solon, OH) and extracted by adding
CTAB buffer (equal volumes 10% hexadecyltrimethylammo-
nium bromide in 1M NaCl and 0.5 M phosphate buffer, pH 8 in
I M NaCl), 0. M ammonium aluminum sulfate, and
phenol:chloroform:isoamylalcohol (25:24:1) followed by bead-
beating for 30 seconds at 5.5 m/s [35]. This extraction was
repeated two times and the aqueous phases of both steps were



further purified using chloroform:isoamylalcohol (24:1) followed
by precipitation of the nucleic acids in 30% PEG 6000 (30% wt/
vol Poly(ethylene glycol) 6,000 in 1.6 M NaCl). DNA pellets were
washed in 70% ethanol and resuspended in nuclease-free Tris-

EDTA bulffer.

Community Profiling

Small subunit (SSU) rRNA gene sequences were amplified using
the primer pair 926f/1392r as described in Kunin et al. [36]. The
reverse primer included a 5 bp barcode for multiplexing of
samples during sequencing. Emulsion PCR and sequencing of the
PCR amplicons was performed following manufacturer’s instruc-
tions for the Roche 454 GS FLX Titanium technology, with the
exception that the final dilution was le”®. Sequencing tags were
analyzed using the software tool PyroTagger (http://pyrotagger.
jgi-psf.org/) using a 220 bp sequence length threshold.

Metagenome Sequencing, Assembly and Analysis

Genomic DNA extracted from the day 31 sample was used for
sequencing library construction following the DOE Joint Genome
Institute standard operating procedure for shotgun sequencing
using the Roche 454 GS FLX Titanium technology. Obtained
sequencing reads were quality trimmed and assembled using the
Newbler assembler software (version 2) by 454 Life Sciences. For
assembly, minimum acceptable overlap match (mi) was set to 0.95.
Quality filtered sequence reads and assembled contigs =100 bp
totaling 110 Mbp were used for further analysis. For global
functional analysis, the metagenomic data set was loaded into
MG-RAST [37] and compared to other annotated metagenomes
that are publicly available in the metagenome analysis platform.
Correspondence analysis was performed using the R software
package ade4 [38].

Glycoside hydrolases of selected functional classes (e.g. cellulas-
es, endohemicellulases, debranching enzymes) were identified
using pfam HMMs (Pfam version 23.0 and HMMER v2.3). For
the 3 GH families 44, 51 and 74 that are not represented in pfam,
HMMs were generated (two for each, since they are 2-domain
proteins) and treated similar to the pfam HMMs. For GH families
covered by multiple pfams (e.g. GH2 or GH42) only the best
scoring hit was taken into account in case there were multiple hits
to the same contig. Contig read depth was factored as following:
based on the Newbler output, the number of reads in each was
determined and multiplied by the median read length of 400 bp
and divided by the contig length. This weighting corrects
approximately for differences in species abundance distribution
(i.e. dominant populations producing higher depth contigs will be
weighted in the analysis).

To extract potential full-length glycoside hydrolases from the
metagenome data, we ran BLASTX on all contigs =1 kb against
the CAZy [3] and FOLy [39] databases (E<le™'%), and filtered
out hits matching the target enzyme over at least 90% of its length,
and for which the target enzyme has a known enzymatic function
(EC number listed in CAZy or FOLy). Frameshifts (most likely
introduced by homopolymers during sequencing) were delineated
by BLASTX of the targeted contigs against the non-redundant
NCBI nucleotide database and corrected by deleting or duplicat-
ing single bases so as to maximize the BLAST scores. After manual
frameshift correction, genes were called using fgenesb (http://
www.softberry.com). For phylogenetic analysis, peptide sequences
of the two full-length GH9 enzymes were aligned to reference
sequences using ClustalX [40] and imported into the ARB
software package [41] for phylogenetic reconstructions using the
PROML function of the integrated Phylip package.

