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Abstract

A New Spin on Photoemission Spectroscopy

by

Christopher Matthew Jozwiak

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Alessandra Lanzara, Chair

The electronic spin degree of freedom is of general fundamental importance to all matter.

Understanding its complex roles and behavior in the solid state, particularly in highly

correlated and magnetic materials, has grown increasingly desirable as technology demands

advanced devices and materials based on ever stricter comprehension and control of the

electron spin. However, direct and efficient spin dependent probes of electronic structure

are currently lacking.

Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most

successful experimental tools for elucidating solid state electronic structures, bolstered by

continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemis-

sion spectroscopy has lagged behind due to a lack of similar instrumental advances. The

power of photoemission spectroscopy and the pertinence of electronic spin in the current

research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission

Spectroscopy (SARPES) a high priority .

This thesis details the development of a unique instrument for efficient SARPES and rep-

resents a radical departure from conventional methods. A custom designed spin polarimeter

based on low energy exchange scattering is developed, with projected efficiency gains of two

orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the
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popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer of-

fering an additional order of magnitude gain in efficiency. The combined instrument signifies

the breakthrough needed to perform the high resolution SARPES experiments necessary for

untangling the complex spin-dependent electronic structures central to today’s condensed

matter physics.

Chapter 1 provides an introduction to the technique with background on electron

spin, its important interactions, and the benefits of spin-resolved experiments. Chap-

ter 2 contains an in-depth review of ARPES, and Chapter 3 reviews the addition of

spin-resolution. Chapters 4 and 5 detail the full development of the new SARPES

instrument, and Chapter 6 presents the complete spectrometer and its initial promis-

ing results. Chapter 7 gives a brief conclusion with a discussion of future directions.

Professor Alessandra Lanzara
Dissertation Committee Chair
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Chapter 1

Introduction

No experiment is so dumb that it should not be tried.

— Edgar Meyer / Walther Gerlach1,2

1.1 Expansion of electron spectroscopy

Bound electrons are absolutely essential components of any condensed matter system.

They are not only required for its existence due to the local bonding afforded by the elec-

trons, but are also essential for the chemical, physical, vibrational, and transport properties

of a material. Especially interesting phenomena, such as magnetism, emerge from the spin

of the bound electrons. Measuring, scrutinizing, tweaking, and otherwise probing a system’s

electronic structure through a wide array of electron spectroscopies have proven fruitful in

furthering our understanding of materials and their electrons. In the solid state, electron

spectroscopies do not only aid in exploring bulk electronic behavior, but due to their inher-

ent surface sensitivity are particularly well suited for studying surface physics. The current

trend in material technology towards ever decreasing dimensions with advancements in, for

example, thin films and nanoparticles, enhances the importance of surfaces. The popularity

of electron spectroscopies has likewise surged. Interest in the magnetic properties and spin

1



dependence of such systems, driven by the promise of advanced electronics and information

technologies, has increased the need for spin-sensitive electron spectroscopies.

The technique of photoemission spectroscopy (PES), in which the electrons of interest

are ejected out of a sample by impinging photons, is a particularly powerful tool for mea-

suring electronic structure directly. The angle resolved technique (ARPES) is performed by

measuring the distribution of photo-ejected electrons with respect to kinetic energy and an-

gle about the sample surface normal. Because energy and momentum parallel to the surface

is conserved through the emission process, the binding energy and momentum dependence

of the electronic excitations within the sample is directly imaged. Performed with high en-

ergy and angular resolutions, ARPES is able to measure details of the electronic structure

such as the Fermi surface and electron complex self-energies. ARPES is thus unique in its

ability to probe the valence electrons and their energy and momentum dependent band-

structure and correlated behaviors. In this way, ARPES has played a fundamental role in

critical avenues of progress in condensed matter physics.

Electron spin is largely conserved in the photoemission process such that resolving pho-

toelectron spin polarization can yield additional information. An uneven distribution of spin

in the collected photoelectrons can be reflective of an initial uneven distribution of spin in

the material (in the case of ferromagnetic samples, the surfaces of some antiferromagnets,

or electronic states split by spin-orbit coupling), or can result from spin-dependent photoe-

mission selection rules when using circularly polarized light. In any case, spin resolved PES

experiments offer key insights into a material’s spin dependent electronic structure, have

already provided great success stories, and give the promise of many more untold discov-

eries. Progress with all spin-resolved spectroscopies remains slow, however, largely due to

instrumental difficulties limiting efficiencies and resolutions. Extension of ARPES with the

addition of spin-resolution is an exciting direction to take in the current research climate,

but requires advancements in instrumentation to deliver on its vast potential. This thesis

covers the complete design, fabrication, and initial uses of a radically unique instrument

called the spin time-of-flight, or spin-TOF, a spectrometer with vastly improved detection

efficiency which can revolutionize the field of spin-ARPES.
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1.2 Spin - the ups and downs of being an electron

It is probably not possible to overestimate the breadth of consequences the electron

spin, or intrinsic angular momentum, has on our daily lives. This is surprising as there

are only ever two possibilities: an electron must be either “spin-up” or “spin-down”, with

no in-betweens. With only two possible states, electron spin is the simplest degree of

freedom possible, and yet, along with certain rules which Nature follows with respect to

spin, the electron’s spin makes possible the structure of the Periodic Table. It is also a key

component of magnetism in matter which allows a impressive array of daily technologies

including electric motors, generators, the hard-drives which house all the backup copies of

this thesis, and even the reliable refrigerator magnet. Therefore it is interesting and well

worthwhile to review the basics of electron spin physics.

1.2.1 Almost discovery - the Stern-Gerlach experiment

The binary nature of electron spin is rooted in the basics of quantum mechanics, so it is

not surprising that the history of its discovery is thoroughly entangled with the turbulent

evolution of early quantum theory. One of the pillars of quantum physics is the quantization

of a particle’s possible angular momentum into discreet units, nowadays expressed as:

|L| = ~
√
l(l + 1) (1.1)

where l is constrained to be a non-negative integer. An additional rule referred to as “space

quantization” requires the component of the angular momentum vector along any particular

axis to fall in discreet units of the magnitude of Planck’s constant, ~ = 1.055× 10−34J · s,

according to:

Lz = mL~ (1.2)

where mL can be an integer from l to -l. This holds for any axis chosen; the z-axis is not

particularly special, and equation 1.2 is just as valid written for Lx or Ly. Often times

the system under consideration provides a natural axis to reference direction to, such as

an applied magnetic field vector, where the physical interaction is given by the component
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Figure 1.1. Schematic of angular momentum vector directions due to space quantization.
(a) The l = 2 case. (b) The s = 1/2 case, an example of the same rules being applied to
intrinsic angular momentum.

of angular momentum along that axis. In this case it is most useful to use equation 1.2

defined along that axis, and by convention it is usually labeled the z-axis. The result of

these rules for a particle with the quantum number l = 2 are diagrammed in Figure 1.1(a).

Equation 1.1 requires the l = 2 state to have an angular momentum vector, L, to have

a length of ~
√

6. Equation 1.2 requires this vector to be oriented in space such that its

component along the given z-axis can only be -2~, -~, 0, ~, or 2~. With this picture we see

that the term “space quantization” does not mean quantizing actual space in this case, but

quantizing the directions L can have in space.

Quantizing angular momentum in a way similar to Equation 1.1 had much experimental

support from agreement between the resulting Bohr model of the atom and studies of

atomic emission spectra which formed discreet lines. Only allowing discreet orientations of

the angular momenta was harder to believe, and many in the early 1920’s did not. Most

thought of it as a type of book-keeping which helped explain experiments but should not

be taken literally. This thought is expressed in the autobiography of Max Born: “It took

me quite a time before I took this idea seriously. I thought always that [space] quantization

was a kind of symbolic expression for something which you didn’t understand.”3 In 1921,
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Otto Stern proposed a method4 to experimentally determine whether space quantization

was a reality of nature or not. The method relied on the interaction of an orbiting electron

and a magnetic field.

Just as the current in a macroscopic loop of wire creates a magnetic dipole, the orbit of

an electron also has a magnetic moment

µ = µB(L/~) (1.3)

with

µB =
e~

2mec
(1.4)

expressed in Gaussian cgs units, where me is the electron mass, c is the speed of light in

vacuum, and e is the charge of the electron (a negative number). The potential energy U

of a magnetic moment, µ, in an external magnetic field, B is

U = −µ·B (1.5)

whereby the moment will experience a net force

F = −∇U. (1.6)

If this magnetic moment is made to pass through an inhomogeneous magnetic field along

the z-axis with a strong gradient along the z-axis, the moment will then feel a force along

ẑ of

Fz ' µz
∂Bz

∂z
(1.7)

if we ignore the components of B along the other directions.

Now we can see Stern’s idea. Due to the orbiting motion of an atoms electrons, an

atom will posses a magnetic moment given by equation 1.3 with L being the total angular

momentum of the electrons. A beam of such atoms may be setup to pass through an

inhomogeneous magnetic field along the z-direction. If space quantization is valid, then

this magnetic moment will have quantized z-components (eqn. 1.3 and eqn. 1.2) and will

experience a quantized force in the z-direction (eqn. 1.7) while in the field, and then be split

into separate, distinct beams based on the mL value of each atom. If space quantization is
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Figure 1.2. Layout of the Stern-Gerlach experiment. Atomic Ag beam is collimated before
traveling down the length of a magnet with a strongly inhomogeneous field along the ẑ.
(a) If the spatial components of angular momentum are quantized, the beam will be split
into distinct beams along ẑ, resulting in separate spots at the rear detection plane. (b) If
angular momentum is classically distributed in space, the beam will be evenly spread in ẑ.

not valid, the orientation of the atom’s total L, and hence µ will be randomly oriented in

space, producing a smooth distribution of forces in the beam and a continuous spread of

the beam along the z-axis. A schematic of the experiment and these two possible results

are shown in Figure 1.2.

Stern was already an expert at creating atomic beams. Since he wanted as strongly an

inhomogeneous field as possible, he recruited Walther Gerlach, who had experience making

such magnets, to help. The original experiment they performed used atomic beams of

Ag. At the time, the angular momentum quantization rules were not written exactly as

in equations 1.1 and 1.2. The Sommerfeld-Bohr model predicted that the total angular

momentum of a silver atom would be equivalent to an l = 1 state, but only allowed for

mL = ±1 without a ml = 0 value. Thus, the then current theory of space quantization

predicted that the orbital angular momentum would split a Ag beam into two, with a

magnitude of splitting corresponding to a difference in magnetic moment along the z-axis

of 2µB.

Stern and Gerlach developed their experiment using Ag atoms expelled from an oven

at 1000◦C and collimated by two slits of 30µm width. The magnet used was 3.5cm long

and produced a field of approximately 0.1T with a gradient of 10T/cm. The experiment

6



Figure 1.3. Original SGE results on a postcard to N. Bohr, dated Feb. 8, 1922. Image from
Ref. 1, where the image was courtesy of AIP Emilio Segrè Visual Archives.

took almost a year to perform as the slits and magnet had to be aligned to within 10µm,

and the vacuum equipment would only function for a few hours at a time. According to

legend1, the resulting films of Ag on the recording plate was too thin to be visible, and

was only noticed once it turned black after reacting with the sulfur in the cigars the two

experimenters smoked while working in the lab (they soon switched to using a photographic

development process to image the films). In 1922, they obtained their famous result:5 the

beam was split into two by about 0.2mm. A postcard showing the resulting beam profiles

with and without the magnet is shown in Figure 1.3.

The Stern-Gerlach experiment (SGE) results were interpreted as proving space quanti-

zation of the Ag atom angular momentum due to the orbiting electrons. The fact that the

magnitude of the splitting corresponded to the predicted difference in magnetic moment of

2µB strengthened this interpretation. We now know that the Ag atom, with filled subshells

(contributing zero net angular momentum) plus one 5s electron, has l = 0 in the ground

state. The only possible value for the magnetic moment due to the orbiting motion of the

electron is then 0. Even if the Ag atoms were in an l = 1 state, the possible values of mL

would have been +1, 0, and -1, resulting in a beam split into three distinct beams, not two.
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While the initial interpretation of the results was correct in that it showed space quanti-

zation, it was incorrect about the source of the angular momentum. In fact, the splitting

was due to an angular momentum (and magnetic moment) intrinsic to the electron itself,

distinct from that due to its orbital dynamics, called spin. The beam splitting into exactly

two parts clearly illustrates the binary nature of the electron spin. As one of the canonical

experiments in quantum physics, the SGE is frequently cited for its fundamental signifi-

cance as evidence of the electron spin as well as its simplicity and elegance. In fact, it is

usually used as an introduction to quantum mechanics and a conceptual vehicle for assorted

concepts in most quantum mechanics textbooks. In light of this, it is interesting to note

that the SGE was originally interpreted without spin; spin was not “discovered” until 4

years later.

1.2.2 Discovery - Uhlenbeck and Goudsmit

Despite the seeming agreement between the Sommerfeld-Bohr model of angular mo-

mentum and the SGE, there were some inconsistencies with carefully scrutinized atomic

emission/absorption spectra, including doublets, lines due to transitions forbidden in the

Bohr model, and complex multiplet splittings with the application of a magnetic field (the

“anomalous” Zeeman effect). A student of Paul Ehrenfest, Samuel Abraham Goudsmit

spent much time working with Paschen learning the details of spectral analysis and the

observed discrepancies. Intrigued by the forbidden lines, he recalled asking theoreticians

about the observations, “But you know how theoreticians are . . . then they say: ‘Poor ex-

periments.’ ”6 He and a new student to the group, George Uhlenbeck, continued studying

the spectrum, and worked with formula using half-integer quantum numbers to calculate

the line locations (Lande’s interval rule). When Goudsmit showed Uhlenbeck that he could

give a simple interpretation of the recently published Pauli exclusion principle by introduc-

ing a new binary quantum number, Uhlenbeck recognized that it implied an extra degree

of freedom intrinsic to the electron.† They interpreted the extra degree of freedom as a
†In an amusing quote meant to capture the differences between the two physicists (differences which

likely helped them make such an important breakthrough), Goudsmit describes, “In those days, all through
the summer when I told Uhlenbeck about Landé and Heisenberg, for instance, or about Paschen, then he
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rotation which could take two values, giving the electron an intrinsic amount of angular

momentum as well as a corresponding magnetic moment, separate from the angular mo-

mentum and magnetic moment due to its orbital motion. As the popular story goes6, after

they gave their 1925 manuscript about the spinning electron to a very supportive Ehrenfest

for publication in Naturwissenschaften,7 Uhlenbeck mentioned the idea of the spinning elec-

tron to Lorentz. Lorentz pointed out that it could not be true, as an electron spinning fast

enough to give the necessary magnetic moment would require the surface of the “classical

radius” of the electron to be moving faster than the speed of light. Uhlenbeck then asked

for Ehrenfest to stop the submission, however he told them it was too late. Apparently,

Kronig had made a similar proposal to Pauli a year earlier, but pushed it no further after

the idea was ridiculed by Pauli.

Uhlenbeck and Goudsmit published a subsequent two page “Letter to the Editor”8 in

which they used the electron spin to explain the Zeeman splittings, the forbidden lines and

the doublet fine structure of X-ray spectra including their width dependence on nuclear

charge (∝ Z4) and given quantum numbers. They also managed to include mention that

their spinning electron with two possible values allows the Pauli exclusion principle to

function without assuming “an unmechanical ‘duality’ in the binding of electrons.”8 The

article appeared in Nature followed by a seeming endorsement by Bohr himself: the electron

spin was officially discovered.

Modern quantum mechanics now describes particles as having, in addition to their

orbital angular momentum (given by equations 1.1 and 1.2), an intrinsic angular momentum,

called spin, governed by similar quantization rules:

|S| = ~
√
s(s+ 1) and (1.8)

Sz = ms~. (1.9)

Similar to the rule for the z-component of angular momentum, ms can take on values from

-s to s in integer sized steps. However, the rule for possible s values is different from those

for l values. The angular momentum commutation relations in quantum mechanics only

asked: ‘Who is that?’ He never heard of them, strange. And when he said: ‘That means a fourth degree of
freedom.’ Then I asked him: ‘What is a degree of freedom?’ ”6
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restrict a general angular momentum to integer or half-integer quantum numbers. In the

case of orbital angular momentum, the requirement for the particle’s wavefunction to return

to the same value after a full rotation through space eliminates the half-integer quantum

numbers. Hence, the orbital quantum numbers, l and mL must be integers. Spin, however,

is not associated with the spatial part of a particle’s wavefunction, and does not have this

same restriction. The spin quantum numbers, s and ms, can be either integers or odd

half-integers. The spin angular momentum is also slightly different from orbital angular

momentum, in that the spin quantum number s for a given particle is fixed. For example,

particles called pions have s = 0 and photons have s = 1. Electrons (as well as proton and

neutrons) have s = 1/2 and are sometimes called spin-half particles. Thus, according to

equation 1.9, electrons can have the component of their spin angular momentum along the

z (or any other) axis equal to +~/2 or -~/2, spin-up or spin-down.

The sum of a particle’s (or system of particles) angular momentum follows the same

quantization rules as above. The letter J is usually used to signify the total angular mo-

mentum:

|J| = ~
√
j(j + 1) and (1.10)

Jz = mj~. (1.11)

The total momentum component along a spatial axis is the simple sum of the individual

components. For a single electron, this means that the total angular momentum, J, is given

by the quantum numbers

mj = mL +ms, (1.12)

from which it follows that

|l − s| ≤ j ≤ l + s. (1.13)

The total magnetic moment of an electron should then be given by equation 1.3, but with

the orbital angular momentum replaced by the total angular momentum as

µ = µB (J/~) =
µB

~
(L + S) . (1.14)

This expression is almost correct. In fact, the magnetic moment of the electron due to its

spin is enhanced by almost exactly a factor two (the so-called electron spin gyromagnetic
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ratio, or ‘gs-factor’ is ≈2), giving the correct expression for the total magnetic moment of

an electron as

µ = µB (J/~) =
µB

~
(L + 2S) . (1.15)

As the spin of an electron is either ±~/2, the intrinsic magnetic moment of an electron is

given by

µ =
µB

~
2S = ±µB. (1.16)

With electron spin in mind, we can now understand the SGE results. The filled subshells

of the Ag atoms net zero orbital angular momentum. With each orbital filled with both

a spin-up and -down electron, these shells net zero spin momentum as well. The final

unpaired 5s electron has l = 0 and so the only contribution of angular momentum comes

from the one electron spin. The two values of the spin component along the z-axis is then

the source of the two branches of the split beam. But what about the magnitude of the

splitting? With L = 0 and S = 1/2, equation 1.15 gives the total magnetic moment of

the Ag atoms to be ±µB, in perfect agreement with Stern and Gerlach’s results showing a

splitting corresponding to a difference in magnetic moment of 2µB. Although the results of

the SGE were widely known, it is interesting to note that the discoverers of the spin of the

electron made no mention of the SGE in relation to their discovery at the time.

It should also be noted that spin should not be interpreted as a classically rotating

sphere. As Lorentz argued to Uhlenbeck, this was not possible. Spin is a purely quan-

tum mechanical quality, following the quantum rules of angular momentum with quantum

number s = 1/2 with a magnetic moment of µB. Both the spin and magnetic moment of

the electron (with gs≈2) are automatically contained in the relativistic Dirac description of

electrons, but have no direct classical explanations.

1.2.3 Spin-orbit coupling

One of the many effects of the electron having an intrinsic spin angular momentum is

the coupling between the spin and the electron’s own orbital angular momentum. This is

referred to as spin-orbit coupling and can be an important interaction in determining solid
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state electronic structures and can give rise to spin-polarization effects in photoemission

experiments from non-magnetic systems. It is also the interaction at the heart of the most

popular type of instrument for electron spin analysis.

The spin-orbit interaction falls naturally out of the Dirac equation without any extra

assumptions. A more intuitive understanding can be gained by describing it as due to the

interaction of the electron spin with an external electric field, E. At first glance, it is not

obvious that the spin should interact with an electric field. However, if the electron is

moving through E in the lab reference frame with velocity v, relativity requires that the

electron experiences a magnetic field in its rest frame given by

Beff = −v
c
×E. (1.17)

The electron’s spin magnetic moment directly interacts with this magnetic field with the

Hamiltonian

HLS = −µ ·Beff . (1.18)

Using equation 1.16 for µ and substituting in equation 1.17 gives

HLS =
2µB

~
S ·

[v
c
×E

]
=

e

m2
ec

2
S · [p×E] . (1.19)

This expression is in fact not quite right, and results in atomic fine structure splittings a

factor 2 too large. This was explained by Thomas in 19269 as due to neglecting the fact that

the electron’s rest frame is not an inertial frame; when treated correctly, an extra factor

1/2 is discovered, correcting the above expression to

HLS =
e

2m2
ec

2
S · [p×E] . (1.20)

If the electric field is that of a central potential, Vc(r), as in the case of a hydrogen-like

atom, the electric field can be expressed as

E = −
(

1
e

)
∇Vc(r) = −

(
1
e

)
dVc

dr
x
r
. (1.21)
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and inserted into equation 1.20 to give

HLS =
1

2m2
ec

2
S ·

[
dVc

dr
x
r
× p

]
=

1
2m2

ec
2

1
r

dVc

dr
(L · S) , (1.22)

where we have used the definition of orbital angular momentum, L = x × p. This last

expression shows the origin of the name ‘spin-orbit coupling’ as the interaction depends on

the term L · S.

To proceed further, we define the total angular momentum of the electron to be J with

J = L + S (1.23)

Taking the dot product of equation 1.23 with itself gives

J2 = L2 + S2 + 2 (L · S) . (1.24)

With this simple trick, equation 1.22 can be rewritten as

HLS =
1

2m2
ec

2

1
r

dVc

dr
1
2

(
J2 − L2 − S2

)
. (1.25)

The spin-orbit Hamiltonian, HLS , then splits atomic energy levels according to the total

and orbital quantum numbers. Perturbation theory gives the first order energy shift of the

levels with j, l, and the standard quantum number n as

∆nlj =
1

2m2
ec

2

〈
1
r

dVc

dr

〉
nl

~2

2
×

 l

−(l + 1)

 j = l + 1/2

j = l − 1/2
. (1.26)

This is Lande’s interval rule.

It is important to remember that the spin-orbit interaction is a relativistic effect. As

such, it is a large effect only when electron velocities are near the speed of light, clearly

reflected in the (v/c) term in equation 1.17. The spin-orbit interaction is thus important

when dealing with free electrons with many keV of energy, or when dealing with electrons

near high Z nuclei with large electric fields (large dVc/dr in equation 1.26). It should also

be noted that the 1
r

dVc
dr term in equation 1.22 and on show that in Coulomb potentials, the
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spin-orbit interaction falls off more rapidly with distance than the bare Coulomb interaction

itself.

For hydrogenic atoms (i.e. ions with only one electron) where Vc is of pure Coulomb

form, we have
dVc

dr
=

d
dr

(
Ze2

r

)
=
Ze2

r2
(1.27)

and we then have 〈
1
r

dVc

dr

〉
nl

= (Ze2)
〈

1
r3

〉
nl

=
Z3

a3
0n

3l(l + 1/2)(l + 1)
. (1.28)

where a0 is the Bohr radius. Equation 1.26 can then be expressed as

∆nlj =
mc2(Zα)4

4n3l(l + 1/2)(l + 1)
×

 l

−(l + 1)

 j = l + 1/2

j = l − 1/2.
(1.29)

In this form (completely correct only if Vc is a pure, unscreened Coulomb potential) we can

see the Z4 dependence mentioned by Uhlenbeck and Goudsmit in ref. 8.

1.2.4 Symmetry of spin

The electron spin has other profound effects due to subtle, but fundamental, aspects of

nature. One of these subtleties involves the fact that electrons, as well as other fundamental

particles, are identical. An electron’s only characteristics are its mass, charge, and spin,

and since all electrons have the same values of these, electrons are said to be identical. This

concept is perhaps best illustrated in Figure 1.4 which shows two electrons colliding. It is

not possible to track each electron’s path as that would disturb the system. Because the

electrons are identical, a final measurement of the electrons’ positions after the scattering

event cannot distinguish, even in principle, whether the event took place as in panel (a) or

(b). In fact they must both happen simultaneously as a quantum superposition.

For now let’s consider just two electrons where electron 1 is in a state described by the

ket |α〉 and electron 2 is in a state described by the ket |β〉. The state for the system of

two electrons could be well described by the ket |α〉|β〉, but would be equally well described

by |β〉|α〉. These are two distinct state kets (and are in fact orthogonal assuming α 6=
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Figure 1.4. Indistinguishable scattering events of identical particles. It cannot be known,
even in principle, which of (a) or (b) occurred.

β), and yet have the same exact set of eigenvalues for any possible measurement. This

exchange degeneracy presents quantum mechanics with a tricky situation as a complete set

of eigenvalues does not completely determine the state ket as it does for a single particle.

The way nature apparently avoids this issue has fascinating consequences.

From the definition of what it means for a particle to be identical, it can be shown

that any physical observable, including any physical Hamiltonian, must be invariant to the

permutation of two of the identical particles, requiring the eigenstates of any observable to

be simultaneous eigenstates of permutation. The permutation operator’s, P12, effect on a

system can be written as

P12|α〉|β〉 = |β〉|α〉 (1.30)

or perhaps more clearly as

P12|Ψ(x1,x2)〉 = |Ψ(x1,x2)〉. (1.31)

It should be clear that P12 = P21, meaning its eigenvalues are ±1. Two particle eigenstates

of permutation are said to be symmetric with an eigenvalue of +1 and antisymmetric with

an eigenvalue of -1. For the two particle example above, the possible states are then the

symmetric state
1√
2

(|α〉|β〉+ |β〉|α〉) (1.32)

and the antisymmetric state
1√
2

(|α〉|β〉 − |β〉|α〉) . (1.33)
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Technically, with systems of more than two particles, a state can be constructed that is

a symmetric eigenket of P12 and and an antisymmetric eigenket of P23, for example, and

such a state is said to have mixed symmetry. Because the Hamiltonian must be invariant

to permutation, a state’s permutation symmetry is fixed for all time.

As far as we know, all systems of identical particles either completely symmetric or anti-

symmetric with respect to permutation – no mixed symmetry ever occurs. This is called the

“Symmetrization Postulate” and is an empirical fact of nature, underivable from the fun-

damental postulates of quantum mechanics.† Bosons are particles which form systems that

are completely symmetric and hence obey Bose-Einstein statistics. Fermions are particles

which form systems that are completely antisymmetric and hence obey Fermi-Dirac statis-

tics. A most amazing result is the connection between permutation symmetry and spin:

integer spin particles are bosons and half-integer spin particles are fermions. This seemingly

arbitrary rule is in fact derivable from relativistic quantum mechanics which proves that

integer spin particles cannot be fermions and half-integer spin particles cannot be bosons.11

This connection is typically referred to as the “spin-statistics theorem” and is one of the

most intriguing aspects of spin. Actually understanding the proof, however, is anything but

elementary and attempts for more intuitive explanations have been revisited.12

Electrons, with spin s = 1/2, are then fermions, and they must form states which are

completely antisymmetric with respect to permutation. This has immediate far-reaching

consequences as antisymmetric states cannot be formed if two particles are in the same

state. For example, the required antisymmetric state of three electrons in |α〉, |β〉, and |γ〉

is

|Ψαβγ〉 =
1√
6

(|α〉|β〉|γ〉 − |β〉|α〉|γ〉+ |γ〉|α〉|β〉 − |α〉|γ〉|β〉+ |β〉|γ〉|α〉 − |γ〉|β〉|α〉) .

(1.34)

Because |Ψαβγ〉 = 0 if |α〉 = |β〉, it is clear that a system of many electrons, and other

fermions, cannot exist with more than one electron in a given state with all equal quantum

numbers (this result holds, of course, for system of arbitrary N fermions). This is the cause

†Many quantum physics textbooks suggest that this is derivable from quantum mechanics, but these
treatments ignore the possibility of mixed symmetry states. An illuminating discussion is found in Ballen-
tine’s textbook.10
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of the Pauli exclusion principle, which needed Uhlenbeck and Goudsmit’s fourth degree of

freedom (section 1.2.2) to agree with experiment. The varying structure of the periodic table

can be said to be due to the Pauli exclusion principle, giving reason to argue that the spin-

1/2 nature of the electron, along with the Symmetrization Postulate, is quite consequential

indeed.

It is illuminating to investigate the example of a two-electron system. The antisymmetric

requirement of a multi-electron system applies to the full wavefunction. Assuming the

Hamiltonian of the system commutes with S2
tot, the energy eigenfunction can be split into

a product of a spatially dependent wavefunction, and a spin function which is independent

of spatial coordinates. The eigenfunction can be written as

ψ = φ(x1,x2)χ(ms1,ms2). (1.35)

Each function must be either symmetric or antisymmetric with respect to particle exchange.

The antisymmetric requirement of the full function requires that if φ(x1,x2) is symmetric,

then χ must be antisymmetric, and vice versa.

In the following, spin states are written with arrows to signify the value of ms for each

particle. For example, | ↑↓ 〉 corresponds to the state where particle 1 has ms = 1/2 (spin-

up) and particle 2 has ms = −1/2 (spin-down). The three possible symmetric forms of χ

are

χt =


|↑↑ 〉
1√
2
(|↑↓ 〉+ |↓↑ 〉)

|↓↓ 〉

(1.36)

and are called spin triplet states. The single possible antisymmetric form is

χs =
1√
2

(|↑↓ 〉 − |↓↑ 〉) (1.37)

and is called a spin singlet state. With the total spin operator defined as Stot = S1 + S2,

the spin quantum number s = 1 for the triplet states, with ms = ms1 +ms2 = 1, 0 and −

1, accordingly. For the singlet state, s = 0 and of course ms = 0. Again, due to the

antisymmetric requirement for the total wavefunction in equation 1.35, triplet spin states

must have antisymmetric spatial wavefunctions, φ(x1,x2), and singlet spin states must have
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symmetric spatial wavefunctions. As we will see below, these consequences of electron spin

and the Symmetrization Postulate allow spin dependence to sneak into systems where no

explicit spin dependence is originally present.

1.2.5 Exchange coupling

Interactions and properties of many-electron systems which result from the requirement

of antisymmetry in particle permutation are usually described by the term exchange. As

we will see below, these exchange interactions can lead to important phenomena such as

Hund’s first rule and ferromagnetism. Throughout the discussion, it is important to re-

member that exchange coupling brings about effective spin dependent interactions even

with Hamiltonians that contain no explicit spin dependence.

A ferromagnet is a material in which the atomic dipole moments become aligned paral-

lel leading to a net spontaneous magnetization, even in the absence of an external applied

magnetic field. Only Fe, Ni, Co, Gd, and Dy show elemental ferromagnetism. The interac-

tion which aligns the atomic dipoles is often modeled as an effective internal magnetic field,

historically referred to as a Weiss or molecular field. The thermal energy in a material will

tend to randomize the dipole moments, and so if the temperature is raised high enough,

eventually the thermal randomization will win out over the Weiss field and the material will

become a paramagnet. This temperature is called the critical temperature, or TC . If each

atom has a dipole moment of 1 µB, then the above statement could be expressed as

kBTC ≈ µBHW (1.38)

where kB is Boltzmann’s constant and HW in the Weiss field. For a TC of about 1000K

(close to the TC of bulk Fe), this gives a Weiss field of about 107 Gauss, which is a bit

larger than the largest field produced in any laboratory! So the source of the Weiss field is

no small effect.

It is tempting to think that direct dipolar interactions are behind it, where one atomic

dipole interacts with the magnetic field of a neighboring dipole. We can investigate this

possibility by writing the direct classical dipole interaction energy of dipoles m1 and m2
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separated by the vector r as

Udip =
1
r3

[m1·m2 − 3(m1 ·̂r)(m2 ·̂r)] . (1.39)

Without being too precise, we can estimate that each dipole has a magnitude of about µB.

Disregarding the angular dependence of the dot products, this gives us on the order of

Udip ≈
µ2

B

r3
≈ 1

(137)2
(a0

r

)3
Ry (1.40)

where a0 is the Bohr radius and 1 Ry is about 13.6 eV. With a dipole separation distance

of about 2 Å ∼ 4a0, this gives

Udip ∼ 10−5eV. (1.41)

As only 1K ∼ 10−4 eV, thermal fluctuations will clearly outweigh any dipolar interactions

well before the typical TC of 1000K used above. Looking at it in another way, the magnetic

field of a µB dipole at a distance of 2 Å is only about 103 Gauss, far smaller than the

necessary Weiss field calculated above from equation 1.38. Therefore it is clear that direct

dipole-dipole interactions are not the source of ferromagnetic ordering (although they play

a key role in domain formation, well described in chapter 33 of ref. 13).

In 1928, Heisenberg showed the Weiss field originates from the exchange interaction.14

To illustrate the nature of the exchange interaction, it is useful to investigate examples of

two-electron system. The simplest system is the case of two free non-interacting electrons,

with Hamiltonian

H = − ~2

2me

(
∇ 2

1 +∇ 2
2

)
(1.42)

where the subscripts 1 and 2 refer to the two electrons. The eigenvalue equation

HΨ(x1,x2) = EΨ(x1,x2) is separable into a product of two single electron functions, and

the solution can be written

Ψ(x1,x2) = ψa(x1)ψb(x2) = eika·x1eikb·x2 (1.43)

Since the total state must be antisymmetric with respect to particle exchange (Sym-

metrization Postulate), the spatial part must be symmetrized/antisymmetrized versions
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of Ψ(x1,x2) which can be written

Ψ±(x1,x2) =
1√
2

[
eika·x1eikb·x2 ± eika·x2eikb·x1

]
(1.44)

=
1√
2

(
ei(ka+kb)·R

) [
ei(ka−kb)·r/2 ± e−i(ka−kb)

]
(1.45)

where r is the separation of the two electrons x1 − x2, and R is the center of mass (x1 +

(x)2)/2. Ψ+ is symmetric, and so must be matched with an antisymmetric spin function,

the singlet state, χs, from equation 1.37. Ψ− is antisymmetric, and so must be matched with

a symmetric spin function, one of the triplet states, χt, from equation 1.36. The probability

densities, |Ψ±(x1,x2)|2, for the two choices become

2| cos [(ka − kb) · r/2]|2 for the singlet state, (1.46)

2| sin [(ka − kb) · r/2]|2 for the triplet states. (1.47)

Somewhat surprisingly, this shows that despite H being free of any interaction between the

two electrons, their positions are in fact correlated, and on top of that, the correlation is

spin dependent! The Pauli exclusion principle is again illustrated by the fact that the triplet

states (which feature parallel alignment of the spins) have vanishing probability densities

when ka = kb. Two electrons cannot occupy the same states with the same spin direction.

Also, when ka 6= kb, we see that at r = 0, the singlet (triplet) state has maximum (vanishing)

probability density. This suggests that the electrons in spin singlet states are somewhat

“social” and find themselves spatially near each other, while those in triplet spin states are

very “antisocial” and ensure they are never right next to each other. This exchange effect

also holds when there are explicit electron-electron interactions and suggests that if there

were a Coulomb repulsion between the two electrons, the triplet state would have a lower

total energy. This concept is qualitatively at the root of Hund’s first rule which prefers

maximum parallel alignment of spins in an atomic subshell.

This approach can followed with slightly more complex two-electron problems such as

the helium atom, hydrogen molecule, or similar systems. The Hamiltonian without direct

electron-electron interaction is

H0 = − ~2

2me

(
∇ 2

1 +∇ 2
2

)
+ V (q1) + V (q2). (1.48)
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This Hamiltonian is separable, and so similar to equation 1.43, possible wavefunctions

include (with clear shorthand notation)

Ψ(1, 2) = φa(1)φb(2) (1.49)

where φa(1) is the solution to [
− ~2

2me
∇ 2

1 + V (q1)
]
φ = Eaφ (1.50)

and φb(2) is the solution to the equivalent solution for electron 2 with energy Eb. Again, just

as above, the correct wavefunctions must be symmetrized/antisymmetrized and matched

with the correct spin singlet/triplet states. The two total wavefunctions are then:

Ψs =
1√
2

[φa(1)φb(2) + φa(2)φb(1)]χs singlet (1.51)

Ψt =
1√
2

[φa(1)φb(2)− φa(2)φb(1)]χt triplet. (1.52)

It should be clear from the example of the free electrons that these wavefunctions will

have position correlation. However, there is no energy difference between them yet; E =∫
Ψ∗

sHΨs dx1dx2 =
∫

Ψ∗
tHΨt dx1dx2. Now let’s introduce electron-electron interaction

through a perturbation, H12. This can be as simple as Coulomb repulsion between the

two electrons as H12 = e2

r12
or something more complex, perhaps involving the additional

interaction between electron 1 and nucleus 2 (and vice versa) and the interaction between

the two nuclei in the case of the hydrogen molecule. The additional energies introduced by

H12 (assuming ΨI&II remain good zero-order wavefunctions) can be calculated by Es,t =∫
Ψ∗

s,tH12Ψs,t giving:

Es = (K12 + J12) (1.53)

Et = (K12 − J12) (1.54)

with

K12 =
∫
φ∗a(1)φ∗b(2)H12φa(1)φb(2) dx1 dx2 (1.55)

and

J12 =
∫
φ∗a(1)φ∗b(2)H12φa(2)φb(1) dx1 dx2. (1.56)
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K12 is simply the average interaction energy that would be present without antisymmetriza-

tion of the full wavefunctions. J12, however, is referred to as the exchange integral, and

results directly from the Symmetrization Postulate and the odd half-integer spin of the

electrons.

Equations 1.53 and 1.54 can be written as one equation by inspecting the total spin

operator in a similar manner to equations 1.23 and 1.24:

S = S1 + S2 (1.57)

S2 = S2
1 + S2

2 + 2S1 · S2. (1.58)

From equation 1.8 we have S2
1 = S2

2 = 3/4, and from these equations and the previous

section we know (S2)s = 0 and (S2)t = 2. This allows equation 1.58 to be written for the

singlet and triplet states as

[ 2S1 · S2 ]s = −3
2

(1.59)

[ 2S1 · S2 ]t = +
1
2
. (1.60)

Using these expressions, equations 1.53 and 1.54 can be simultaneously written as

E = K12 −
1
2
J12 − 2J12S1 · S2. (1.61)

This is an amazing result! Clear spin dependence is found, even though the Hamiltonian

has no explicit spin dependence. The exchange coupling, J , is not a new interaction, but a

direct result of the Coulomb interaction between the electrons and the required asymmetry

of the electronic states with respect to electron exchange. It is interesting that the spin

coupling in equation 1.61 does not depend on their exact orientation with respect to any

axis, but only on their relative orientation to each other, and is a consequence of the original

Hamiltonian’s spin-independence.13

The approach to obtaining equation 1.61 can be similarly followed for many-electron

systems such as in the solid state. Often times, the spin dependence due to the exchange

interaction of such systems can be modeled with the Heisenberg spin Hamiltonian

Hspin = −2
∑
i,j

JijSi · Sj (1.62)
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where the sum is over an appropriate set of nearest neighbors, j, of site i, as well as over all i

in the crystal. If all the Jij are positive, parallel alignment of all spins becomes energetically

favorable, and hence the exchange interaction is qualitatively the source of the Weiss field

and ferromagnetism. Note that although it appears simple enough, solving the Heisenberg

Hamiltonian for real systems is an enormous challenge, and can only be done with additional

approximations at extreme temperatures far from TC . It is interesting enough to again

stress that magnetic effects such as ferromagnetism are not the result of direct magnetic

interactions, but are actually the result of electrostatic interactions. Much of this and the

previous section (sections 1.2.5 and 1.2.4) follow the arguments and mathematics of refs.

15,13,14,10, which give a more in-depth review of the topic. What is presented here is

sufficient for the scope of this thesis.

1.3 Probing spin in solids

Various effects and interactions dependent on the electron spin, some of which were

outlined in section 1.2, can play key roles in the electronic structure of solids. In many

cases, the exact role is far from understood. Even in what appears to be simple cases,

theory is not yet complete. For example, although low temperature itinerant 3d ferromag-

netism in the transition metals is fairly well understood, an accurate description around

TC is still missing.16 The more complex systems which currently get an enormous amount

of attention have even larger gaps in understanding of the role of spin. The high transition

temperature (HTC) superconductors are based on antiferromagnetic parent compounds.

The exact role of remaining antiferromagnetic interactions and fluctuations in the forma-

tion of Cooper pairs is fiercely debated. The colossal magnetoresistive (CMR) manganites

feature simultaneous insulating-to-metallic and paramagnetic-to-ferromagnetic transitions,

and feature a wide array of magnetic structures with small amounts of chemical doping.

An understanding of this class of materials is incomplete without a full picture of the spin

dependence of their electronic structures. The whole exploding field of advanced electronic
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devices utilizing the electron spin (spintronics17,18) explicitly relies on understanding and

manipulating the spin interactions in a wide variety of materials.

Large amounts of progress in our understanding of these and other systems, including

new systems possibly discovered in the near future, can be made by probing their electronic

structure in a spin-sensitive manner. Spin and angle resolved photoemission spectroscopy

(spin-ARPES) is the most direct and complete technique for achieving this. Performed

on ferromagnets, spin-ARPES can directly reveal the exchange split minority and major-

ity bands, and probe interesting aspects such as the temperature dependence of the spin

distribution as TC is approached and crossed. Applied to spintronics materials and de-

vices, spin-ARPES can directly illuminate the spin character of the electronic structure

for comparison with the desired or predicted behaviors. Spin-ARPES performed with cir-

cularly polarized light on nonmagnetic metallic and semiconducting surfaces can generate

spin-polarized photoelectrons due to spin-orbit coupling, providing additional information

(including direct observation of the symmetry of the probed states) not accessible without

spin-resolution. There have even been examples of insights being obtained by performing

spin-resolved photoemission on the HTC cuprates,19,20,21 despite their antiferromagnetic

background.

Although spin-ARPES is an extremely powerful way to experimentally probe these sys-

tems, the technique has been somewhat ignored in comparison to “regular” spin-integrated

ARPES. This is not to say that great spin-ARPES work has not been done. Fantastic

reviews of the field are given in refs. 16,22,23 with more recent results reviewed in ref.

24. However, while ARPES has grown remarkably during the past few decades in both

popularity and impact, spin resolved photoemission has not yet been able to achieve the

same scale of growth in widespread acclaim. Much of the success of ARPES is due to giant

leaps in instrumental capabilities and efficiencies, allowing data to be taken with angu-

lar and energy resolutions at and below the scale needed to observe the most interesting

physics in today’s correlated electron research. Instrumentation for spin-resolved experi-

ments have not achieved the same gains in efficiency, forcing the technique to be performed

with significantly compromised resolutions, and hence greatly slowing the advancement of
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spin-ARPES. As we will see, the main difficulty lies in the actual detection of spin polar-

ization; measuring whether an electron is spin-up or -down is not at all as straightforward

as it naively seems. For instance, current state-of-the-art spin polarimeters introduce an

efficiency reduction of ∼ 10−4 to determine the spin polarization of a beam compared to

spin-integrated electron counting. With the additional loss of parallel energy and angle

detection of current ARPES instruments, spin-ARPES is a very inefficient process.

Motivated by the tremendous need for progress in spin-resolved instrumentation, I have

dedicated my Ph.D. work to the design and development of a novel instrument: the spin-

TOF spectrometer. This spectrometer aims to revolutionize spin-ARPES by achieving a

breakthrough in possible resolutions through a ∼1000 times improvement in overall effi-

ciency, thereby expanding the frontiers of the field. This is accomplished by attacking the

above problems in two ways. First, a novel spin-polarimeter has been developed which

offers up to 100 times improved efficiency over the current state-of-the-art polarimeters.

Second, parallel energy detection is re-introduced to the spin-resolved experiment with the

development of a time-of-flight (TOF) based energy analyzer to work in concert with the

spin-polarimeter, introducing an extra factor of 10 gain in overall efficiency.

The thesis is organized as follows. Chapter 2 summarizes the experimental and the-

oretical details of the ARPES technique and describes the development of an advanced

in-lab ARPES setup. Chapter 3 discusses the extension of ARPES with spin-resolution,

reviews details of its experimental difficulties, and introduces how the spin-TOF will attack

these difficulties. Chapter 4 covers the development of the TOF electrostatic lens system

and Chapter 5 covers the development of the new spin polarimeter, including the basics of

spin-polarimetry and the physical principles of current instruments. Chapter 6 summarizes

the complete instrument and initial accomplishments. Chapter 7 concludes the thesis with

a summary of the work to come as well as a description of some of the exciting future

prospects for spin-ARPES with the spin-TOF.

25



Chapter 2

Photoemission Spectroscopy

I realized that electron spectroscopy for atoms and solids could never become
competitive with X-ray emission or absorption spectroscopy unless I was able
to achieve such a high resolution that really well-defined electron lines were ob-
tained with linewidths equal to or close to the inherent atomic levels themselves.

— Kai Siegbahn25

Photoemission spectroscopy is a broad class of experimental techniques which can be

most concisely described as “photon-in, electron-out” experiments. A sample of interest

is illuminated by a source of photons, and the intensity of the resulting photoejected free

electrons is measured. This intensity can be a function of many parameters including

the emitted electron’s kinetic energy, direction of emission, and spin polarization, as well as

photon energy and polarization. These dependencies result from details of the sample’s elec-

tronic structure, thus offering a way to directly probe it. Different types of photoemission

spectroscopy are defined by which of these dependencies are resolved in the measurement.

For example, general photoemission spectroscopy (PES) only requires measuring the inten-

sity as a function of photoelectron kinetic energy and typically integrates the intensity from

a wide emission cone. Angle resolved photoemission spectroscopy (ARPES) measures the

intensity as a function of photoelectron kinetic energy and emission direction. Spin and an-

gle resolved photoemission spectroscopy (spin-ARPES) additionally measures the intensity

as a function of spin polarization. Typically all of these techniques utilize a photon beam
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of well-defined energy and polarization, and measuring the photon energy and polarization

dependencies can be an additional component to each technique. Because spin-ARPES,

performed with a light source offering full photon energy and polarization control, resolves

and controls so many of the possible photointensity dependencies, it is sometimes referred

to as the “complete photoemission experiment”.

Due to the enormous amount of success and popularity that ARPES has achieved,

there are many textbooks26,27 and review articles28,29,30 covering the full complexity of the

techniques with both keen insight and sometimes an intimidating amount of detail. Because

this thesis revolves around the development of an instrument to expand the boundaries

of ARPES, basic details of the technique will be reviewed to highlight the instrumental

improvements which made the power of today’s ARPES possible.

2.1 The photoelectric effect

The physical basis of PES is of course the celebrated photoelectric effect, and so PES

shares an important historical part of the development of quantum physics. A vivid history

of the photoelectric effect and its development into modern PES can be found in ref. 31.

The first written observation of the photoelectric effect was provided by Heinrich Hertz

in 188732 when he described his landmark experiments diagrammed in Figure 2.1. The

experiment consisted of two spark-gaps driven by large inductor coils. A large current

would flow through the coils, so that when a switch suddenly opened the circuit, the energy

in the inductors could drive a spark across the gaps if the gaps were small enough. Hertz

found that the occurrence of a spark at the primary gap would increase the chance of a

spark at the second gap, which could be precisely controlled by a micrometer. By placing

various barriers in the line of sight between the two spark-gaps, he found that this influence

could be removed, and subsequently concluded that UV light emitted from the primary

spark helped initiate the secondary spark. Although Hertz never returned to photoelectric

experiments, he “sparked” a furious investigation of the effect by others.

Among the many scientists who made valuable insights into the phenomena, one of the
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Figure 2.1. Schematic of Hertz’s famous experiment demonstrating the photoelectric effect.
Large inductors (a,e) powered by a battery (b) drive spark gaps (d,f). When switch (c) is
open, primary spark at (d) was found to influence the possibility of spark at (f). Influence
of primary spark could be shielded with a metal plate (p). Figure adapted from ref. 31.

most influential contributions was performed by Philipp Lenard, who began his career as

an assistant to Hertz. Lenard began to investigate the velocity distribution of the photo-

electrons, although at the time they were not understood to be electrons, but were referred

to as cathode rays. He wondered if adsorbed gases on the cathode had an influence on his

measurements, and he began doing his photoemission experiments in vacuum tubes, such

as shown in Figure 2.2(a). With such an apparatus, he performed many experiments on the

effect of external electric and magnetic fields on the cathode rays, and used retarding poten-

tials at the anodes to study their velocity distributions. He came to three key conclusions

in 1902 which had no immediate explanation.33 First he noted that the number of cathode

rays depended on the light intensity. Second, he found that cathode ray velocity did not,

however, depend on the light intensity. Finally, he found that the velocity was dependent

on the light frequency. Lenard later received the 1905 Nobel prize for his work with cathode

rays, which he described as “negatively charged quanta of electricity”. It is interesting to
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Figure 2.2. (a) Vacuum tube for Lenard’s photoemission experiments. UV light from (L)
excites the cathode (U). Cathode rays enter experiment region passing through metal foil
(E) and are measured at anodes (α, β). Figure taken from ref. 31. (b) Millikan’s vacuum
instrument used to verify Einstein’s photoelectric effect equation. Na, Li, an K samples
rotated around on central wheel (w). Electromagnet (F) could couple to in-situ magnet M’
and M to manipulate knife blade (K) to scrape a fresh surface of a sample. Fresh surface
could then be rotated towards light input (O) and double Faraday-cup detector controlled
by electrodes (B) and (C). Plate S was used to accurately determine work function difference
between sample face and Faraday-cup. Original text notes that fresh shavings of the samples
would fall to the bottom of the central chamber and aid in removing residual oxygen from
the chamber - a getter pump! Figure taken from ref. 34.

note that Lenard’s work led him to conclude that cathode rays were not material particles

with mass, but rather were aether waves.

Lenard’s conclusions about the photoelectric effect (plus the observation that emission

begins immediately at the start of irradiation with no delay) became understood to be

incompatible within the classical description of light based on Maxwell’s equation where

the energy of light is proportional to its intensity (not frequency) and is delivered to the

cathode continuously and evenly distributed in space. Lenard’s work spurred Einstein’s

famous 1905 paper35 which explained these observations by quantizing light into distinct

particles (photons) with discreet amounts of energy dependent on the light’s frequency. His

picture explained the photoelectric effect with the famous equation which we now write as

Emax = hν − Φ (2.1)

where Emax is the maximum energy of the emitted electrons, h is Planck’s constant, and ν

is the irradiating light frequency. Φ is called the work function of the cathode material and
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is the minimum amount of energy an electron must gain to leave the sample (Φ is generally

between 4 to 5 eV for most materials). This paper (only one of his “miracle” four published

that year) later earned Einstein the Nobel in 1921, as well as helped spur the quantum

revolution.

Although Einstein’s equation is readily accepted by students in introductory physics

classes today, it was not the case at the time. Many worked extensively with various exper-

imental setups in attempts to verify or disprove the theory. Experiments tended to suggest

the theory was correct, but failed to rigorously prove the linear relationship between Emax

and ν with a slope of h, mostly due to an experimental inability to reliably measure Emax
31.

Robert Millikan proved up to the task, and built a custom vacuum chamber34 he called

“a true machine shop in vacuo” to investigate Einstein’s description of the photoelectric

effect. The resulting instrument is shown in Figure 2.2(b). The figure, well described in the

original text, has a remarkable similarity to many of the techniques we currently use for

manipulation and coupling various motions into the vacuum system. In fact it is difficult,

while reading it, to remember that it was written in 1916! With it, he was able to prepare

very clean alkali surfaces in-situ and obtained clear high energy cutoffs in the photoelec-

tron’s energy distribution using a retarding-potential Faraday-cup detector. He ascribes

having a light source with a well defined energy (no stray light of higher energy) being key

to measuring the well defined cutoffs.34 With these high energy cutoffs defining Emax at

varying light frequencies, Millikan found a precisely linear relation and obtained an amaz-

ingly accurate measurement of h in the process.34 These great achievements were clearly

directly related to the jump in instrumental expertise that Millikan introduced. Although

he was very disbelieving of the photon concept, his work proving Einstein’s equation (along

with his determination of the electron’s e/m ratio in his oil-drop experiment) was awarded

the 1923 Nobel prize. As a further aside to the historical development of photoemission

instrumentation, Figure 2.3 shows two prominent scientists in the early field (Elster and

Geitel), illustrating that early instrumentation allowed photoemission setups to be truly

“table-top” experiments!
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Figure 2.3. Julius Elster and Hans Geitel hard at work on their photoemission experiments.
Figure from ref. 31.
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2.2 Energy resolution

The decades after the explanation of the photoelectric effect continued to see a huge

amount of effort, both experimental and theoretical, aimed at understanding the photo-

electric effect more thoroughly. Instrumental improvements in magnetic and electrostatic

electron energy analyzers, various semi-monochromatic light sources, and improving vac-

uum pressures aided in the precision that photoelectron energies could be measured. Ex-

perimental effort was matched by the rapid progression in the theoretical understanding of

atomic, molecular, and solid state structure with quantum theory. These advances allowed

photoelectric experiments to evolve into a technique for studying the electronics of these

structures.

Due to conservation of energy in the photoemission process, it was realized that mea-

suring the kinetic energy of a photoemitted electron in vacuum allows the calculation of its

binding energy in the solid if a well-monochromatized light source is used. This is expressed

as

EK = hν − Φ− |EB| (2.2)

where EK is the kinetic energy of the photoelectron in vacuum, measured with respect

to the vacuum level, Φ is the work function, hν is the photon energy, and EB is the

binding energy (a negative value measured with respect to the Fermi level, EF ). If electrons

emitted at all angles are collected together (an angle-integrated experiment), or equivalently

a polycrystalline sample is used, the distribution of photoelectrons in kinetic energy can then

effectively map the density of states (DOS) of the sample’s electronic structure. This idea

is shown schematically in Figure 2.4. A sample has a certain DOS (N(E) in the figure)

which includes the so-called “core levels” of distinct inner-shell electron energy states, as

well as a valence band at EF dictated by the energy bands formed by the delocalized

valence electrons. An incident photon can promote an electron in this DOS upwards in

the energy diagram by an amount ~ω. Electrons promoted above the sample’s vacuum

level can physically escape the sample and can be detected by an energy resolving electron
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Figure 2.4. N(E) energy level diagram of a PES experiment. The EF of the sample and
analyzer are equal when electrically connected. ΦS(A) and VS(A) are the work function and
vacuum level of the sample (analyzer), respectively.

analyzer. Because of equation 2.2, the N(E) inside the sample can be measured outside of

the sample.

Although it is a relatively simple diagram, Figure 2.4 contains a number of interesting

details. First, the electron occupation of the available DOS → 0 following Fermi-Dirac

statistics, and this will show up as a sharp cutoff in the measured spectrum. In other

words, photoemission does not occur from states which are not actually occupied, meaning

photoemission spectroscopy cannot readily access information about the electronic structure

above EF . Experimentally this cutoff, referred to as the Fermi edge, provides a good
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reference to set the energy scale to. The width of the edge can also be used as a measure

of the total energy resolution achieved in the experiment.

Second, the photoexcited electrons tend to have a short mean free path while still in

the sample, and can suffer inelastic collisions before leaving through the sample surface.

This can happen multiple times, with a random amount of energy lost each time, before

an electron escapes into vacuum to be measured. Each collision can generate other excited

electrons in the process, which themselves may suffer inelastic collisions before exiting the

sample. This effect creates a cascade of “secondary” electrons, building in intensity towards

lower kinetic energy in the spectrum. This indeed occurs, and causes the exponentially

increasing secondary background in the measured spectrum as shown in the diagram. Note

that a high enough photon energy is used so that the parts of the spectrum of interest are

not clouded over by this background (although a common data analysis procedure can also

be used to remove the “Shirley Background” from angle-integrated experiments36,37). In

particular, the valence band which is of most interest to many in the solid-state community,

is relatively free of this background as there are few electrons with higher energy.

Finally, the kinetic energy is measured with respect to some sort of analyzer, and so

it is the work function of the analyzer, ΦA, which appears in the correct application of

equation 2.2, not the sample work function ΦS . The Fermi levels are forced to match when

the sample and analyzer are electrically connected, and so the vacuum levels need not be

the same. However, it is ΦS , which determines the “low-energy cutoff” where electrons can

no longer escape the sample, coinciding with the vacuum level of the sample, VS . Because

ΦS > ΦA in the particular instance of this diagram, the analyzer can directly measure this

low-energy cutoff at a finite kinetic energy with respect to VA. Note that the final “peak”

in the measured spectrum is simply the low energy cutoff of secondary electrons.

Useful information can only be extracted from the PES experiment depicted in Fig-

ure 2.4 if it is done with a total energy resolution which allows observing the critical fea-

tures, and it must be done with a high enough count rate such that the data can be recorded

in a reasonable amount of time with good signal-to-noise ratios. This is where the work of

Kai Siegbahn played an enormous role. Siegbahn began work in nuclear spectroscopy and
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Figure 2.5. Examples of Siegbahn’s revolutionary XPS work. (a) Au spectrum taken in
Upsalla in 1972 with monochromatized AlKα excitation. Figure taken from ref. 25. (b)
Benzenetetracarboxylic acid (upper) and sodium benzoate (lower) spectra showing well
resolved chemical shifts of the C 1s peaks. Figure adapted from ref. 38.

performed experiments in β-decay. In the process of his work, he needed to develop a high

resolution, high efficiency analyzer, and ended up with a so-called “double-focusing” mag-

netic analyzer. His experiments had to suffer lengthy delays waiting for radioactive samples

supplied by an unreliable synchrotron, and so began experimenting with simulating β-decay

by photoemitting from lead foil with an X-ray tube.25 This aroused his interest in trying to

measure the foil’s binding energies with as high an energy resolution as possible.25 Similar

work at the time was done with fairly poor resolution, such that the atomic core-levels were

smeared out so much that they were not recognizable as individual atomic levels. Siegbahn

set out to improve the energy resolution such that X-ray photoemission spectroscopy (XPS

- PES with an X-ray light source) could give resolution of the atomic levels comparable to

X-ray emission and absorption experiments.25

His adaptation of his successful β-decay analyzer led to an iron-free double-focus mag-

netic analyzer with a 30 cm radius that worked for the lower kinetic energies of XPS per-

formed in the 5 keV range. The analyzer achieved a resolving power (∆E
E ) of better than

10−4 with a count rate of about 1000 electrons per minute.25 With this instrument, the first

high-resolution XPS spectra were recorded, resolving sharp atomic core levels of Cu.39 Fig-

ure 2.5(a) shows an XPS spectrum taken by Siegbahn on Au, illustrating the fully resolved
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spin-orbit split 4f 5/2 and 7/2 core levels. Remarkably, Siegbahn’s work was also able to

resolve the core-levels well enough to observe their shifts in binding energy depending on

the chemical environment of of the originating atom.40 These so-called “chemical shifts”

are are nicely illustrated in Figure 2.5(b), one example of the many works to be based on

this technique. The upper panel shows the C 1s peak split into two peaks corresponding to

carbon atoms with the different bonding geometries of the carboxylic acid molecule being

measured. Note that the peak ratios match the numerical ratios of the different carbon

configurations in the molecule. This same concept is illustrated again in the lower panel

as well for sodium benzoate. Siegbahn’s introduction of vastly improved electron energy

analyzers and his group’s pioneering work led to the use of XPS as a quantitative chem-

ical analysis technique which they dubbed Electron Spectroscopy for Chemical Analysis

(ESCA). A vast amount of the group’s related research is summarized in two books used by

many as standard references.41,42 His work revolutionizing the field of PES was rewarded

with the Nobel prize in 1981.

2.3 Angular resolution

The photoemission-based techniques used by Siegbahn to investigate materials’ core

levels can also be used to study the valence band, as suggested in Figure 2.4. This was

first shown by Berglund and Spicer in 1964 when they identified the 3d DOS in Ag and

Cu.43,44,45 The electronic states in dispersive valence bands are well defined in both energy

and momentum. Because momentum is conserved in optical excitation during the pho-

toemission process, one can consider attempting to measure both the binding energy and

momentum, or k vector, of the electronic states in the valence bands. This is exactly what is

done in an Angle-Resolved Photoemission Spectroscopy (ARPES) experiment, which allows

studying an electronic structure’s energy and momentum dependencies.

Although simple in concept, the actual photoemission process is extremely complicated,

and simplifications and assumptions must be made to interpret the data for the experiment

to be worthwhile. The good news is that in a vast number of situations, these simplifications
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and assumptions work quite well and allow us direct access to pertinent information about

a material’s electronic structure. To be as realistic as possible, the processes of electron

photoexcitation, travel to and through the sample surface, and travel to ultimate detection

in an analyzer should all be treated as a single coherent process. This type of model is

called the “one-step model” and can be quite difficult to work with. Instead, the ARPES

experiment is frequently discussed in the popular “three-step model”, which can often be

accurate enough for many situations and is far more tractable. The three steps are:

1. Photoexcitation of electrons in the solid

2. Transport of the electron through the solid to the surface

3. Escape of the electron through the surface into vacuum.

The total measured intensity will then be proportional to the product of the individual

probabilities of each step.

The first step is the most interesting as it contains all the information about the in-

trinsic electronic structure that we are after. The momentum of the photons in the energy

ranges typically used for ARPES (20 - several hundred eV) is negligible, and so the pho-

toexcitation is an optical, or direct, transition. These transitions are also called “vertical”

transitions, as a plot of energy versus momentum has the electron moving vertically up the

plot while conserving momentum. A photon of energy hν is incident on the sample and has

a finite probability of being absorbed by an electron. The photon may travel some finite

distance before being absorbed. Once it is absorbed, the electron is optically excited into a

state with hν more energy, while maintaining its initial momentum. This process is shown

schematically in Figure 2.6(a). Note that the total energy and momentum are conserved.

We will refer to the electronic state before excitation as the initial state, and the state right

after excitation as the final state. If the initial state is characterized by energy |EB| and

momentum ki, and the final state is characterized by Ef (referenced to the vacuum level)
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Figure 2.6. (a) Optical transitions from a band in the sample to vacuum. Energy and
in-plane momentum are conserved. (b) Geometry of an ARPES experiment. Angles θ and
β are defined to correspond to the rotational axes of sample manipulator in our laboratory.

and kf , then we can write

Ef = hν − |EB| − Φ

kf = ki (2.3)

and expand the last line to

kx,f = kx,i

ky,f = ky,i

kz,f = kz,i (2.4)

In the second step, the excited final-state electrons travel to the surface. Of course,

nothing is special about the surface direction, and the final-state electrons may travel away

from the surface as well; the only electrons which we have a chance to measure are the

fraction which travel to the surface. During transport, the final-state electrons may scatter

elastically or inelastically one or multiple times before making it out of the surface. The

mean free path of final-state electrons is often quite short, and is dependent on their kinetic

energy. It happens that the energy dependent mean free paths for a wide variety of materials
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Figure 2.7. “Universal Curve” of inelastic mean free paths of electrons in various materials
versus kinetic energy. Figure taken from Ref 26.

follows a similar trend forming the so-called “universal curve” shown in Figure 2.7. Note

that there is a minimum of under 5 Å at kinetic energies around 50 eV. Therefore, the

valence band electrons of interest are going to be near this minimum with the photon energy

range of typical ARPES experiments. Because the final-state electrons on average can only

travel a couple unit cells without suffering an inelastic collision, ARPES is a very surface

sensitive technique - the vast majority of electrons that make it out of the sample without

losing energy come from the top one or two atomic layers. This makes the technique very

powerful for studying surface physics. Even though the technique is sampling electrons only

from the surface, their initial state wavefunctions may extend through the bulk, allowing

ARPES to sample bulk electronic structure as well. Deciding whether a certain property in

the acquired data is a bulk or surface effect is often challenging, and comparing data with

theory can be useful.

In the third step, the final-state electrons must pass through a potential step at the

surface. Due to the translational symmetry being maintained along the in-plane directions

at the surface, k‖ is conserved. Momentum is not maintained along the z-direction, however,

because of the potential step in that direction. Once out of the sample and in vacuum, the
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electron will travel to the detector as a well-approximated free-electron plane wave. If we

label the kinetic energy of this plane wave EK and its momentum kout, then we have for

this third step

EK = Ef

kx,out = kx,f

ky,out = ky,f

kz,out 6= kz,f . (2.5)

Because the electron is now in a free-electron plane wave on its way to the detector, we also

have

EK =
~2

2me

(
k2

out

)
=

~2

2me

(
k2

x,out + k2
y,out + k2

z,out

)
. (2.6)

By measuring the photoelectron’s energy and angles of emission, we can work out the

individual components of kout. The geometry of an Angle-resolved Photoemission Spec-

troscopy (ARPES) experiment is illustrated in Figure 2.6(b). The slightly unconventional

angles (not typical spherical coordinates!) are used to match the rotational axes of the

sample manipulator in our laboratory. From equation 2.6 we have

kx,out =
1
~
√

2meEK sin θ

ky,out =
1
~
√

2meEK cos θ sinβ

kz,out =
1
~
√

2meEK cos θ cosβ.

(2.7)

Combined with equations 2.3-2.5, we can then write for the initial states

|EB| = hν − Φ− EK

kx,i = 0.512
√
EK sin θ

ky,i = 0.512
√
EK cos θ sinβ (2.8)

where kx,y,i are in units of Å−1, EK is in units of eV, and
√

2me

~ is approximated as 0.512.

So we see that by resolving the kinetic energies and angles of emission of the photoelectrons,

they can be mapped back to the initial states’ binding energy and in-plane momentum. For
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2-dimensional systems such as surface states or quasi-2D materials, this gives a complete

determination of the (spin-integrated) electronic states. This makes such 2-dimensional

systems ideal for ARPES experiments.

Full 3-dimensional systems are more complicated, in part because of the loss of kz

conservation through the surface in step 3. Unfortunately, this means that kz cannot be

directly extracted from the measurements of EK , θ, and β alone, and proper determination

requires complete knowledge of the exact “final states” (the unoccupied bandstructure above

EF ) the electrons are photoexcited to before exiting the sample. Often times, the final state

dispersions are approximated as parabolic free-electrons. This technique becomes more

appropriate at high kinetic energies (thus high photon energies) where effects of the crystal

potential are weaker. In the free-electron approximation, the states are assumed to be free

but in an extra potential, Vin, called the inner potential which can be thought of as the

potential step the electrons must pass through to exit the sample. Thus, going back the

first step we have

Ef =
~2

2me

(
k2

x,f + k2
y,f + k2

z,f

)
− Vin. (2.9)

Solving for kz,f and using equations 2.3 and 2.4, the initial momentum along z is

kz,i =

√
2me

~2
(hν − Φ− |EB|+ Vin)− k2

x,i − k2
y,i. (2.10)

Experimentally, Vin can be determined by looking at normal emission (θ = β = 0 = kx,y,i)

and varying the photon energy, ~ω. Vin can then be solved for by fitting the periodicity to

the known Brillouin zone size.

The kz component causes other complications for ARPES experiments. As mentioned

earlier, the final-state electrons have short inelastic mean free paths as they travel through

the solid. This concept can also be described by a finite photoelectron lifetime. A way

to express this lifetime is through an imaginary part to the momentum, implying a finite

broadening to kf . Again, due to the surface discontinuity in the z-direction, only kz can

have an imaginary component, giving a broadening of

∆kz,f =
1

τeυe,z
(2.11)
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Figure 2.8. Example of ARPES bandmapping of the quasi-2D layered TiTe2. Bandstructure
calculations along the ΓM direction, adapted from ref. 47, are show on the left. False-color
plot (maximum intensity is dark) of ARPES intensity along same direction is shown on the
right.

where τe is the photoelectron lifetime and υe,z is the photoelectron, or final-state, band

velocity along z. This “wiggle-room” in the required vertical transition of the optical exci-

tation implies an unavoidable integration over kz,i; i.e. ∆kz,f = ∆kz,i = ∆kz. If there is

not much dispersion along kz,i in the neighborhood of the Brillouin zone being probed, this

is not as severe a problem. Viewed in another way, the kz broadening implies an energy

broadening in the measured spectrum of

∆EK ≈ υh,z∆kz =
υh,z

υe,z

1
τe

(2.12)

where υh,z is the “hole”, or initial state, band velocity along z. Again, this shows that if

υh,z is small, such as with surface states and quasi-2D materials, this will be a small effect.

An excellent discussion of kz-broadening of ARPES spectra is found in ref. 46.

Thus we find that by resolving both energy and angle in an ARPES experiment, effective

bandmapping can be done (even in the 3D case, although it is more difficult) by tracking the

local ARPES intensity maxima in EB as a function of emission angles and equating these

to the bandstructure En(k). Additionally, by mapping the ARPES intensity maxima at EF

as a function of k, detailed information about the Fermi surface topology can be directly
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accessed. These two concepts make ARPES an extremely powerful tool. An example of

bandmapping is shown for the layered material, TiTe2, in Figure 2.8. The ARPES intensity

map on the right shows strong agreement with the calculated bandstructure on the left,

illustrating the direct bandmapping ability of ARPES. This concept was introduced in 1964

by Kane,48 but was initially received negatively. In 1974, however, ARPES bandmapping

was first performed and directly compared to calculated bandstructures in a number of great

works by Smith, Traum, and DiSalvo.49,50,51. Already understanding the simplifications of

performing ARPES on quasi-2D systems, these initial works were done on the layered TaS2

and TaSe2. With additional improvements in instrumental resolutions and efficiencies,

ARPES has since become an extremely powerful tool for directly probing a material’s

bandstructure.

2.4 Single particle spectral function

In the previous section, it was shown that because of the conservation of energy and

momentum, ARPES is able to map the basic bandstructure of solids. It should be noted

that the photoemission process starts with a system of N electrons and removes one of them,

leaving an excited N −1 system. With a more rigorous investigation of the photoexcitation

step (step-1 of the three-step model, where the information about the intrinsic electronic

structure is contained), it can be shown that there is a wealth of details about the many-

body response of the N − 1 system in an ARPES experiment. Other sources give detailed

reviews of this analysis,30,26 so only a brief outline need be given here.

The transition rate of step-1 from an initial N-electron state, |ΨN
i 〉, to a final N-electron

state, |ΨN
f 〉, can be given by Fermi’s Golden Rule as

wfi =
2π
~
|〈ΨN

f |Hrad|ΨN
i 〉|2δ

(
EN

f − EN
i − hν

)
(2.13)

where Hrad is the interaction Hamiltonian of the incident radiation field, the energy of the

initial state is EN
i , and the energy of the final state is given by EN

f = EN−1
f + EK . Here

we define EN−1
f to be the energy of the remaining N − 1 state with EK still the energy of

the photoemitted electron.
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To investigate the properties of theN−1 excited state, we can begin by decomposing ΨN
f

into a product of ΨN−1
f and the wavefunction of the outgoing photoelectron with wavevector

k, φk
f

ΨN
f = Aφk

f ΨN−1
f (2.14)

whereA is the antisymmetrization operator enforcing the fermion Symmetrization Postulate

(section 1.2.4). This decomposition is only valid assuming the ejected photoelectron leaves

the system quickly enough so that it and the remaining N − 1 system do not have a chance

to interact. This is known as the “sudden approximation”, and as it is our first step here, it

is clearly important for the present model of understanding ARPES. It is normally assumed

to be valid for photoelectrons with EK & 20eV . ARPES spectra taken with photon energies

less than this are then subject to concern regarding the sudden approximation, although it

seems that at least in the HTC cuprate systems it remains valid to very low photon energies

(6 eV).52 The final state wavefunction, ΨN−1
f is taken to be an eigenfunction of the excited

state, ΨN−1
m , with energy EN−1

m , so that equation 2.14 can be written as

ΨN
f = Aφk

f ΨN−1
m (2.15)

Next, a similar approach can be taken to decompose the initial state, ΨN
i , into a product

of ΨN−1
i and a one electron orbital, φk

i , of the electron to be photoemitted. This can be

written

ΨN
i = Aφk

i ΨN−1
i . (2.16)

The ΨN−1
i should be understood to be simply the result of removing one electron from the

N -electron wavefunction, which can be expressed as

ΨN−1
i = ckΨN

i (2.17)

where ck is the annihilation operator of an electron at k. This stresses that ΨN−1
i is not in

general an eigenfunction of the N − 1 system.

Combining equations 2.15 and 2.16, we can write the matrix element in equation 2.13

as

〈ΨN
f |Hrad|ΨN

i 〉 = 〈φk
f |Hrad|φk

i 〉〈ΨN−1
m |ΨN−1

i 〉. (2.18)

44



The 〈φk
f |Hrad|φk

i 〉 term is simply the one-electron dipole matrix element and can be rep-

resented as Mk
f,i. The total photoemission current, I(k, EK) will be proportional to the

sum of possible transition rates,
∑

f,iwfi, where wfi must also be summed over all possible

excited eigenstates, m. Combining equations 2.13 and 2.18 thus gives us

I(k, EK) ∝
∑
f,i

|Mk
f,i|2

∑
m

|cm,i|2δ
(
EK + EN−1

m − EN
i − hν

)
. (2.19)

In the above, |cm,i|2 = 〈|ΨN−1
m |ΨN−1

i 〉|2 represents the total probability that removing the

electron from the N -electron state i, will result in the excited eigenstate m of the N − 1-

electron system. Note that the binding energy of the electron is the difference in energies

of the N −1 and N -electron systems, |EB| = EN−1
m −EN

i . Thus the Dirac delta function in

equation 2.19 enforces the energy conservation used in previous sections (the work function

is not written here as this analysis only involves the first step of the three step model, and

references EK to the Fermi level instead of the vacuum level). If the N electrons of the

system are independent and non-interacting, ΨN−1
i is in fact an eigenfunction of the N − 1

excited state, and thus cm,i = 1 for one value of m and 0 for all others. Assuming the

Mk
f,i 6= 0, this means the resulting ARPES spectra will be a series of delta functions at

|Ek
B| = εk, the Hartree-Fock energies, as depicted in the left panel of Figure 2.9. If there

are many-body interactions present, however, many cm,i will have non-zero contributions,

resulting in ARPES spectra consisting of a main line and a spread of satellite excitations,

as depicted in the right panel of Figure 2.9.

When studying the physics of interacting many-body problems, a popular approach is to

use the Green’s function formalism53 where the one-electron propagation in the many-body

system can be described by the time-ordered Green’s function, G(t− t′). We can define the

single particle spectral function, A(k, ω), as the imaginary part of the Fourier transformed

Green’s function as

A(k, ω) = − 1
π
ImG(k, ω) (2.20)

where we also have the one electron removal single particle spectral function given by

A(k, ω) =
∑
m

|〈ΨN−1
m |ck|ΨN

i 〉|2δ
(
ω − EN−1

m + EN
i

)
. (2.21)
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Figure 2.9. Example one-electron removal and addition spectra for a non-interacting (left)
and an interacting (right) system consisting of a single band crossing EF . ARPES spectra
correspond to the one-electron removal spectra and only access the occupied part, high-
lighted in red. Figure adapted from ref. 30.

This of course is mainly just the |cm,i| part of equation 2.19, which we can then re-write as

I(k, ω) ∝
∑
f,i

|Mk
f,i|2f(ω)A(k, ω)δ (ω + EK − hν) (2.22)

where we have also added the Fermi function, f(ω) to restrict the measured intensity to the

occupied states extended to finite temperature.

For a non-interacting system, the Green’s function is given by

G(k, ω) =
1

ω − εk − iη
(2.23)

where η → 0. Equation 2.20 then gives

A(k, ω) = − 1
π
δ (ω − εk) . (2.24)

Plugging this back into equation 2.22 reaffirms the early statement about the ARPES

spectra being delta functions as in the left side of Figure 2.9. For an interacting system, the

interactions can be formally introduced as a complex electron self-energy usually written as

Σ(k, ω) = Σ′(k, ω) + iΣ′′(k, ω). In this case, the Green’s function is

G(k, ω) =
1

ω − εk − Σ(k, ω)
(2.25)

with the spectral function then given by

A(k, ω) = − 1
π

Σ′′(k, ω)
(ω − εk − Σ′(k, ω))2 + (Σ′′(k, ω))2

. (2.26)
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Thus, high resolution ARPES data does not only function as effective bandmapping, but

also allows direct measurement of many-body effects such as the real and imaginary self-

energies in the spectral function.

2.5 EDC and MDC analysis

For an ARPES experiment, a dataset typically consists of a multi-dimensional map of

photoemission intensity as a function of k (i.e. kx, ky, and/or kz) and binding energy, |EB|.

Usually, the minimal dataset is a 2-dimensional map as a function of |k| along some desired

direction in k-space and binding energy so that the band dispersion along that direction can

be mapped and its single particle spectral function along that direction can be analyzed.

There are two standard ways of analyzing such a dataset. One is to plot the intensity as a

function of energy at fixed |k| values, and study the resulting “energy distribution curves”

(EDCs) at numerous values of momentum. The other is to plot the intensity as a function of

momentum at fixed |EB| values, and study the resulting “momentum distribution curves”

(MDCs) at numerous values of binding energy. An example of an EDC and an MDC from

such a 2D ARPES dataset is shown in Figure 2.10(a), with EDC and MDC analyses shown

in (b) and (c) respectively. The band dispersion can be extracted from the peak positions

(green circles) in either method, although MDCs are generally more accurate with steeper

dispersions, and EDCs are generally more accurate near the bottom and tops of band edges.

The EDC is the more traditional analysis technique and gives a global view of the spec-

tral function’s energy dependence. It is useful as it can establish the existence of important

features such as quasiparticle peaks54 and gaps. Information about the particular many-

body interactions present can be found in rigorous analysis of the EDC lineshape. However,

EDCs are often difficult to work with because they tend to have complex lineshapes. Near

EF , where most of the interest is anyway, the EDC lineshape is additionally complicated

by the modulation by the Fermi function, f(ω). The inelastic and secondary background

can also add complication as its proper removal is not straightforward with no general the-

oretical model to use. Note that the disturbance due to f(ω) is clearly seen as the Fermi
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Figure 2.10. (a) False-color plot of simulated ARPES intensity map of a parabolic Fermi
liquid band. MDC and EDC concept is illustrated. (b) EDC analysis of a stack of EDCs.
(c) MDC analysis of a stack of MDCs.

edge in the last couple EDC’s of Figure 2.10(b), but the disturbance due to the usual strong

inelastic background is not present in this simulation.

The MDC offers a number of simplifications. At constant binding energy, the Fermi

function and the inelastic background are no longer issues as they are both momentum in-

dependent. This tends to make MDC lineshapes easier to work with and are often straight-

forwardly fit as Lorentzians. Extracting the band dispersion from an MDC analysis (as in

Figure 2.10(c)) is usually not difficult; the resulting dispersion, ω(k), can be compared to

some non-interacting bare band model ε(k) to extract Σ′(k, ωk) as well as information about

the lifetime. MDC analysis has become standard for investigating many-body interactions

in detail.55,56 A much more detailed review of the two methods and their direct relations

to the single particle spectral function are given in ref. 57.

2.6 Dipole matrix elements

In the analysis of section 2.4 we gave no details about the actual photoemitting Hamil-

tonian in equation 2.13. Ignoring electron spin, the Hamiltonian in the radiation field can
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be given by

H =
1

2me

(
p− e

c
A

)2
+ eφ (2.27)

where A is the vector potential and φ is the scalar potential, which by proper choice of

gauge can be made zero. This then reduces to the perturbation Hamiltonian to be used in

equation 2.13, Hrad, given by

Hrad = − e

2mec
(A · p + p ·A) (2.28)

≈ − e

mec
A · p (2.29)

where the term quadratic in A is ignored, the commutator [p,A] = −i~∇ ·A is used, and

the dipole approximation is made in which ∇ ·A = 0 (valid in the UV range, except for

near the surface where possibly strong spatial variations in the field may result in indirect

transitions as well). Hence, the matrix elements, Mk
f,i in equations 2.19 and 2.22 are

Mk
f,i ∝ 〈φk

f |A · p|φk
i 〉. (2.30)

This expression can be further simplified by expressing the radiation field, A, as a plane wave

with A ∼ A0ε̂e
i(ω/c)n̂·x, where ε̂ is a unit vector along the direction of the light polarization,

and n̂ is the unit vector along the light propogation direction. The exponential term can

be expanded in a power series; in the standard electric dipole (E1) approximation only the

first term, 1, is kept. This gives A ∼ A0ε̂. By making use of the commutation relation of

the full Hamiltonian, [x,H] = i~p/me, equation 2.30 can be reduced to

Mk
f,i ∝ 〈φk

f |̂ε · x|φk
i 〉. (2.31)

This is the standard dipole transition and so Mk
f,i becomes subject to the standard dipole

selection rules (noting that x is a spherical tensor of rank 1).

In some situations, a simple symmetry analysis shows strong “matrix element effects”

where Mk
f,i strongly modulates the ARPES intensity.30 For instance, consider even/odd

symmetry with respect to the plane formed by the incident light vector and outgoing pho-

toelectron vector. The ε̂ · x will be even (+) with respect to reflection about this plane

for p-polarized light and odd (-) for s-polarized light. Detectable photoelectrons (φk
f ) must
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have even (+) wavefunctions with respect to the plane (or would have nodes, 0 probability

amplitude, at the detector). For p-polarized light, the matrix element then goes as 〈+|+ |?〉.

This matrix element will then be maximum for initial states of even spatial symmetry with

respect to the defined plane, and will in fact be zero for initial states of odd symmetry. For

s-polarized light, the situation is reversed as the matrix element will go as 〈+| − |?〉.

If we take the photoelectron wavefunction, φk
f , to be a plane wave, eik·x, the matrix

element from equation 2.30 can be expressed as

|Mk
f,i|2 ∝ |〈eik·x|A0ε̂ · p|φk

i 〉|2

∝ | (ε̂ · k) 〈eik·x|φk
i 〉|2. (2.32)

This illustrates that the matrix element can be dependent on the initial state wavefuntion

as well as the outgoing k-vector, which can be effected by the experiment’s geometry. This

also demonstrates ARPES photon energy dependence: a change in hν will change EK as

well as the magnitude of k. The overlap of the outgoing plane wave and the initial state,

〈eik·x|φk
i 〉, depends on both details of the initial state wavefunction as well as the outgoing

k-vector, thus causing modulations in the intensity with photon energy (not necessarily

monotonic).30 A great example of photon energy dependent matrix elements in the double

layer HTC cuprates is given in ref. 58. One must always remember that ARPES data may be

influenced by difficult to predict matrix elements. Sometimes, these matrix element effects

can be taken advantage of. In some cases, signal from some bands can be enhanced with

respect to others due to different matrix element dependencies on photon energy,58,59,60,61,56

photon polarization,62,63 or polarization geometry.54 Matrix element effects can also be used

for aiding in identifying initial state characteristics such as orbital symmetry character.64

2.7 State-of-the-art ARPES

The ARPES technique has undergone enormous growth in the past decade. Much of

the current strength and popularity of ARPES is related to its symbiotic relationship with

the field of HTC cuprates. From initial observations of d-wave gap symmetry,65 to fine
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kinks in the electronic dispersions,55 to anomalous isotope effects,66 ARPES has been at

the forefront of HTC discoveries.30 The intrinsic high interest in the HTCs encouraged a

constant push for advancements in ARPES instrumentation and technique, which allowed

subsequent discoveries that would not have been otherwise possible. This investment in the

development of the technique is now paying enormous dividends by allowing fundamental

insights in other material systems as well.67,54,68,69,70

With a state-of-the-art system, it is now possible to take a 5-dimensional data set of

intensity as a function of |EB|, kx, ky, kz (or hν), and sample temperature through the entire

Brillouin zone within a 24-hour shift, with energy resolutions below 10 meV and momentum

resolutions below 1% of typical Brillouin zones. As part of the work to similarly develop

spin-ARPES that is covered in this thesis, a state-of-the-art ARPES system was designed

and constructed. Technical details of the ARPES technique will be exposed through a brief

summary of this system.