Targeted Enzyme Discovery

Cellulase Protein Expression and Activity Screening

The nucleotide sequences of two putative cellulases (contigs
JMCO00312_1, JMC20181_1) were codon-optimized for protein
expression in F. coli (GenScript, Piscataway, NJ). The PCR
primers were designed to amplify genes without the putative signal
peptide sequences (SignalP 3.0 server, http://www.cbs.dtu.dk/
services/SignalP/). The amplicons were cloned into the pET
DEST42 vector via the Gateway cloning method (Invitrogen,
Carlsbad, CA). The plasmids containing the cellulase genes were
transformed into the BL21 (DE3) Star strain (Invitrogen, Carlsbad,
CA) of E. coli for protein expression. Small-scale protein expression
was done in 5 mL culture volume for each cellulase gene by auto-
induction at 30°C (Overnight Express AutoinductionTM System,
Novagen, Gibbstown, NJ). After protein expression, the cells were
harvested by centrifugation at 6,000 xg for 10 min. The cell lysates
were prepared using the BugBuster reagent. The volume of
the BugBuster used for each cell pellet was normalized to an
OD600 nm reading of the culture (50 pLx OD600 nm). The
overnight cultures without protein induction reagent were also
prepared for uninduced controls. The cell lysates were centrifuged
at 10,000 xg for 30 min to separate soluble proteins from insoluble
materials. The supernatants (soluble proteins) were collected for
SDS-PAGE and enzyme activity screens. To test enzyme activity
on carboxymethyl-cellulose (CMC), 2 uL. of the supernatant was
spotted on an agar plate containing 0.1% CMC. The plate was
incubated at 37°C for 2 hours. The enzyme activity was detected
by Congo red assay [42]. To determine whether the cellulases
have cellobiosidase or B-glucosidase activity, 4-nitrophenyl-p-
D-cellobioside (pNPC) or 4-nitrophenyl-B-D-glucopyranoside
(pPNPG) were used as substrates [43].

Soluble protein extract from £E. coli containing expressed
JMCO00312_1 was used to determine temperature and pH activity
profiles. All reactions were performed in 50 pL volumes. To
measure the pH optimum, a standard pH solutions containing
100 mM sodium acetate, 50 mM MES, and 50 mM HEPES
between pH 4 and 8 were used as buffer for the enzyme reaction
at 50°C. At the end of a 30 min incubation, 120 uL. of DNS
reagent [44] was added to the reaction mixture and incubated at
95°C for 5 min to label the reducing ends of hydrolyzed CMC.
The absorbance at 540 nm was measured to determine the
relative activity across the tested temperature and pH ranges.

Sequence Data Submission

The raw sequencing reads and the assembled metagenome
dataset have been deposited at GenBank and the NCBI Short
Read Archive under Genome Project ID 41493 and accession
number SRA010300.1, respectively. The SSU rRNA amplicon
pyrosequencing reads are deposited under the accession numbers

GU178033 - GU178768.

Supporting Information

Table S1 Putative full-length cellulase and hemicellulase enzyme
sequences extracted from the SAC metagenome data set. The two
GHO cellulases in bold were tested for activity on CMC, pNPC
and pNPG. (a) Best BLASTX hit against any sequence in CAZy
with a validated EC: number indicating a lignocellulolytic enzyme.
(b) Number of frameshift corrections required, based on
alignments with homologs in NR. The prevalence of frameshifts
complicates assembly, gene calling, and annotation of genes in
low-coverage 454-titanium metagenomic data. For example, we
noticed that none of the manually corrected frameshifts for the
full-length catalytic domains were caught by the MG-RAST
annotation, resulting in truncated genes. (c) Length (in aa) of



potential truncation at the N terminal (N) or C terminal (C), due to
the end of the contig, based on closest homolog in NR. (d) Contig
JMCO02101 was originally selected because of a CAZy hit against a
GH30 B-xylosidase, but also contains a GH5 endoglucanase gene.
*Reference species recently sequenced by the US DOE Joint
Genome Institute as part of the Genome Encyclopedia of Bacteria
and Archaea.

Found at: doi:10.1371/journal.pone.0008812.5001
DOC)

(0.09 MB

Table 82 Domain structure, protein expression and activity
profiles of the two full-length genes belonging to family GH9. U:
uninduced negative control; I: IPT'G induced sample.

Found at: doi:10.1371/journal.pone.0008812.s002 (0.03 MB
DOC)

Figure S1 Chromosome of a circular phage recovered from the
SAC community metagenome (contig JMCO02169) related to
Iodobacteriophage. Genes were predicted using fgenesV (www.
softberry.com).

Found at: doi:10.1371/journal.pone.0008812.5s003 (1.12 MB EPS)

Figure 82 Correspondence analysis of the compost bioreactor
microbiome to other lignocellulosic (pentagons) and non-lignocel-
lulosic (circles) microbiomes. The total variance extracted by the
coordinate axes was 46.8% (31.1%+15.7%). Metagenome IDs
given in the legend correspond to references metagenomes in MG-
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