2.7.1 Spectrometer

The heart of any photoemission experiment is the instrumentation used to actually

measure the energy (and/or angular and/or spin) distribution of the photoelectron intensity.

We shall refer to instrumentation which measures the photoelectron intensity as a function

of one or more of the above degrees of freedom as an electron spectrometer. An electron

spectrometer must include an electron analyzer and an electron detector. The analyzer

provides the energy (and/or angular and/or spin) analysis, separating the photoemitted

electrons according to kinetic energy (and/or angle of emission and/or spin), while the

detector actually records the final presence of a photoelectron. In the case of Millikan’s early

photoemission experiments34 (section 2.1), the spectrometer was a retarding field Faraday-

cup (detector) which resolved in energy by counting only photoelectrons with energy greater

than that needed to cross an adjustable electrostatic retardation field (energy analyzer). In

the case of Siegbahn’s original β-decay spectrometer (section 2.2), the energy analyzer was

a dispersive magnetic field and the detector was a Geiger-Müller counter.25
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Electron energy analyzers can typically utilize one of three techniques: passing a po-

tential barrier, measuring the time of flight across a given distance, and the deflection in

a dispersive field. The potential barrier method is the basis for Millikan’s analyzer and is

very straightforward, however has a very low signal to noise ratio and cannot be used for

high resolution instruments (it is still used in LEED optics to provide rough Auger electron

spectroscopy capabilities). The time-of-flight (TOF) method has historically been quite

popular with ion mass spectrometers and neutron spectrometers, but not so with electron

spectrometers, likely due to the success of the final category. We will return to the TOF

technique in Chapter 4. The dispersive field method sends the electrons to be analyzed

through a field which spatially deflects the electrons differing amounts dependent on their

kinetic energy. A measurement of where the electrons are deflected to constitutes a measure-

ment of their energy. Analyzers of this type built with magnetic fields (such as Siegbahn’s

β-decay spectrometer) offer the possibility of high precision with well engineered magnetic

fields. However, due to the difficulty of producing and repeatably controlling the magnetic

fields, analyzers utilizing purely electrostatic fields have since been the most prevalent.

Electrostatic dispersive energy analyzers have seen the most developments and refine-

ments, and include a wide range of designs. Roy and Tremblay71 and Smith and Kevan72

give excellent reviews of many general designs and provide a quantitative comparison of

effectiveness in terms of energy resolution and transmission efficiency. Here we will only

concentrate on the most successful and widely used design, which is historically referred to

in the literature as a Spherical Deflector Analyzer (SDA). For a variety of reasons, the SDA

makes for a highly effective electron spectrometer for many spectroscopic techniques, and

its effectiveness for ARPES is a large part of the technique’s success.

The general design of an SDA is depicted in Figure 2.11. The SDA consists of two

nested hemispherical electrodes of radius rin and rout, colored brown and blue, respectively,

in the figure. Appropriately applied voltages to the hemispheres will deflect photoelectrons

entering through the entrance slit (S1) on orbits between the hemispheres. The key is that

electrons of different kinetic energy within the analyzer take different orbits. Electrons en-

tering the hemispheres with kinetic energy equal to Ep will have a circular orbit with radius
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Figure 2.11. Schematic of a SDA, or hemispherical analyzer. Photoelectrons are transported
from the sample to the SDA via a cylindrical electrostatic lens column. Electrons with
kinetic energy equal to the pass energy (Ep) are deflected on a circular orbit marked by the
black dotted line. Electrons with kinetic energy above (below) the pass energy are deflected
on larger (smaller) orbits marked by the blue (orange) dotted lines. S1 and S2 mark the
analyzer entrance and exit slits, respectively.
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equal to the central radius through the hemispheres, r0 (the black dotted line). Electrons

entering the hemispheres with larger or smaller kinetic energies will have orbits of larger

or smaller radii, respectively (blue and orange dotted lines). As shown in the figure, only

electrons with energy equal to approximately Ep will be counted by the electron detector

placed after the exit slit, S2. Energy analysis is performed through spatial dispersion of the

electron beam.

Using the labels of Figure 2.11, the pass energy is given by

Ep = e

(
RinRout

2R0(Rout −Rin)

)
∆V (2.33)

where ∆V is the potential difference between the inner and outer hemispheres, given by

Vin − Vout, which is also equal to the power supplies Vih − Voh in the figure. The “ground

plate” (green electrode in Figure 2.11) is set to V0, the potential in between the hemispheres

at radius r = r0, and is the main retardation/acceleration voltage of the spectrometer. The

specific voltages applied to the inner and outer hemispheres (Vin,out) are then

Vin,out = V0 + Vih,oh = V0 + 2
Ep

(−e)

(
R0

Rin,out
− 1

)
(2.34)

remembering that e is a negative number in this thesis. Electrons entering the spectrometer

are retarded or accelerated by V0 so that electrons of any initial kinetic energy can be

measured with a desired pass energy. Electrons which will make it around the central orbit

of the hemispheres will have initial kinetic energy EK given by

EK = Ep + eV0. (2.35)

A full spectrum of intensity as a function of EK can be taken in a number of ways. In

the most basic mode, the retardation/acceleration voltage, V0, is fixed, and the hemisphere

voltages can be swept to scan Ep and thus EK . A slightly more sophisticated mode, called

‘Fixed Retardign Ratio’, scans the analyzer votages while keeping the retardation ratio

(defined as R = EK/Ep) constant. One can also acquire a full spectrum in the so-called

‘Fixed Analyzer Transmission’ mode which uses a fixed Ep (power supplies Vih and Voh held

constant) and scans EK by sweeping V0.
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For reference, the electric field and potential between the hemispheres as a function of

radial position, r, are given by

E(r) =
(

RoutRin

Rout −Rin

)
∆V
r2

and (2.36)

V (r) = V0 −
(

RoutRin

Rout −Rin

)
∆V
R0

(
1− R0

r

)
. (2.37)

This expression for the electric field is reassuring as it can easily be seen that a dynamical

equilibrium exists for electrons of energy Ep = 1/2mev
2
p to stay on the central orbit with

radius r = R0 by expressing the force on the electron as F = eE(R0) and setting it equal

to mev
2
p/R0.

A key characteristic of an energy analyzer is its energy resolution, ∆E, which is often

discussed as a dimensionless fraction of the pass energy referred to as the resolving power.

For the SDA, the theoretical resolving power is

∆E
Ep

=
S

2r0
+
α2

4
(2.38)

where S is the average slit width of the hemisphere entrance and exit slits, S = (S1 +

S2)/2, and α is the accepted half-angle of electrons through the entrance slits in the energy

dispersion direction. Disregarding the second term on the right, we can see that there are

two ways of improving the resolving power of an SDA - decreasing the entrance/exit slit

widths and increasing r0 (the size of the instrument). With these fixed physical dimensions,

the energy resolution can be improved by working at lower pass energy. Equation 2.38 also

shows that the ‘Fixed Analyzer Transmission’ mode for scanning EK (fixed Ep, swept V0)

operates with fixed energy resolution throughout the spectrum. Because of this, this is the

method typically used for high resolution experiments.

It can also be shown for an SDA that the measured intensity, I, at the electron detector

is proportional to the pass energy as

I ∼
E2

p

EK
. (2.39)

Therefore we see that improving the energy resolution by reducing Ep (equation 2.38) comes

at the price of strongly reduced intensity or count rate at the detector, requiring a longer
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acquisition time for a certain level of statistics. As mentioned above, resolution is also

improved by reducing the entrance/exit slits widths, but this also of reduces the count rate.

As an aside, equation 2.39 shows that operated in the ‘Fixed Retardation Ratio’ mode,

an SDA gives an intensity transmission proportional to I ∼ EK , while in ‘Fixed Analyzer

Transmission’ mode gives I ∼ 1/EK .

As discussed in refs. 72,73, the SDA is a particularly good choice of energy analyzer for

an electron spectrometer because of the straightforward use of a position sensitive detector

(PSD) to multiplex data acquisition. The SDA is well suited for use with a PSD because

the focal surface is a flat plane at the exit of the ground plate. Also, the radial position, r,

of electrons at the exit of the ground plate is linearly proportional (to first approximation)

to its kinetic energy inside the hemispheres, E = EK − eV0, as

r −R0

R0
= 2

E − Ep

Ep
(2.40)

or

r = 2R0
E

Ep
−R0. (2.41)

A multichannel PSD placed at the rear of the hemispheres instead of an exit slit can then

take measurements of intensity at multiple equally spaced E simultaneously. By recording

many measurements in parallel, the overall efficiency is improved by a factor of the number

of distinct channels used. The increased efficiency can then be used to take a given spectrum

with higher resolution by reducing Ep or S1.

The SDA also focuses in the direction out of the plane of Figure 2.11, meaning arrival

positions along an axis out of the figure plane at the final detector are proportional to

the position along the out-of-plane direction at the hemisphere entrance slit. Suitable

electrostatic cylindrical transport lens columns are capable of directly imaging photoelectron

emission angle to out-of-plane position along the analyzer entrance slit. If a 2 dimensional

multichannel PSD is placed at the exit of the hemispheres, electron arrival at a channel at

position x and y on the PSD can be mapped to emission angle X and kinetic energy Y. This

2D multiplexing is an additional radical improvement in spectrometer efficiency for angle

resolved measurements as it multiplexes simultaneous angle measurements, as well. This
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Figure 2.12. A hemispherical analyzer, shown with a 2D imaging detector. Bandstructure
along one k-direction can be directly imaged all at once. The 2D detector image corresponds
to intensity as a function of EK and angle of emission along the entrance slit direction, θ.
This can be converted to an image of intensity as a function of |EB| and k along the slit
direction according to equations 2.8.
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type of spectrometer can effectively image a window of the E(k) bandstructure along one

direction all at once.

The operation of such a spectrometer is shown diagrammed in Figure 2.12. Electrons

are photoemitted from the sample distributed in angle and kinetic energy according to the

sample’s bandstructure. The electrostatic lens column transports the photoelectrons to-

wards the hemispheres retarding/accelerating them to near the pass energy, and images the

angles of emission onto the entrance slit. The entrance slit horizontal width represents the

analyzers angular acceptance window along the sample’s horizontal direction, while the ver-

tical width controls the energy resolution (S1 in equation 2.38). The electrons then disperse

horizontally through the hemisphere according to entrance angle, and vertically/radially

according to energy. A circular 2D PSD would record the simultaneous spectrum as shown

in the figure. With easily achievable channel densities on the PSD (greater than 100×100

channels), this type of spectrometer can simultaneously (efficiently) record hundreds of

EDCs (and so hundreds of MDCs, as well) at much higher angular and energy resolutions

than would be otherwise practical. This type of spectrometer was originally commercial-

ized by the Swedish company Scienta (originally formed from Kai Siegbahn’s group) as the

“SES-200”74 and has undergone a number of improved designs with slightly higher perfor-

mances. Scienta spectrometers since became the ubiquitous spectrometer for photoemission

experiments. The spectrometer used with our in-lab system is the Phoibos 150 model from

the competing company, SPECS, and offers comparable performance with a slightly smaller

size (r0 = 150 mm).

In practice, ARPES data can be taken filling a 3D phase space volume of kx vs. ky vs.

|EB| very efficiently. As described above, the 2D multichannel detector image corresponds

to 2D planes of data of θ vs. EK at β (θ defined as the emission angle along the direction of

the analyzer entrance slit, and β the angle along the direction perpendicular to the entrance

slit in Figure 2.12, and as illustrated if Figure 2.6). After acquiring enough statistics, β can

be rotated slightly via a sample manipulator, and another data plane of θ vs. EK can be

acquired. This can be continued, as shown in Figure 2.13, until the entire 3D phase space

is filled through the desired window. Data in the θ vs. β vs. EK phase space is easily
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Figure 2.13. ARPES data acquisition in the 3D phase space kx vs. ky vs. energy with
a 2D multiplexing SDA, experiment progressing from left to right. The far left shows a
single false color plot of ARPES intensity in the 2D plane of ky vs. energy. The entire
image is taken simultaneously. Additional 2D planes at different values of kx are taken by
rotating the sample orientation with respect to the analyzer entrance slit. This can progress
throughout the entire Brillouin zone (or multiple zones even). The far right shows that once
the data is taken, it can also be viewed as 2D planes of kx vs. ky at a given energy. Here
the plane at EF , the FS topology, is shown.

converted into kx vs. ky vs. |EB| following equations 2.8. Viewing the acquired data in 2D

slices of intensity of kx vs. ky at fixed |EB| illustrates constant energy surfaces; at |EB| = 0,

the Fermi surface (FS) topology is mapped, as in the far right of Figure 2.13. The high

efficiency of these 2D spectrometers allows these FS maps to be taken with unprecedented

high energy and angular resolutions, making ARPES a fantastic direct probe of a material’s

FS, a characteristic central to the understanding of a material’s charge dynamics. The data

of Figure 2.13 was taken from the layered compound TiTe2 (similar to the first ARPES

experiments by Smith, Traum, and DiSalvo49,50,51) with the in-lab ARPES system using

21.22 eV photons (He lamp) and the Phoibos 150. As this 3 dimensional data set was taken

in just over an hour, it is clear that higher dimensional data sets are possible, probing the

electronic structure more completely as a function of photon energy, temperature, chemical

doping, etc.

The impact that the enormous efficiency (and hence practical resolutions) of the 2D

multichannel SDA based spectrometer on the field of ARPES cannot be overstated. One

only has to glance at the huge improvement in data quality as the spectrometers advanced

to see how entirely new physics is uncovered with high resolution ARPES. Figure 2.14(a)

shows an EDC of the L-gap Ag(111) surface state measured at different times during the

rapid development of ARPES and spectrometers. The huge efficiency improvements made
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Figure 2.14. (a)ARPES EDCs of the Ag(111) L-gap surface state from several prominent
publications over the years. Figure taken from ref. 75. (b)ARPES derived band dispersion
of Bi2Sr2CaCu2O8+δ taken in 1993 in ref. 76. (c)ARPES derived dispersion taken in 2000
in ref. 77 with a 2D SES-200 spectrometer showing fine features which are not visible in
(b). Data points from (b) are overlaid as squares for direct comparison in (c). Panels (b)
and (c) taken from ref. 78.

increasingly higher energy and angular resolutions possible, both of which are required to

measure the extremely sharp EDC at the bottom (the bottom spectrum was taken with

energy and angular resolutions of 3.5 meV and ±0.15◦, respectively). Actually achieving

this sharp a feature allows studying physics at a scale that is otherwise impossible. As an

example of this, Figure 2.14(b) shows the ARPES EDC derived dispersion from a HTC

superconductor taken in 1993 with energy and angular resolutions of 45 meV and ±1◦,

respectively. Due to low efficiency, only 5 data points along this direction were included.

Panel (c) shows a similar data set taken in 2000 using a high efficiency SDA with a 2D mul-

tichannel PSD. The increased efficiency allows hundreds of data points to be simultaneously

taken along the dispersion with energy and angular resolutions of 14 meV and ±0.1◦, re-

spectively. The famous “kink” in the dispersion, and all its related physics,30 would clearly

never have been observed without these gains in efficiency and resolution. Much of what is

presently possible with the ARPES technique is due to the high efficiency of the SDA with

2D multichannel PSD spectrometers.
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2.7.2 Ultra-high vacuum system

One of the major requirements of a high-quality photoemission experiment is vacuum.

There are three reasons that photoemission experiments must, in general, be performed in

a vacuum chamber. The first reason is because of the macroscopic distances (≈ 1m) that

photoelectrons must travel from the sample to the ultimate detector. The mean free path of

free electrons in atmosphere is only about 150 nm, so they will be scattered by gas molecules

long before reaching the detector. At pressures around 1 × 10−6 torr, the mean free path

of the photoelectrons increases to over 100 m, so the vast majority of the emitted electrons

will reach the detector without any trouble. The second reason involves modern electron

detection devices which are typically “channeltron” or “multichannel plate” (MCP) based

detectors. Coincidentally, these detectors often can only be operated in vacuum of around

1× 10−6 torr or better, as well. The third vacuum requirement is by far the most stringent

and involves the sample surface.

We saw in section 2.3 that the low inelastic mean free paths of the photoelectrons within

most materials is so low that ARPES has a very shallow probing depth. This translates

to requiring the sample surface to be high quality with minimal foreign overlayers. If the

sample is held in a vacuum of 1×10−6 torr of gas molecules which have a sticking coefficient

of 1 on the sample surface (every molecule which strikes the surface adsorbs, without any

subsequent desorption), a full monolayer of the gas will form in only 1 second. After this

1 second, the majority of the ARPES signal will already be from the overlayer rather than

the sample itself. Therefore, it is best to have the sample exposed to as low a residual gas

pressure as possible, typically well into the ultra-high vacuum range (UHV) with pressures

in the low 10−11 torr region. This typically requires the entire experiment (sample, sample

manipulator, analyzer, excitation source, etc) to be contained within a vacuum chamber

system capable of these pressures. In fact, meeting the strict vacuum requirements can form

the bulk of the practical work of an ARPES experiment.

Although it is easy to write, UHV is not always so easy to achieve. A pressure of 10−11

torr is almost 14 orders of magnitude lower pressure than atmosphere, bringing the density
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of gas molecules from 3×1019 per cm3 down to only 4×105. These pressures require the use

of high quality stainless steel chambers with all-metal seals/flanges (usually copper gaskets

and Conflat flanges). Materials for instrumentation internal to the chamber, or anything

else exposed to the vacuum, must be carefully selected to be stable and have minimal vapor

pressures both at room temperature and at standard UHV bakeout temperatures (100-

200◦C). Adequate pumping must also be included and often makes up a large part of the

size and expense of an ARPES system. As it can take up to a week to bring a particular

chamber from atmospheric pressure down to UHV, it is also extremely beneficial to have an

“air-lock” for putting samples into and out of the main vacuum without having to “vent”

the entire system. Reliable techniques for moving samples around inside the vacuum system

to the analysis position is also a critical dimension to any ARPES experiment.

Just achieving UHV pressures around the sample to be studied is not enough. As the

sample was likely exposed to atmosphere prior to insertion into the vacuum system, a clean

surface must be somehow freshly prepared in-situ in order to give ARPES data. Different

samples can be cleaned with a wide array of recipes. Many surfaces can be prepared with

high temperature annealing, or a combination of ion-sputtering and annealing. Other types

of crystals can give better surfaces by cleaving the sample in vacuum to expose an entirely

fresh surface. Naturally layered materials, such as the HTC cuprates and CMR manganites,

have natural cleavage planes which allow this technique to work excellently. Still other types

of samples can be “grown” via evaporative techniques, such as molecular-beam epitaxy

(MBE), in-situ to give a clean surface for study. In any case, it is often beneficial to have

dedicated chambers which can be valved off from the main vacuum for surface cleaning and

preparation. Surface characterization tools such as low-energy electron diffraction (LEED)

and Auger electron spectroscopy (AES) can often be helpful (in addition to ARPES itself)

for determining sample quality and inspecting preparation techniques.

The UHV vacuum system for the lab ARPES station was carefully designed and con-

structed in order to meet these requirements. Schematics of the system from the 3D mod-

eling software used for design (CoCreate Onespace) are shown in Figure 2.15. The ARPES

experiment is performed in the large central chamber. Pumping is provided from the large
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Figure 2.15. 3D schematics of the lab ARPES station. Two side views and a top view.

pumping-tree at the bottom with a large 500 `/s ion pump, a 500 `/s turbomolecular

pump, and a 10” flange titanium sublimation pump (TSP). After a good bakeout, the main

chamber has reached as low as 3× 10−11 torr and below 2× 10−11 torr with the additional

cryo-pumping when the cryostat is brought to liquid He temperatures. Inserting and re-

moving samples from vacuum is done through a dual-stage air-lock. Up to 12 samples can

be inserted/removed directly from atmosphere into the compact “Load-Lock” which can be

pumped via a 70 `/s turbo pump to ∼ 2× 10−7 torr within a half-hour and to ∼ 2× 10−8

torr in a couple hours. Samples can then be individually transfered between this chamber

and a sample-storage chamber that is held at ∼ 2× 10−10 torr by an ion pump and a small

TSP with the use of a magnetically coupled transfer arm (very similar in concept to that

used by Millikan!34). Samples are manipulated in vacuum by first affixing them to 1” cop-

per or molybdenum “pucks” which can be and transfered around in the vacuum system in

a variety of ways. Sample pucks are held on compact carousels in the load-lock and storage

chambers, with the pucks held in place by two angled stiff phosphor bronze wires which
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Figure 2.16. Load-lock and sample storage carousels. A stainless steel test puck is shown
mounted in a “parking spot”, held in place by the two stiff clips. A screw is glued to the
surface of this puck where a sample would normally be mounted instead.

clip onto a radial ridge around the edge of the pucks. The carousels before final assembly

with a sample puck are shown in Figure 2.16. Samples can be transfered from the storage

chamber onto the sample goniometer in the main chamber where ARPES can be taken in

addition to AES and LEED. Alternately, samples can be transferred to/from the storage

chamber from/to a small chamber dedicated to sample preparation, featuring a custom de-

signed high temperature e-beam sample heating stage and various e-beam evaporators and

leak-valves for specific gas species introduction. Due to space constraints which limited the

chamber’s size, only a small 70 `/s pump is presently used, which achieves a vacuum of

only 6 × 10−10 torr at best, however, it has still proven to be a useful chamber for sample

preparation. For cleaveable samples, a small bellows mounted “wobble-stick” is installed in

the main chamber for cleaving samples at low temperature right before the experiment.
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Figure 2.17. Main chamber sample goniometer and cryostat. Goniometer itself provides β
and φ rotations. The entire cryostat assembly is mounted on a rotary seal to provide the θ
rotation. Sample stage is connected to tip of cryostat by flexible copper braiding.

2.7.3 Sample manipulation

During ARPES or LEED measurement, a sample(puck) is mounted on a 2-axis goniome-

ter at the end of a cryostat designed, built, and maintained by John Pepper and his group

at the ALS. Sample pucks are loaded into the goniometer and locked into place in a similar

way to scheme used in the Load-Lock and sample storage chambers (Figure 2.16). The

goniometer has its own integrated e-beam heater assembly for flash heating samples in the

main chamber. It also has two integrated rotational motions: a tilt stage to rotate about

the red axis (β in the discussion in section 2.3 and figure 2.6), and a rotational stage to spin

about the pink dot (φ) for azimuthal alignment of the sample’s crystallographic axes. The θ

rotation (section 2.3 and figure 2.6) is provided by rotating the entire cryostat/goniometer

assembly on a dual-stage differentially pumped rotary seal. The goniometer is held at

the end of a vertically mounted liquid He cryostat and thermally connected to the cryotip

through a flexible copper braid. This scheme can bring the sample puck to as low as ∼12K.

A resistive heater is mounted near the cryotip for regulating temperatures above this base

temperature up to room temperature. The copper braid is thermally connected to the

cryotip through a sapphire plate which provides good thermal conductivity and electrical

isolation such that the sample puck can be floated to high voltage for e-beam heating as

well as allowing a measurement of the magnitude of the photoemission current during an
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experiment. In addition to the θ rotary seal, the cryostat is mounted to the main chamber

on a X-Y-Z large bore single-bellows manipulator (see Figure 2.15) enabling large sample

translations (to travel the long height differences between the analyzer, LEED, and sample

storage locations) in addition to fine sample positioning and alignment during measurement.

2.7.4 Light source

Critical to any photoemission experiment is a high quality light source which must

meet several requirements. First, the light source must provide photons of energy greater

than the sample’s work function, or else no electrons can escape into vacuum. Secondly,

the bandwidth of the light source is a contributing factor to the total energy resolution

of the experiment, so a highly monochromatized source is desired. Third, the experiment

count rate will be proportional to the source intensity, and so ARPES greatly benefits from

intense sources. Finally, the beamspot should be as small or smaller than the size of the

sample or domain of good sample surface to ensure that the measured signal is primarily

from the actual sample of interest. Also, the angular resolution of typical analyzers can

be adversely affected by large beamspots. The last three requirements taken all together

can be described as requiring a source of high “brightness”. Due to matrix element effects

(section 2.6), it can be very useful to have a tunable source which can have its energy varied

over a wide range of energy.

A helium discharge UV lamp (the SPECS UVS300) is installed on the lab system (see

Figure 2.15) which can provide both He I and He II lines (21.22 eV and 40.81 eV) with

good bandwidths of only ∼ 1 meV. It is also a fairly intense source and is easy to operate.

Unfortunately, however, there are no focusing optics currently. The beam is coupled from

the He plasma to the main chamber via a quartz capillary which acts to guide the photons

to the sample as well as limit the amount of helium getting into the main vacuum. The

beam is divergent out of the capillary, so with the capillary only a couple cm away from the

sample the beamspot is already a few mm in diameter. This limits its usefulness for small

samples, as well as may adversely effect the angular resolution of the electron analyzer.

Besides choosing from the two He lines, the source is not additionally tunable (although the
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lamp can be used with other noble gases give a few other photon energy choices). For initial

experiments on new types of samples, however, the helium lamp can be very convenient.

The lab chamber system is also capable of being installed on a beamline of synchrotron

light sources such as the Advanced Light Source (ALS). Third generation synchrotrons

provide extremely bright beams: high intensity (∼ 1011 photons per second), narrow band-

width (. 10 meV), and small spot sizes (. 100 microns). The most important advantage

of a synchrotron undulator beamline for ARPES, however, is the easy continuous tunability

of the photon energy, allowing scanning the Brillouin zone along kz for 3D samples as well

as allowing manipulation of matrix elements (section 2.6). The use of modern elliptically

polarized undulators (EPU) also allow continuous tuning of the photon polarization, aiding

in matrix element adjustment, as well.

An additional characteristic of a light source which is becoming increasingly important

is its timing structure. Experimenters are increasingly moving towards performing time

resolved experiments79,80,81,82,83,84 to probe the dynamics of a sample’s electronic structure.

A time resolved photoemission experiment could be of a pump-and-probe variety where the

light probes the sample at distinct times, adjustably delayed from some repeated pump.

This clearly requires a pulsed light source with the length of the probe pulse (as well as

the pump) defining the time resolution of the experiment. Energy resolving techniques

such as “Time-of-Flight” (TOF) require a pulsed light source, with the achievable energy

resolution directly related to the pulse width of the source. The TOF technique is central

to the work of this thesis and will be discussed in detail in the following chapter. A helium

discharge lamp is continuous and so is not an option for these techniques. Sychrotrons

such as the ALS usually operate in “quasi-continuous” mode in which the light does arrive

in well defined pulses, but with such a high repetition rate that they cannot be used for

timing experiments. However, regularly scheduled alternate operating modes lower the

repetition rate such that timing experiments become feasible. Laser sources (with harmonic

generation to increase photon energy to usable levels) have become particularly attractive

for photoemission experiments due to their intrinsic short pulses. Towards these ends, a
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Figure 2.18. Photograph of the fully constructed and operational ARPES system. The
analyzer is on the left-hand side.

fourth-harmonic 6 eV laser light source was developed in the lab for use with conventional

photoemission analyzers, but has also become a key component of the spin-TOF project.

A photo of the custom designed and fully operational in-lab ARPES station is shown

in Figure 2.18.
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Chapter 3

Spin-Resolved Photoemission

Spectroscopy

Further and unique insight into the electronic structure of solids and into the
photoemission process can be obtained by analyzing the spin orientation of the
emitted electrons

— R. Feder85

The previous chapter gave a brief look into the power of ARPES for probing the elec-

tronic structure of solids. It was shown that by resolving both photoelectron energy and

momentum (emission angle), high-resolution ARPES can not only perform bandmapping

and Fermi surface topology mapping, but can also provide information regarding many-body

interactions through direct access to the single particle spectral function. This chapter will

detail how resolving the spin orientation of the photoelectrons can provide additional in-

formation about a material’s electronic structure as well as insights into the photoemission

process itself. Spin polarization (degree of imbalance between spin-up and -down along

some axis) of photoelectrons is certainly expected from ferromagnetic systems in which the

density of states is polarized, but photoemission from non-magnetic samples may also be

spin polarized due to the spin-orbit interaction and the use of circularly polarized light.

Either way, additional information can be obtained with measurement of the photoelectron
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spin. These cases will be explored and the current state-of-the-art methods for perform-

ing spin-resolved photoemission will be reviewed. Further details are covered in numerous

spin-resolved photoemission reviews.16,22,23,24

3.1 Three-step model revisited

As discussed in section 2.3, the most realistic formulation of photoemission treats it

as a single coherent one-step process. A spin-dependent treatment is no different in this

respect, and a general one-step approach should be considered for maximum accuracy in

numerical calculations.85 However, just as in the spin-independent case, use of the simpler

three-step model provides a more intuitive framework for understanding and interpretation.

In the spin-dependent case, the three-step model also provides better insight to the various

sources of spin polarization in the photoemitted electrons.

3.1.1 Step one

The first step is the actual photoexcitation process in the solid and contains the informa-

tion intrinsic to the electronic structure being probed. The rate of these direct transitions

can be approximately expressed as a “Fermi’s Golden rule” as in equation 2.13, which was

reduced to equation 2.22 in section 2.4 to highlight the relevance of the single particle spec-

tral function. We can copy this equation here, explicitly noting the spin-dependence which

was earlier ignored, as

I(k, ω, σ) ∝
∑
f,i,σi

|〈φk,σ
f |Hrad|φk,σi

i 〉|2f(ω)A(k, ω, σ)δ (ω + EK − hν) (3.1)

where σ is the spin direction (i.e. spin-up or -down along some axis) of the photoelectron,

σi is the spin direction of the initial state, and we have written out the matrix elements,

Mk
f,i. We can now see several reasons to expect spin-dependence of the photoelectron

intensity. We expect that ferromagnetic materials will have a strongly spin-dependent elec-

tronic structure; spin-dependence of |φk,σi
i 〉 will be passed on to the photoemitted electrons

through the matrix element term. We would also expect the spin dependent electronic
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structures of ferromagnets to have a spectral response to the removal of an electron depen-

dent on its spin. This is expressed as the spin-dependence of the spectral function term,

A(k, ω, σ) =
∑

m |〈ΨN−1
m |ck,σ|ΨN

i 〉|2δ
(
ω − EN−1

m + EN
i

)
. Spin-polarization can also arise in

non-ferromagnetic systems from the matrix element term in equation 3.1 through dipole

selection rules.

The matrix elements were investigated using a spinless Hamiltonian of Schrödinger form

in section 2.6. Here we begin with a proper Dirac form which takes the electron spin into

account:24

H =
1

2me

(
p− e

c
A

)2
+ eφ− e~

2mec
σ∇×A +

ie~
4m2

ec
2
E · p− e~

4m2
ec

2
σ (E× p) (3.2)

where σ is the vector of Pauli matrices used to represent the electron spin (using the

notation from section 1.2 we have S = ~
2σ). The first two terms were used previously in

section 2.6, and the fourth term is a relativistic energy correction, which we can ignore here.

The first two terms can be again reduced to the electric dipole A · p perturbation term as

in section 2.6. Electric dipole transitions are spin-conserving; 〈φk,σ
f |A · p|φk,σi

i 〉 6= 0 only

when σ = σi.

The third term, which can be written as − e~
2mecσ · B, represents the direct coupling

between the spin and the magnetic field. Photoexcitation through this term (where B is

the magnetic field of the incident radiation) leads to spin-flip transitions where the electron

spin is switched. In fact, with circularly polarized light of positive helicity, only initial state

electrons with spin-down (along the light propagation direction) can be excited and get

flipped to spin-up final state photoelectrons, and vice versa for light of negative helicity.85

This seems to lead to 100% spin polarized photoemission even from non-magnetic samples.

The cross section for these magnetic transitions to occur, however, need to be compared with

the other terms of equation 3.2. An early calculation86 estimates that the ratio of spin-flip

σ·B transitions to spin-conserving A·p transitions go as ≈ hν/(mec
2). At hν = 100 eV, this

means spin-flip transitions will be only 0.02% as likely as spin-conserving ones. This ratio

can increase in geometries where the A · p matrix elements vanish (section 2.6), however

the σ ·B matrix elements will still be quite small resulting in little total photoemission to

practically measure. A somewhat intuitive explanation for the relatively small probability
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of σ ·B transitions can be found by multipole expansion: in the absence of strong spin-orbit

splitting, the magnetic dipole (M1) excitations are forbidden (due to parity), and so the

strongest contribution will be from only quadrapole (M2) or higher order terms.85 Due to

the domination of the A ·p over the σ ·B term, we can treat the photoexcitation step as a

spin-conserving process.

The last term in equation 3.2 represents spin-orbit coupling, introduced in section 1.2.3,

and can have considerable effects in determining the initial and final states. These can

lead to measurable and even large spin-polarization effects in photoelectrons through the

dominant electric dipole transition term. The mechanism which can make this occur is

better explained in section 3.2.

We have found, then, that the matrix element in equation 3.1 can be be well approxi-

mated as

〈φk,σ
f |Hrad|φk,σi

i 〉 ∝ 〈φk,σ
f |A · p|φk,σi

i 〉 (3.3)

which can be reduced to the same electric dipole matrix element as arrived at in section 2.6,

except with explicit spin dependence included in the initial and final states. As discussed

above, these transitions are spin-conserving; non-zero matrix elements can only occur for

σ = σi, so we can drop the i notation and remove the sum over σi in equation 3.1. So after

all our work, we find that the spin-dependence of the photoexcitation intensity is just

I(k, ω, σ) ∝
∑
f,i

|〈φk,σ
f |A · p|φk,σ

i 〉|2f(ω)A(k, ω, σ)δ (ω + EK − hν) . (3.4)

3.1.2 Steps two & three

Photoexcited electrons from step one must still travel through the solid and transmit

through the surface before we are able to measure them. A natural concern is the degree to

which spin polarization of the photoelectrons is maintained through steps two and three.

For non-magnetic materials, the mean free paths of electrons tend not to be spin depen-

dent, and so if photoelectrons from step one are not spin-polarized they will not gain spin

polarization through scattering in the bulk. In certain non-magnetic semiconductors, like

GaAs, the conduction band can be populated with spin-polarized carriers from excitation
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by circularly polarized light, and thermal diffusion of these charge carriers becomes a dom-

inant transport mechanism. A spin-lifetime, which is the average time before a spin-flip

scattering event occurs, can be introduced. It can be shown that if the spin-lifetime is much

shorter than the regular photoelectron lifetime, depolarization of these carriers can occur.85

For magnetic materials, spin-dependent scattering in step two can lead to interesting

effects. It is generally found that the low kinetic energy secondary electrons (large in-

creasing tail of measured spectrum in Figure 2.4) can have considerable polarization, even

greater than that of the valence band.87 This is generally explained qualitatively with a

basic phase space arguments.22 For a photoelectron to flip its spin by scattering via the

Coulomb interaction (total spin-conserving), an electron from an occupied state must also

flip its spin and scatter to an available state above EF . The ferromagnetism of the sample

typically means there is a larger number of minority spin states above EF than majority

states. So for spin flip scatterings, it is easier for an occupied majority electron to find an

available minority state above EF , making it more likely for a spin minority photoelectron

to flip to majority than vice versa. This leads to an interesting situation where the high-

est spin polarization of the photoemitted spectrum is at the kinetic energies where there

is maximum intensity (note the height of the secondary peak in Figure 2.4). This effect

has been taken advantage of in making polarized secondary electron scanning microscopes

(or scanning electron microscope with polarization analysis, SEMPA) for high resolution

magnetic domain microscopy.88

Despite the various possibilities for loss of spin-information in transport and transmis-

sion through the surface, it has been experimentally found in many cases that spin polariza-

tion of primary photoelectrons is not significantly altered in the emission process, allowing

straightforward interpretation of the experiment. In other cases things can be less clear,

although even in these cases, the loss of spin-polarization can be used for understanding

the energy and spin dependent scattering of excited electrons.89
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3.2 Spin resolved PES from non-magnetic samples

Using circularly polarized light to photoemit electrons with preferential spin orienta-

tion from a non-polarized source was first suggested in 1969 by Fano with unpolarized Cs

atoms90 and experimentally verified in 1970 by Kessler and Lorenz.91 The polarizing effect

is due to spin-orbit coupling in the initial and/or final states and the selection rules enforced

in the dipole matrix element in equation 3.4. A simple rationale for this can be understood

as follows: the angular momentum of the photon is linked to the electron initial and final

state (photoelectron) orbital quantum numbers (l,ml) through the dipole selection rules of

the matrix element in equation 3.4, and these angular momenta are in turn coupled to the

electron spin through the spin-orbit coupling in equation 1.22. Circularly polarized pho-

tons have absolute angular momentum defined along their propagation direction, and thus

information regarding the orbital momentum of the probed states can become encoded in

the photoelectron spin polarization along this axis. This concept is perhaps best illustrated

in an example of great significance in the field of spin physics as it has become a popu-

lar standard source for spin polarized electron beams for various experiments: the GaAs

photocathode.92,93,94

GaAs is a direct-gap semiconductor with its bandstructure around Γ sketched at the far

left of Figure 3.1. At the high symmetry points at Γ, the states’ symmetries can be closely

approximated by those of atomic orbitals. The bottom of the conduction band at Γ6 can

be represented as a s1/2 state. The valence band can be approximated by a p level, which

by strong spin-orbit coupling (section 1.2.3) is split by ∆ into two p3/2 states (degenerate

at Γ) and a lower p1/2 state. GaAs is not magnetic, and so each band shown is additionally

doubly spin-degenerate.

The right side of Figure 3.1 is a level diagram of each state in the bands at Γ. Each

state is labeled on top by the mj value according to the total angular momentum |j,mj , l, s〉

eigenbasis. Each |j,mj〉 state is also written out below in terms of the |l,ml, s,ms〉 eigen-

basis, here abbreviated as |ml,ms〉 kets. Excitation by circularly polarized light must fol-

low the regular selection rules of ∆l = ±1, ∆j = ±1, 0, and ∆mj = ±1 (mj directed

74



Figure 3.1. Diagram of optical excitation of GaAs at Γ with circularly polarized light.
Schematic bandstructure at Γ is shown on far left, labeling high symmetry points. Atomic-
like spectral notation for the three levels at Γ are given. Complete level diagram of each
|j,mj〉 level, expanded into explicit |ml,ms〉 basis kets is on the far right. Right circularly
polarized light of hν = Eg can only make transitions labeled by the solid arrows. The labels
‘3’ and ‘1’ correspond to the transitions’ relative strengths.

along the photon propagation direction). Illuminated by right circularly polarized light of

hν = Eg ∼ 1.5 eV, transitions are then restricted by the last selection rule to only the

two marked by the solid arrows in the figure. The relative transition rates can be worked

out by inspecting the dipole matrix elements (|〈m′
j |A · p|mj〉|2) in terms of the |ml,ms〉

basis. As the dipole operator conserves spin, it is clear that the relative transition rate of

the mj = −3/2 −→ mj = −1/2 transition to the mj = −1/2 −→ mj = +1/2 transition is

3 to 1. It is interesting to note how the transition rates are ruled by the Clebsch-Gordon

coefficients. Because of this imbalance in transition rates, the photocurrent obtains an im-

balance of spin-up and -down electrons. To be precise, the final state polarization (along

the photon propagation direction) can be expressed as

P =
N↑ −N↓
N↑ +N↓

=
1− 3
1 + 3

= −50%. (3.5)

Note that illumination by left circularly polarized light limits the transitions to the two

marked by the dashed arrows in the figure, which will then give the exact opposite spin

polarization of +50%.
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This example well illustrates that the spin-orbit splitting of the valence band is critical

for the effect. If there were no spin-orbit splitting, the p1/2 levels at Γ7 would also be able

to participate in overlapping transitions. A similar analysis to above shows that with right

circularly polarized light, the additional mj = −1/2 → mj = +1/2 transition would occur

at a rate of 2 relative to the others. This would result in a total excited spin ratio of 3 to

3; in other words, no spin polarization. Equally critical is the use of circularly polarized

light. Inspection can show that linearly polarized light, with its different selection rules,

will not result in spin polarization (this is perhaps easiest to see by thinking of the linear

polarized light as a superposition of both left and right circular light). This is actually a firm

rule for bulk transitions: excitation by linear polarization will not create spin polarization,

but circular/elliptical may and reversal of the helicity reverses the polarization effect.85 It

should be noted that this example and rule explicitly involves only photoemission normal

to the surface; in general, at emission angles away from normal, spin-orbit splitting can

lead to polarized emission even with linear or unpolarized light.95 We will see an example

of this in section 6.2.3.

The present effect with circularly polarized light is sometimes referred to as “optical spin

orientation” and is more thoroughly described in ref. 89. More exhaustive group theoretical

approaches to the symmetry of the bands, including away from the Γ point, can describe

the effect more completely. By measuring the spin polarization of photoemission from

samples with strong spin-orbit coupling, one can thus work backwards to experimentally

map the symmetries of the probed bandstructure. Examples of this, in particular the

resulting symmetry-resolved bandmapping of Pt, are well reviewed in ref. 96. Other good

examples of using this technique to investigate spin-orbit splitting in the valence bands of

non-magnetic 3d transition metals can be found in ref. 97.

An extremely interesting, although difficult to interpret, spin-resolved photoemission

experiment has also been performed on the HTC superconducting cuprates.21 These HTC’s

are of course not ferromagnetic – in fact they have an antiferromagnetic background. Av-

eraged over the many unit cells within a reasonable illumination spot, there will be no spin

polarization in the initial states. However, again through the use of circularly polarized light
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Figure 3.2. Spin-resolved resonant photoemission spectra from Bi2Sr2CaCu2O8+δ at photon
energy hν = 931.1 eV, the Cu 2p3/2 absorption edge. (a)The total intensity spectrum is
the solid line, and the spectrum broken up into spin-triplet and -singlet components are
the square and triangle markers, respectively. (b) The measured spin polarization of the
resonant photoemission, used for the analysis of the singlet and triplet components. Figure
taken from ref. 21.

and a fairly large spin-orbit splitting of the Cu 2p core levels, spin polarized photoemission

is achieved. Analysis of the spin polarization then offers insight into the spin structure of

the initial state, in this case the spin-singlet and -triplet character of the spectrum, which

has impact on the typical starting point for theoretical models of the cuprate electronic

structure. Full interpretation involves a thorough analysis of the resonant photoemission

used to take advantage of the large spin-orbit splitting of the 2p levels, which is beyond

the scope of the thesis.98,99 A complete description of the experiment can be found in the

literature.19,20,21

A brief look at the experimental results, however, is instructive and they are presented in

Figure 3.2. The total spin integrated EDC spectrum is shown by the solid line in panel (a).

The measured spin polarization resulting from the use of circularly polarized light and the

spin-orbit split core level is shown in panel (b). Through a fairly complicated interpretation

and analysis,20 this polarization measurement is used to break down the solid line spectrum

in (a) into spin-singlet and -triplet components, shown by the square and triangle markers.
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It should be stressed how interesting it is that spin information is being obtained from

an unpolarized source. An important aspect of the data to notice is the resolution: only

one EDC was taken and it was taken with essentially no angular resolution (averaged over

40◦) and only 750 meV energy resolution. Although it is quite an important work, the

resolutions are quite a bit worse than the ultra-high resolution regular ARPES is capable

of (section 2.7.1) and is providing no access to the momentum dependence which is critical

for complete understanding of the solid. We will investigate why this is so in section 3.4.

3.3 Spin resolved PES from ferromagnets

Spin-resolved photoemission can also be applied to great use on ferromagnetic materials.

Ferromagnetism is due to an imbalance of the distribution of spin-up and -down electrons

in a material’s electronic structure, with the magnetization vector providing the natural

reference axis for spin orientation. This imbalance can be directly probed via spin-resolved

photoemission as the polarization of the measured photoelectrons is directly related to the

polarization before excitation with unpolarized or linearly polarized light, as detailed in

section 3.1. Initial work was hampered by requiring the sample to be placed in a constant

applied magnetic field to ensure alignment of ferromagnetic domains, but working with

samples which can be remnantly magnetized (and shaped to have little stray field to disrupt

the photoelectrons) allows ARPES experiments to be properly performed.22 In this way,

spin-ARPES can directly map the majority/minority spin-resolved bandstructure and Fermi

surface topologies of bulk and surface states of ferromagnets. Thus spin-ARPES can be a key

tool in engineering advanced spintronics-type materials, interfaces, and devices, as well as

provide excellent opportunities for comparison with advanced theories of ferromagnetism in

general. Specifically, near TC models of ferromagnetism are still in doubt, and temperature

dependent spin-ARPES is a direct way to probe the ferromagnetic transition.22 Detailed

spin-ARPES experiments also allow access to the spin-dependent single-particle spectral

functions which offers a way to measure the spin-dependent self- energies and correlation

effects.
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Figure 3.3. (a) Spin-resolved ARPES normal emission EDC’s from Fe(100) taken with s-
polarized photons with hν = 60 eV. Up (red) and down (blue) filled arrows are majority
and minority signal, respectively, at T = 0.3TC . Open triangles are at T = 0.85TC . Figure
adapted from ref. 100. (b) Spin-resolved ARPES from Gd(0001)/Mo(110) at 20K with
photon energy hν = 21.2 eV. Solid (red) and open (blue) markers are spin majority and
minority, respectively. Solid lines are Lorentzian fits. Inset shows the relative intensity of
the two signals. Figure adapted from ref. 101.

One example of such work is shown in Figure 3.3(a) where normal emission spin-resolved

spectra from Fe(100) are shown.100 The spectra taken well below TC (solid markers) match

theory quite well. The spin majority EDC shows two clear peaks corresponding to the Γ25

and Γ12 majority bands. The spin minority EDC shows a sharp peak near EF corresponding

to the Γ25 minority band: the difference between the two Γ25 peaks is, of course, the

exchange splitting. Well above TC when the Fe is no longer ferromagnetic, one would

expect there to be no spin-polarization, and that the majority and minority EDC’s would

be identical. The interesting thing to study is how the below TC spectra evolves into the

above TC spectra as T is increased. The open markers display the majority and minority

bands at T=0.85TC , and quite a lot of things can be noted. First of all, although there is

a definite decrease in overall intensity in both spin channels, the peaks present in the far

below TC data have not shifted in energy very much in the high temperature data. The

Stoner model of ferromagnetism would predict that the exchange splitting should collapse

as TC is approached and the overall magnetization decreases, and this is certainly not

occurring here. Second, a new peak appears in the minority EDC, very near the energy of
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the majority Γ25 peak. This is interpreted as an “extraordinary peak” and is evidence of

regions of the sample where the magnetization direction spontaneously fluctuates, effectively

mixing the signal in the two spin channels. A more thorough review can be found in ref.

22. This data represents great progress in the understanding of ferromagnetism near TC in

Fe. However, again we should take note of the resolutions used in the experiment: 300 meV

and ±3◦ energy and angular resolution, respectively. For this particular system where the

high temperatures likely do not allow benefit of higher resolutions, it is exciting to think

what other details could be lurking at finer scales for other ferromagnetic systems near TC

(for an example, see section 7.2.1).

A second example is shown in Figure 3.3(b) which displays spin-ARPES spectra from

the Gd(0001) surface.101 A relatively sharp peak is found in both the majority and minor-

ity EDC’s, although the minority peak is much less intense, as shown in the inset. This

experiment was performed with 50 meV and ±3◦ energy and angular resolutions. As the

band being probed has very slow dispersion, the angular integration does not increase the

peak widths very much. These resolutions represent about the best spin-ARPES resolutions

in the present literature. Due to the higher resolutions, the peaks can be fairly well fit by

Lorentzians, as shown in the figure, and widths can be accurately extracted. In this case the

spin minority peak is found to be significantly wider than the majority, and the dependence

of these widths on temperature aid in studying the many-body effects in the sample.101

This is quite an accomplishment for spin-ARPES, however the resolutions still are not as

good as those obtained with regular ARPES (such as in Figure 2.14) and was partly able

to resolve the peaks so well only because good angular resolution was not required for the

flat band being probed.

3.4 Current state-of-the-art technique

Spin-resolved photoemission experiments have been performed for almost as long as

spin-integrated experiments. Spin-polarization was first detected in photoemission in 1969

as a “total-yield” experiment102 (i.e. all electrons measured, no angle or energy resolution).
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The first spin, angle, and energy resolved experiments were published in 1981 in both

magnetic103 and nonmagnetic104 systems. Despite the early start, it is clear that spin-

ARPES experiments have not experienced the same explosion of advances which regular

ARPES has enjoyed. We saw in section 2.7.1 that much of the reason for the enormous

ARPES growth is due to the significant advances in instrumental efficiency. We shall show

here that spin-ARPES is severely handcuffed by significantly lower efficiencies, hampering

the development of instrumentation to keep up with the field of spin-integrated ARPES.

The primary problem can be summarized in a single sentence: measuring electron spin

orientation is extremely difficult! Light polarization analysis is straightforward; optical

polarization filters which pass close to 100% of a given polarization while rejecting close to

100% of the orthogonal polarization are commonplace. Unfortunately, no such device exists

for electron spin. All detectors so far developed for electron spin polarization analysis, or

electron polarimeters, are based on some sort of spin-dependent electron scattering method,

which always turn out to be quite inefficient compared to the optical case. The state-of-the-

art polarimeters can achieve under good conditions an effective efficiency of 1x10−4! Worse

yet, they are only single-channel detectors.

The net result of these two critical points are summarized in Figure 3.4. Because of

their familiarity and enormous effectiveness, SDA’s are now usually used to perform the

energy and angle analysis in a spin-ARPES instrument.105,106,107,108 As shown in the figure

and discussed in section 2.7.1, a multichannel PSD can be used in regular ARPES to detect

a given count rate in over 104 separate channels simultaneously. This allows ARPES data

to be taken as 2D slices as depicted to the right of the figure. In a spin-ARPES instrument,

the spin-integrating PSD is replaced by a single-channel spin polarimeter. Not only is this

single channel on the order of 10−4 times less efficient than each channel of the PSD, but

only one channel is taken at a time. Energy and angular resolution is defined by an aperture

that is placed between the exit of the SDA and the entrance of the spin polarimeter – all

electrons which fall in an energy and angular range defined by this aperture are counted

as a single channel. This means that spin-ARPES data is then forced to be taken point-
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Figure 3.4. Principles of current state-of-the-art approach to spin-ARPES. The familiar and
trustworthy SDA is used for energy/angle analysis. A standard multichannel PSD can take
data at a count rate of I1 (at near unit efficiency) in ∼100x100 distinct channels, taking the
data shown to the right in 2D slices. Spin detection is done with a single channel detector in
place of the PSD, with resolutions defined by the size of an aperture at the exit of the SDA.
Electrons enter the spin polarimeter at a rate of I2 as a single channel, and are detected
with an effective efficiency of 1x10−4. Data on the right must be taken as 0D points (black
dots) one-at-a-time.
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by-point (black dots in Figure 3.4) in the multidimensional k vs. E phase space instead of

plane-by-plane.

For illustrative purposes, let’s say that we want to perform a spin-ARPES experiment

with such an instrument, and we want to take as many data points with as high an energy

and angular resolutions and same quality statistics as the spin-integrated version. The spin-

integrated version with the PSD can take ∼ 10, 000 channels at a rate of I1 in each channel,

with near 100% efficiency, for a total data accumulation rate of 10, 000I1. To achieve the

same resolutions in the spin-resolved experiment, we insert an aperture that is the same size

as one channel of the PSD, and install the spin polarimeter behind it. Electrons then enter

the detector at a rate of I2 = I1 and are detected with an effective efficiency of 10−4 for a

total data rate of 10−4I1. Thus, to accumulate the same data (1 2D slice), the spin resolved

experiment will take ∼ 108 times longer! The enormity of this difference is a large part of

what has held the field of spin-ARPES back, despite the intrinsic benefits of spin-dependent

measurements.

Of course the spin-ARPES experiments that have been performed did not take so long

to complete. To complete a spin-resolved measurement in a reasonable amount of time

(normally sample surface lifetime requires experiments to be performed in . 1 day), other

constraints must be relaxed. Decreasing the resolutions used increases count rate as well

as reduces the number of data points needed within the given data range. For instance,

diminishing the angular resolution by a factor 10 can be traded for a factor 10 increase in

the count rate entering the polarimeter (I2 = 10I1) by increasing the size of the aperture

along the angular direction. Additionally, 10 fewer EDC’s must be taken to cover the

same range of angles, so the total gain is a factor 100 in regards to experiment time.

Diminishing the angular resolution by a total factor of 100 and taking only a single EDC

(as in the example experiments discussed in the previous section), and similarly diminishing

the energy resolution by a factor 10 and taking 10 times fewer energy data points, thus gives

a total gain of 106, returning the total experiment time to near-practical levels. Further

reduction in total experiment time can be made along the ky direction in Figure 3.4: I2 is
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Figure 3.5. Angle-resolved EDC’s at two locations in momentum space. Filled circles mark
data taken below TC , while open squares mark data taken above TC . While the spectra at
momentum point ‘B’ look very similar at the two temperatures, the spectra at ‘A’ show the
clear opening of the superconducting gap. These measurements are a direct measurement
of the anisotropy of the HTC gap. This discovery required both momentum dependence
and high energy resolution to observe the changes.

further improved at the cost of decreasing ky resolution by increasing the vertical size of

the SDA entrance slit, and fewer data steps are taken along ky.

So we see that with current instrumental techniques, spin resolution is extremely ex-

pensive in terms of the amount of information acquired along the momentum and energy

axes. Even with state-of-the-art systems, the addition of spin resolution forces the loss of

the energy and momentum resolutions required to probe the interactions of central interest

in current solid state physics. As a striking example, Figure 3.5 presents ARPES data from

a HTC superconductor taken a decade and a half ago.65 By current ARPES standards, the

resolutions were somewhat modest, but the ∼ 3◦ and 30 meV resolutions achieved were

enough to discover the fine momentum dependence of the superconducting gap, offering

strong evidence of the d-wave symmetry of HTC superconductivity. This profound dis-

covery helped launch the enormous growth of both HTC ARPES research and the field of

ARPES itself,30 and these are the energy and momentum scales that spin-ARPES must
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strive for in order to achieve similar impact. Who knows what may be discovered with

additional spin resolution at similar energy and momentum scales? In order to find out,

new techniques must be introduced to make definitive steps forward.

3.5 Novel approach

In order to make significant advancements in the field of spin-ARPES, a radically new

spectrometer has been designed and fabricated from the ground up. The resulting “spin-

TOF” spectrometer is capable of well over 100 times higher efficiency over the current

top-of-the-line systems. This is achieved through a drastic departure from the standard

approaches and the introduction of entirely different working principles in two major ways.

First, energy analysis is not performed with the ubiquitous SDA. Although the SDA has

been the clear choice for ARPES in the past decades due to the natural integration of 2D

multichannel PSD’s, the SDA is no longer the natural choice when forced to work with spin

polarimeters that are inherently single-channel. An important concept realized in our new

spectrometer, is that while current spin-polarimeter technology is necessarily single-channel

along spatial dimensions, they can be made to work as multichannel detectors along the

temporal dimension. The new spectrometer performs energy analysis with the time-of-flight

(TOF) technique, where multi-chromatic photoelectrons disperse in time, rather than space

as in deflective analyzers like the SDA. Energy analysis is performed by measuring the time

the electrons take to travel from the instant of emission at the sample surface across some

set distance to the ultimate electron detector. The higher the kinetic energy an electron

leaves the sample with, the faster it will arrive at the detector. The key concept is that

all the electrons arrive at the same spatial channel, but can be energy resolved by their

differing transit times. With the TOF technique, spectrometers with single-spatial-channel

detectors such as spin-polarimeters are able to acquire data along the energy dimension in

parallel, becoming 1D detectors. Returning to Figure 3.4, instead of taking data in k− E

space as single dots, the spin-TOF spectrometer can take data as vertical lines, and the

number of effective channels along the time/energy dimension represents a gain in efficiency
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of well over two orders of magnitude. By moving to TOF, the new spectrometer brings the

enormous efficiency of multichannel detection to the field of spin resolved photoemission.

TOF does, however, intrinsically require a pulsed light source with appropriate timing

structure necessary for high resolution of the “start” times of the photoelectron’s flight

to the detector. This means that continuous wave (CW) sources such as helium lamps

(section 2.7.4) are unacceptable. In other cases, such as synchrotron light sources like the

ALS, use is restricted to operating modes which result in an overall reduction in flux of

about a factor 10. Even in this case, there is still a substantial gain of more than a factor

10 in efficiency by utilizing TOF. In other cases, such as in the growing field of laser-

based ARPES52 and related pump-probe time-resolved ARPES,79,80,81,82 the excitation

source already has the required timing structure, and the full gain in efficiency with a

TOF analyzer is realized. More details of the technique and a complete description of the

custom-developed TOF analyzer is covered in the next chapter.

A second large departure from the normal spin-ARPES approach is taken with the

actual spin polarimeter. The most popular type of polarimeter utilizes an asymmetry

in the reflection angles from Au foils of photoelectrons accelerated to relativistic energies

(20-100 keV). This type of polarimeter is typically called a “Mott” or also a “mini-Mott”

polarimeter. Although quite common and reliable, they suffer large inefficiencies as the vast

majority of the high energy electrons are not scattered by the Au foil towards the detectors

or even scattered at all. The polarimeter of the spin-TOF spectrometer takes a different

tack by utilizing asymmetry in the total reflectivity of low energy (6 10 eV) photoelectrons

from ferromagnetic surfaces. The low kinetic energy ensures significantly higher reflected

count rates of about a factor 100. The low kinetic energies are also very well matched to

the low kinetic energies used in the TOF analyzer and produced by the UV photon energies

usually used for ARPES experiments. The polarimeter design, construction, and operation

is simplified by not requiring the high-voltages present in Mott-type polarimeters. Details

of electron spin polarimetry and the development of the new polarimeter are covered in

Chapter 5.

The combined features of the two advances in the spin-TOF spectrometer suggest total
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gains in efficiency of at least 100 over current state-of-the-art spin-ARPES methods. In

experiments which already use pulsed light sources, the gain can be well over a factor 1000.

With these large gains, the spin-TOF spectrometer aims to boost the field of spin-ARPES

to achieving the energy and momentum resolutions required to study the current major

issues in solid state physics. The full design and initial operating experiences are reviewed

in Chapter 6.
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Chapter 4

Time of Flight Spectroscopy

The advantages of TOF detection of photoemitted electrons (as well as ions) lie
in the collection of the entire kinetic-energy spectrum at one time, decreasing
the data collection time by as much as a factor of 103

— V. Rehn109

Time-of-flight (TOF) is a highly sensitive, well established, and widely used spectro-

scopic technique based on measuring particle velocity distributions. Particles of differing

average velocities are distinguished by transit, or ‘flight’, times through a given distance.

TOF is very popular for ion mass spectroscopy and neutron scattering spectroscopies in

addition to various electron spectroscopies. TOF became an attractive choice for photoe-

mission spectroscopy at early synchrotron radiation sources to exploit the natural time

structure of the synchrotrons.110,109,111 As dedicated synchrotron sources were developed

with quasi-CW high repetition rates for maximum intensities for photon-hungry science,

opportunities for TOF experiments decreased. The simultaneous development and success

of electrostatic deflection analyzers eventually led to a period of domination by the SDA

for photoemission spectroscopy (section 2.7.1). The TOF technique, however, remains very

beneficial in several situations, and a number of TOF photoemission spectrometers have

been developed to take advantage of certain running modes of synchrotron sources. The

growing emphasis on ultrafast dynamics and time-resolved science, which require pulsed

light sources with timing structures ideal for TOF methods, make TOF an especially ef-
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fective technique and has lead to increasing popularity. Spin-ARPES is a field which can

particularly benefit from TOF energy analysis, and in the advanced field of time-resolved

ARPES it gains enormous advantage over other techniques. Its use in the present spin-TOF

analyzer can increase efficiency of spin-ARPES experiments by a factor of 10 to almost 1000

over conventional methods.

Although TOF is, and has been, well utilized in a number of photoemission spectro-

scopies, to the best of the author’s knowledge, the spin-TOF is a unique implementation

of TOF with a high precision and flexible multi-use electrostatic lens system capable of si-

multaneous high collection efficiency and adjustable drift velocity for high energy resolution

ARPES. As we will see, this allows the high resolution to be obtained through a wide range

of photon energies. Two run-time selectable flight paths allows for the choice of analysis

with two detectors for differing techniques. A standard high-speed spin-integrating electron

detector after a straight path can be used for fast, full spectrum ARPES to be taken, and

an efficient spin-polarimeter with high-speed detection after a 90◦ bandpass filter can be

used for higher resolution, spin-resolved ARPES.

After a brief description of its working principles, the central advantages of the TOF

technique are reviewed, and situations in which they are well utilized are described. A de-

tailed account of the design, construction, and commissioning of the present TOF system is

given. Key aspects of the hardware, electron detection, and timing electronics are included.

The unique strengths of this particular TOF analyzer are highlighted throughout.

4.1 TOF basics

The TOF technique is relatively straightforward in principle, and a basic schematic

of the photoemission experiment is shown in Figure 4.1. In addition to the sample and

a pulsed excitation source, all that is required is a drift space followed by a high-speed

electron detector. Energy resolution is provided by precise measurement of the time between

an excitation pulse (tstart) and ultimate electron detection (tstop). Angular resolution is

provided by the system’s angular acceptance, defined by an explicit aperture along the

89



Figure 4.1. Schematic of the TOF technique, including the pulsed source, the high-speed
electron detector, and the flight paths of length ∼ L from sample to detector. The measured
time-of-flight can be converted into electron velocity and hence kinetic energy. TOF can
acquire full energy spectra simultaneously as a 1D multichannel detector. Data in k-E
space is taken as vertical lines on the right.

flight path or simply by the size of the detector. The kinematic relationship between

electron kinetic energy and flight time is given by

EK =
1
2
meυ

2 =
1
2
me

L2

t2
(4.1)

where t is the flight time given by tstop − tstart and L is the length of the electron flight

path. The distribution of photoelectron kinetic energies is measured as a distribution of

flight times. Incidentally, in TOF ion mass spectroscopy, ions are accelerated by a fixed

voltage (V ) to kinetic energy, EK = qV , and their resulting flight times are directly related

to their charge to mass ratio, q/M , through equation 4.1.

TOF performance can be expressed by differentiating equation 4.1 to give

∂EK = 2
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t2
∂L

L
− 2

1
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t2
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t

= 2EK
∂L

L
− 2EK

∂t

t
. (4.2)

Assuming that the uncertainty in the measured flight times (∂t) and flight paths (∂L)

are statistically independent, we see that the resolving power of a TOF photoemission
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experiment can be written as

∆E
E

=

√(
2
∆L
L

)2

+
(

2
∆t
t

)2

(4.3)

where ∆t represents the total timing resolution of the experiment, ∆L represents the path

length differences of the counted electrons, and we have dropped the K subscripts from the

kinetic energy. Thus we see that the resolving power of the TOF experiment is limited by

two main experimental parameters, timing resolution and path length.

Let us first focus on the second term on the right of equation 4.3. The total timing

uncertainty of the experiment can involve a number of sources, including the light source

pulse width (∆tls), the timing resolution of the high-speed detector (∆td), and any other

timing jitter introduced by data acquisition electronics used to process the detector signal

(∆tdaq). Again, assuming each of these contributions to timing uncertainty are statistically

independent, we can write

(∆t)2 = (∆tls)
2 + (∆td)

2 + (∆tdaq)
2 . (4.4)

Typically, the detector speed will be the limiting factor in the total timing resolution. To

ensure optimal total timing resolution, it is thus best to use a light source with pulse widths

at least equal to or less than the detector speed (∆tls ≤ ∆td). Using pulse widths much less

than the detector resolution does not result in significant gain (and of course vice versa).

As we will see later, in practice it is quite feasible to achieve detector resolutions of ∼100 ps,

which conveniently is nicely matched to typical pulse widths at synchrotron lights sources.

Although elegant and concise, the 2∆t/t expression of the timing contribution to the

resolving power as written in equation 4.3 doesn’t well expose the power of the TOF tech-

nique. The flight time, t, of a photoelectron is related to its kinetic energy as well as the

path length. Ignoring the first term on the right (path length difference contribution) for

now, we can rewrite equation 4.3 using equation 4.1 as

∆E
E

= 2
√

2
me

1
L

√
E∆t. (4.5)

This is an important result, as it shows that the TOF resolving power is dependent on the

kinetic energy of the photoelectron being analyzed – the resolving power improves for lower
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Figure 4.2. Example spectrum as a function of kinetic energy on the left and as a function
of flight time on the right (with a path length of 1 meter). The spectrum is a simple cos2

function in energy with fixed peak widths and separations. Several peaks in time are labeled
by their corresponding energies.

kinetic energy. This can be conveniently written as an expression for energy resolution as

∆E = 1.185× 10−3 1
L

(E3/2)∆t (4.6)

where E is in units of eV, L is in meters, and ∆t is in ns. The dependence of resolving

power on energy is due to the fact that energy is not a linear scale in time (equation 4.1).

These concepts are illustrated in Figure 4.2. An example spectrum of photoelectrons

of intensity I(E) = sin 2(20π[E − 10]) is shown as a function of kinetic energy on the left,

and the same spectrum shown as a function of flight time, t, on the right. The spectral

peaks have equal widths and separation in energy, but this is clearly not true in time, as the

spectrum ‘stretches out’ in time as energy decreases. This has a clear effect on resolution.

As an example, a system with total timing resolution of ∆t = 10 ns could certainly resolve

the peak at 19.75 eV, but could not resolve any of the peaks above 100 eV. If resolution

of these peaks at higher kinetic energy is desired, the photoelectrons can be retarded by

a set potential, either by floating the sample at some positive voltage with respect to a

grounded drift tube enclosing the drift space, or by setting the voltage of the drift tube and

detector at some negative voltage with respect to the grounded sample. By setting the drift

tube and detector to V = −50V , for instance, the entire spectrum is effectively lowered in

kinetic energy during the TOF analysis. Photoelectrons initially at 100 eV, are then TOF

analyzed at ∼ 50 eV average kinetic energy, thus much improving the energy resolution of
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this part of the spectrum accordingly. We see that due to equations 4.5 and 4.6, it is often

advantageous to work with low kinetic energy photoelectrons, either by using low photon

energy for excitation or by retarding the photoelectrons electrostatically, for optimal energy

resolution.

An important caveat relates to the repetition period of the light source. If the width

of the collected time spectrum is greater that the period between excitation pulses, compli-

cations due to spectrum overlap will occur. In other words, the slowest electrons resulting

from one light pulse will arrive at the detector after the fastest electrons from the next

pulse, which may result in severely distorted spectra. From the arguments above, retarding

a spectra will ‘stretch’ it out in time, increasing the effective energy resolution. However,

this cannot be done without limit, as it can be stretched to widths greater than the available

time window between light pulses and cause overlapping. We will return to this issue later

when discussing specifics of our TOF design in section 4.4.5.

Now let us return to equation 4.3 to focus on the first term on the right hand side.

This term is due to the fact that perfectly monochromatic photoelectrons will arrive at the

detector at different times if the total length of their flight paths are different. Path length

differences can have several contributions. One is due to finite detector size. In Figure 4.1 a

cone of electrons is eventually detected; paths along the outside of the cone are slightly longer

than those along the center, introducing a path length difference. This can be minimized

by decreasing the size of the detector or otherwise minimizing the acceptance angle (θ in

the figure). This will also improve the effective angular resolution of the experiment, but

will come at the price of decreased count rate. Due to equation 4.3, total experimental

energy resolution is not greatly improved by attempting to decrease the magnitude of the

‘path length’ term much below the ‘timing resolution’ term, and so an optimal acceptance

angle for good resolution and count rate can be determined for a set timing resolution. Of

course, desired angular resolution may require further restriction of the acceptance angle.

Photon beam spot size on the sample also contributes to the total ∆L, and its contri-

bution greatly depends on the experimental geometry. For instance, at normal emission,

the finite size of the photon beam spot does not cause much path length variation to the
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same spot of the detector if the total path length is long compared to the spot size. If L�

spot size, to a good approximation the contribution of the spot size to ∆L can be given by

the component of the spot size along the central path. Thus the beam spot can become

significant as the sample surface is rotated away from the normal emission geometry. As

the effective illuminated spot size on the sample can also change as the sample is rotated,

a careful analysis of the geometry involved should be done be sure of a small ∆L.

Improved energy resolving power, ∆E/E, can be improved through both terms in equa-

tion 4.3 by increasing the length, L. This effectively determines the physical size of the

analyzer, however, and may not be practical to have an instrument above some size limit.

A length of about 1 meter is typically reasonable, which limits path variation contribution

to ∆E/E to below 0.001 with a total acceptance angle of θ = 4◦ as long as the beam spot

size is also kept below 500 micron (usually not a difficult spot size to achieve).

4.2 TOF advantages

4.2.1 Efficiency

In many situations, the primary advantage of a TOF energy analyzer over deflective

analyzers such as the SDA (section 2.7.1) is total efficiency. This is most obvious in cases

when the deflective analyzer is utilized with a single channel detector: a single channel

deflective analyzer must take 0D data point-by-point as illustrated by the black dots in

Figure 3.4, whereas a TOF analyzer, even with a single spatial-channel detector, can take

1D simultaneous data line-by-line as illustrated by the black lines in Figure 4.1. This is

an enormous gain in efficiency, which can be loosely quantified as the number of effective

timing channels in the entire spectrum (up to ∼1000). Even compared to SDA’s with mul-

tichannel PSD detectors, TOF offers some unique benefits. The multichannel SDA can

only take simultaneous data within a certain range of energy determined by the size of the

detector (and the distance between the two hemispheres) and the pass energy. The width

of the energy window is typically ∼10% of the pass energy. Because the energy resolution

is directly related to the pass energy through equation 2.38, improved energy resolution
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requires reduced pass energy and therefore a reduced energy window. This window must

then be swept through a larger range if a wider spectrum is desired, making the spectral

integrity susceptible to beam or other experimental fluctuations over time. The TOF tech-

nique, however, is capable of taking the entire energy spectrum simultaneously, without the

need for any ‘window scanning’. This can be of great benefit for experiments which require

taking spectra over large energy ranges such as those concerned with different core levels

dispersed through a wide range of binding energies.

These gains may come at the expense of reduced photon flux due to the timing structure

necessary for TOF analysis. Not only must the light source be pulsed, it must have a long

enough period between pulses to allow the spectrum to be collected at desired resolutions.

In the particular case of the ALS as the light source, this translates to a reduction of photon

flux by about a factor of 10, reducing of the efficiency gains noted above. In cases such

as lab-based laser sources and pump-probe based time-resolved experiments, the necessary

timing structure is already required, allowing the full efficiency advantage of TOF to be

gained.

4.2.2 Sensitivity

The TOF technique inherently relies on a delayed-coincidence measurement. Experi-

mental noise from sources such as detector ‘dark-counts’ or accidental triggers are evenly

spaced throughout the time range simplifying data analysis and greatly reducing the noise

contribution to each time channel. Also, this time window can be very large compared to the

spectrum of interest, thus giving an even lower noise contribution to the spectrum. The de-

tectors in TOF analyzers are true pulse-counting detectors, functioning with single-electron

detection, as opposed to the intensity amplitude based measurements in most 2D SDA’s.

The resulting tolerable signal-to-noise ratios allow practical functioning at extremely low

count rates. These characteristics as well as the total efficiency make TOF a highly sensitive

technique useful for any low-count rate experiment.
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4.2.3 Ultimate resolution

Under certain conditions, the TOF technique can yield enhanced energy resolution com-

pared to the SDA. From equation 2.38 we saw that the resolving power was proportional to

the size of the entrance slit and inversely proportional to the mean radius of the hemispheres

as
∆E
E

∝ S

r0
. (4.7)

Slit size is practically limited to around 100 micron as edge effects begin disturbing too

much of the passed electron beam with smaller slits. This means that improved resolving

power can only come from increasing r0, the size of the instrument. To some extent this has

already been done as large 200 mm radius SDA’s abound, but as these are already quite

large, it is not easy to envision increasing the size any further by a significant factor. In

contrast, from equation 4.5 we saw that resolving power is inversely proportional to the size

of the instrument, but also proportional to the square root of the kinetic, or ‘pass’ energy

as
∆E
E

∝
√
E

L
. (4.8)

Thus, even with a fixed instrument size, resolving power for critical features in a spectrum

can be enhanced by retarding photoelectrons to lower and lower kinetic energies. With high

quality electrostatic lensing, this can be performed with minimized reduction in count rate.

Application of equation 4.6 using L = 1m, ∆t = 0.1ns, and E = 1eV, gives a theoretical

energy resolution of almost 100 µeV.

4.3 Previous uses of TOF

TOF spectrometers first became developed to take advantage of the ideal time structure

of the early synchrotron light sources such as the Stanford Positron Electron Accelerator

Ring (SPEAR I) at the Stanford Linear Accelerator Center (SLAC). With a pulse width of

1.5 ns and a repetition period of 780 ns, TOF provided a great option for high efficiency

spectroscopy over other techniques, especially before the 2D SDA existed. Bachrach et.
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al.112 developed a straightforward TOF analyzer for solid-state ARPES composed of only

a high-speed detector and a magnetically-shielded drift tube 6 inches long with a retarding

entrance grid. The design parameters predicted energy resolutions on the order of 100 meV.

A particular advantage of TOF in this type of setup is extreme mechanical simplicity. Due

to its size and simplicity, the entire spectrometer was held inside the main vacuum chamber

and was able to rotate in-situ about the sample. Early data taken with this setup was

not surprisingly taken from the layered TaSe2,113 just like the first ARPES data taken by

Smith, Traum, and Di Salvo49,50,51 (section 2.3).

A similar analyzer for synchrotron-based gas phase photoemission was developed by

White et. al.114 achieving almost 40 meV energy resolution at kinetic energies around 10

eV. This design was later improved upon by Becker et. al.115 and was used because of

the need to efficiently acquire data through a large energy window. Recognizing the 1D

parallel detection advantage of TOF for low-count rate single-spatial-channel spin-resolved

measurements, a Mott-type spin polarimeter with high speed detectors was added to their

TOF design.116 This design achieved relatively good resolving powers from 0.025116 to

0.001117 with a path length of 33 cm and a single retardation stage. It was used for

numerous experiments117,118 studying the spin-polarized Auger emission from gas phase

samples using circularly polarized light (section 3.2) at European synchrotrons, before be-

ing used at the Advanced Light Source (ALS) during ‘2-bunch’ operation for continued

experiments.119,120,121 The same group at the ALS also developed a TOF experiment with

four TOF systems at various angles capable of acquiring coincidence data between the an-

alyzers.122 This instrument also capitalized on the simple mechanical nature of basic TOF

analyzers by incorporating small 12.5 cm analyzers, all rotatable in-situ, and maximizing

resolving power to ∼ 5% by utilizing a 2-stage retarding potential.

An additional TOF system, well described by Hemmers et. al.,123 has been used for

gas-phase studies at the ALS. This system also utilizes four separate TOF analyzers for

the enhanced efficiency of collecting multiple angles simultaneously, and each incorporates

well designed cylindrical electrostatic optics for high retardation ratios while maintaining

relatively high collection efficiency.
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Each of the above designs was meant for synchrotron light sources, operating in modes

with relatively low repetition rates, allowing a large enough time window for the collection

of the full emitted spectra. As discussed above, these operating modes involve about a

factor 10 decrease in average flux compared to the higher rep-rate modes, however the

larger gain in overall efficiency still makes TOF worthwhile. Pump-probe based experiments

in the field of time-resolved photoemission already require a pulsed source with rep-rates

which do not require further reduction for the TOF technique. For the ultra-short light

pulses needed for high time resolution of the sample’s dynamics, lab-based laser systems

have been typically used. The ultra-low photon energies in these and other so-called ‘two-

photon photoemission’ experiments results in very low kinetic energy photoelectrons which

do not require retardation for high resolution, and allow extremely simple and short drift

tube designs to be used. The high sensitivity of the TOF technique also make it an ideal

choice for these extremely low count rate experiments. One particular early setup utilized

a simple drift tube of 23 cm length to achieve energy resolutions of 100 meV in time-

resolved experiments of electron dynamics in InP,124,125 Si,126 and other semiconducting

surfaces.127 An updated system described in ref. 128 uses a 34 cm drift tube and a high-

speed 64-channel PSD for multi-angle parallel data acquisition (effectively creating a 3D

spectrometer) for energy resolutions down to 33 meV at 7 eV kinetic energy. Another

TOF system has been developed for similar time-resolved ARPES measurements and is

extremely well described by Karlsson et. al.129 with quite a bit of worthwhile details about

the TOF technique in general. Yet another group has also utilized the TOF technique

with 10 meV resolution for time-resolved photoemission studying quasiparticle lifetimes in

graphite.130 Straightforward TOF systems have additionally been developed for two-photon

photoemission experiments studying image-potential states of metal surfaces with very high

resolution of up to 5 meV.131,132,133
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4.4 Prototype TOF

To get a quick start on such a big project, it was decided to begin by constructing a

fairly simple prototype TOF system to allow a multitude of aspects to be tested in parallel

with the designing of the larger full system. The heart of any TOF energy analysis scheme is

the actual particle detector and its associated timing electronics, and the prototype system

allowed these components to be developed and worked with early in the project. Before the

complex spin-polarimeter was developed, we were able to get started with the TOF design by

simply utilizing spin-integrating detector assemblies. An overview of the prototype system is

then an ideal way to introduce these fundamental components and concepts. The prototype

also involved an electrostatic lens column whose main design principles were carried over

to the full system.

4.4.1 MCP detector

The detector technology chosen for the current TOF analyzer is based on the popular

Multi-Channel Plate (MCP) electron multiplier scheme.134 A single MCP is a thin glass

wafer made of a honeycomb of parallel microscopic capillaries or channels, as shown in

Figure 4.3(a). The leaded-glass channels are often treated to enhance secondary electron

emission. The treatment also makes the channels semiconducting; the resistivity is such that

a high bias voltage can easily be held across the front and rear surfaces, but conductive

enough that charge can be fairly quickly replenished from external power supplies. Thus

each channel can be considered a self-contained continuous dynode. An electron incident

on the front of the MCP can have enough energy to emit a large number of secondary

electrons from near the front of a particular channel. These electrons will feel the strong

applied potential and be accelerated along the channel, each one likely striking the sides

of the channel emitting its own bunch of secondaries. This cascade continues, multiplying

the number of electrons involved, until a cloud of electrons is emitted from the rear of the

channel, as depicted in Figure 4.3(b). This cloud of electrons can have vastly larger total

charge than the lone incident electron, and can easily be detected.
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Figure 4.3. Details of multichannel plate electron amplifiers. (a) Cutaway schematic of a
single MCP. (b) Cutaway schematic of an incident electron entering a single channel and
the ensuing electron cascade. (c) Schematic of an MCP detector utilizing a chevron pair.
The figure shows the two MCP’s are electrically biased individually. Current manufacturing
processes can give sets of MCP’s as ‘matched pairs’ where the front-to-back resistivity of
each is closely matched so that they can be directly touching with a single voltage placed
across the entire stack. Figures (a),(b), and (c) taken from ref. 134. (d) SEM view of a 2 µm
pore diameter MCP produced by the Burle company. Photo taken from Burle catalog.135
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Ideally, the channels are operated in a state of saturation where space charge effects

begin to suppress the total charge output of a detection event. This allows stable operation

in which detected count rates are relatively independent of slight bias voltages changes.134

Thus it is important to be able to operate the MCP at or above this saturation voltage

and gain. The total gain of an MCP channel, however, can be limited on the upper end

by ion feedback. Ion feedback occurs when the cascading electrons ionize residual gas

molecules in the channel, or adsorbed gases along the walls, and the ions are accelerated

backwards through the channel. Ions reaching the front of the channel can start a new

electron avalanche, resulting in possible positive feedback scenarios that will ultimately

damage the MCP.

Typically, MCPs are cut from longer ‘boules’ at a slight angle to the direction of the glass

channels. This is referred to as the “bias” angle and helps ensure that incident electrons

must strike the sides of a channel without being able to go right through. It is also common

to stack two MCPs on top of each other, with the bias angle 180◦ reversed so that there is

absolutely no direct line of sight through the two. This is referred to as a “chevron stack”

and helps ensure a maximum number of amplifying collisions before the cascade exits the

rear, as well as helping limit possible ion feedback so that saturation can be safely obtained.

Sometimes a stack of three MCPs are used, with the bias angle reversed in each to form

a “z-stack”. A chevron MCP detector configuration is shown in Figure 4.3(c); typically

∼1600 V is applied across the double MCP stack to reach saturation with a gain of ∼106,

and an additional few hundreds volts is applied between the MCP exit and the anode to

direct the output electron cloud to the collection anode.

MCPs offer many appealing characteristics. First, they are fairly versatile in the type of

particles they can detect. Incident electron, UV and X-ray photons, and ions can all initiate

an electron avalanche in an MCP, allowing effective detection of all of the above. Second,

they allow a multitude of detection output schemes. The simplest is the single metallic

anode readout, as shown in Figure 4.3(c). The output electron cloud is accelerated through

a potential to the anode disk resulting in a measurable discreet current pulse. Because

the output electron cloud is localized to the activated channel’s diameter, position sensitive
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readouts can give spatially resolved images of the incident beams. This is can be done for

example by placing a phosphor screen behind the MCP and having the resulting images

recorded by a camera. Because the cloud is localized to the individual channel diameter,

the ultimate spatial resolutions of such setups are only limited by the channel diameters,

which can now be as low as 2 µm. A third advantage of the MCP is that its channel

characteristics such as total gain are not a function of channel diameter (d) or length (L)

individually, but as a function of the ‘aspect ratio’ L/d, which gives maximum performance

in the range of 40-60.134 This suggests that MCP’s can have their overall size arbitrarily

reduced as limited by mechanical fabrication techniques to create fast electron amplification.

Resolution of entry time is determined by jitter in the channel transit time and the resulting

pulse width which is found to be proportional to the channel length.134 Fast detectors with

good timing resolution can then be made with the use of ultra short/thin channels which

are quite standard in current MCPs.

Current technology can produce large MCPs with channel diameters ranging from 2 to

a more standard 12 µm. For an aspect ratio of 40, this translates to channel lengths of

less than 0.5 mm in the larger case. For high detector efficiency, the open area ratio (ratio

of active open channel area to inter-channel wall area) must be as large as possible, and

so channel density is maximized. Keeping in mind that these are thin glass structures of

very thin walled tubes, they are fairly fragile. They also happen to be hygroscopic – when

exposed to atmospheric moisture, they tend to soak up water and expand. Unfortunately,

the stiff material usually forming a rim around the MCP for handling, installation, and

overall structural stability does not expand. An MCP exposed to atmosphere for too long

will warp and eventually crack. There have been so-called ‘rimless’ MCPs produced, but

the open channels around the edges can often lead to signal ringing and are usually more

fragile to the touch, and so regular rimmed MCPs are often preferred and care is taken to

store them in a dry atmosphere or vacuum.

The spin-polarimeter (see Chapter 5) must ultimately rely on a single anode detector

assembly, and so for testing the TOF concept in the prototype, a commercial single-anode

high-speed MCP assembly was purchased from Hamamatsu, model number F4655-12. As
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Figure 4.4. Photos of the Hamamatsu F4655-12 high speed MCP detector assembly used
as a spin-integrating TOF detector. The left photo shows the base assembly with 14.5 mm
active diameter chevron MCP stack, electrical leads for the front and back of the stack, a
soldered lead for biasing the anode, and on board capacitive coupling of the anode for noise
reduction. The signal out is a BNC connector on the rear of the assembly. The right photo
shows the added grid assembly.

we will see, our TOF design requires the detector assembly anode to be floated to high

positive voltage, but for simplicity of the external electronics, we opted to have the signal

decoupled from the high voltage at the detector assembly itself. In this way, the signal

is taken out of the vacuum chamber referenced to ground, and no external decoupling is

required. Also, faster signals can be obtained by performing the decoupling as physically

close to the source as possible. The Hamamatsu F4655-12 offers such decoupling with

simple circuitry integrated into its assembly, simplifying the additional work required. The

MCPs installed in the package have a 12 µm pore size arranged as a chevron stack with an

active diameter of 14.5 mm. Photos of the MCP detector assembly are shown in Figure 4.4.

Unfortunately, the on-board circuitry uses a plastic based substrate, visible in the photo,

which should not be baked at high temperature in vacuum. Hamamatsu representatives

advised to keep bakeout temperatures at the MCP to under 80◦C; all system bakeouts

have been carefully monitored to keep the area of the chamber around the Hamamatsu

detector at or below this temperature. Future plans may involve trying to find a different
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Figure 4.5. Count signal from the Hamamatsu F4655-12, measured with a 2.25 GHz digital
storage oscilloscope set at 5 Gs/s. The rise time is measured as 10%-90% amplitude. Inset
shows a wider view of the pulse, showing the very low amount of ringing after the pulse.

commercially available detector assembly which is not limited in this way, or constructing

a custom one.

The Hamamatsu spec sheet claims the assembly is capable of high speed output signals

with 370 ps rise time and 720 ps FWHM. Before use in the TOF system, the assembly

was mounted to a simple vacuum flange for testing. Once in adequate vacuum (1 × 10−8

torr is plenty), the detector could be powered on to observe the signal quality. At high

enough voltages (slightly over 1600V), so-called “dark-counts” (where an electron from the

front of the plate randomly field emits and causes an avalanche) can occur and can be used

to monitor signal quality. Their frequency of < 1 Hz does not interfere with real incident

electron counts during an experiment. When an electron cascade is triggered, the cloud

of ∼106 electrons are accelerated into the anode causing a fast current spike which is able

to pass through the capacitor and onto the signal output. This signal is carried through

an in-vacuum coaxial cable to a BNC vacuum feedthru, and a regular BNC coaxial cable

can directly carry the signal to an oscilloscope to monitor the signal pulses, or counts. A

representative signal count is shown in Figure 4.5, showing a pulse amplitude of ∼-50 meV
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with a rise times of ∼400 ps, fairly close to the specifications claimed by Hamamatsu, and

are plenty fast enough for the timing necessary.

4.4.2 Timing electronics

The signal from the MCP detector marks the time of electron arrival at the detector;

it forms the ‘Stop’ signal in the TOF analysis. To do this as precisely as possible, the

signal must be put through some basic signal processing. First, the signal is sent through a

‘preamplifier’, converting the current pulse to a strong voltage pulse for further processing.

It is better practice to send the signal directly from the chamber vacuum feedthru into the

preamp with a short a cable, so that the pulses can be as clean and noise free as possible

before being enhanced in the preamp.

A precise and reproducible arrival ‘time-stamp’ must then be extracted from this signal.

A time pick-off circuit is used to output a digital pulse which is consistently related to the

beginning of each input signal in time. Because the signal pulses from the MCP can have

a wide range of amplitudes from count to count, and can vary in rise times and shape, the

time-stamping should be done in a way which is as insensitive to these variables as possible.

How this is handled can have a large impact on the system timing resolution. For example,

the most straightforward approach would be leading-edge threshold triggering, where the

pulse from the preamp triggers a digital output signal when a certain threshold voltage is

reached. As illustrated in Figure 4.6(a), output triggering in this method is a function of

amplitude and rise-time, varying the digital output time relative to the actual detection

time. This is referred to as ‘walk’. Threshold triggering also suffers from ‘jitter’, or time

uncertainty due to noise in the signal input which can alter when the signal crosses the set

threshold.

An alternate method is illustrated in Figure 4.6(b) where the triggering occurs at the

same exact time for both signals, achieved by triggering at a certain fraction of the total

pulse height. This can be done with an accurately named Constant Fraction Discriminator

(CFD). A CFD works as illustrated in Figure 4.6(c): the input pulse (red) is duplicated,
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Figure 4.6. (a) Leading edge threshold triggering. The time difference between ta and tb

is the walk. (b) Triggering at a constant fraction of pulse amplitude, giving zero walk for
pulses of different pulse heights, but equal rise-times and widths. (c) Operation of a CFD.
The input pulse (red) is duplicated, inverted, attenuated, and delayed (pink), and the sum
of the two (dark red) has a well defined zero-crossing point for triggering. (d) CFD applied
to the two pulses of (a) and (b). The zero-crossing points are identical, giving a triggering
time independent of input pulse amplitude.

slightly attenuated, inverted, and delayed (pink), and the two are then added together (dark

red). A digital output signal is triggered at the resulting zero-crossing point. This process

is shown for two different input pulse amplitudes in Figure 4.6(d), illustrating that the CFD

triggers at the same relative time independent of input pulse amplitude. Output walk from

amplitude as well as rise-time variations can be well minimized by tuning the delay, and

jitter can be minimized by tuning the attenuation. A CFD commonly features a leading

edge armed discriminator requiring the input pulse to reach a tunable threshold to allow

any output signal. This provides selection of a minimum acceptable pulse height and keeps

the sensitive zero-crossing circuit from triggering on noise. To keep noise at a minimum, it

is best to perform CFD very close to the preamp. A more complete review of time-pickoff

techniques can be found in ref. 136.

The current TOF project utilizes a very convenient and effective commercial package

(the Ortec 9327) which combines a fast 1-GHz preamplifier and a high quality CFD in a

single small unit. The small size and portability of the 9327 allows it to be placed right
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next to the MCP output vacuum feedthru so that the signal processing and digitization can

be performed extremely close to the signal source. The digital output (a fast ‘NIM’ pulse

with amplitude ∼-800 mV) time-stamp can then be safely transmitted over much longer

cables. The preamp in the 9327 provides two course gain settings for input amplitudes of

either 0-30 mV or 0-150 mV, and both have been needed for the spin-TOF detectors. Gain

can additionally be fine-tuned over a range of 2:1. If input pulses are too large and saturate

the preamp, an overload indicator lights, and the gain can be turned down appropriately.

Adjustment of the discriminator threshold can be performed by blocking all sources of real

electron events and turning up the threshold to slightly beyond when all output pulses stop,

ensuring that noise is not triggering outputs. The 9327 CFD keeps walk to less than 40 ps

and jitter to less than 20 ps.

In timing experiments, the digital CFD output pulse is sent to a time-to-amplitude

converter (TAC), which outputs a pulse whose amplitude is a linear function of the time

between some input ‘start’ signal and the input ’stop’ signal from the CFD. The TAC output

signal with the precise time between ‘start’ and ‘stop’ encoded in its amplitude is then sent to

a single channel analyzer (SCA) or an array of them called a multi-channel analyzer (MCA).

These devices keep track of the number of incoming pulses whose amplitude is within

some range defined for each channel. Again, the current TOF project uses an extremely

convenient package from Ortec which combines the functionality of a high-precision TAC

and MCA into a single unit, the ‘9308-PCI picosecond Time Analyzer’. The 9308 accepts

input NIM logic pulses for both ‘start’ and ‘stop’ signals. The unit is capable of multiple-

stop recording with 16-bit resolution over time windows ranging from 80 ns to 325 µs. The

‘start’ signal, corresponding to the incident photon excitation pulse, defines T=0 and starts

a timing scan; the 9308 then records an incoming ‘stop’ signal as an event in one of the

65,536 channels, or bins, corresponding to its time of arrival at T=t. Many series of ‘start’

and possible ‘stop’ signals can be processed sequentially, adding the number of events in

each bin, forming a histogram of photoelectron flight times. This repetitive sampling can

be continued until the required statistical precision is obtained.

The ‘start’ signal must be a fast NIM logic pulse which is precisely related in time to the
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Figure 4.7. Time spectrum of the ∼200 fs mode-locked laser. The width of the spectrum
represents the total timing resolution of the detector and electronics.

excitation light source pulses. In the case of synchrotron light sources, timing electronics in

the storage ring can provide a reliable reference. For laser-based sources, a fraction of the

beam can be used to excite a fast photodiode to be used as reference for a ‘start’ signal.

Once a scan is started, the 9308 will only record ‘stop’ signals and ignore any other ‘start’

signals until the set time window, or time span, is passed. After a slight deadtime after

the end of the time span, the 9308 will ignore all ‘stop’ signals until another ‘start’ signal

starts the process again. The time span can be set for as small as 80 ns; in this case the

16-bit precision gives a bin width (digital resolution) of 1.221 ps. The time span (and hence

bin width) can be increased by factors of 2 to a maximum of 325 µs. The 9308 can also

be configured to delay the beginning of the time span by a selectable offset for the ‘start’

time. Resulting histograms are sent from the 9308 unit to a personal computer through

the provided PCI card. User commands and configurations are also performed through the

computer interface.

The high performance of the 9327 preamplifier and CFD and 9308 time analyzer means

that the MCP detector itself, or possibly the light source pulse width, is the dominant

source of timing uncertainty and is the limitation in timing resolution. The 9327 and 9308

combination perform their duties with only a few BNC cable connections, making the setup

remarkably simple despite its high performance. The ease-of-use of these devices makes

TOF-based experiments much easier than they once were. The layout of the TOF photoe-

mission experiment based on these electronics components is illustrated in Figure 4.10.
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The total timing resolution of the MCP detector and signal processing electronics can be

conveniently measured by simply exciting the MCP with a pulsed laser source and measuring

a spectrum with the above electronics. The 6 eV 4th harmonic generated photons are easily

detected by the MCP, and the ∼200 fs pulses effectively remove any source contribution to

the measured peak width. The mode-locked laser has a fast-photodiode to provide a reliable

‘start’ signal. The resulting spectrum is shown in Figure 4.7. Because the light pulses are

300 times shorter in time, the measured 77 ps pulse width is accurately representative of the

timing resolution achieved by the detector and processing electronics. As noted above, this

is likely mostly dominated by the MCP detector itself. Timing uncertainty due to the MCP

detector has contributions from jitter in the electron avalanche transit time through the

channels, as well as uncertainty in the location of the signal on the detector. The signal is

only taken from the anode disk in one point – the signal pulse absorbed closer to the edge of

the anode will have to travel a longer distance to the signal output than one absorbed closer

to the output, introducing a timing spread of ∼ ∆d/v, where ∆d is the difference in possible

distances from detection point of the anode to the signal pickup lead, and v is the signal

velocity along the anode. In a somewhat similar situation, Vredenborg et. al.137 estimated

the signal velocity to be ∼0.7 times the speed of light. For the present case, with the signal

lead in the center of the 14 mm diameter detector, we then have ∆d/v ≈ 0.007/(0.7c) ≈ 33

ps. Thus, this is likely a less important contribution than the MCP transit time to the total

timing resolution. This contribution could be decreased by using smaller channel diameter

MCPs, resulting in thinner plates, although these are then even more fragile and prone to

physical damage. The current TOF system, however, is meant primarily for use with the

ALS which has 70 ps width light pulses, so even with improved timing from the detector,

the overall timing resolution will not be significantly enhanced.

4.4.3 Lens column

We saw in section 4.1 that TOF energy resolution is greatly improved towards lower

electron drift energies. This is automatically achieved when using low photon energies such

as with laser-based sources, where the maximum photoelectron kinetic energies are only a
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Figure 4.8. Photograph of the assembled prototype TOF lens column.

couple eV to begin with. However, using higher energy sources such as synchrotron light

offer increased Brillouin zone range, a different set of matrix elements, and wide tunability,

all of which can be crucial depending on the science being investigated. Higher photon

energies means higher photoelectron kinetic energies, which translate to decreased TOF

energy resolution. Electrostatic retardation of the photoelectron spectrum can be applied

to reduce the effective electron drift energy. Simple one-step retardation schemes such as

in previous TOF analyzers (see section 4.3) can greatly reduce efficiency as the accepted

photoelectron beam can be defocused. The goal of the present TOF project is to provide

a high-quality electrostatic lens system capable of tuning the effective drift energies for the

desired energy resolution while maintaining good focus for maximum collection efficiency.

To begin understanding basic lens system capabilities and experiment with the general

construction design to be used, a prototype lens column was designed for use with initial

testing of the Hamamatsu MCP detector assembly (section 4.4.1).
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The prototype lens column is a stack of 7 electrically isolated coaxial cylindrical elec-

trodes. Each lens was originally isolated by six small ceramic cylinders placed between

each electrode at their radii. The stacked column of electrodes and ceramics are then com-

pressed together by eight axial spokes tensioned by springs to form a mechanically rigid

single column. Many details of the prototype concept and design were kept in the final

TOF lens system, and these will be detailed in section 4.5. Figure 4.8 shows a photograph

of the assembled prototype lens column before its insertion into magnetic shielding and its

vacuum chamber. Photoelectrons enter the lens column at the top of the photo, and the

MCP detector is installed from the bottom.

4.4.4 Beamtime, data acquisition, and time-to-energy conversion

As mentioned briefly in section 4.1, the TOF technique is best done when the entire

time spectrum from fastest photoelectron to slowest recordable photoelectron can fit within

the period between light pulses. The ALS storage ring normally operates in ‘multi-bunch’

mode, where there are ∼328 distinct electron bunches orbiting the ring 2 ns apart. Each

bunch is ∼70 ps wide. When each bunch passes through a given insertion device or bend

magnet, a corresponding pulse of radiation is sent down the beamline. Thus, a beamline

provides radiation in 70 ps pulses at 500 MHz during multi-bunch mode. The small 2 ns

window between pulses is not enough to perform a reasonable TOF experiment without

severe overlapping. For example, a 50 eV electron takes 238.616 ns to travel a distance of

1 m. A 10 eV electron takes 294.945 ns longer. Therefore, for a straight TOF analyzer 1 m

long, there must be at least 295 ns between light pulses to take a spectrum of photoelectrons

with kinetic energies ranging from 50-10 eV. Clearly, the TOF technique is not very well

suited for multi-bunch operation at the ALS or other high rep-rate light sources.

The ALS also operates in ‘2-bunch’ mode, where there are only 2 bunches orbiting the

storage ring, separated by 328 ns. This provides a 328 ns window in which to perform TOF

and other time-related experiments which require smaller rep rates. Reducing the number

of bunches from 328 to 2 suggests a 164 times reduction in overall photon flux. However

the ALS inserts more charge into each bunch during 2-bunch mode so that the reduction
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Figure 4.9. Photograph of the phosphor coated mini-viewport on the analysis chamber
illuminated by the beam, illustrating the beamspot.

in total flux is only about a factor 10. Unfortunately, the larger total charge in each bunch

decreases its lifetime in the storage ring, so the photon flux decreases fairly rapidly and

storage ring refills must occur every 2 hours. Over the two hours, the flux decreases by

about a factor 5.

The ALS typically operates in 2-bunch mode for 2 weeks, twice a year. A number

of opportunities were available to install the TOF prototype on a small UHV analysis

chamber downstream of the ARPES endstation (run by Alexei Fedorov) at beamline 12.0.1.

This undulator beamline features a monochromator with a 300 lines/mm grating that can

produce a range of usable photons from about 30 eV to 90 eV, with maximum flux around

60 eV. Although other gratings are available, this is the one which was used for TOF

experiments. Unfortunately, the last horizontal mirror is mechanically unable to flex to the

radius needed to give a sharp focus in the downstream position, leading to a very unfocused

beamspot at the sample position in the horizontal direction. The TOF analysis chamber

has a ‘mini’ sized viewport directly opposite the beam input port, coated on the inside

with a thin, uneven film of phosphor which shows the beamspot at that position when the

sample is removed from the beam. A photograph of the viewport illuminated by the beam
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Figure 4.10. Schematic layout of TOF photoemission experiment.

is shown in Figure 4.9, showing a beamspot of just under 3 mm horizontally, and just under

1 mm vertically. The horizontal size represents the best obtained, while the vertical was

usually a smaller fraction of 1 mm, closer to a couple hundred micron.

A schematic of the experimental layout is shown in Figure 4.10, including the sample, a

simplified diagram of the lens column, the MCP detector, and signal processing electronics

discussed in section 4.4.1 and 4.4.2. The beamline is equipped with a ‘User Timing System

User Control Chassis’ which provides a fast NIM digital pulse at times referenced to when

electron bunches pass a certain point in the storage ring. These pulses can be delayed

by selectable amounts, although the exact setting is unimportant as it is only a reference

time marker, and does not represent an absolute time of the photon pulse anyway. This

signal output on a beamline electronics rack is simply connected via a long BNC cable to

the ‘start’ input of the Ortec 9308, as shown in Figure 4.10. The only detector related

cabling is as follows. A short (∼6 inch) coaxial cable connects the BNC feedthru of the

MCP signal output to the SMA input of the Ortec 9327 which is mounted directly to the

vacuum chamber. The NIM output of the 9327 is then connected via BNC coaxial cable
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to the input of the 9308, and a long ribbon cable assembly connects the 9308 to the data

acquisition computer.

The sample in the initial experiments was simply a Au film, freshly evaporated in-situ in

vacuum of less than 1×10−10 torr directly onto a copper block bolted to the end of a liquid

helium cryostat. This gives a clean polycrystalline Au surface with minimum difficulty

which can be lowered to ∼20 K.

The simplest way to take data is to leave the entire lens column grounded, producing

a simple field-free drift length from the sample to the detector. With the beamline set

to hν = 60 eV the spectrum in Figure 4.11 can be quickly taken. A few things can be

immediately observed in the spectra. First, the tallest peaks qualitatively look like the

expected two peak structure of the strong Au valence band, and this is strengthened by

what appears to be a sharp edge on the shorter time side, corresponding to the Fermi

edge. Second, there is an extremely sharp single peak on the far left of the spectrum,

which is due to photons scattering from the sample and triggering the MCP detector. This

interpretation is supported by the following observations. The lens column can easily be

set to very high negative voltages such that all photoelectrons are repelled and none can

reach the detector. When this is done, all counts except for this sharp peak disappear from

the spectrum, which is what is expected for a peak whose origin is photons. Also, the peak

width is extremely sharp (< 100 ps) corresponding well to the width of the bunches in the

storage ring producing the light pulses. Finally, if the sample is rotated to an angle such

that specular reflection is directed towards the detector, this peak intensity grows quite

large. The fact that the photons result in a nice sharp peak is extremely convenient, as

we can use this peak to calibrate the time scale such that this peak is set to T = 0 + L/c,

where the second term corrects for the finite amount of time it takes the light to travel the

length of the analyzer.

Of course the real goal is to collect a spectrum in energy, not in time, and so a con-

version must be performed. Because of the field-free drift space, this conversion can be

done according to EK = 1
2meL

2/t2 (equation 4.1). A slight complication arises due to the

fact that this is not a linear conversion. As introduced in section 4.1, an energy spectrum
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Figure 4.11. Au time spectrum taken with hν = 60 eV and the lens column grounded.

stretches out in time at lower kinetic energies (Figure 4.2), effectively improving the energy

resolution at lower kinetic energy. Bin widths experience the same effect: low time (high

energy) bins span a larger range of kinetic energy compared to large time (low energy) bins

which span a smaller range of kinetic energy. This means that count totals must be nor-

malized to account for the energy bin density increasing towards lower energy (larger time).

Figure 4.12 helps illustrate this point. The left side of the figure presents a time spectra

consisting of equally spaced, equal width and height square waves. Correct conversion to

an energy axis requires normalization to maintain constant ‘peak’ areas, giving the energy

spectrum shown on the right. Normalization is achieved by multiplying by the Jacobian of

the E = 1
2meL

2/t2 conversion138 given by

∆E =
2E
t

∆t. (4.9)

In this way, the intensity of the energy spectrum is normalized according to

I(Eτ ) = C(τ)× τ

2Eτ

1
∆τ

(4.10)

where I(Eτ ) is the correct intensity of the energy spectrum at energy Eτ , corresponding to

a flight time of t = τ . C(τ) is the total number of measured counts in the time bin at t = τ ,

and ∆τ is the bin width. This can also be expressed as

I(Eτ ) =
C(τ)

E(τ)− E(τ + 1)
(4.11)
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Figure 4.12. Converting the time spectra on the left to the energy spectra on the right,
correcting for non-linearity of bin density.

Figure 4.13. The Au energy spectrum, converted from the time spectrum in Figure 4.11.
(a) Full spectrum. (b) Spectrum from 0-80 eV. (c) Log scale plot of full spectrum.

where E(τ + 1) is the energy corresponding to the flight time of the bin directly adjacent

to t = τ .123 The effect on widths and heights is clearly seen in Figure 4.12.

Applying this conversion process to the time spectrum in Figure 4.11 results in the

energy spectrum in Figure 4.13(a). This gives much reassurance that everything is as it

should be. A zoomed in view of the spectrum below 60 eV is shown in panel (b). The

valence band looks just as one would expect, with a nice sharp Fermi edge at around 55 eV

where it should be (hν − Φ). The bin width correction shows that the low energy spectra

in fact increases quite rapidly as one expects from the increasing secondary background.

Panel (c) shows a log plot of the entire energy spectrum such that the smaller peaks at

higher kinetic energy stand out more. Naively, one would not expect any counts above EF ,

however one must remember that the beamline monochromator can pass multiple harmonics
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Figure 4.14. Au Fermi edge spectrum with hν = 30 eV, retarding EF to about 7 eV kinetic
energy.

of the desired energy. While the majority of photons incident on the sample are 60 eV, there

are also some at 120 eV, 180 eV and so on. This causes the simultaneous spectra at these

higher photon energies as well, with the Fermi edge of each showing up at 55 eV, 115 eV, 175

eV, and so on. This is exactly what is seen in the spectra. In fact, this is quite convenient

as precise conversion relies on knowledge of the exact flight path length, L. The value of

L can be adjusted in the conversion process to make each Fermi edge show up exactly hν

apart. The fact that they can all be correctly adjusted with a single value of L confirms

that the process is a good one. Additionally, these higher photon energies are enough to

reach the well known Au 4f core doublets, labeled in the figure. These are well studied and

their splitting is well known, giving an additional way to verify that the energy scale has

been converted correctly.

According to equation 4.6, assuming a total timing resolution of ∼100 ps (verifiable

through the width of the measured ‘photon peak’ in Figure 4.11), the energy resolution at

the 55 eV kinetic energy of the first order Fermi level (with the total flight path length of

0.586 m) is only 82 meV at best. To achieve better energy resolution of the Fermi edge,

the photoelectrons must be retarded with the electrostatic lens column. Once voltages are
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applied however, one can no longer use equation 4.1 for the time to energy conversion.

However, it still holds that EK ∝ 1/t2.123 In a sense, by applying voltages to the lens

column electrodes, the photoelectrons acquire an effective mass, m∗ 6= me, to be used in

the time to energy conversion. We already saw how the Au spectra contains multiple points

of known energy separation, allowing one to easily fit for the correct effective mass. In

the absence of these features, one can take many spectra tracking a single feature while

scanning photon energy to properly fit the effective mass.

By setting the photon energy down to hν=30 eV, and applying a set of voltages (or a

‘lens table’) to the lens column to give an average flight energy of about 7 eV, the spectrum

of Figure 4.14 was acquired and converted to energy. The measured width of the resulting

Fermi edge is ∼31 meV. This represents a convolution of a number of sources of energy

broadening, including sample temperature, photon energy resolution, and the resolution of

the actual TOF analyzer, where

∆ETotal Measured =
√

∆E2
photon + ∆E2

temp + ∆E2
TOF. (4.12)

The temperature of the Au had drifted up to about 50K making ∆Etemp=17 meV, and

the beamline settings gave ∆Ephoton=23 meV. Using these values, an effective TOF energy

resolution of about 10±5 meV can be extracted. Achieving lower sample temperature

and better beamline resolutions would provide a more precise way of determining the TOF

contribution. Although this resolution is excellent for a spin-resolved experiment, it is worse

than the theoretical resolution of <1 meV based on the path length, timing resolution, and

flight energy. The degraded energy resolution achieved in this experiment is likely caused

by the large beamspot size.

In any case, the results of this section gave confidence that the basic experimental

layout of Figure 4.10, including the detector scheme, timing electronics, and lens column

plan, provide a good basis for a high-quality TOF photoelectron analyzer. The next step

would be to develop a more complete electrostatic lens system.
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4.4.5 A few remarks on TOF overlap

Now that we have seen some actual TOF spectra, we can look a little more closely

at the concept of spectral overlap (introduced in section 4.1), where fast electrons from

a given light pulse overlap with slower electrons from earlier light pulses. We will also

consider the resulting restrictions on excitation source rep-rates and photoelectron flight

energies. We can use the present example of the above Au spectrum taken with hν=60 eV,

a 0.586 m flight path, and 328 ns between light pulses. At first one may think that this

problem wouldn’t allow any photoelectron spectrum to ever be successful, even without any

retardation voltages. Ignoring the higher harmonic light, the fastest photoelectrons will be

those from EF with a kinetic energy of about 55 eV, but there will be photoemission all the

way down to extremely low kinetic energy, essentially to zero. In fact, due to the secondaries

piling up at low kinetic energy, we expect there to be quite a lot of photoelectrons at these

low energies. These ultra-low kinetic energy electrons will take a very long time to reach

the detector; taken to the extreme, a 0 eV photoelectron will take infinite time to reach the

detector. Clearly, there must be TOF spectral overlap no matter what, unless we reduce

the light source rep-rate to 0. With closer inspection, it turns out that the non-linear bin

widths (which leads to the need for normalization through equation 4.10) saves us, and

allows time spectra such as Figure 4.11 to be clear and not a hopelessly cluttered tangle.

Let us illustrate this through the specific example. From equation 4.1, the fastest

photoelectrons (55 eV) have a flight time of 133.322 ns. This time bin will collect counts

from 55 eV electrons, but also from electrons which take 133.322+328 ns to reach the

detector (from the previous pulse). Again, from equation 4.1 we see that these electrons

will have a kinetic energy of ∼4.59 eV. Since we know that there will be photoemission

at 4.59 eV (and below), there must in fact be spectral overlap. However, let us invert

equation 4.10 to see how a spectrum in energy is measured in time bins. This way we have

C(τ) = I(Eτ )×
2Eτ

τ
∆τ. (4.13)

Let’s simplify things and assume that the energy spectrum emitted from the sample is

constant, I(Eτ ) = I, for all E < 55 eV. The number of counts in the t=133.322 ns channel
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of the time spectrum will be a sum of counts due to photoelectrons arriving at 133.322 ns

(55 eV), 133.322 + 328 ns (4.59 eV), 133.322 + 2×328 ns (1.57 eV), etc. The number of

counts due to the 55 eV photoelectrons is

C(133.322) = I × 2× 55
133.322

0.004883 ≈ 4.03× 10−3 × I (4.14)

where we have used the fact that each time bin is 0.004883 ns wide. The number of counts

due to the 4.59 eV electrons is

C(461.322) = I × 2× 4.59
461.322

0.004883 ≈ 9.72× 10−5 × I. (4.15)

Clearly, the contribution from the 1.57 eV electrons will be even less, and so forth. Thus

the counts in this time channel is in fact dominated by the actual 55 eV signal, with only

insignificant contributions from overlapping electrons. In general, the ratio of counts in a

given time bin, τ , due to electrons of energy Eτ to those due to electrons of energy Eτ+T ,

where T is the time period of the excitation source, is given by

R =
C(τ)

C(τ + T )
=

I(Eτ )
I(Eτ+T )

×
(

Eτ

Eτ+T

)3/2

(4.16)

where we have used equations 4.13 and 4.1. This ratio should be much greater than 1 if

the spectrum is needed to be ‘clean’ and not distorted due to the overlapping low energy

electrons. For the numbers in the above experiment, we have R ≈ 41, suggesting a fairly

clean spectrum of the near EF electrons.

While we are here, we can inspect what would happen if the same experiment as above

was performed during multi-bunch mode, where T is only 2 ns. The shorter period now

means that the 55 eV electrons at EF are overlapped with electrons of 53.39 eV kinetic

energy. From equation 4.16, we have a corresponding count ratio of R ≈ 1 suggesting a

very ‘unclean’ spectrum where the spectral weight of the 55 eV electrons is hopelessly mixed

with that of lower energy electrons. A meaningful energy spectrum cannot be extracted

from the resulting time spectrum.

We can also inspect what would happen if we decided (during 2-bunch mode) to retard

the photoelectrons at EF from 55 eV all the way down to 4 eV to greatly increase the

energy resolution. Now, the EF photoelectrons at 4 eV arrive at the detector after 494.37
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ns, and are overlapped by electrons of 1.45 eV. Equation 4.16 gives R ≈ 4.6. Although

the true spectrum at 4 eV may be qualitatively recognizable, it will be difficult to extract

meaningful quantitative data about the photoelectrons at EF due to this overlap. A longer

time window between light pulses would be required to quantitatively study photoelectrons

at these flight energies.

In fact, significant contributions from overlapping slower electrons is already evident

at 7 eV flight energies, as can be seen in the Fermi edge spectrum shown in Figure 4.14.

The bottom of the y-axis is the true zero of the plot; it is clear that the observed Fermi

edge is on top of a substantial background as the edge does not drop down to zero as

expected. This background level is larger than the background visible above the Fermi

edge in the higher energy spectrum in Figure 4.13(b), which is due to the higher harmonic

light. This increased background is due to contributions of slower electrons from earlier

pulses. While this does not effect the ability to qualitatively and pseudo-quantitatively

interpret the spectrum in this case (the shape of the overlapping contribution is a fairly

level background), it illustrates that overlapping effects are already beginning to degrade

the accuracy of the spectrum at these flight energies.

These examples help to illustrate the restrictions placed on both the light pulse period

and the range of photoelectron flight energies present, and the inter-dependence of these

restrictions. These are important concepts and considerations for the design of any TOF

experiment.

4.5 Electrostatic lens system

4.5.1 General design considerations

The previous sections have illustrated a number of important concepts related to the

TOF technique which guided the design of the current TOF analyzer. The goal is to pro-

duce a system capable of providing simultaneous high collection efficiency and high energy

resolution for spin-ARPES experiments, compatible with a wide range of possible light
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Figure 4.15. Sectioned view of the TOF Lens System schematic showing the basic design
concepts. The three lens columns are labeled LC1, LC2, and LC3. BPF: bandpass filter;
VA: variable aperture; ES: exit slit; ATS: aperture tension spring; TS: tension spring; CS:
compression spring; DF: deflectors; SID: spin integrated detector; SPD: spin polarimeter
detector. Details in text.

sources and corresponding photon energies. Achieving this goal requires a well designed,

multi-element lens system for flexible retardation ratios and focal conditions. A sectioned

view of the final design schematics for accomplishing these goals is shown in Figure 4.15.

Specifics of the electron-optical properties of the lens system were designed by Gennadi

Lebedev of the ALS, and a brief description has been published in ref. 139.

The TOF lens system is comprised of three lens columns, LC1, LC2, and LC3, enabling

two main modes of operation. In one mode, photoelectrons from the sample are accepted

into the front of LC1 and continue through into LC3 and then into a spin integrating detector

(SID). Currently, the SID is the same Hamamatsu F4655-12 MCP detector assembly as used

in the prototype TOF analyzer. In the second mode, photoelectrons passing through LC1

are deflected around a 90◦ bandpass filter (BPF), down LC2 and into a spin polarimeter

detector (SPD) which provides high efficiency spin-resolution. The SPD is described in the

next chapter.
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Although other light sources are envisioned, the primary intended source is the ALS 2-

bunch mode, and so the system must meet the restrictions discussed above in regards to time

spectrum overlap. For the highest resolutions, we saw in section 4.4.5 that difficulties due

to overlap will occur. For the spin-ARPES experiments of primary concern, the electronic

structure near EF is the most interesting - the lower kinetic energy (higher binding energy)

electrons are of little interest, and ideally could be removed from the spectrum to prevent

their overlapping with the near EF photoelectrons. The electrostatic BPF was introduced

into the design to be able to remove the unwanted portions of the emitted spectrum to

allow the most interesting electrons to be studied with high resolution. As illustrated

by the SDA discussed in section 2.7.1, nested hemispherical electrodes spatially disperse

an electron beam as a function of kinetic energy. Therefore, a suitably designed section

of spherical electrodes, followed by an exit slit (ES), removes unwanted portions of the

spectrum, allowing only those within the desired range to pass. This, in turn, allows spectra

to be taken at lower flight energies for high energy resolution.

The 90◦ BPF brings additional advantages for spin-ARPES. Typically, a spin-

polarimeter can only analyze the spin polarization with respect to one or two axes fixed by

the polarimeter’s physical orientation with respect to the sample being studied. In the case

of our SPD, spin can be resolved along directions in the plane formed by the xs and zs axes

of the SPD, as illustrated in Figure 4.15. Because the BPF is electrostatic, photoelectron

spin direction is constant around the BPF; in other words, a spin initially oriented along the

sample’s x axis stays in that direction around the BPF and is measured as oriented along

the SPD’s xs axis. The SPD is sensitive to spin in the xs and zs directions, and so as drawn

in the figure, the SPD can analyze spin along the sample’s x and z axes, but not the y axis.

If the entire TOF spectrometer is rotated 90◦ into the page around the optical (axial) axis

of LC1/LC3, the spin sensitive xs and zs axes become aligned with the sample’s x and y

axes, respectively, allowing spin resolution along the sample’s y axis. Exciting spin-ARPES

experiments will involve a range of geometries where spin-resolution may be desired along

any (or all three) axes. The 90◦ BPF gives the experimenter the flexibility to perform the
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experiment in the most suitable geometry by providing spin resolution along all 3 spatial

axes.

The addition of the BPF also allows the easy addition of a second detector at the end of

LC3 that can be used simply by removing the voltages from the BPF electrodes; in this case

the electrons pass straight through a 1/2′′ diameter hole in the outer spherical electrode..

Although the unique design of the SPD provides two orders of magnitude greater efficiency

than other spin polarimeters, it is still less efficient than a spin-integrated detector by

about a factor of 100. Therefore, a SID attached to the end of LC3 provides the ability for

fast spin-integrated measurements. It is envisioned that a spin-ARPES experiment could

first begin by taking fast spin-integrated ARPES to aid in characterizing and aligning the

sample. Because LC3 forms a straight path, the entire spectrum is taken at once. This is

good as the data will automatically include any core levels which may be helpful in sample

surface characterization. However, due to spectrum overlap issues (section 4.4.5), the data

will need to be taken at higher flight energies for somewhat worse energy resolutions than

possible with the BPF path. Once the surface has been characterized and aligned, and

areas in k-space are identified where spin-resolution is most desired, the experimenter can

easily turn on the BPF and switch to high resolution spin-ARPES. This design feature adds

another level of flexibility to the spectrometer and the experiments performed with it.

4.5.2 Magnetic shielding

Precise control and interpretation of electron flight times through the electrostatic an-

alyzer requires minimal residual magnetic fields. The simple expression for the cyclotron

radius of an electron in a constant magnetic field, rc = mev
eB =

√
2meE/qB, shows that

electron flight paths will be more sharply distorted for high magnetic fields and lower ki-

netic energies. The low flight energies desired for high energy resolution means that the

residual magnetic fields must be kept quite low. Magnetic shielding, made of sheets of

‘µ-metal’ surrounds the entire spectrometer to create a space of low magnetic field, free

of the Earth’s field as well as other laboratory sources. µ-metal is an 80% Ni and 20% Fe

soft-ferromagnetic alloy with extremely high magnetic permeabilities (therefore the µ-metal
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Figure 4.16. Assembled double layer µ-metal shield (without ‘lids’ on box section for better
view). Shield was assembled on its own to allow measurement of residual fields before final
assembly around actual lens system.

name) that ‘soak-up’ magnetic fields lines like a sponge, diverting them around areas which

it encloses. Two 0.040′′ thick layers separated by 3/4′′ surround the entire spectrometer for

enhanced shielding with as little weight as possible.

The magnetic shielding introduces added complexity to the entire design. The strange

physical shape of the TOF analyzer means strangely shaped µ-metal which must be made

from separate pieces, and then joined at different steps of analyzer assembly. All pene-

trations through the shielding, for electrical leads, motion feedthrus, etc, must be kept to

a minimum and be as small as possible. The joints from section to section must be well

designed for rigid, strong mechanical contact so that the joints don’t ‘leak’ field lines. The

shielding also must mate with shielding surrounding the analysis chamber to form a contin-

uous shield around the sample, as well. Magnetic shielding can only protect the analyzer

from external fields; it can do nothing about fields from magnetized components inside the

shielding. Therefore, all analyzer components inside the shielding must be fabricated from

non-magnetic parts to avoid the possibility entirely.

A test assembly of the double-layered shielding is shown in Figure 4.16, with the two

‘lids’ of the shielding which surround the central ‘box’ electrode removed. A clever slot-

locking design for rigidly bolting the column shields to the box shield allows strong connec-
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Figure 4.17. Path of photoelectron from sample to detector along arc S. See text for details.

tions with easy installation, even when inside the vacuum chamber. Testing the magnetic

fields within the shielding at this stage showed residual fields everywhere below 1 mG, and

mostly around 0.1 mG. The cyclotron radius of a 1 eV electron in a field of 0.1 mG is over

337 m, and so can be considered a negligible path length change over a 1 m flight path.

A more thorough analysis can be taken as follows. Figure 4.17 illustrates the path of a

photoelectron from the sample to the detector plane in the presence of a constant B-field

directed out of the plane. Instead of taking the direct path of distance d, the photoelectron

will take the path of arc length S. The radius of curvature is the cyclotron radius given by

R =
mv

eB
=
√

2mE
eB

. (4.17)

It is straightforward to calculate the distance, x, that an electron is displaced along the

detector. For a given detector distance, d, and residual magnetic field, B, it is clear that

larger displacements will result for lower kinetic energies. Solving in the case of extremely

low kinetic energy, for a residual magnetic field of 0.1 mG (10−8 T), a distance of d=1 m

and electron kinetic energy of 1 eV, we have x ≈ 1.5mm. This is not a very large shift, and

usual drift energies will be significantly higher than 1 eV.

Perhaps more interesting is investigating the effect of residual fields on our ability to
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correctly measure the flight energies. Again we will use Figure 4.17 for reference. An effect

seems plausible as the total path length, S, depends on the cyclotron radius, R, which is in

turn a function of flight energy. We know from section 4.1 that the measured flight energy

is effected by path length differences, and so here we must inspect the effect of energy

dependent path lengths! We can start by noting that

S = R · θ = R · arcsin
(
d

R

)
. (4.18)

We are interested in the change in path length with respect to energy, so we can take the

derivative of equation 4.18 as
∂S

∂E
=
∂S

∂R

∂R

∂E
. (4.19)

Starting with the first term we have (with some patience)

∂S

∂R
= arcsin

(
d

R

)
− d√

R2 − d2
. (4.20)

For the fields and energies used above, we had R ≈ 337m, so we already know R � d.

Therefore we can make the following approximations,

arcsin
(
d

R

)
≈ d

R
and

d√
R2 − d2

=
d

R

1√
1− d2/R2

≈ d

R

(
1 +

d2

2R2

)
to substitute into equation 4.20 to give

∂S

∂R
≈ − d3

2R3
. (4.21)

Now from equation 4.17 we have

∂R

∂E
=

√
m

eB
√

2E
=

R

2E
. (4.22)

Substituting equations 4.21 and 4.22 into equation 4.19, we finally have

∂S

∂E
≈ − d3

4ER2
. (4.23)

Using equation 4.17 to substitute for R in the term outside the parenthesis gives

∂S

∂E
≈ −e

2B2d3

8mE2
. (4.24)
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Equation 4.24 shows that the path length dependence on energy scales quadratically with

field strength and inversely proportional to the square of the flight energy. So it seems the

tolerable residual magnetic field decreases quickly with decreasing flight energies. Another

interesting result from equation 4.24 is that ∂S/∂E scales as d3: although the longer flight

distances improves ideal TOF energy resolutions, it apparently greatly increases magnetic

field sensitivity. Achieving high resolution TOF analysis using low flight energies and long

flight paths requires high quality magnetic shielding! In the case of 1 eV electrons in a field

strength of 0.1 mG, we have
∂S

∂E
≈ 2.2 µm/eV. (4.25)

In the absence of magnetic field, we use equation 4.1 (with an effective mass in the case

of applied electrostatic fields) to convert the time spectrum to an energy spectrum. The

resulting error, ∆E, in the measured energy separation of nearby points (separated by δE)

due to energy dependent path length differences is given by

∆E
E

=
2∆S
S

≈ 2
S

∂S

∂E
δE. (4.26)

Again, for the difficult region of 1 eV with a residual field of 0.1 mG and a total average

path length of 1 m, using the result of equation 4.25 gives

∆E
E

≈ −4.4× 10−6 δE/eV (4.27)

expressing the relative error in the converted energy scaling. This suggests that using

equation 4.1 for time to energy conversion remains quite accurate even at low kinetic energies

if the magnetic field is kept as low as 0.1 mG.

4.5.3 Mechanical and material considerations

Accurate electrostatic control of the photoelectrons depends on the precision to which

the electrodes of the lens system are aligned to each other. Much effort was invested in

the mechanical design and fabrication of the TOF lens system to achieve as strict align-

ment tolerances as reasonably possible. The design developed by Nord Andresen of the

Engineering Division at LBL relied on developing three separate lens columns cantilevered
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Figure 4.18. One end of a cylindrical electrode, with its bracelet of 56 ruby balls in place,
contacting surfaces A′ and R′, as labeled in Figure 4.15.

from a central ‘box’ electrode which houses the 90◦ BPF electrodes. In the case of LC1, the

column is quite long (428 mm), and the stresses on the column had to be carefully managed.

Rotating the entire lens system as discussed in the previous section for accessing different

spin-sensitivity directions alters these gravitation forces, requiring a very rigid construction

which does not ‘sag’ when held in different orientations.

To achieve these goals, the design consists of isolating each cylindrical electrode in a

given column from each other by a ring of 56 individual 1/8′′ grade 5 ruby/sapphire balls

(Grade 5 balls have a diameter tolerance of 0.13 micron). To simplify assembly, each ball

has a small hole drilled through the center so that they could be threaded onto a nichrome

wire to form a bracelet for each electrode junction, as shown in Figure 4.18. The ruby balls

not only electrically isolate each electrode, the also align each electrode to be coaxial. This

can be seen in the expanded view of the first electrode joint in LC1 shown in Figure 4.15.

The cross section of the rim of each electrode is designed such that they ‘nest’ inside each

other, separated by rigid contact with the ruby ball (shown in red) on four sides. The

contact along surfaces A and A′ align the axis of each electrode to be parallel, and the
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contact along surfaces R and R′ align each axis to be collinear. For high tolerances of the

assembled column, the final machining on each of these surfaces were diamond turned on

fully temperature controlled lathes at Lawrence Livermore National Lab. In particular, this

achieved uniform diameters of the R and R′ surfaces to within 5 micron around their 53.975

mm and 60.325 mm respective diameters. To ensure column rigidity, the R and R′ surfaces

were cut to diameters to ensure a slight interference fit so that there is no radial play.

Holding each lens column together is performed by 8 commercial titanium bicycle spokes,

equally spaced around the column diameter, attached directly to the free end electrode of

each column and attached to the fixed end electrode via stiff springs which were preloaded

to 7 lbs tension each (spoke and spring shown for only one location along LC3 in Figure 4.15,

rotated 22.5◦ from true position so that it would show in the drawing). This loads each ball

to 1 lb. This amount of total tension keeps the entire electrode stack rigid and straight even

when cantilevered horizontally. Each lens column is mated to the central ‘box’ electrode

via similar mating surfaces separated by a ring of 81 ruby balls. The columns are each held

in place against the box with 8 threaded rods and compression springs preloaded to 10 lbs.

each (again, 1 lb. per ball). Both tension and compression springs were custom wound from

‘Elgiloy MP35N’, a nearly non-magnetic Ni-Co-Cr-Mo alloy with high tensile strength.

The total compression forces between the ruby balls and each electrode surfaces A and

A′, due to the required preloading plus gravitational loading, must be dealt with to avoid

damaging the carefully machined electrode surfaces. To lessen the large pressures from

point-contact between the balls and a flat surface, surfaces A and A′ are actually machined

as toroidal surfaces to increase the contact area with the ruby balls. Even so, the electrodes

must be made out of a very strong material able to handle large pressures without yielding.

Titanium was chosen as the electrode material due to its high strength, its light weight to

reduce the required preloading and total pressures, and due to its non-magnetic properties.

For the same reasons of it being light weight and non-magnetic, and the desire to have

all electron-optical surfaces made of the same material to avoid contact potential issues,

all electrode pieces are titanium, as are the vast majority of the remaining pieces, as well.

While titanium provides ideal properties, its use made the total lens system quite expensive.
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Despite the large efforts for tight machining tolerances, one parameter ended up being

the most critical. The opposing axial mating surfaces on each given electrode were slightly

non-parallel so that as they were stacked to form a column, there was a tiny ‘kink’ at

each joint. For the longer columns, LC1 and LC2, a tiny kink at the base leads to a larger

displacement of the electrodes at the end. Careful measurements of the slight angle between

the axial surfaces of each electrode allowed finding the best rotational alignment of each

cylinder with respect to the others such that each kink mostly opposed the last. This

resulted in minimal misalignment of the total column. Each completed column was then

vertically mounted on a high precision Bridgeport vertical milling machine spindle with a

custom adjustable mounting block. The column could be adjusted to have zero run-out at

the two ends of the column as the spindle rotated, and then a careful measurement could

be made to find the maximum run-out along the length of the column in between. In other

words, each completed column was still slightly ‘banana’ shaped (as is any realistic column).

The banana was attached to the spindle so that it would rotate along the axis connecting

the two ends of the banana, and then the middle was measured to inspect how ‘bowed’ it

was. For LC1, LC2, and LC3, the resulting maximum displacements from the central axis

were 32 µm, 8 µm, and 12 µm, respectively. After the ‘correct’ rotational alignment was

decided, the electrodes were marked, disassembled, and UHV cleaned for final assembly.

4.5.4 Assembly and inspection

To reduce secondary electron emission and minimize work function irregularities, the

electron-optical surfaces of every electrode were coated with a fine colloidal graphite layer

before final assembly, applied with an air brush. The cylindrical electrodes were then

vacuum baked to help ensure the graphite layer adhered to the surfaces and aid in complete

degassing of any remaining volatile solvent. The resulting finish was high-quality by eye, as

shown in the photograph of the last electrode of LC2 on the left of Figure 4.19. After coating,

the cylindrical electrodes were stacked to form the three lens columns once again. Each was

assembled in a special stand so that a counter weight could be attached to the springs

from below to allow constant preloading of each spring. The spherical BPF electrodes were
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Figure 4.19. Left: Graphite coated inner surface of last cylindrical electrode of LC2. Right:
Installation of inner spherical electrode into ‘box’ electrode. Box is bolted to the table of
a clean milling machine and a circular reference surface in box is aligned to the spindle.
Circular reference surfaces on spherical electrodes are then aligned to the spindle.

also coated, baked, and assembled into the ‘box’ electrode. Precise concentric alignment of

the electrodes required again using the mill spindle to ensure each electrode was concentric

with a circular reference surface machined into the box. A photograph of the inner spherical

electrode being installed is shown on the right of Figure 4.19.

The BPF requires an exit slit in LC2 (as shown in Figure 4.15) to define the range of

energies passed. For added flexibility, a variable exit slit was included to allow run-time

setting of optimum slit size for resolution and count rate. The exit slit is two ‘paddles’, 1′′

long along the optical axis of LC2, with 29 saw-tooth ridges for minimizing the transmission

of reflected electrons. These paddles are mounted on a high-precision flexure mount for

parallel opening and closing, spring loaded with a drive screw for control, shown in the photo

on the left of Figure 4.20. The drive screw terminates in the Al-Si-bronze ‘star-wheel’ visible

in the photo. A rotary motion feedthru with a mating attachment opens/closes the slit by

turning the star-wheel. The junction between the rotary feedthru and the star-wheel gives

slight free ‘play’ so that after setting the size of the slit, the feedthru can be turned back

a couple degrees releasing any physical contact between the feedthru and the star-wheel.

This ensures that the feedthru does not place any external stresses on the column during

actual measurement A photo of the completed unit before installation into its cylindrical

electrode is shown in the right of Figure 4.20.
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Figure 4.20. The BPF exit slit in LC2. Left: inner view of flexure mounting of the slit
paddles. Right: upstream view of the completed unit. Ridges along paddles help keep
transmission of electrons scattering off the paddles low.

The variable aperture near the entrance of LC1 is formed by a long metal foil band

with a series of 4 holes of increasing diameter. This band passes through one of the front

electrodes of LC1, and around two exterior pulleys, as shown in Figure 4.15. The band

is spring loaded on one side and can be pulled with a translational feedthru on the other

side to move the desired size aperture into place like a clothesline. The same design was

used in the prototype, and it can be viewed in the photos of both the prototype and full

TOF analyzers in Figures 4.8 and 4.21, respectively. The run-time selectable aperture size

gives the flexibility of deciding on an optimal compromise between count rate and angular

resolution for the experiment at hand.

After the BPF was assembled into its magnetic shielding and vacuum housing, this sub-

assembly was mounted to a large rotary table that allowed positioning the central assembly

in any orientation. This was very helpful, as each completed lens column is best installed

onto the box electrode while vertical. After each lens column was installed, the assembly

could be rotated to allow the next column to be installed vertically.

This rotary mounting also allowed convenient measurement of the resulting sag of each

column. The position of a given column with respect to the center of the BPF could be

accurately measured when the column was horizontal. The assembly was then rotated 180◦

so that the column was horizontal in the opposite direction, and the position measurement
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Figure 4.21. TOF lens system assembly. Parts of vacuum chamber, magnetic shielding, etc,
removed for better view.

was made again. The difference in the two measurements would then represent twice the

‘sag’ from a vertical orientation to a horizontal orientation. The measured amounts of sag

for LC1, LC2, and LC3 were 34µm, 9.5µm, and 3µ, respectively.

The assembled TOF lens system is shown in Figure 4.21. It is held by the rotary table

behind it. The exterior of the variable aperture band can be seen near the top of LC1.

Electrical leads can also be seen attached to each electrode. Each lead travels down the

column, around the central ‘box’ electrode, and to a pin on one of three electrical feedthrus

attached to the vacuum housing directly opposite LC2 (lower left of photo, with the multiple

2-3/4′′ flanges). This chamber section provides multiple flanges for the electrical feedthru’s,

additional pumping, and other unforeseen future requirements. To complete the assembly,
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a plate is attached to close off the central box electrode, and then the two magnetic shield

lids are installed to complete the shielding around the BPF. Two µ-metal cylinders are then

installed around each lens column and rigidly bolted to the central box shielding. The main

vacuum flange capping the central vacuum chamber is then bolted on, and vacuum spool

pieces are installed around each lens column section to complete assembly.

This complete lens system is thus independent of detector assemblies. Detectors with

independent electrical feedthrus, µ-metal, and vacuum housings can be bolted onto the TOF

lens systems in a ‘plug-and-play’ fashion. The primary plan calls for the simple Hamamatsu

F4655-12 MCP detector assembly to be the detector behind LC3, and the custom SPD to

be the detector behind LC2. However, if desired, the arrangement can be easily reversed, or

completely different detectors can be used instead. Initial results with the primary detector

arrangement will be discussed in Chapter 6.

4.6 Summary

The SDA with multichannel detection has dominated the field of ARPES due to its

reliability and efficiency. Coupling a spin-polarimeter or other single channel detector to an

SDA does not allow the advantage of parallel detection, adding inefficiency to an already

difficult experiment. The TOF technique is a well established and highly efficient scheme

allowing parallel energy detection with a single channel detector. The custom TOF lens

system developed here for the spin-TOF spectrometer will aid in enabling more efficient

and higher resolution spin-resolved ARPES experiments to be performed than is possible

with the standard SDA.
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Chapter 5

Spin Polarimetry

The status of the polarization detectors, however, is far from being satisfactory.
Though some important improvements have been made, and some are foresee-
able, [. . .] the detectors are still the weak point in the field. The polarization
sensitivity is not better than 30% and we still lose many hundreds of electrons
for each one detected. Some new ideas shall be welcome . . .

— J. Kirschner16

5.1 Spin Polarization

The concept of spin polarization is straightforward. A ‘beam’ or ensemble of electrons

is polarized if there are unequal numbers in the two possible spin states (‘up’ or ‘down’)

with respect to some spatial direction. If every electron in the ensemble is in one or the

other, the electrons are totally polarized, or have a polarization (absolute value) of 1. If

there are exactly the same number of both, they are unpolarized, or have a polarization of

0 along that direction. It is quite possible to have both spin states somewhat populated,

but have more of one than the other; in this case the electrons are partially polarized with

a polarization between 0 and 1. It was shown in Chapter 3 that measuring the polarization

of the ensemble of photoelectrons as a function of energy and momentum can give powerful

information about the sample’s electronic structure. Unfortunately, although the concept

of spin polarization is straightforward, we will see that measuring it is not.
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The classic texts of Kessler140 and Kirschner95 are excellent references of spin polariza-

tion. A brief summary of their general treatments of polarization formalism in this section

will be worthwhile for understanding the various polarimetry techniques in the following

sections.

In Chapter 1 the spin operator, S, was introduced. From the spin angular momentum

commutation relations, we can represent the vector spin operator in matrix form with the

vector of Pauli matrices, σ, as

S =
~
2
σ. (5.1)

It is customary to use the Sz basis such that the z-component of the Pauli matrices is

diagonalized, giving

σz =

 1 0

0 −1

 σx =

 0 1

1 0

 σy =

 0 −i

i 0

 . (5.2)

The two component spin functions introduced in Chapter 1, χ, take the form of
(
a1

a2

)
. In

this basis,
(
1
0

)
and

(
0
1

)
are eigenvectors of σz with eigenvalues +1 and -1, respectively.

The polarization of state |χ〉 with respect to a given axis, such as the z-axis, can be

written

Pz =
〈χ|σz|χ〉
〈χ|χ〉

(5.3)

where the denominator is necessary if the state |χ〉 is not normalized. An alternate way to

express the polarization is

Pz =
N↑ −N↓
N↑ +N↓

(5.4)

where N↑ (N↓) is the number of electrons counted with Sz = +~/2 (Sz = −~/2). Thus, for

a group of electrons in the spin state χ = | ↑ 〉 =
(
1
0

)
, equation 5.3 gives Pz = 1, meaning

they are fully polarized along the z-axis and will all have an Sz value of +~/2. Equation 5.3

used with respect to the x and y axis, however, will give Px = Py = 0, meaning they are

unpolarized along these axes.

The full polarization vector is given by

P = Pxx̂+ Pyŷ + Pz ẑ (5.5)
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with its magnitude, or degree of polarization, then given by P =
√
P 2

x + P 2
y + P 2

z . These

can be more succinctly expressed as

P =
〈χ|σ|χ〉
〈χ|χ〉

. (5.6)

The magnitude of polarization, P , for electrons in a single spin state, |χ〉, is always 1;

the single spin state is 100% polarized along some axis, the only question is which vector

direction is it pointing along. This vector can be fully determined, but each component

must be determined individually on ‘fresh’ electrons straight from the source. Because

measurement of an electron’s spin along an axis changes its state, the same electron cannot

be used for successive measurements along the other axes.

The photoelectron beams of interest will typically be ensembles formed by statistical

mixtures of various spin states. With a mixture of n states, |χ(n)〉, the magnitude of the

polarization, P , can now range from 1 to 0. The polarization vector is given by an extension

of equation 5.6 as

P =
∑

n

〈χ(n)|σ|χ(n)〉
〈χ(n)|χ(n)〉

(5.7)

Let’s assume from here on that the states, |χ(n)〉, are normalized. In this case, the previous

equation can be written

P =
∑

n

g(n)〈χ(n)|σ|χ(n)〉 (5.8)

where the weighting factors, g(n), give the relative proportions of electrons in each state

|χ(n)〉 according to

g(n) =
N (n)∑
nN

(n)
(5.9)

where we define N (n) to be the number of electrons in state |χ(n)〉.

To aid in describing the polarization of an electron ensemble, one can define a so-called

density matrix. For a single spin state, |χ(n)〉 =
(
a1

a2

)
(normalized), the density matrix is

ρ(n) = |χ(n)〉〈χ(n)| =
(
a

(n)
1

a
(n)
2

)
·
(
a

(n)
1 , a

(n)
2

)
=

 |a(n)
1 |2 a

(n)
1 a

(n)∗
2

a
(n)∗
1 a

(n)
2 |a(n)

2 |2

 . (5.10)
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Extension to the mixed ensemble is trivial, giving

ρ =
∑

n

g(n)ρ(n) =
∑

n

g(n)

 |a(n)
1 |2 a

(n)
1 a

(n)∗
2

a
(n)∗
1 a

(n)
2 |a(n)

2 |2

 . (5.11)

The density matrix is a useful formalism as the polarization (or individual polarization

components) can be easily extracted as

P = tr (ρσ) or Pi = tr (ρσi) (5.12)

where tr is the trace. Conversely, the density matrix can be expressed in terms of the

polarization as

ρ =
1
2

 1 + P Px − iPy

Px + iPy 1− Pz

 =
1
2

(1 + P · σ) . (5.13)

Thus we see that ρ can be diagonalized by defining the z-axis along the direction of P, such

that P = Pz and Px = Py = 0, giving the simpler equation

ρ =
1
2

 1 + P 0

0 1− Pz

 . (5.14)

The more intuitive meaning of the polarization can be regained by inspecting equa-

tions 5.14 and 5.11 and equating the individual matrix elements to give

1
2
(1 + P ) =

∑
n

g(n)|a(n)
1 |2 and

1
2
(1− P ) =

∑
n

g(n)|a(n)
2 |2. (5.15)

It should be recognized that
∑

n g
(n)|a(n)

1 |2 is simply the probability that a measurement

on the ensemble of spin along the z-axis will give +~/2 (spin-up), and that
∑

n g
(n)|a(n)

2 |2

is that of a measurement of −~/2 (spin-down). If N↑(↓) are the number of measurements of

+(−)~/2 and N↑ + N↓ are the total number of measurements, then these probabilities can

be written as N↑/(N↑ +N↓) and N↓/(N↑ +N↓), respectively. This gives us

P =
N↑ −N↓
N↑ +N↓

(5.16)

which agrees perfectly with what we expected from equation 5.4 for the pure state. At least

these conventions are consistent.
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An interesting point can be made by investigating a little further. If an ensemble were

100% polarized spin-up along the z-axis (P = 1), equation 5.14 gives us

ρ =

 1 0

0 0

 , (5.17)

while an unpolarized ensemble (P = 0) gives us

ρ =

 1/2 0

0 1/2

 . (5.18)

By inspection, this means one can re-write equation 5.14 as

ρ = P

 1 0

0 0

 + (1− P )

 1/2 0

0 1/2

 (5.19)

illustrating that any ensemble with polarization P , made up of N total electrons, can be

thought of as a mixture of P ×N totally polarized electrons and (1− P )×N unpolarized

electrons.

For example, consider an ensemble of 10 electrons in which 7 are ‘spin-up’ along the

z-axis, and 3 are ‘spin-down’. Equation 5.16 gives the polarization to be P = 0.4, meaning

the ensemble can be thought of as an ensemble of 4 totally polarized electrons mixed with

an ensemble of 6 unpolarized electrons.

In a spin-resolved photoemission experiment, one measures the polarization of the pho-

toelectrons as a function of energy (and momentum for ARPES). What one really wants,

is to decompose each measured photoelectron spectrum into two separate spin-spectra: one

spectrum of only ‘spin-up’ photoelectrons, and one spectrum of only ‘spin-down’ electrons.

From the above discussion and either equation 5.14 or 5.16, it is clear that the number, or

intensity, of photoelectrons measured at E and k with ‘spin-up’ will then be given by

I↑(E,k) =
1
2
I(E,k) [1 + P (E,k)] , (5.20)

while the intensity with ‘spin-down’ will be given by

I↓(E,k) =
1
2
I(E,k) [1− P (E,k)] . (5.21)
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Thus, all one needs is a good method for measuring the photoelectron’s energy and mo-

mentum dependent polarization, P (E,k).

Excellent coverage of the diverse fields of creation, utilization, and measurement of

electron polarization can be found in refs. 140,95,16. The focus here will be on polariza-

tion measurement techniques that have been most readily integrated into photoemission

experiments.

Techniques for measuring electron spin polarization are referred to as spin polarimetry.

The perfect polarimeter would function analogously to the simple optical polarization fil-

ter: 100% of electrons with spin parallel to a given axis can pass and be detected, while

those with spin antiparallel are rejected. The Stern-Gerlach experiment (SGE) introduced

in section 1.2.1 provides this type of functionality by completely splitting particle beams

depending on their total magnetic moments, of which spin is a component. In particular,

the Ag beams originally used are split depending on the spin of the outer valence electron.

Unfortunately, the SGE is only effective in splitting beams of neutral particles, and cannot

work with electrons, due to the additional Lorentz force that charged particles experience

in a magnetic field. As originally argued by Bohr, Pauli, and Mott, the beam spreading due

to the Lorentz force and realistic beam parameters required by the uncertainty principle

outweigh the splitting effect due to spin. Kessler140 gives a good account of the argument,

analyzing the resulting geometry of the resulting beams and showing that they are not

usefully split at all. As an interesting aside, although this assertion that SGE-type sepa-

ration of electrons is impossible has long been accepted at ‘the textbook level’, it is still

occasionally revisited141 (however, to the best of the author’s knowledge, it has never been

experimentally realized).

Spin polarimeters must then rely on other techniques, which so far are always orders

of magnitude less efficient than the optical polarization filter. These techniques rely on

various forms of spin-dependent scattering from assorted targets. The spin dependence in

these methods originates in either (or both) of the spin dependent interactions introduced in

Chapter 1: the spin-orbit and exchange interactions. The majority of current polarimeters

tend to be based on the spin-orbit interaction. In particular, as it is the most firmly estab-
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lished technique, more details of spin polarimetry will be introduced through the example

of Mott polarimeters.

5.2 Spin-orbit polarimetry

5.2.1 Mott scattering

Much of the existing and current spin-resolved photoemission work is done with po-

larimeters based on ‘Mott-scattering’ of the photoelectrons from heavy nuclei. The plain

Coulomb potential of a nucleus is shown by the solid lines in Figure 5.1(a). A more accu-

rate scattering potential includes the spin-orbit interaction as well to give a total scattering

potential of V = VC + VLS , where from section 1.2.3 we have VLS ∝ L · S. The resulting

spin-dependent potential is shown by the dotted curves in Figure 5.1(a). Thus a spin-up

electron feels a larger (or longer range) potential when passing on the left of a nucleus (and

scattering to the right), and vice versa for a spin down electron.

Although tedious, one can show that the differential cross section of such a scattering

event is given by140

σ(θ, φ) = σ0(θ) [1 + S(θ)P · n̂] (5.22)

where θ and φ are defined by the scattering geometry shown in Figure 5.1(b). σ0(θ) is

the cross section in the absence of spin-orbit coupling, and is dependent only on θ which

introduces no spin dependence into the scattering. S(θ), called the ‘Sherman function’

(named for his exhaustive calculations of the function142) is also dependent only on θ, but

introduces a spin dependence into the cross section due to the P · n̂ term, where P is the

polarization vector of the incident electron, and n̂ is the unit vector normal to the scattering

plane defined by the incident and outgoing electron wavevectors as n̂ = k0×k′

|k0×k′| . Note that

the direction of n̂ is parallel to L and thus depends of whether the electron scatters to the

left or right of the nucleus. Thus we see that L · S coupling introduces an asymmetry into

the scattering cross section.

Let’s investigate some of the effects of equation 5.22 through an example. Consider
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Figure 5.1. (a)Scattering potential of a nucleus: solid line gives the plain Coulomb potential,
while including the spin-orbit interaction gives the dotted lines. Figure adapted from ref.
140. (b) Scattering geometry, details in text.

scattering an unpolarized beam from from k0 to k1 as shown in Figure 5.1(b). From

section 5.1 we know that the unpolarized beam can be modeled as equal numbers of electrons

polarized spin-up and -down along any axis, so let’s take the incident beam to be made up of

equal numbers of electrons with spin parallel and antiparallel to x̂. The number of electrons

scattered to k1 with spin parallel, N↑, will be proportional to the cross section given by

equation 5.22 with P · n̂1 = +1, and the number scattered to k1 with spin antiparallel, N↓

will be proportional to the cross section using P · n̂ = −1. Immediately we can see that

because the cross section is spin-dependent, the scattered beam will become polarized! The

scattered beam at k1 has a polarization given by

P =
N↑ −N↓
N↑ +N↓

=
σ↑ − σ↓
σ↑ + σ↓

=
[1 + S(θ)]− [1− S(θ)]
[1 + S(θ)] + [1− S(θ)]

(5.23)

finally resulting in

P = S(θ)n̂1. (5.24)

Because n̂1 is directed along the x-axis, the beam will be polarized with magnitude P = S(θ)

oriented ’up’ along x. Following the same analysis, we find that the beam scatted to k2

becomes oppositely polarized with magnitude P = S(θ) oriented ’down’ along x. This ‘left-

right’ asymmetry can be seen to originate in the symmetry of the scattering potential of

Figure 5.1.

We can also analyze the total number of electrons scattered to k1 and k2, now for an
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incident beam which may be polarized. We can define the normalized asymmetry in the

number scattered left and right by

ASO(θ) =
NL −NR

NL +NR
. (5.25)

NL and NR are proportional to the cross sections given by equation 5.22 again. Taking

note of the relative direction of n̂ in each case, we have

ASO(θ) =
(1 + S(θ)P · n̂1)− (1− S(θ)P · n̂1)
(1 + S(θ)P · n̂1) + (1− S(θ)P · n̂1)

(5.26)

where P is the polarization of the incident beam. Therefore, we find that

ASO(θ) = S(θ)P · n̂1. (5.27)

Electrons are preferentially scattered one way or the other depending on their spin direction.

Again we see a ‘left-right’ asymmetry, this time in the total number of incident polarized

electrons scattered to k1 and k2.

Thus the Sherman function describes both the magnitude of the induced polarization

of an incident unpolarized beam scattered to a particular direction and the magnitude of

the asymmetry of a totally polarized beam scattered to the ‘left’ and ‘right’. An important

aspect to note is that the Sherman function is only ‘sensitive’ to polarization components

perpendicular to the scattering plane (n̂). In other words, the Sherman function only

changes the magnitude of the polarization component along the direction perpendicular to

the scattering plane (although any component parallel to the scattering plane is rotated

about n̂, as described by Kessler140). The ‘left-right’ scattering asymmetry induced by the

Sherman function is only a function of the incident polarization component perpendicular

to the scattering plane as well.

The latter effect is the basis for utilizing Mott scattering to measure spin polarization.

This is clear by inverting equation 5.27 to give

Pn =
1

S(θ)
ASO(θ). (5.28)

Thus a measurement of the normalized differential count rate of electrons scattered to op-

posing angles in the same scattering plane gives the incident polarization component normal
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Figure 5.2. Cartoon schematic of the working principles of a Mott polarimeter.

to the scattering plane, assuming the Sherman function is a know quantity. For example,

in a Mott polarimeter, an electron beam with intensity I0 and of unknown polarization

is directed towards atomic scattering potentials (usually Au nuclei) as depicted in Fig-

ure 5.2(a). Two possible scattering paths at opposite angles within the same scattering

plane are depicted, with opposite orbital motions around the nuclei. Due to the polar-

ization of the incident beam perpendicular to the scattering plane, the scattering rate to

the left and right are asymmetric (depicted in the figure as different sized spheres in the

scattered beams). Individual electron detectors placed along these paths can then measure

the normalized asymmetry defined in equation 5.25. With a known Sherman function, this

constitutes a measurement of the perpendicular component of the incident polarization (as

depicted in the figure). In the end, use of the spin-orbit interaction allows a measurement

of electron polarization to be reduced to a measurement of relative intensity.

Figure 5.2 show that a similar relative intensity measurement can be made between the

count rates NU and ND lying in the vertical scattering plane as shown. This scattering

plane is only sensitive to polarization components along the direction out of the plane of

the figure. In the particular case shown, as the incident beam is polarized completely in

the vertical direction, there is no measured asymmetry between NU and ND. However,

this illustrates the concept that a Mott polarimeter, equipped with two sets of opposing

electron detectors along perpendicular scattering planes, can then measure two orthogonal
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components, thus yielding the complete transverse polarization of the incident beam. The

Mott polarimeter is insensitive to any longitudinal polarization component. This component

can be effectively measured by rotating it into the transverse direction by passing the beam

through 90◦ electrostatic deflector or a Wien filter prior to entering the polarimeter, as

discussed in Chapter 3.6.3 of Kessler.140

5.2.2 Polarimeter efficiency

As its function is to measure the polarization of electron beams, a polarimeter’s efficiency

is closely linked to its statistical error in polarization measurement. A Mott polarimeter’s

error in polarization measurement is given by equation 5.28 as

∆P =
1

S(θ)
·∆ASO (5.29)

The error in ASO is related to the statistical error in the total counts recorded in the left

and right detectors as

(∆A)2 =
(
∂A

∂NL
·∆NL

)2

+
(
∂A

∂NR
·∆NR

)2

=
(

2NR

(NL +NR)2

)2

(∆NL)2 +
(

−2NL

(NL +NR)2

)2

(∆NR)2 .

Assuming the errors in NL and NR are governed by Poisson statistics, we can substitute

∆Ni →
√
Ni, as well as substitute NL +NR = N to give

(∆A)2 =
4

(
N2

RNL +N2
LNR

)
N4

=
4NRNL

N3
. (5.30)

From the definition of ASO and equation 5.28 we can write

P =
1

S(θ)
NL −NR

N
(5.31)

from which we can write

1− P 2S(θ)2 =
N2 − (NL −NR)2

N2
=

4NRNL

N2
(5.32)

Combining equations 5.30 and 5.32 gives

(∆A)2 =
1− P 2S(θ)2

N
(5.33)
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resulting in

∆P =

√
1
N

(
1

S(θ)2
− P 2

)
. (5.34)

Unfortunately, the Sherman function in all current polarimeters are fairly small such that

1/S(θ)2 > P 2, so this can be further simplified to just

∆P =

√
1

NS(θ)2
. (5.35)

Thus we see that the error in a polarization measurement goes down with increased total

recorded counts at a rate scaled by the Sherman function squared. In discussing polarimeter

efficiency, it is important to note that N in equation 5.35 is the total number of recorded

electrons scattered to the detector - not the total number of electrons sent into the po-

larimeter. It is then more insightful to express the error in polarization measurement as a

function of the number of electrons sent into the polarimeter, N0, as

∆P =

√√√√ 1

N0

(
N
N0

)
S (θ)2

=
1√

N0 × (FOM)
(5.36)

where we have defined a ‘figure of merit’ (FOM) for a Mott-type polarimeter as

FOM =
N

N0
S2

eff =
I

I0
S2

eff, (5.37)

expressed in terms of either the ratio of total counts to number of input electrons, or the ra-

tio of count rate to input current. The relative error in measurement of simply the intensity

of a beam of electrons, ∆N0/N0, scales as 1/
√
N0. From equation 5.36 we see that the cor-

responding relative error of a polarization measurement, ∆P/P scales as 1/
√
P 2N0(FOM).

With |P | < 1, this means measuring a beam’s polarization takes more than FOM times

longer than just its spin-integrated intensity. This explains the term ‘figure of merit’ as

it is an effective quantitative measure of a polarimeter’s efficiency. Current polarimeters

have FOMs of only around 10−4, explaining why electron polarization experiments are so

difficult. In defining the FOM in equation 5.37, we have used Seff in place of S(θ). As the

electron detectors in actual polarimeters typically subtend a finite solid angle including a

range of ∆θ, the term ‘effective Sherman function’ is used to distinguish from the pure S(θ)

which applies to an exact θ.
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The goal of spin polarimeter design is to try to maximize both Seff and N/N0; unfor-

tunately, it is usually the case that increasing one term will decrease the other. Simply

maximizing the FOM is not always the best route, either. For instance, the FOM in some

cases may be increased overall at the expense of Seff. However, most polarimeters will have

an instrumental asymmetry between NL and NR that is not related to polarization. If Seff

is too small, then systematic experimental errors such as the instrumental asymmetry will

dominate the measurement error instead of the statistical error.140 Therefore, it is prudent

to use the FOM when considering polarimeter efficiency with the understanding that too

small a Seff (or a too large instrumental asymmetry) will be unacceptable, especially if

measuring small polarizations is desirable.

5.2.3 Mott polarimeter design and usage

For Mott scattering, equation 5.37 impacts polarimeter design in a number of ways.

Spin-orbit coupling is strongly dependent on the nuclear charge (scales as Z4, see sec-

tion 1.2.3 equation 1.29), and so scattering from high-Z nuclei will give larger Sherman

functions. Because of this, Mott detectors normally scatter from Au (Z=79) foils. Au is

also preferred over other large-Z metals because it is fairly non-reactive and does not form

thick oxide layers. A Au surface, even in poor vacuum, will give very stable Mott scattering

measurements without degradation over very long time periods. Also, Au can be made into

extremely thin foils. One problem for any type of scattering instrument is the possibility of

having multiple scatterings in the target before reaching the detector. An electron arriving

at a detector after multiple scatterings will degrade the effective Sherman function, and so

thin foils are preferred to decrease the chance of plural scatterings.

Two variables which can have a large effect on performance is the scattering angle, θ,

and the incident kinetic energy. The Sherman function can be a strong function of the

scattering angle. From equations 5.23 and 5.24 we see that the Sherman function can be

expressed as

S(θ) =
σ↑ − σ↓
σ↑ + σ↓

. (5.38)

Even with a large Z nucleus like Au, the spin-orbit interaction is still quite small, suggesting
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only small values of σ↑−σ↓. Thus, the highest values of S(θ) are typically found only where

σ↑ + σ↓ is quite low. In other words, the Sherman function is usually maximum where

the total cross section is near a minimum, forcing a compromise between S(θ) and I/I0.

As it turns out, the Sherman function only becomes sizable at fairly large backscattering

angles, usually around θ ∼ 120◦. Intuitively, these large scattering angles give low total

cross sections and ensure a very low value for I/I0.

The kinetic energy of the scattering also becomes a difficult compromise. Maximum

Sherman functions from Au foils generally increase with kinetic energies well over 100 keV

to even 1 MeV.143 Of course, at these energies, the backscattering cross sections become

extremely low, and the instrumental difficulties of these high voltages become far too cum-

bersome. Mott scattering at low energy (∼300 eV), however, can be effective when scat-

tering from Hg vapor due to diffractive effects creating cross section minima where the

Sherman function can become sizable.140 Still, the FOM suffers from very low total cross

sections, partly due to the low density of nuclei. Plural scattering in solid targets becomes

too significant at these energies, however, and thus cannot be used.

Although some designs feature slight FOM improvements here and there, the above

issues well illustrate that it is difficult to achieve a high FOM due to the inverse relationships

between Seff and I/I0. A particularly good review of these and many other details of Mott

polarimetry is one by Gay and Dunning.144 When the dust settles, a well designed high

energy (100 keV) Mott polarimeter can operate with a FOM ∼ 1 × 10−4. More recently,

lower energy Mott polarimeters have been developed which can operate at closer to 20

keV while maintaining a fairly high Seff by filtering out inelastically scattered electrons

through a retarding potential. These retarding potential Mott polarimeters, or ‘mini-Motts’,

allow a much smaller physical size than the high energy type, and have become the most

commonly used in photoemission work. A popular design with high efficiency developed at

Rice University,145 representing the current state-of-the-art, is illustrated in Figure 5.3(a).

It operates at 25 keV and θ = 120◦ scattering, and achieves effective Sherman functions

between -0.15 and -0.25 and I/I0 values in the range 2-6×10−3. These parameters result
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Figure 5.3. (a)Schematic of a retarding potential ‘mini-Mott’ polarimeter. Figure taken
from ref. 145. (b) Diagram of a spin-resolved photoemission setup, coupling a Mott po-
larimeter to a hemispherical analyzer. See text for details.

in a total efficiency, or FOM of ∼ 1.6 × 10−4. A version developed as recently as 2007146

provides the same parameters, although with a further reduction in overall size.

These state-of-the-art numbers readily demonstrate how difficult spin resolved experi-

ments are. The FOM of 10−4 is the source of the detector efficiencies used in section 3.4. In

particular, one should note that a I/I0 value of 2×10−3 means that for every 1000 electrons

sent into the polarimeter, only 2 are actually counted! Many current spin-resolved ARPES

systems105,106,107,108 are built by coupling a ‘mini-Mott’ polarimeter to a hemispherical an-

alyzer (SDA) as shown in Figure 5.3(b). It is clear that the polarimeter effectively forms a

single spatial channel detector - when coupled to an SDA, only a single energy/angle chan-

nel can be measured at a time, as described in section 3.4. The NL and NR pair of electron

detectors shown in the figure are sensitive to the polarization component along the sample

z-axis. Many Mott polarimeters have a second pair of detectors oriented at a 90◦ rotation

around the Au foil normal, giving a simultaneous measurement of the polarization compo-

nent along the x axis. The TOF-based spin-resolved photoemission system mentioned in

section 4.3 also use a similar mini-Mott as the spin-polarimeter.116,147

These Mott polarimeters are popular for spin-resolved photoemission experiments be-
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cause they are well understood and well established and give a steady Sherman function

due to the stable target quality. One drawback is the requirement of a high quality design

and precise alignment to reduce instrumental asymmetries, well discussed in ref. 144. An

important aspect to any polarimeter is calibration: the effective Sherman function, Seff,

must be known for an accurate measurement of P through equation 5.28. An attractive

quality of Mott polarimeters is the ability to calibrate Seff with measurements at different

Au foil thicknesses to extrapolate to ‘zero thickness’ where the Sherman function can be

reliably based on single atom calculations.144 Once this is performed, Seff is known for the

complete series of foil thicknesses, and this can be approximately a ‘one-time’ calibration

due to the long life time of the Au foils in even poor vacuum. One of the largest reasons for

the popularity of Mott-type detectors is that they are also capable of 10−4 FOMs, similar

to the highest of any regularly used spin polarimeter. This FOM is still quite low compared

to spin-integrated measurements, and so many other schemes have been investigated and

developed.

5.2.4 Other techniques

Due to the importance of spin-resolved experiments, it is not surprising that other

polarimetry techniques have been developed. A particularly interesting example is the

LEED polarimeter.140,95,16 In Mott polarimeters, the Au targets are polycrystalline, and

the scattering was treated as from single atoms. With single crystal targets, the coherent

scattering of low energy electrons from a periodic array of atoms gives strong diffraction

effects with intensity distributions very different from that of foils. This of course is the

basis of Low Energy Electron Diffraction (LEED), where intense Bragg reflection spots are

related to the target crystal structure. At first approximation, equivalent Bragg reflections

should give equal intensities. However, for large Z crystals, the same spin-orbit induced ‘left-

right’ intensity asymmetry found in Mott scattering is found in LEED spots with polarized

incident electrons. The large scattering angles in LEED suggest large asymmetries (Sherman

functions) may be present. The intense diffraction reflections suggest the possibility of

finding simultaneous high reflectivities, or I/I0, along with a high Seff.
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Just as Mott scattering can induce spin polarization from an unpolarized beam, LEED

spots from high-Z crystals can become spin-polarized with an unpolarized incident beam.

This was first shown for W crystals by O’Neill et. al.148 in 1975. The left-right intensity

asymmetry in equivalent LEED spots across a mirror plane due to the polarization of the

incident beam was first shown by Kirschner and Feder149 in 1979, and they suggested to

use this asymmetry as the basis for a spin polarimeter. In such a polarimeter, the intensity

of opposing ‘equivalent’ LEED spots (e.g. the (1,0) and (1̄, 0) spots) take on the same role

as NL and NR in regular Mott polarimetry. Subsequent polarimeters based on measuring

the asymmetry of LEED spot intensity from W crystals have indeed been developed.95,16

The error in the polarization measurement in the LEED method is given by the same

statistics as in Mott scattering, and so the same FOM can be used to quantify efficiency

(section 5.2.2). It was found that the FOM is maximized in the (2,0) vs. (2̄,0) LEED

spots of a W(100) surface. The W(100) surface is ideal because it has a large Z, it has a

straightforward surface cleaning procedure, and the (100) surface has 4-fold symmetry and

is unreconstructed at room temperature. The 4-fold symmetry is useful as the orthogonal

pairs of opposite LEED spots, (2,0) vs. (2̄,0) and (0,2) vs. (0,2̄), can simultaneously

measure the incident polarization components along 2 orthogonal directions, similar to the

Mott polarimeter designs with two pairs of left-right electron detectors at 90◦.

The (2,0) LEED spots result in a Seff of -0.27 and a I/I0 of 2.2× 10−3 for a total FOM

of 1.6 × 10−4.95 Although this is similar to state-of-the-art Mott polarimeters, the oper-

ating scattering energy is only 104.5 eV rather than 20-100 keV. These low energies avoid

the instrumental difficulties associated with high voltage, while Mott scattering at such

low energies produces orders of magnitude lower FOMs.144 Without high voltage, LEED

polarimeters can be designed in simple and small instruments. An attractive characteristic

of the LEED polarimeter is the possibility of calibrating the Seff through double scatter-

ing experiments with two W crystals.95 Additionally, polarimeter parameters are fairly

insensitive to angle and energy of incidence, allowing energy widths of up to 3 eV to be

analyzed without a significant drop in Seff, as well as allowing a couple degrees of beam mis-

alignment without introducing large instrumental asymmetries.16 As LEED is intrinsically
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Figure 5.4. Schematic of a spin- and momentum-resolved spectrometer with a LEED po-
larimeter. Below: schematic of the observed LEED pattern; squares indicated beams used
for polarization analysis. Figure taken from ref. 150.

highly surface sensitive, its analyzing power requires a clean surface and UHV conditions

for prolonged use, making it a suitable technique only for experiments already requiring

UHV. One reason W is ideal, is it can be refreshed with only periodic high temperature

flashing. The coupling of such a LEED polarimeter to an electrostatic cylindrical mirror

analyzer for spin, momentum, and energy resolved measurements was achieved by Oepen

et. al.150 and is shown in Figure 5.4. The use of a LEED polarimeter has also been utilized

by the Aeschlimann group151 for a variety of spin-resolved photoemission experiments (e.g.

refs. 152,153,154,80,155). Although an exciting technique, the 10−4 FOM still represents a

very large drop in efficiency.

Additional alternative spin-orbit based schemes have been developed such as the ad-

sorbed current polarimeter95,16 and the low energy diffuse scattering polarimeter,156,144,157

but all seem to provide similar or less promising characteristics and FOMs. A fantastic

review directly comparing the practical usage of an assortment of these spin-orbit based

polarimeters is found in ref. 158. In general spin-orbit based polarimeters can provide re-

liable spin polarization measurements, but with low efficiencies which severely limits the
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practical resolutions that experiments such as ARPES can be performed with. Additional

development of spin polarimetry techniques are thus highly desirable.

5.3 Exchange polarimetry

5.3.1 Exchange scattering

Section 1.2.5 introduced another spin-dependent interaction: exchange coupling. That

the exchange interaction can produce spin-dependent electron-electron scattering effects

can be seen as follows. Consider the scattering of two electrons, for example as in Fig-

ure 1.4. From standard scattering theory, the resulting spatial wavefunction should have

the asymptotic form

Ψ = eik·r + f(θ)
eik·r

r
(5.39)

where k = k1 − k2 and r = R1 − R2, in terms of the wavevectors and positions of the

two electrons. Because they are identical particles, the two events in Figure 1.4 cannot be

distinguished. The required symmetrization of the total wavefunction (see section 1.2.4)

results in a spatial wavefunction of

Ψ = eik·r ± e−ik·r + [f(θ)± f(−θ)] e
ik·r

r
(5.40)

where the + (−) is for the singlet (triplet) spin state. This results in a cross section for

scattering by angle θ of

σ(θ) = |f(θ)± f(π − θ)|2

= |f(θ)|2 + |f(π − θ)|2 ± 2Re [f∗(θ)f(π − θ)] . (5.41)

The third term on the right shows that there is a difference in cross section depending on

the spin state (singlet or triplet) of the scattering electrons!

In the case of Mott (electron-nucleus) scattering in section 5.2.1, spin dependence is

described through the addition of a spin-orbit potential, VLS ∝ L · S, resulting in the

total potential in Figure 5.1(a). In the case of exchange (electron-electron) scattering,

spin dependence is similarly introduced through the addition of an exchange potential,
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Figure 5.5. Exchange scattering analogue to Figure 5.1. (a) Potential of electron-electron
scattering: solid line gives the plain Coulomb potential, assuming the electrons are distin-
guishable particles. Including the exchange potential gives the dotted lines for spin singlet
(↑↓) and triplet (↑↑) alignments. (b) Scattering geometry, details in text.

Vex. Though both potentials bring about spin dependent scattering, there are important

differences. For instance, there is a clear ‘left-right’ asymmetry (see Figure 5.1(a)) due

to the effective spatial dependence of the L · S term in spin-orbit scattering. There is no

equivalent left-right asymmetry in exchange scattering; in other words, the analogous plot

of the scattering potential with exchange is symmetric about r=0, as shown in Figure 5.5(a).

From equation 1.61, we see that the exchange potential can be expressed as Vex ∝ S1 · S2.

This clearly illustrates that in contrast to the spin-orbit case, specific spin orientation

with respect to the direction of propagation or the scattering plane is irrelevant; only the

relative spin alignment between the two scattering electrons is important. As mentioned in

section 1.2.5, this is due to the Hamiltonian having no explicit spin dependence, which enters

only through the wavefunction symmetry. Instead of the ‘left-right’ asymmetry in spin-orbit

scattering (e.g. between k1 and k2 in Figure 5.1), there is only an ‘up-down’ asymmetry in

exchange scattering. For instance there is an asymmetry in the cross section for scattering

from k0 to k′ depending on whether the two electron spins are (at least partly) parallel or

antiparallel, as diagrammed in the upper and lower panels of Figure 5.5(b), respectively.
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Such exchange based scattering effects have been utilized in high energy (1keV - 1GeV)

polarimetry techniques referred to as Møller scattering.140 In a Møller scattering experi-

ment, energetic electron beams are directed through a magnetized Fe foil (which has an

imbalance of spin-up and -down electrons along the magnetization direction). The asym-

metry in measured count rates at certain angles for opposing foil magnetization directions

is thus related to the beam polarization component along the magnetization directions. As

the film can be magnetized parallel/antiparallel to the beam direction, Møller scattering

can be sensitive to longitudinal beam polarization, in contrast to Mott scattering. Because

of this, Møller scattering has traditionally been used for high energy β-decay experiments.

The equivalent of the Sherman function, however, is quite low (< 8%) and so it is not used

for other experiments. A more complete discussion can be found in ref. 140.

Exchange effects can be utilized in other ways for more applicable polarimetry tech-

niques. For instance, the mean free paths of electrons in ferromagnetic solids tends to be

spin dependent, with the exchange interaction the root cause. This results in spin dependent

transmission through magnetic thin films, which could then be used as a ‘spin-filter’. This

was suggested by Schönhense and Siegmann159 who estimated that the equivalent FOM of

such a filter made of an Fe film 1.0 nm thick would be as high as 7 × 10−2! Practically,

however, it is difficult to physically construct such a thin free-standing film. As the film

thickness increases, the average transmission decreases exponentially, drastically reducing

the equivalent of the I/I0 term in the Mott FOM. Nevertheless, the performance of a spin-

filter made by a 1 nm Co film sandwiched between a 21 nm and 2 nm Au layers has been

investigated.160,161 With surface cesiation, the total transmission was 3× 10−4 with an ef-

fective Sherman function of Seff = 0.4 for a total FOM of ∼ 5× 10−5. Of course if it were

possible to make the free standing films thinner, the increased transmission would lead to

a much improved FOM.

In addition to transmission, exchange also effects electron reflection from magnetic sur-

faces. In the LEED-based spin-orbit polarimeters discussed in section 5.2.4, it was found

that diffraction from single crystals gave the possibility of finding overlapping high spin-

asymmetry (Seff) and high reflectivity (I/I0). The same is found to be true of low en-
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Figure 5.6. Cartoon schematic of working principle of an exchange scattering polarimeter.
The differing size of the spheres representing electrons represent differing intensities. Target
magnetization is performed by the coils.

ergy scattering from ferromagnetic single crystals, where instead of the spin-orbit inter-

action it is the exchange interaction supplying the spin asymmetry. Indeed, early works

found that the absorbed current and reflected current of electron beams from magnetized

Fe(001)162,163,164,165 and Fe(110)166,167 were strongly dependent on whether the incident

beam was spin polarized parallel or antiparallel to the crystal magnetization. This asym-

metry, along with relatively high average reflectivities (I/I0), was suggested for use as spin

polarimeters, and indeed found immediate such use.164,165

It should be stressed again that the spin-orbit variety of diffraction polarimeters utilizes

the left-right asymmetry between opposing LEED spots. The exchange based diffraction

asymmetry is in the intensity of a single ‘LEED spot’ between opposite crystal magneti-

zations (earlier referred to as an ‘up-down’ asymmetry), meaning that measuring only a

single diffracted beam is necessary. This is important as it means the (0,0) diffraction (i.e.

specular reflection), can be used, in contrast to spin-orbit based schemes. This is benefi-

cial as specular reflection can have higher intensity than higher order diffractions. Indeed,

if extremely low incident kinetic energy electrons are used, the Ewald sphere becomes so

small that there are no higher order diffracted beams, leading to increased intensity of the

(0,0) specular reflection.168 This suggests that a polarimeter based on low energy exchange

scattering may give very high efficiencies.

Let’s first better define how such a polarimeter would function, as depicted in Figure 5.6.
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An incident beam of electrons of unknown polarization with intensity I0 is incident on the

scattering target, magnetized in one direction (↑), as on the left of the figure. The rate of

electrons specularly reflected in this case is measured as I↑. The target is then re-magnetized

in the opposite direction (↓), as on the right of the figure, and the rate of electrons specularly

reflected is measured as I↓. In analogy with equations 5.22-5.28 for Mott polarimetry, the

scattered intensities will be proportional to the cross sections which can be expressed as

σ(α) = σ0(α)
(
1 + S(ex)(α)P · M̂

)
(5.42)

where α is the angle of incidence, measured from the surface normal, P is the incident

polarization, and M̂ is the scattering target’s magnetization direction. The term σ0(α) is

the cross section in the absence of exchange coupling, and is independent of incident spin

or surface magnetization. One can define the measured normalized asymmetry between the

two intensities as

Aex =
I↑ − I↓
I↑ + I↓

. (5.43)

Use of equation 5.42 shows that the asymmetry is proportional to the incident beam polar-

ization by

Aex = S
(ex)
eff P · M̂. (5.44)

At the beginning of the section it was noted that the additional ‘exchange potential’ could

be expressed Vex = S1 · S2. Relating S1 with P of the incident beam and S2 with M̂ of

the target, we can see that the P · M̂ term in equation 5.44 is not surprising. The term

S
(ex)
eff describes the analyzing power of the scattering process and is thus analogous to the

Sherman function in Mott scattering. Due to the parallels, we will also refer to it as the

effective Sherman function for exchange polarimeters. If the effective Sherman function is

known, then a measurement of the asymmetry in the reflectivity yields the polarization

through

Pm =
1

S
(ex)
eff

Aex. (5.45)

Equations 5.44 and 5.45 show that the exchange scattering asymmetry, and thus an exchange

polarimeter, is sensitive to the polarization component along the target magnetization axis.
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Figure 5.7. Study of the spin asymmetry of reflected intensity from a single crystal Fe(001)-
p(1x1)O target, adapted from ref. 169. (a) Calculated unoccupied bandstructure along the
kz direction. (b) Spin integrated reflected intensity. (c) Resulting exchange asymmetry in
red. Spin-orbit asymmetry in black.

5.3.2 Qualitative understanding of exchange asymmetry

The source of the asymmetry in scattering from magnetic crystals is not really as simple

as suggested by the free electron scattering in equation 5.41. Multiple scatterings, inelastic

processes, crossing the surface potential barrier, and details of the crystalline bandstructure

all add to the complexity of the situation. The exact details of the scattering process is

not completely necessary for the successful operation of such a polarimeter however, and

the analysis can be treated somewhat empirically. In other words, if the spin dependence

in scattering intensity from a given surface can be experimentally measured/calibrated,

then it can be used as a polarimeter without complete knowledge of all the complexities.

It is, however, interesting to obtain additional qualitative insights into the origin of the

asymmetry, perhaps leading to predictions for more ideal surfaces to use.
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Figure 5.7 shows results of Bertacco et. al.169 who studied the spin dependent reflectivity

of an Fe(001) crystal with a p(1x1) oxide overlayer. It was found that the reflectivity,

including its spin dependence, could be qualitatively interpreted as due to the unoccupied

bandstructure of the target, shown along the kz direction in panel (a). There is a ∼5 eV gap

centered at about 7 eV above the vacuum level. It is argued that the incident electrons can

only penetrate the crystal by coupling to available states in the bandstructure; at energies

in the bandgap, the electrons do not enter and are strongly reflected. This argument is

reinforced by the average reflectivity shown below in panel(b) where there is a strong,

broad maximum centered within the energies of the gap.

The reflectivity asymmetry between incident beams of opposite polarization along the

target magnetization direction is shown in panel (c). The asymmetry S(ex)
eff shows a strong

maximum and minimum near each band edge, and can be qualitatively explained as follows.

As Fe is ferromagnetic, its bandstructure in (a) shows pronounced exchange splitting and

a spin-dependent gap. For instance, the low energy onset of the gap occurs at lower energy

for majority spin electrons than minority electrons. In the energy range where there is a

gap for the majority spin, but not a gap yet for the minority spin, it is reasonable to expect

that electrons of majority spin will be more strongly reflected than electrons of minority

spin. The opposite would then be true at the high energy end of the gap where minority

spin will be more strongly reflected. This is exactly what is found in the S(ex)
eff curve in

panel(c). While this does not suffice as a complete quantitative explanation, it is reassuring

to have a qualitative picture. It also gives reason to expect that targets with large exchange

splitting would be ideal candidates for use as a spin polarimeter.

The exact definitions of S(ex)
eff and S

(so)
eff (also shown in panel (c)) are described in the

following section.

5.3.3 More details: spin-orbit contributions

Ideally, equations 5.42 - 5.45 can accurately describe the scattering from magnetic sur-

faces. However a more accurate description must also include spin-orbit effects. For 3d

160



Figure 5.8. Particularly useful scattering geometries: (a) ‘Perpendicular’ and (b) ‘Planar’.

ferromagnetic targets (Fe, Co, Ni), spin-orbit effects are small due to the low-Z nuclei,

but they are still of the same order of magnitude as exchange effects, and should not be

disregarded. The two spin dependent effects are difficult to separate in general, but they

can be approximately separated in two particular scattering geometries (see refs. 140,16):

the ‘Perpendicular’ and ‘Planar’ geometries shown in Figure 5.8. In both cases, the target

crystal is azimuthally oriented so that a mirror plane coincides with the scattering plane.

Note that only specular reflection is considered, i.e. the incident beam and outgoing beam

both make an angle α with respect to the target normal, nt. From the previous section, it

is obvious that there will be exchange effects if the incident beam has a polarization com-

ponent parallel to the target magnetization axis in either case. There will be an exchange

induced ‘up-down’ (P ·M̂) asymmetry in the reflected intensity when the magnetization di-

rection is flipped (incident beam kept constant). If the beam has a polarization component

along the scattering plane normal, n, it should also be clear that there can be spin-orbit

effects as well, as the reflected beam is scattered ‘left’. From section 5.2.1 we know that

the spin-orbit ‘left-right’ (P · n̂) asymmetry will manifest itself here as an asymmetry in

the reflected intensity when the incident beam polarization is flipped (target magnetization

kept constant).

Let’s first consider the ‘Perpendicular’ geometry in Figure 5.8(a). In this case, both

exchange and spin-orbit effects are only sensitive to the incident polarization component
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along the scattering plane normal, and so we will only consider the polarization along n.

Assuming the polarization (although the magnitude is unknown) can be flipped, there are

four reflected intensities which can be measured, corresponding to the four combinations

of polarizations and magnetizations along the n axis. These intensities will be labeled

as Iσ
µ , where µ is ‘+1’ (‘-1’) when the magnetization is antiparallel (parallel) to n (this

orientation of signs is due to the electron magnetic moment being opposite its spin direction),

and σ is ‘+1’ (‘-1’) when the incident polarization is parallel (antiparallel) to n. Both

exchange and spin-orbit effects can be approximately accounted for by essentially combining

equations 5.22 and 5.42 into a single expression (here in terms of intensity rather than cross

section) as

Iσ
µ = I(θ)

(
1 + µσPS

(ex)
eff + σPS

(so)
eff

)
(5.46)

where S(ex)
eff and S

(so)
eff are the exchange and spin-orbit induced asymmetries, respectively.

If we were to attempt to measure the unknown polarization by a measurement of the

normalized intensity asymmetry between flipping the target magnetization as suggested by

equations 5.43 - 5.45, we would measure

Am =
I+
+ − I+

−
I+
+ + I+

−
=

PS
(ex)
eff

1 + PS
(so)
eff

(5.47)

using equation 5.46. Note that this is not as simple as equation 5.44, and both S(ex)
eff and S(so)

eff

must be simultaneously known to solve for P . By flipping the incident beam polarization

instead, we can measure the alternative intensity asymmetries defined as

Aa =
I+
+ − I−+
I+
+ + I−+

= P
(
S

(ex)
eff + S

(so)
eff

)
and (5.48)

Ab =
I+
− − I−−
I+
− + I−−

= P
(
S

(so)
eff − S

(ex)
eff

)
. (5.49)

Thus, by measuring all four intensities, the exchange and spin-orbit asymmetries can be

isolated as

S
(so)
eff =

1
2P

(Aa +Ab) and (5.50)

S
(ex)
eff =

1
2P

(Aa −Ab) . (5.51)

This allows empirical measurement of both S(ex)
eff and S(so)

eff using an incident beam of known
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polarization, which is exactly how the data in Figure 5.7 was taken. Once S(ex)
eff is know, the

four-intensity measurement also then allows measuring P of beams of unknown polarization.

The above expressions for S(ex)
eff and S

(so)
eff and equation 5.46 are technically only ap-

proximate. They do not account for possible coherent interference between exchange and

spin-orbit effects. These effects can be qualitatively pictured as intensity due to double scat-

tering. For example, one can measure the following asymmetry with a perfectly unpolarized

incident beam:

Au =
I+
+ + I−+ − I+

− − I−−
I+
+ + I−+ + I+

− + I−−
=
I+ − I−
I+ − I−

(5.52)

which would be equal to zero if only equation 5.46 was considered. However, we can imagine

a double scattering event where the unpolarized beam gains a polarization perpendicular

to the scattering plane due to spin-orbit, and then this polarization leads to exchange

asymmetries in a second scattering when the magnetization is switched. Thus we may have

Au 6= 0. As these ‘double scatterings’ will then be of order S(ex)
eff · S(so)

eff , they may be only

small corrections to equation 5.46 and the subsequent formulas for S(ex)
eff and S(so)

eff .

Access to both exchange and spin-orbit effects make the ‘Perpendicular’ scattering ge-

ometry useful for studying the physics of the target itself. It may sometimes be preferred

to eliminate spin-orbit contributions as much as possible. This is certainly true for a po-

larimeter which would benefit from the simplicity of only the exchange contribution. This

can be achieved to different degrees by using the ‘Planar’ geometry of Figure 5.8(b). In

this case, the plural-scattering effects of the previous paragraph go to zero for an unpolar-

ized incident beam. The induced polarization of a primary spin-orbit scattering are only

along the scattering plane normal, n. As this is normal to the target magnetization axis,

secondary exchange scatterings will not be sensitive to it, and hence no spin dependent

intensities result from flipping magnetizations - i.e. Au = 0. The ‘first-order’ spin-orbit

contributions of S(so)
eff to equation 5.46 can be removed if the incident beam polarization is

oriented within the scattering plane. This is straightforward as spin-orbit asymmetries are

only sensitive to polarization components out of the scattering plane. This can frequently be

accomplished in polarimetry experiments that ‘know’ the axis of the beam polarization, and

only the magnitude must be measured. For example, in photoemission from a ferromagnetic
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sample, the photoemitted electrons are assumed to be polarized along the sample (not to

be confused with the polarimeter target) magnetization axis, and only the magnitude is in

question. The geometric relationship between the photoemission sample and the polarime-

ter target scattering plane can then be organized to ensure the polarization is ‘in-plane’.

Some ‘second-order’ plural scattering effects may still remain in general. For instance, an

initial spin-orbit scattering can slightly rotate the incident polarization vector in the scat-

tering plane,140 thus changing its component along the target magnetization. This small

effect can be removed completely if the incident polarization is additionally restricted to be

parallel to the target magnetization, perfectly canceling these remaining effects. See refs.

95,16 and included references for additional details of disentangling exchange and spin-orbit

effects.

A final note should be made about spin-orbit contributions to the scattered intensity in

either geometry. From symmetry, S(so)
(θ) must be zero for the specular reflection at normal

incidence (i.e. θ = 180 or α = 0 in Figure 5.8). This suggests that the spin-orbit contribution

should also remain quite small for slight deviations from α = 0. Although the maximum

value of S(so)(θ) approaches θ = 180 for high energy electrons (see plots of S(θ) for Mott

scattering in ref. 140), it does not get close until well over 1 MeV! At lower energies, S(so)(θ)

will be quite small if α is kept near 0.

Although spin-orbit and exchange effects are in general of similar strength in the 3d

ferromagnets and must be considered for accurate analysis of the spin-dependent scattering

intensities, use of the ‘Planar’ geometry and near-normal incidence (α→ 0) can force spin-

orbit effects to be extremely small. A properly designed exchange polarimeter can thus

minimize spin-orbit effects, allowing the simpler equations 5.43 - 5.45 to be used quite

accurately.

5.3.4 More details: instrumental asymmetry

Instrumental asymmetry was mentioned in section 5.2. All of the polarimetry techniques

discussed thus far reduce the polarization measurement to a relative intensity measurement.
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This assumes that the asymmetry in the intensities being compared is only due to polar-

ization. In realistic instruments, one must consider the possibility of asymmetry in the

two intensities not related to the polarization. In Mott polarimetry, this can be due, for

instance, to different efficiencies in the ‘right’ and ‘left’ electron detectors. Another source

can be slight misalignment of either the detectors or the incident beam resulting in the

two detectors measuring scattering at slightly different θ angles. Sources of instrumental

asymmetries in Mott polarimetry and ways to deal with them are well addressed in ref. 144.

Exchange based polarimeters utilize an ‘up-down’ asymmetry measured with a single

electron detector, thus providing relief from some of the instrumental asymmetries particular

to Mott polarimetry. With only one electron detector, there are no worries about differing

detector efficiencies or relative calibration. The single detector also makes alignment of the

beam/target/detector unimportant as the physical alignment will be the same for both ‘up’

and ‘down’ measurements.

Care must still be taken, however, as ‘effective’ alignment can be susceptible to changes

between the two measurements, as residual magnetic fields along the beam paths can deflect

the beam. Any stray field from the magnetized target will certainly change when the

magnetization is reversed. The target magnetizing coils may also alter the magnetizations

of any other magnetic materials in the area. The changing field deflections can then induce

asymmetry. As this type of polarimeter operates at low kinetic energy, the beam paths will

be sensitive to even very small residual fields. Following the analysis of Bertacco et. al.,169

this sort of instrumental asymmetry in an exchange based polarimeter can be introduced

into the previous section’s analysis by modifying equation 5.46 to

Iσ
µ = I(θ)

(
1 + µσPS

(ex)
eff + σPS

(so)
eff

)
(1 + µAi) (5.53)

where Ai is the induced intensity asymmetry from magnetization dependent beam deflec-

tions. As in equation 5.47, we can inspect the resulting measurement of the normalized

asymmetry when flipping the magnetization, now resulting in

Am =
I+
+ − I+

−
I+
+ + I+

−
=
Ai + P

(
S

(ex)
eff +AiS

(so)
eff

)
1 + P

(
AiS

(ex)
eff + S

(so)
eff

) . (5.54)
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As discussed in section 5.3.3, S(so)
eff will be very negligible with appropriate scattering ge-

ometry, reducing the above expression to

Am =
Ai + PS

(ex)
eff

1 + PS
(ex)
eff Ai

(5.55)

illustrating the desire to minimize Ai. Even if Ai is fairly small (significantly less than 1),

it can still present problems for measuring small beam polarizations. Taking S(ex)
eff < 1 and

Ai � 1, the above expression can be reduced further to

Am = Ai + PS
(ex)
eff , (5.56)

showing that even small instrumental asymmetries become a significant contribution when

measuring small beam polarizations. The instrumental asymmetry in equation 5.53 can be

systematically removed, as described in refs. 24,169,170, if the beam polarization can be

flipped allowing the four intensity measurements of section 5.3.3. This assumes, however,

that there is no systematic asymmetry induced when flipping the beam polarization. In

experiments such as photoemission from ferromagnetic samples, ‘flipping the beam polar-

ization’ requires switching the sample (not the scattering target!) magnetization, which

itself may introduce asymmetries due to photoelectron beam deflection in the sample stray

fields. Certainly the most trustworthy approach for precision polarization measurements is

utilizing a polarimeter with as low an instrumental asymmetry as possible.

5.3.5 Previous exchange polarimeters

Although not as mainstream as ‘mini-Mott’ polarimeters, low energy exchange-based

polarimeters have been developed and utilized. Of particular note is a polarimeter devel-

oped in the Kisker group and integrated with a hemispherical analyzer for spin-resolved

photoemission experiments.168 This polarimeter uses the specular reflection with 10◦ in-

cidence from an Fe(100) thin film epitaxially grown on a Ag(100) substrate. They claim

a maximum S
(ex)
eff of -44% at about 12.5 eV energy, with about 10% average reflectivity

(I/I0), for a total maximum FOM of 2× 10−2! They do note that these high numbers rely

on a very clean surface which ages with time and must be re-prepared fairly often. Indeed
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they discuss that the target preparation is a delicate procedure as preparations on some Ag

substrates achieve FOM’s as low as 6× 10−4.

A similar system was developed in the group of Ciccacci.170 It should be stressed that

because LEED in general is extremely surface sensitive, the S(ex)
eff and FOM of such a po-

larimeter is strongly dependent on the surface condition. As a surface reacts with residual

gas and contaminants in the vacuum, these properties will degrade even in UHV. Under-

standing the inconvenience of working with a polarimeter whose effective Sherman function

degrades rapidly with time, they investigated the use of less sensitive surfaces for use as

exchange polarimeters. They found that there remained strong spin dependent effects in

both the absorption171 and reflectivity172 of Fe(001) crystals with a p(1x1) oxide overlayer,

obtaining FOMs as high as 6 × 10−3. This is appealing as the oxide surface is much less

reactive and was found to maintain its effective Sherman function and FOM for weeks at

a time in UHV. This target system was investigated for use as a polarimeter,169 and when

coupled to a hemispherical analyzer170 the authors found a total FOM of 7 × 10−4. The

drop results from consideration of the loss of electrons between the hemisphere and the

polarimeter due to a claimed mismatch of electron optical phase space acceptances. This

issue will be addressed more closely in Chapter 6.

5.4 New exchange polarimeter

It is obvious that the low FOM of most spin polarimeters is the limiting factor in spin-

resolved experiments. Compared to Mott polarimeters, the high FOM’s achievable with low

energy exchange-based polarimeters make them a very attractive option for high resolution

spin-ARPES instrumentation. At the heart of the spin-TOF analyzer is a custom designed

exchange scattering polarimeter developed completely in-house with a possible FOM as high

as 1 × 10−2. The high efficiency of the polarimeter may make it an attractive choice for

other spin-resolved experiments, as well.
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5.4.1 Target characterization

It should be clear from the previous sections that the effective efficiency and operating

conditions of such a polarimeter are strongly linked to the target system used. A method

for characterizing a target system, both for searching for optimal systems and for eventual

polarimeter calibration purposes, is highly desirable. The Spin-Polarized Low Energy Elec-

tron Microscope (SPLEEM) at the National Center for Electron Microscopy (NCEM) at

LBL provides the ideal setup.

The SPLEEM technique is reviewed in detail in ref. 173; a diagram is shown in Fig-

ure 5.9. In short, a SPLEEM operates by focusing a spin polarized electron beam onto

a sample surface at normal incidence and images the specular reflected beam. A single

image taken in this way provides a topological image. The spin polarized source is based on

the popular GaAs photocathode92,93,94 and can easily reverse its polarization optically by

reversing the helicity of the excitation laser. A second image taken with the opposite po-

larization gives equivalent topological information, but when the two images are subtracted

the topological information exactly cancels. What remains is the pure exchange asymmetry

of the sample reflectivity, proportional to P ·M, where P is the incident polarization and

M is the sample magnetization. As mentioned in section 5.3.3, the symmetry of the nor-

mal incidence/reflection geometry removes the possibility of any spin-orbit effects. Thus,

the SPLEEM can take direct microscopic images of a sample’s magnetic domain structure.

Magneto- and electro-static optics downstream of the electron gun allow complete control

of the polarization vector in all three spatial dimensions, allowing these images to be taken

with respect to arbitrary sample magnetization directions.

SPLEEM essentially images the S(ex)
eff of the target with high spatial resolution, provid-

ing a perfect tool for investigating polarimeter target candidates. For polarimetry applica-

tions, the spatial resolution provided by SPLEEM is not entirely necessary, and the total

intensity of each image can be integrated. Another strength of the SPLEEM is, however,

very useful: its data acquisition speed. Images with sufficient statistics for determining

S
(ex)
eff are obtained at close to video rates. This allows data to be taken in a high efficiency
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Figure 5.9. (a) Cartoon diagram of SPLEEM operation, imaging a sample’s spin-dependent,
normal incidence, low energy reflectivity. Figure courtesy of Andreas Schmid. (b)
Co/W(110) reflectivity as a function of incident energy and Co thickness. Figure adapted
from ref. 174. See text for details.

spectroscopic mode, where the incident kinetic energy is scanned through a certain window,

quickly determining S(ex)
eff as a function of energy - vital for determining the optimal oper-

ating characteristics of a polarimeter. The efficiency of the SPLEEM spectroscopy mode

allows taking data during constant sample ‘growth’. For instance, data can be taken while

material is being epitaxially evaporated onto the sample substrate allowing 2 dimensional

phase space maps of S(ex)
eff as a function of energy and target thickness. As we will see, this

is very convenient.

For initial work, two systems were studied: ultra-thin Fe(110) films grown on a W(110)

crystal, and ultra-thin Co(0001) films also grown on W(110). Fe and Co are good candidates

for the polarimeter in general as they have large exchange splitting which would be expected

to lead to large exchange Sherman functions. Bulk crystals of either are not great options

as clean surfaces can be difficult to prepare (many cycles of sputtering and annealing).

Additionally they require large external fields to magnetize, and once they are, the large

stray magnetic fields will lead to problems with deflection of the low energy electrons and

instrumental asymmetry. As noted in refs. 169,168, thin films can easily be fully magnetized
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in a single domain and have minimal stray fields. In particular, a thin film with in-plane

magnetization gives extremely low external fields.

The W(110) crystal was chosen as a substrate for a couple of reasons. Tungsten surfaces

have a relatively straightforward recipe for reliable in-situ cleaning; annealing cycles in

3 × 10−8 torr of oxygen, followed by flashes to 2000◦ C. Anytime the target needs to be

freshly prepared, the W crystal can simply be flashed to start from scratch. The (110)

substrate surface was chosen because the two-fold symmetry results in magnetic anisotropy

with a single magnetic ‘easy-axis’ along the substrate [1,1̄,0] direction for films under ∼60

Å.175,176,177 This ensures reliable and complete switching of the magnetization direction

along the correct axis. Good descriptions of the epitaxial growth characteristics of Fe and

Co on W(110) are contained in ref. 177

Both systems showed promising results which were fully published by Graf et. al. in ref.

174. As the Co/W(110) system showed slightly better results and was ultimately chosen

for initial work in the polarimeter, we will give a brief summary here of the Co results only.

A false-color 2D phase-space plot of average reflectivity of the Co/W(110) system is shown

in Figure 5.9. The reflectivity is averaged over a flat-terrace area of the crystal within a

single magnetic domain. The energy independent, horizontal ‘corrugations’ in the plot are a

result of slight reflectivity peaks when full monolayers of Co are completed. This periodicity

is in fact what is used to calibrate the growth rate (i.e. the scaling of the vertical axis).

There is also an obvious pattern of curves marked by the white dotted lines as guides to the

eye. This is due to a Quantum Size Effect (QSE) characteristic of ultra-thin films,178 which

was hoped to increase exchange asymmetry above bulk values for improved polarimeter

performance.179

The QSE can be pictured like a Fabry-Pérot-like interferometer as diagrammed in Fig-

ure 5.10. Electrons incident on the thin film along the surface normal with kinetic energy

E enter the thin film by coupling to Bloch states with k-values determined by the thin film

electronic bandstructure, E(kz). Reflectivity is enhanced when standing waves are perfectly

formed within the thickness of the thin film, meeting the constructive interference condition
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Figure 5.10. Quantum Size Effect (QSE). Reflectivity boosted at points of constructive
interference of Bloch states.

of
Nλ

2
+ φ = d (5.57)

where λ = 2π/kz is the Bloch state wavelength, φ is a constant phase shift at the interfaces,

d is the film thickness, and N is an integer. The enhanced reflectivity standing wave states

of N = 1, 2, 3 are shown in the figure. The curves of increased reflectivity in the plot of

Figure 5.9(b) provide a vivid illustration of the existence of these quantum standing waves.

Figure 5.11 shows several constant thickness (horizontal) ‘cuts’ from the reflectivity plot

in Figure 5.9(b) for both spin directions with respect to the Co magnetization axis. The

periodic oscillations with respect to energy in each plot is again a clear manifestation of the

QSE interference. Two spin-dependent features of the oscillations immediately jump out.

First, the damped amplitude of the minority direction oscillations compared to the majority

can be interpreted as due to a smaller inelastic mean free path of minority electrons.174

Second, the minority spin oscillations are clearly phase shifted to higher energy with respect

to majority spins. This is easily explained by the exchange split bandstructure and the

QSE expressed in the constructive interference condition in equation 5.57. For a given film
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Figure 5.11. Figure taken from ref. 174. (a) Reflectivity as a function of incident energy
with polarization parallel (antiparallel) to the magnetized Co majority (minority) spins in
red (blue) for several film thicknesses. (b) Expanded view at 4 monolayer thickness. (c)
S

(ex)
eff obtained from (b). (d) Calculated Co bandstructure along the out-of-plane direction

(from ref 178).

thickness, only precise λ values lead to perfect standing waves. Because the bandstructure

is exchange split (as shown in Figure 5.11(d)), the precise λ values are obtained at different

energies for the different spin directions. The spin-dependent reflectivity spectra of panel

(a) and the included QSE oscillations qualitatively agree quite well with the previous theory

and experiments found in ref. 178.

As discussed and performed by Zdyb and Bauer179, the oscillation peak (and minimum)

locations at each thickness, along with equation 5.57 can be used to experimentally map

the unoccupied bandstructure of the thin film. For instance, the first QSE peak in the

4 monolayer (ML) minority reflectivity curve in Figure 5.11(b), corresponding to N = 1

in equation 5.57, occurs at the energy marked by the vertical blue dotted line. As there

are 2 Co basal planes per unit cell, 4 ML corresponds to a thickness of 2c, where c is the

lattice constant along the z-axis (perpendicular to the plane). With d = 2c and N = 1,

equation 5.57 gives λ = 4c (if we ignore the phase shift as a small correction), which is

equivalent to kz = π/2c. This value of kz and E indeed corresponds to the kz bandstructure
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as shown by the intersection of the blue dotted lines agreeing perfectly with the calculated

minority bandstructure in panel (d).

More important for polarimeter development is the exchange asymmetry, S(ex)
eff , shown

in Figure 5.11(c) as derived from the experimental reflectivities of panel (b). The slight

phase shift of the QSE oscillations leads to the strong peaks in asymmetry, which may

be used for a high performance polarimeter. The first asymmetry peak at ∼2 eV may

be additionally enhanced due to the spin-dependent bandgap (panel (d)), as described in

section 5.3.2. The full reflectivity data sets in the 2D thickness and energy phase space

(Figure 5.9(b) and left of Figure 5.12) are easily converted point-by-point to the effective

Sherman function plot in the center of Figure 5.12 according to

S
(ex)
eff =

1
P

Rmin −Rmaj

Rmin +Rmaj
(5.58)

where Rmin(maj) is the reflectivity measured with polarization parallel to the Co minority

(majority) direction and P is the polarization magnitude of the incident electron beam.

The QSE enhancement is visible as the distinct oscillations in the S(ex)
eff plot, leading to

values as high as over 40%. The distinct lack of any asymmetry below 2 ML results from

the fact that the Curie temperature for these thickness is below room temperature at which

the data was taken. This plot can be further converted point-by-point to the FOM map

shown on the right according to the usual formula. Thus a maximum FOM of 2 × 10−2 is

found at a kinetic energy of ∼ 2 eV with a Co thickness of 5 ML.

This research has shown that ultra-thin Co/W(110) targets are promising candidates for

use as a spin polarimeter with vastly improved efficiency over standard Mott polarimeters.

These extreme FOM values are due to the QSE. Unfortunately, this causes the S(ex)
eff and

FOM to be strong functions of kinetic energy. This can complicate data analysis if the

polarimeter is to be used with a simultaneous range of incident energies, as would be

the case in a TOF scheme. It may prove to be easier to operate with thicker films and

higher kinetic energies. Although they have somewhat lower FOM’s, they are less strongly

energy dependent, relieving some of this difficulty. Most importantly, the current work has

shown that the LBL SPLEEM is an excellent instrument for continuing investigations of

various scattering targets and calibrating their characteristics. Additionally, the completed
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Figure 5.12. Data taken from ref. 174. Reflectivity plot on the far left, and the derived
Sherman function and FOM plots on the right.

SPLEEM work has shown that Fe and Co films on W(110) are indeed a great starting point

for target development.

5.4.2 Scattering geometry and detection

The essential ingredients to our new low energy exchange polarimeter can be summarized

as: (1) an electron detector, (2) a single crystal scattering target, and (3) the geometric

relationship between them defining the scattering geometry. These three ingredients are

illustrated to scale in Figure 5.13, with the scattering geometry diagrammed in the inset.

The scattering geometry is chosen to optimize performance. Peak effective Sherman

function and FOM are generally found at normal incidence,171 and so the polarimeter is

designed to operate as close to perfect backscattering as possible. As discussed in sec-

tion 5.3.3, complicating spin-orbit effects are also kept to a minimum by operating near

normal incidence. The substrate W crystal axes are oriented as shown to put the magneti-

zation axis of the thin film target in the scattering plane for the ‘Planar’ geometry, giving

further reduction of any spin-orbit effects that could lead to asymmetric intensities even
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Figure 5.13. Scale illustration of polarimeter’s scattering/detection scheme. Details in text.
Scattering geometry and crystal orientation shown in inset.

with an unpolarized beam. From section 5.3.3, if the incident beam’s polarization can be

arranged to be in this scattering plane, virtually all spin-orbit effects can be fully neglected.

The electron detector design was carefully considered to fulfill its numerous require-

ments. As the majority of the backscattered electrons are done so elastically (little change

or loss of kinetic energy), the polarimeter technique is in principle consistent with simul-

taneous TOF energy analysis (Chapter 4). For seamless integration into a TOF energy

analyzer, the detector must have extremely good timing resolution. An MCP-based scheme

was chosen because of their excellent timing characteristics, detailed in section 4.4.1.

The near-perfect backscattering places restrictions on the geometry of the MCP de-

tector; the outer edge of a typical MCP assembly would require a large enough scattering

angle so as not to block the incoming beam. To achieve as small a backscattering angle as

possible, an annular detector was designed with a central hole through which the incoming
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beam could pass on its way to the target. After scattering through a minimal angle, the

beam would then strike the front of the detector’s active area and be detected. MCPs

(chevron pair) with a 27 mm active outer diameter and a 10 mm central hole (‘dead-space’

extends to 12 mm diameter) were purchased as part of a full detector assembly, the Hama-

matsu F4294-09. However, the assembly did not provide for the required high voltage on

the anode or the onboard signal decoupling as did the Hamamatsu F4655-12 (described in

section 4.4.1 and used for the spin-integrated leg of the TOF analyzer). Thus, the MCPs

were cannibalized from the assembly and installed into the home-built detector assembly

shown in cross section in Figure 5.13. The incoming beam passes through a 6 mm mini-

mum diameter tube through the entire detector. The final geometry then allows passage

of incoming electrons out to a radius of 3 mm from the central optical axis while giving

detection at a radius as small as 6 mm. With the scattering target 50 mm from the MCP,

this allows the scattering to comfortably take place at less than 5◦ from normal while still

accepting a usable beam width.

It may be imagined that the spatial/angular distribution in the incident beam could be

resolved in a multichannel detector after the scattering process. A multichannel detector

could then be ambitiously imagined to give simultaneous channels of angle resolution in an

ARPES experiment, for instance. The additional complexities, however, were deemed far

to extensive and problematic, and a single-spatial-channel approach was established early

in the design process.

The homemade detector assembly incorporates the aforementioned MCP chevron pair, a

grid, and a single-plate anode. The anode is separated from a second plate by a thin Kapton

sheet, forming a ∼300 pF capacitor allowing immediate decoupling of the signal from the

high voltage of the anode. The signal is somewhat ungracefully taken from this second disk

by a thin strip of tantalum spot welded to the disk, and then fed into an in-vacuum coaxial

cable to a double-sided SMA-type electrical feedthru. The MCPs, anode, signal output, and

signal cable shielding are all kept electrically isolated from all the purple-colored parts in the

figure, which along with the grid, the target itself, and a ‘Faraday cage’ (not shown) around

the target, forms a field-free drift region for the scattering. The all- titanium, alumina,
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Figure 5.14. Photographs of the home-built MCP detector assembly. Left: the upstream,
rear side of the detector, showing the beam input ‘funnel’ and the SMA signal output
connection. Right: front active side of the detector, showing MCPs, grid, and central tube
extending through the grid.

and Kapton construction of the assembly allows it to be heated to regular UHV bakeout

temperatures, unlike the Hamamatsu F4655-12 (section 4.4.1). Photos of the assembled

detector unit before installation are shown in Figure 5.14.

The operation of the polarimeter in a TOF scheme requires the detector assembly to give

excellent timing resolution in conjunction with the same timing electronics as described in

section 4.4.2. Before the unit was installed into the polarimeter, it was temporarily mounted

in vacuum for testing of its signal speed in a manner identical to that of the Hamamatsu

F4655-12 described at the end of section 4.4.1. A typical output signal pulse as recorded

with an oscilloscope is shown in Figure 5.15(a). The 525 ps rise time is similar to the 414 ps

of the commercial unit from Figure 4.5. The rise time is likely slightly longer due to larger

size of the MCP and its unique geometry in addition to the larger capacitance. The 5-10 mV

amplitude of the current assembly is however significantly smaller than the 50 mV. This is

likely due to the larger capacitance of the homemade signal output, as well as a less thorough

coupling to the actual signal cable. The total timing resolution achieved in conjunction with

the signal processing electronics was also tested as described in section 4.4.2. The timing

resolution of the present unit is shown in blue in Figure 5.15(b), directly compared to

the results of the commercial unit in red (previously shown in Figure 4.7). As discussed in

section 4.4.2, one of the major contributions to timing jitter is the range of distances between
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Figure 5.15. Timing characteristics of the polarimeter’s annular MCP detector assembly. (a)
Detector output signal recorded on an oscilloscope, as in Figure 4.5. (b) Timing resolution
obtained by laser excitation and TOF signal processing electronics. Annular detector in
blue, compared to the smaller, regular commercial unit of Figure 4.7 in red.

the location of the count arrival at the MCP/anode and the location of the signal output

wire, combined with finite signal propagation times along the anode. Thus the current unit

should be expected to give degraded timing resolution due to its larger diameter and the

presence of a hole in the center of the anode, causing a larger spread in signal propagation

times. The 120 ps resolution of the present unit is still quite satisfactory for the present

needs of the TOF analyzer, and will likely not be the limiting factor in the final total

energy resolution of the instrument. Although the small signal amplitudes can be tricky

to deal with, the total achieved performance did not call for a rebuild of the assembly. If

it is decided that improved performance is necessary, a smaller output capacitance and a

more thorough signal plate-to-signal wire connection would be initial points which could be

improved.

Integration into a TOF scheme also requires that the possible trajectories introduce

minimal variations to the total flight path length (see section 4.1). Straightforward attention

to the geometry of the specular reflection should be sufficient. With a large accelerating

voltage between the grid and the front of the MCP, the flight time from one to the other

becomes negligible, and we can consider the path lengths only to the grid. If the incoming

beam is focused to a point ∼50 mm behind the scattering target, the scattered beam will

then be focused to a single point on the grid, and the path length variation within the

polarimeter becomes minimal. However, if the focal point is closer (or farther), the spot on
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the grid will be larger. If the grid was flat and parallel to the actual MCP, this can result

in a more significant path length variation because of the slight angle away from normal

incidence backscattering. The grid can be shaped to correct for this if it is angled such

that it is normal to the scattered beam. In the present scheme, the grid (made of a 100

lines/inch woven 0.001” tungsten wire mesh with 81% open area transmission) is strectched

into a concave cone, as illustrated in Figure 5.13, to approximate this correction at any

rotation of the scattering plane about the incident optical axis. This way, a range of focal

distances can be tolerated.

5.4.3 Full polarimeter layout

The full design of the polarimeter is shown in a scale cross section view in Figure 5.16.

The polarimeter is attached via the main mounting flange to the output of the TOF electro-

static lens system (Chapter 4) which focuses its exiting electron beam into the polarimeter

through the detector tube as shown. As the scattering can take place at very low kinetic

energy (2-10 eV), the polarimeter must be well shielded, and so the scattering area is con-

tained within two layers of µ-metal (see section 4.5.2). Penetrations through the shielding

are minimized, and the penetrations that are required are fully ‘sleeved’ to minimize the en-

trance of external fields. During assembly, the residual field inside the shield was measured

as 0.1 - 0.2 mG. The scattering target is quite surface sensitive, and so vacuum pressure

must be kept to a minimum around the target. This is difficult to achieve as the target is

located in the center of three concentric cylinders (two magnetic shields, and one ‘Faraday

cage’ defining the potential of the field-free drift space), making it difficult to get pumping

to where it is needed. Pumping is provided by vacuum in the TOF analyzer directly up-

stream, as well as from a turbo pump attached to one of the polarimeter’s radial flanges

(not shown). An extra flange is provided for further pumping, but it is unknown how much

it will be able to effect the pressure at the target surface. It will be important to monitor

whether vacuum pressure at the target surface is an issue: initial testing has been rather

positive and will be discussed in Chapter 6.

The surface sensitivity of the exchange scattering requires a clean target to be prepared
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Figure 5.16. Cross sectional view of the complete spin polarimeter, to scale.

in-situ. This is performed in an adjacent ‘prep’ chamber, on the lower right of Figure 5.16.

The prep chamber is equipped with all the tools required to clean and prepare the target.

The cleaning recipe for the W substrate utilizes high temperature flashing in a 3 × 10−8

partial pressure of oxygen. The prep chamber is supplied with a stage for the required

e-beam heating of the crystal, a leak valve for O2 introduction, and a gate valve to isolate

its vacuum from the shared vacuum space of the rest of the polarimeter, TOF analyzer, and

ARPES analysis chamber. Opposite the target stage is an e-beam evaporator with a water-

cooled jacket for UHV deposition of the magnetic thin films (presently cobalt). If the target

is removed from the heating stage, flux from the evaporator passes through a hole in the

center of the stage to a quartz crystal growth monitor for calibrating the evaporation rate.

Once a rate is firmly established, the target is returned to the heater stage for a deposition

of precise thickness. When target preparation is complete, the target is transfered into the

polarimeter on its analysis stage via the magnetically-coupled transfer arm shown on the

far right. Photographs of the innards of the e-beam evaporator and the integrated heater

stage and growth monitor are shown in Figure 5.17.
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Figure 5.17. (a) Central components of the Co e-beam evaporator. (b) Integrated heater
stage and growth monitor.

To minimize the total size and weight of the polarimeter, it was attempted to keep the

prep chamber as small and efficient as possible. The chamber has the absolute minimum

number of ports required. Pumping was initially supplied by a 70 l/s turbo pump directly

attached to the central chamber on a 4.5” flange. Unfortunately, the ultimate base pressures

would only get into the upper 10−10 torr range, and would take a significant amount of time

to recover after the high-temperature W flashing and thin film evaporations. Changing to

a 300 l/s turbo pump on a 6” flange, mounted through a 4.5-6” conical adapter has given

much better pressures during target preparation, with a base pressure of 2-3×10−10 torr.

Further improvements, especially during heating and evaporating, would likely require a

larger chamber volume to accommodate more pumping speed, thus sacrificing economy.

For now, the performance is sufficient for preparing effective targets.

5.4.4 Target manipulation and magnetization

Manipulating the target’s position and magnetization is central to the operation of

the polarimeter. To enable easy transfer between the analysis position in the polarimeter

chamber and the prep chamber, the substrate crystal is mounted into a sample cartridge

based on the popular system from the commercial electron microscope company ‘Elmitec’.

The same type of cartridge is used at the NCEM SPLEEM as well as the PEEM2 microscope

at the ALS. The cartridge contains an internal filament for e-beam heating, and electrical
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Figure 5.18. (a) Photograph of polarimeter analysis stage and double Helmholtz magnet
assembly with target cartridge in place. Red arrows represent the field from the inner
Helmholtz pair, blue arrows represent the field from the outer Helmholtz pair, illustrating
the strong net field at the target surface and the far-field cancellation.

contact for supplying current is made through ‘sled’-shaped sliding contacts. Transferring

the cartridge uses a clever lock-and-key design, allowing operation with a single-magnet

transfer arm.

Target magnetization is performed by Helmholtz coils centered on the analysis stage for

rapid magnetization reversal during measurement. The coil design required small size to be

able to fit in the analysis position, and yet also had to be designed to have minimal stray

fields. Although all the parts internal to the magnetic shielding were made from strictly

non-magnetic materials, magnetizing the µ-metal shielding itself was a concern. To keep

instrumental asymmetry to a minimum, the magnet coils must provide a large enough local

field at the target to fully switch its magnetization, but must fall off rapidly with distance

so as not to influence the magnetization of the inner µ-metal layer. The final design is

illustrated in Figure 5.18(a), showing the target cartridge in place between a nested set of

Helmholtz pairs. A Helmholtz pair is two equal concentric coils separated by a distance

equal to their radii, a configuration which gives a fairly homogeneous field near the center

of the pair directed along the axis between them. The inner pair of coils has 160 windings

each, while the outer pair has only 40 windings each, wound in the opposite direction, with
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twice the radius. Each inner coil is powered in series with each outer coil, so every winding

receives the identical current, I. The field at the center of the coils (at the target surface,

along the coil’s axis) due to the inner pair is then

Bi =
8

53/2

µ0(160I)
R

(5.59)

where µ0 is the permeability of vacuum and R is the radius of the inner coils. The field at

the center due to the opposing outer pair is then

Bo = − 8
53/2

µ0(40I)
2R

= −1
8
Bi (5.60)

resulting in a combined field at the target of

Bt =
7

53/2

160µ0I

R
. (5.61)

So in the center of the coils, the field from the inner pair vastly outweighs the countering

outer pair, resulting in a strong net central field. However, away from the coils is a different

story. In the ‘far-field’, we can approximate the field due to each individual coil as that due

to a perfect dipole, m, of magnitude m = CA where C is the total current in the current

loop, and A is the area enclosed by the loop. The ‘far-field’ of a dipole scales as m/r3,

where r is the distance away from the dipole. Thus, the field far from each inner coil can

be approximated as

Bffi ∝
160IπR2

r3
(5.62)

while that of each outer coil is approximated as

Bffo ∝ −
40Iπ(2R)2

r3
= −Bffi. (5.63)

We see that the nested set of Helmholtz pairs exactly cancels each other in the far-field

dipole approximation! In this way, the compact magnet system can produce a strong local

field for target magnetization reversal, and yet have small stray-fields which could risk

causing instrumental asymmetry. The fields due to each Helmholtz pair are depicted by the

arrows in Figure 5.18, illustrating the net central field and the far-field cancellation.

It was determined via domain imaging in the SPLEEM that a field of 66 G was enough

to completely magnetize and flip the magnetization of the thin film targets. With a test
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current of I = 0.5 A in the above equations, the field at the target position was measured

as ∼ 35 G. With the inner coil having an average radius of 9.32 mm, equation 5.61 predicts

a field of 67 G; the difference is likely due to the coils not being in the exact Helmholtz

geometry. When measuring the magnetic field at the distance of where the µ-metal would

be, no difference in field could be detected with the test current on and off. Just to be sure

of complete magnetization, the polarimeter standardly operates the coil with I = 1.7 A for

a field of 119 G at the target surface. As the polarimeter cannot operate while the coils are

energized, the coils are pulsed between measurements. The wire used is AWG 36 (0.005”

dia. conductor) with a single build of Kapton insulation (total 0.0056” dia.) and a resistance

of 0.415 Ω/ft. As the current is rather high, a fast pulse of 1 ms is used to minimize coil

heating as well as minimize dead-time between measurements. There was no measurable

difference in the 0.1 mG residual field inside the polarimeter’s shielding before and after full

strength coil pulses. To minimize the amount of systematic asymmetry introduced into the

polarization measurement due to sample aging or light source intensity decay overtime, the

coils are pulsed to flip the magnetization back and forth many times, accumulating data for

each magnetization direction. Currently this is done about once per minute.

An above view of the target, analysis stage, and coil assembly inside the Faraday-cage

drift space is shown in Figure 5.18(b). The insulated wires of the coils have been shielded

by ribbons of thin sheet metal coated with colloidal graphite to ensure they do not cause

any electrostatic beam deflections.

The target stage assembly rides on a high precision 5-axis manipulator, commercially

purchased from Elmitec. The manipulator action can be seen in Figure 5.16, and it provides

small alignment translations of the sample along the x and y axes (defined in the figure)

and 2” of travel along z to allow moving the target assembly back and forth between the

prep chamber transfer position and the analysis position in front of the detector. The

manipulator also provides ±2◦ of target tilt rotation about both orthogonal in-plane axes.

The entire manipulator is mounted on a large rotary feedthru, allowing the entire target

assembly to rotate about the optical axis (z in the figure). As the polarimeter is sensitive

to the polarization component of the incident beam along the target’s magnetization axis,
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this rotation allows this sensitive axis to be freely adjusted to any orientation within the

polarimeter’s x − y plane. The magnetizing coils are attached to the target stage so they

rotate along with it. The rotational symmetry of the annular detector and conical grid

are key to accommodating this freedom. This rotation allows the polarimeter to measure

two orthogonal components of the incident polarization. Access to the third component

requires rotation of the entire polarimeter with respect to the beam source, as discussed in

section 4.5.1.

5.5 Summary

Although measurement of electron spin polarization is highly desirable for a wide range

of experiments, it is currently not an easy task as polarimetry techniques must rely on

inefficient spin-dependent scattering schemes. The most popular instruments utilizing spin-

orbit effects such as the state-of-the-art ‘mini-Mott’ polarimeters operate with efficiencies

of ∼ 1 × 10−4 compared to simple intensity measurements. Utilizing exchange effects in

low energy scattering from magnetic surfaces offers an attractive alternative with enhanced

efficiencies, largely due to the much larger scattering cross sections. The custom exchange

polarimeter developed here for the spin-TOF spectrometer promises a 10-100 times gain in

efficiency over even the best Mott (or other spin-orbit based) polarimeters.
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Chapter 6

SARPES with the spin-TOF

spectrometer

What a difference between a truth that is glimpsed and a truth that is demon-
strated

— Unnamed, 19th century French admirer of Newton

6.1 The spectrometer

Full assembly of the spin-TOF spectrometer has recently been completed allowing initial

testing and usage. Key operational details of the full instrument are summarized. The

spectrometer was installed with a small UHV photoemission endstation at beamline (BL)

12.0.1 at the ALS during 2-bunch operation and showed promising performance. Early

results including successful spin- and angle-resolved photoemission spectroscopy will be

briefly reviewed and the next steps will be identified.

6.1.1 Combining the TOF lens system and exchange polarimeter

The spin-TOF spectrometer takes a radical departure from the customary approaches to

spin-resolved photoemission instrumentation by combining the spin analysis of the custom
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Figure 6.1. Cross sectional view of the complete spin-TOF spectrometer, to scale. Electron
beam paths for both modes of operation are shown.

low energy exchange polarimeter of Chapter 5 with TOF energy analysis of the electro-

static lens system of Chapter 4. Although the two subsystems were previously discussed

as independent instruments in separate chapters, the polarimeter is in fact seamlessly inte-

grated into the TOF measurement by providing the electron arrival times with high time

resolution. The full instrument is shown in cross section in Figure 6.1.

The design of the TOF lens system allows two modes of operation, represented by the

two distinct electron paths illustrated by black arrows in Figure 6.1. In Mode #1, the

bandpass filter (BPF) formed by the 90◦ spherical electrodes is turned ‘off’, allowing the

electrons to travel a ‘straight’ path from Lens Column 1 (LC1) through to LC3. In Mode #2,

the BPF is turned ‘on’, deflecting electrons around the 90◦ bend and down LC2. Although

any electron detector can be installed at the end of either path, the primary setup will have

the regular spin-integrating MCP detector assembly at the end of LC3 (Mode #1) and the

spin polarimeter at the end of LC2 (Mode #2).

The two modes of operation provide valuable flexibility that allows the experimenter

to take advantage of the particular strengths of both modes. Although the polarimeter
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involves large efficiency increases over other instruments, it is still less efficient than a spin-

integrating detector. The use of Mode #1 gives the ability to take extremely fast, full

energy window photoemission spectra of the sample being probed. This can be used for

quick and accurate sample surface characterization, through either the sharpness of near EF

dispersing valence bands, or through the core level peaks which are automatically included

in each spectrum. Charactering the band dispersions can also be used for alignment of

the sample’s crystallographic axes. This fast-acquisition mode can also be used to search

for ideal photon energies, or for areas within momentum-space and binding energy where

spin-resolution is most desired. Any of these activities would be more difficult and time

consuming if performed with the spin polarimeter.

Once the sample is aligned and points in k-space and windows in binding energy are

identified where spin-resolution is most important, the experimenter can switch to Mode

#2, sending the photoelectrons around to LC2. Photoelectrons within the defined energy

window pass through the exit slit and are focused into the spin polarimeter; spin-resolved

data is obtained through the difference spectrum between when the polarimeter target is

magnetized ‘up’ and ‘down’, as detailed in Chapter 5. The combined improvements of the

new polarimeter and the parallel energy detection of the TOF technique allow these spin-

resolved spectra to be taken faster and therefore with higher resolutions than are possible

with other existing instrumentation.

With the full picture of the spin-TOF instrument in mind, it can be seen that the 90◦

BPF performs three important functions. First, the BPF acts as a switchyard between

LC2 and LC3, allowing instantaneous switching between two different detectors. Second, it

removes the unwanted parts of the spectrum which would cause spectrum ‘overlap’ during

operation at high energy resolution (larger retardation / lower average velocity), as detailed

in section 4.4.5. Thus we see that Mode #2 allows higher energy resolution than Mode

#1. Third, placing the polarimeter after a 90◦ bend allows changing the orientation of

the polarimeter target with respect to the photoemission sample, allowing polarization

measurement along all three orthogonal directions (see section 4.5.1).

Chapter 5 spent much time focusing on the efficiency of spin polarimeters described
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by their Figures of Merit (FOMs). As discussed in refs 170,107, a FOM for an entire

spectrometer must also take into account the loss of any electrons between the energy

analyzer and the spin polarimeter. The possibility of a loss of electrons results from general

conservation laws of electron optical phase space. The law of Helmholtz-Lagrange requires

that the electron optical phase space of an electron beam, defined as

Φ = EAΩ, (6.1)

is a conserved quantity at all points along a paraxial electron optical system.158 In the

above, E is the beam kinetic energy, A is the beam cross sectional area, and Ω is the

beam’s solid angle. If the polarimeter can accept a given electron optical phase volume,

Φpol, which is smaller than the occupied electron optical phase volume of the upstream

electron optics (i.e. an energy analyzer), then electrons must be lost and total efficiency is

reduced before even considering the FOM of the polarimeter.

The current spin polarimeter operates at very low scattering energies from around 2 to

10 eV and has severe geometric restrictions on the accepted electron beam which must pass

through the 6 mm diameter tube through the annular MCP (see section 5.4.2). The TOF

lens system must retard the photoelectron beam to be analyzed to an energy of 2-10 eV as

well as focus it through the MCP tube and onto a small spot on the scattering target. From

the tube’s geometry, we can define that a beam with an angular divergence of 1◦ half angle

focusing to a 1 mm spot on the scattering target can be accepted. This translates to an

electron optical phase space acceptance of 0.0015 < Φpol < 0.0075 in units of mm2 sr eV.

This acceptance is quite small compared to values of 103 for ‘mini-Motts’ (and small even

compared to 1 for spin-orbit LEED polarimeters).158 The small acceptance is due mostly

to the much lower scattering energy.

This value for Φpol is not a cause of large concern for the present application to ARPES,

however. Although the acceptance of the TOF lens system (and other energy analyzers)

could be much larger, the phase space acceptance is in fact purposely reduced to achieve

good angular resolution in the photoemission measurement. The angular resolution of the

spin-TOF spectrometer is defined simply by its angular acceptance; the variable aperture

at the front of LC1 can reduce this to as low as around ±1◦. Additionally, the synchrotron

189



Figure 6.2. Screenshot of power supply control software.

and laser based light sources the spin-TOF is meant to be used with can achieve small spot

sizes of <100 µm quite easily. At initial photoemitted kinetic energies of 100 eV, this means

the electron optical phase space volume of the beam allowed to pass through the analyzer

will only be Φbeam = 0.0008 mm2 sr eV anyway. Thus, with ideal operation of the TOF

lens system, there should be no fundamentally required loss of electrons accepted into the

spin polarimeter.

6.1.2 Instrumental control

All spin-TOF electrode voltages are supplied by the flexible power supply system used

by the popular VG Scienta hemispherical analyzers. The system consists of a rack-mounted

cabinet with an array of individual, swappable, floating power supply boards, each one

digitally controlled via fiber-optic link to a central computer interface board. Computer

communication is provided by a USB interface. The Scienta power supply system was

chosen due to the number of systems already in use on the ALS floor; possible replacement

supply boards abound in case of any failures.

The power supply computer interface is supplied with a complete set of DLLs that made
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building custom control software straightforward. A screenshot of the ‘LabVIEW’ based

software panel for setting the 21 independent voltages via 25 individual supplies is shown

in Figure 6.2. The panel shown allows direct control of each supply voltage with a display

of the resulting voltages on each electrode. Additional panels allow automatically loading

predefined sets of electrode voltages, or ‘lens tables’.

Power from each supply is taken through individual durable high-voltage cabling to

Junction Boxes (JBs) at each vacuum electrical feedthru directly on the spin-TOF vacuum

chamber. The JBs contain low-pass RC circuitry to remove noise from the switching power

supplies as well as the necessary wiring for ‘stacking’ the voltages of certain power supplies

before connection to a feedthru pin. Each pin is then directly connected to its correspond-

ing electrode(s) within the spin-TOF spectrometer. A wiring diagram, showing the power

supply connections within each JB, each pin-electrode connection, and each external JB-JB

SHV coaxial connection in shown in Figure 6.3. The spin polarimeter’s target magneti-

zation coils are powered by a National Instruments ‘BNC-2110 Shielded Connector Block’

connected to computer through a National Instruments ‘PCI-6221 M Series Multifunction

DAQ’ card. Pulses are shaped and controlled through a separate LabVIEW control panel.

The resulting output of the BNC-2110 is first amplified by a custom high-speed inverting

50 V amplifier, and then supplied directly to the coils via electrical feedthrus installed in

the target manipulator.

As described in section 4.4.2 and 4.4.4, data acquisition is performed by the computer

controlled Ortec 9308 pTA. A simple LabVIEW based control panel was also written to

interface with the pTA’s own set of DLLs. The software panel currently provides control of

the pTA along with multiple displays for viewing the incoming data with respect to time as

well as kinetic energy and for live comparisons with recent spectra. The panel saves data

in the FITS file format for flexible organization of various amounts of ‘meta-data’ such as

pTA and/or power supply settings used during acquisition.
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Figure 6.3. Diagram of spin-TOF electrical wiring connections.
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6.1.3 Experimental endstation

The spin-TOF is installed on a very basic UHV chamber system for initial testing and

usage. The analysis chamber itself is based on a 6-way 8” CFF cross mounted on a ‘80/20’

aluminum extrusion modular support frame. Pumping is supplied by a 300 L/s Varian V-

300 turbopump, a 300 L/s Varian Diode ion pump, and a 6” ALS-style titanium sublimation

pump (TSP) can, all mounted from below on a pumping cross. The analysis chamber is

equipped with a double layer of magnetic shielding which directly couples to the shielding

of the spin-TOF spectrometer.

The sample stage contains an e-beam heater assembly compatible with ALS-style 1”

sample pucks, directly mounted to a 1” diameter cryostat tube. Thus the sample stage

provides high temperature sample heating, as well as cooling to near liquid helium tem-

peratures, but does not provide any motion apart from motion of the entire cryostat. The

cryostat is vertically mounted on the analysis chamber through a VG ‘Centiax’ large-bore

XYZ manipulator (providing three translational degree of freedom to the cryostat/sample)

and a small 4.5” CFF differentially pumped rotary seal (providing rotation of the cryo-

stat/sample about the cryostat’s vertical axis).

The sample can be vertically raised out of the analysis chamber into a small ‘prep’

chamber (formed by a 6-way 4.5” CFF cross) which features an externally mounted solenoid

shaped coil for magnetizing the sample vertically. The ‘prep’ chamber also has room for

evaporators for sample growth in addition to the flanges directly on the analysis chamber

available for evaporators. The analysis chamber location provides the ability to evaporate

on the sample during simultaneous photoemission measurement. A photograph of the spin-

TOF spectrometer and test endstation installed at the ALS BL 12.0.1 during the August

2008 2-bunch mode is shown in Figure 6.4.

6.1.4 Bandpass filter details

Mode #1 of the spin-TOF operates very similarly to the prototype lens system as de-

scribed in section 4.4.4. The BPF of Mode #2, however, introduces additional complexities.
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Figure 6.4. Spin-TOF spectrometer and test endstation at BL 12.0.1. The analysis chamber
is on the left, and the spin-TOF extends towards the right. The spin-TOF Lens System 2
is angled towards the camera affording a good view of the rear of the spin polarimeter, its
target manipulator, and its target prep chamber extending above it.
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One particular problem is the introduction of timing aberrations due to path length vari-

ations caused by the BPF. That the BPF may introduce path length variations can be

qualitatively understood by the fact that this is what makes the BPF (and of course SDAs)

work: electrons of different energies take different paths around the spherical electrodes.

Although timing dispersions introduced by the BPF is an important problem, is was decided

early in the project that they could be sufficiently minimized with correct lens tables such

that they did not limit the final energy resolution.

The issue has been only briefly experimentally investigated at this point. To work on

this aspect as well as others, a photocathode electron gun was developed. Using 4.5 eV

light (from third harmonic generation) of the lab’s mode-locked laser, semi-monochromatic

electron pulses of initially 1 ps width are generated from a polycrystalline gold surface

floating at an arbitrary potential which directly controls the kinetic energy of the electron

pulses. These pulses were first measured with the spin-integrating detector in Mode #1,

and showed a 89 meV pulse width. The same electron pulses were then measured in the

polarimeter using the BPF in Mode #2 where they showed a 155 meV pulse width. The

two measurements are compared in Figure 6.5(a). These results show that the lens table

used for the Mode #2 measurement likely leads to a large amount of timing aberrations

which have a significant impact on the resolution, limiting performance to 155 meV energy

resolution. Due to time constraints prior to the scheduled ALS 2-bunch runs, lens table

adjustment was not possible before taking the data shown in the rest of the Chapter. An

important next step of spectrometer development will be tuning the lens tables to bring

these timing dispersions down to acceptable levels for sub-10 meV resolution. It may be

additionally possible that timing aberrations are introduced within the spin-polarimeter

itself; it will be important to investigate the timing properties of the polarimeter and the

BPF independently. This can be done by switching the locations of the polarimeter and

regular detector behind LC2 and LC3.

The BPF adds another complexity, as well. While Mode #1 acquires an entire spectrum

simultaneously, Mode #2 acquires a spectrum only within a window (usually on the order

of 1 eV). Although the transmission percentage of electrons through the lens system in
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Figure 6.5. Properties of Mode #2 with BPF and polarimeter tested with photocathode
electron source. (a) Comparison of electron source spectral width measured with Mode #1
(no lens voltages) and Mode #2. (b) Scanning kinetic energy of electron pulses through the
bandpass window of Mode #2. (c) Measured transmission function extracted from peak
heights in (b).

Mode #1 may be somewhat kinetic energy dependent, the resulting ‘transmission function’

will not be so strong as to mask features of the real spectrum (as evidenced by the spectra

taken from the prototype system in section 4.4.4 and the spectra below in Figure 6.6). The

transmission function of Mode #2 and the BPF must be a strong function of energy by

definition, as it needs to be high for energies within the bandpass window, and extremely

low for energies outside this window. Ideally the transmission function would be a perfect

‘square’ shape, with 0% transmission everywhere except for a sharply defined window of

100% transmission. This is not completely achieved, and one must correctly deal with the

influence of the real transmission function on the spectral lineshape.

One approach is to directly measure the transmission function. This can allow ‘tuning’

of the lens tables and exit slit size to find transmission which more closely approximates

the ideal square transmission, as well as a quantitative way to interpret future spectra.

This has also only just begun using the same electron source. The electron pulses were

again measured in Mode #2 as in Figure 6.5(a), for a large set of cathode potentials. Each

resulting spectrum is shown in Figure 6.5(b) with a vertical offset for clarity. As the kinetic

energy of the electron pulse ‘scans’ through the bandpass window, the measured intensity
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amplitude rises and falls, showing the effective transmission function of the lens table.

Figure 6.5(c) is a plot of the pulse intensity amplitude as a function of cathode potential,

which is at least approximately related to the actual transmission function. Further efforts

with tuning may be able to provide a more ‘square’ shape. In the end, it may be most

convenient to acquire data in a ‘swept mode’ where the BPF voltages are scanned to sweep

the bandpass transmission function across the window of interest, thus integrating out the

transmission function. This technique will also allow taking continuous data through an

energy window larger than that allowed by a fixed bandpass.

At the time of the ALS 2-bunch run, only the one lens table used for the data in this

section was available. Although several steps of testing and calibration still need to be

performed for the BPF and Mode #2 to be fully operational, we will see in the next section

that qualitatively reasonable spectra can already be obtained with Mode #2 with the current

lens table. By correct selection of the photon energy, the desired part of a spectrum can

be placed within the kinetic energy range of the bandpass given in Figure 6.5(c). This has

allowed spin resolution with the polarimeter to be clearly demonstrated.

6.2 Spin-resolved ARPES

The 10 days of the August 2008 ALS 2-bunch mode period presented an opportunity to

demonstrate the current capabilities of the spin-TOF spectrometer. As noted, work remains

for full calibration of the instrument, particularly in regards to development of further lens

tables and a more extensive software control package. Utilizing the 2-bunch beamtime to

investigate its present performance, however, is quite valuable for making great progress in

these final developmental steps.

6.2.1 Sample preparation

For this beamtime, the test chamber system was equipped to investigate two sample

systems with spin-dependent bandstructures: Fe(110) and Au(111) surfaces. These systems

were chosen as they are prototypical examples of spin-dependent electronic structures which
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Figure 6.6. Spin-integrated photoemission spectra from a clean W surface at room temper-
ature with 70 eV photons taken with the spin-TOF Mode #1. (a) A full range spectrum
including several core levels. Inset is a close-up view of the 4f core levels, corresponding to
the blue box. (b) Spectra taken with hν=60 eV, shown only in the valence band region, at
several emission angles, revealing dispersive bands.

have been previously studied by spin-resolved photoemission. Additionally, clean surfaces

of both can be conveniently obtained by in-situ evaporation of epitaxial thin-films on a

W(110) substrate, which in turn is easily prepared by the usual recipe (see section 5.4.1).

Thus, a high quality W(110) crystal (10 mm diameter by 1.5 mm thick) was installed on

the endstation’s cryostat/heater sample stage, an e-beam Fe evaporator was mounted on

the analysis chamber, and a simple resistive Au evaporator was mounted in the endstation’s

prep chamber. Spin-TOF results from these systems are presented in the following sections.

As both systems required a multi-step preparation process, utilizing the spectrometer’s

Mode #1 for high-speed sample characterization was extremely useful. Both systems re-

quired a very clean W(110) surface. The W surface can be straightforwardly cleaned with

cycles of annealing and ∼2000◦C flashing in a partial pressure of O2, but how clean the

surface becomes should somehow be verified. A spin-integrated spectrum taken in Mode

#1 after a successful W cleaning procedure is shown in Figure 6.6(a). The spectrum shows

a sharp Fermi edge and strong valence band peaks. It also shows a distinct set of core level

peaks corresponding to the 5p3/2, 4f5/2, and 4f7/2 levels. First, the locations of these peaks

identifies that the illuminated spot of the sample is indeed W. This in itself is useful; when

198



the sample was incorrectly position such that part of the Ta pieces holding the W crystal

in place was illuminated instead, these core levels shifted to the corresponding Ta energies,

easily identifying the sample mis-positioning.

Furthermore, taking a close look at the 4f core levels (figure inset) shows that each 4f

level is further split into two peaks. The higher kinetic energy (lower binding energy) set

corresponds to surface core levels, shifted from the bulk contribution due to changes in the

surface density of states and other effects of the reduced coordination at the surface.180,181

Observing such a strong surface contribution peak suggests a quite clean surface; indeed the

data agrees remarkably well with that found in the literature182 in terms of peak separations,

heights, and widths. In contrast, it was quickly found that a dirty surface from too much

time exposed to the residual gases in the vacuum or from an insufficient cleaning procedure

would result in reduced heights (or complete lack) of the surface peaks. Thus, the fast,

full spectrum capabilities of Mode #1 are quite useful for sample characterization and

preparation.

Figure 6.6(b) shows expanded views of the valence band portions of spectra at different

emission angles along the [0,0,1̄] direction. The observed dispersing bands demonstrate the

ARPES abilities of Mode #1. These dispersions can be used for verifying sample quality,

and their symmetry can be used for alignment of the sample’s crystallographic axes as well

as identifying locations in k-space.

Mode #1 was also quite useful for monitoring the growths of both sample systems.

High quality Fe(110) films can be epitaxially grown on clean W(110) substrates as widely

noted in the literature.175,176,177 The magnetization ‘easy-axis’ is found to be along the

[1,1̄,0] direction for thin films under 60 Å but then flips to the bulk [1,0,0] direction for

thicker films. The spin-resolved experiment becomes much more straightforward when the

easy-axis is known, and so the thickness, and therefore the evaporation rate, needs to be

fairly well known. With the Fe evaporator mounted on the analysis chamber, fast Mode

#1 spectra could be taken during Fe film growth. Monitoring the disappearance of W

features (core levels and valence lineshapes) from the spectra allowed a good estimate of

the evaporation rate. For instance, as the mean free path of photoelectrons are ∼5 Å at
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∼30 eV,183 approximately 5 Å had grown when the W 4f core levels decreased in intensity

by about a factor of 1/e. Evaporation was then continued for about 5 times longer for a

∼25 Å Fe film.

As the only room for a Au evaporator was above the analysis position in the prep

chamber, Au films were grown on the W(110) substrate without the aid of live photoemission

monitoring. However, the spin-dependence of the Au system does not have the thickness

dependence that the Fe system does, and so thickness calibration is not as important as

long as more than a few monolayers are deposited. Evaporation proceeded by heating a

small lump of Au in a tungsten wire basket until it became molten, and leaving the W(110)

substrate in front of it for ∼ 12 minutes. The resulting film was not thick enough to be

visible by eye, but when the sample was returned to the analysis position and measured

with Mode #1, it displayed an obvious Au spectrum (just like those taken from Au in

section 4.4.4) with no trace of W core levels. Additionally, a clear peak near EF due to

the Au(111) L-gap Shockley surface state was present, signaling that a quality sample for

further spin analysis had been obtained.

In all of the above, Mode #1 was utilized with each electrode of LC1 and LC3 grounded.

In other words, no retardation or focusing was used, or found necessary for the present uses.

Indeed, these cases illustrate the full spectrum capabilities of Mode #1 as a large strength;

any retardation reduces the total energy width of the spectrum and one perhaps misses

out on helpful high binding energy core levels. The energy resolution obtained without any

retardation was also clearly sufficient for the present uses of merely identifying key features

such as the Fermi edge and valence and core peaks. Lens tables for retarding, focusing, and

increasing count rates will be developed, however the count rate was already quite sufficient

with the flux available in these current experiments.

6.2.2 Fe(110)

The 3d ferromagnetism of bulk Fe makes it an ideal system to study with spin-resolved

techniques, and it has historically been a popular choice for spin-resolved photoemis-
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Figure 6.7. Spin- and angle-resolved photoemission spectroscopy of Fe(110). The data has
been decomposed into minority (blue) and majority (red) spectra. Figure adapted from ref.
184.

sion.100,22,24 As discussed in section 3.3, spin-resolved photoemission can measure the ex-

change splitting of the minority and majority bands and directly confirm the spin character

of each. As Fe has the largest exchange splitting of the 3d ferromagnets, it is an ideal

system for giving the spin-TOF a ‘test-drive’. An example of previous SARPES data taken

in normal emission from Fe(110)184 is shown in Figure 6.7. The data was taken with 40

eV photons with 100 meV and 2◦ energy and angular resolutions, respectively, and shows a

strong minority peak near EF and a majority peak at about 0.6 eV higher binding energy.

Note that this data is quite similar to the data taken from the Fe(100) face, presented ear-

lier in Figure 3.3(a). The large difference between the majority and minority emission near

EF means that Fermi level photoelectrons have a large, and therefore ‘easy’ to measure,

polarization, P , making it a good system to start with.

The Fe/W(110) sample was first prepared as in section 6.2.1. From the recipes in the

literature,175,176,177,184 the best results are obtained when the growth is either performed

with the substrate held at an elevated temperature of ∼500 K or performed at room tem-
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Figure 6.8. Mode #2 spectrum of Fe/W(110) system with hν=36.6 eV and the polarimeter
target magnetized by a positive coil pulse.

perature followed by a brief anneal to ∼500 K. As the current setup does not include the

means for measuring this range of temperatures, the growth was performed at room tem-

perature followed by a quick anneal of an elevated temperature that was not enough to

visibly glow (i.e. < 600◦C). Without a LEED, it was difficult to tell if the anneal was

enough to obtain perfect crystallinity, although even a polycrystalline Fe film is expected

to give spin polarized photoemission.185 The sample was raised to the prep chamber coil

position and magnetized upwards with a current which prior to the experiment resulted in

a measured field of 230 G. The sample was then returned to the analysis position in front

of the spectrometer.

The BPF was turned ‘on’ and spectra were collected in Mode #2 with the spin polarime-

ter. As the only available lens table at the time set the bandpass window for photoelectrons

of an initial kinetic energy of ∼32.5 eV (Figure 6.5(c)), the photon energy was set to 36.6

eV (the difference being due to the work function). This was found to put the Fermi edge

within the bandpass window while including as much of the rest of the spectrum as possible.

A spectrum collected with the polarimeter target magnetized in a single direction is shown

in Figure 6.8. It must be remembered that the lineshape shown is largely due to the BPF

transmission function discussed above in section 6.1.4, although the sharp drop on the high

kinetic energy side is also due to the Fermi edge.

Spin resolution is obtained by comparing such spectra with the polarimeter target mag-

netized in opposite directions. As the photoelectrons are expected to be polarized along
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Figure 6.9. Spin-resolved spectra of Fe/W(110) with hν=36.6 eV. (a) Spectrum with po-
larimeter target magnetized by a positive coil pulse, same as Figure 6.8 with an expanded
energy scale, in blue, and with polarimeter target magnetized by a negative coil pulse in
red. The normalized difference, divided by the effective Sherman function, is the measured
polarization, plotted below. (b) Majority and minority spectra derived from (a).

the sample’s magnetization axis (vertical axis in current geometry), the polarimeter target

is rotated such that it’s magnetization direction is also vertical. Spectra were collected by

reversing the target magnetization with positive and negative coil pulses at intervals of one

minute. Spectra with the target magnetized by a positive coil pulse were added to form

a ‘+’ spectrum and the others added to form a ‘-’ spectrum. Initial work using a target

prepared as a 5 ML Co film as discussed in section 5.4.1 lead to nearly identical ‘+’ and

‘-’ spectra with almost no asymmetry. However, when a 50 ML Co target was prepared

followed by a brief anneal (< 600◦C), an obvious difference between the ‘+’ and ‘-’ spectra

emerged, shown in the top panel of Figure 6.9(a). Perhaps the ultra-thin Co target did not

perform well due to imperfect growth conditions which the thicker films are less sensitive

to. Further work can be done to improve the target preparation recipes in order to obtain

the high performance of the ultra-thin films, but the present thicker films have proven quite

capable.

The spin polarization of the spectra is extracted as the difference between the ‘+’

and ‘-’ spectra, divided by the sum and divided by the effective Sherman function. From
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previous work with similar targets in the SPLEEM (see section 5.4.1), an effective Sherman

function of 10% is reasonable. Experimentally, using this value gives the large polarizations

expected from the Fe sample, but using lower values gives nonsense polarizations above

100%. Although the Sherman function may have kinetic energy dependence, for now we

will assume it to be small, and use the constant value of 10%. The polarization calculated

in this way is displayed in the lower panel of Figure 6.9(a).

The ‘+’ and ‘-’ spectra can then be decomposed into the spin-resolved majority and

minority spectra shown in Figure 6.9(b) following equations 5.20 and 5.21. Note that

the magnetic moment of the electron is opposite its spin direction, so although the Fe is

magnetized upwards, the majority electrons are spin-down. The data shows that there is

a strong minority spin peak right at EF causing a large negative spin polarization near

the Fermi level. This reverses at kinetic energies about 500 meV less than the peak in the

minority spectrum, when a peak in the majority spectrum grows stronger. Further behavior

at lower kinetic energies is disrupted by the bandpass cutoff. This behavior matches exactly

that of the previous work175,184 shown in Figure 6.7, giving strong confidence that the spin-

TOF spectrometer is functioning correctly. Additionally, the agreement suggests that a

quality, single-crystal Fe(110) surface was, in fact, obtained. Unfortunately, the limited

remaining beamtime did not allow for taking a complete data set at multiple emission

angles to observe spin-resolved dispersions.

To ensure that the asymmetry in the ‘+’ and ‘-’ spectra are indeed due to photoelectron

spin polarization, the Fe/(W110) sample was magnetized downwards and the experiment

was repeated. The asymmetry in the following ‘+’ and ‘-’ spectra switched, exactly as

expected as the photoelectron spin polarization flipped direction. The extracted majority

and minority spectra taken from the Fe sample magnetized down and up are compared in

Figure 6.10(a). In the figure, the terms ‘Spin-Up’ and ‘Spin-Down’ are referenced to the

fixed vertical axis of the laboratory, while the terms ‘majority’ and ‘minority’ reference

to the Fe carriers which flip directions when its magnetization flips. The figure strongly

confirms the interpretation of the spectral asymmetry as due to photoelectron polarization.

As a further check that our interpretation makes sense, the bandpass window was ef-
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Figure 6.10. Spin-resolved spectra of Fe/W(110). Upper panels are with sample magnetized
upwards, and lower panels are with the sample magnetized downwards. Spectra are taken
with hν=36.6 eV in (a) and hν=36.9 eV in (b).

fectively moved to larger binding energy by increasing the photon energy by 0.3 eV. The

resulting spin-resolved spectra, again taken with the Fe sample magnetized both up and

down, are shown in Figure 6.10(b) to be directly compared with panel (a). Here, the sharp

edge on the high kinetic energy side of the minority spectra are distorted as the Fermi edge

is cut-off by the transmission function. As the minority peaks are depressed by the high

energy side of the transmission function, the majority peak becomes stronger as it moves

into the peak of the transmission function. This, again, is fully consistent with the picture of

the full spin-resolved spectra of Figure 6.7. With completed lens tables, the spectrum could

be taken across an arbitrarily large energy window by successively scanning the bandpass

window with the correct voltages applied to the BPF electrodes. As is, the present data

presents strong proof that the spin-TOF spectrometer is capable of spin-resolved photoe-

mission spectroscopy.

Each spin-resolved set of spectra shown took ≤ 30 minutes for the spin-TOF to acquire;

this is likely significantly less than the previous work required for the data in Figure 6.7.

Additionally, careful comparison shows that the present data contains more than 3 times

205



more data points, and the TOF-limited energy resolution should be 5 times better than the

100 meV resolution the Figure 6.7 data was taken with. The present spin-TOF data was also

taken using the large 3 mm beamspot described in section 4.4.4 and shown in Figure 4.9.

The lens system is meant for transmission of photoelectrons from a 100 µm beamspot, and

so many photons are effectively wasted when spread through such a large spot. Total count

rate and efficiency will be much improved with a reduced beamspot. Although the present

spin-TOF data is slightly more noisy than the previous works, one can be quite optimistic

that the spin-TOF will in fact be able to take data much more efficiently once the lens

tables and software are fully calibrated.

By taking measurements of the four possible combinations of target and sample magneti-

zations, one could follow the analysis of section 5.3.3 and investigate the separate exchange

and spin-orbit contributions to the polarimeter scattering. The spin-orbit contribution

should be quite negligible, however, as the ‘Planar’ scattering geometry is explicitly used

here. As described in section 5.3.4 the four measurements could be used to remove any

instrumental asymmetry. Unfortunately, the sample manipulator which must be moved

horizontally and a large distance vertically to the prep chamber coil position for magnetiz-

ing and currently is not able to closely reproduce the previous analysis position. The small

change in sample position between measurements with the Fe/W(110) sample magnetized

in different directions will have a slight systematic asymmetry which will not allow such

an analysis to be trustworthy. This is probably the strongest contribution to the small

differences between the upper and lower panels of Figure 6.10. Indeed, because of the high

quality polarimeter target magnetization scheme (section 5.4.4), instrumental asymmetry

is likely much smaller than the systematic asymmetry due to the changing sample position.

6.2.3 Au(111) surface state

A surprising and particularly elegant system to observe spin polarized photoemission is

the Au(111) surface. It exhibits a strong sp-derived Shockley surface state forming a two-

dimensional band of electrons confined to the surface within the projected bulk L-bandgap.

In addition to the interest due to its low dimensionality and nearly-free electron-like behav-
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ior, the surface state has gained a lot of attention as it is the canonical Rashba system show-

ing a complete spin-splitting despite the lack of any ferromagnetic behavior.186,187,188,189

In section 3.2 it was shown how spin polarized photoemission can arise from nonmagnetic

materials due to spin-orbit coupling. It should be stressed that the spin-orbit coupling gener-

ally only splits levels due to their total angular momentum, J (see equations 1.25 and 1.26),

and does not actually lift the spin degeneracy of each state. In fact, electronic states in non-

magnetic solids are often required to remain spin degenerate due to the so-called Kramer’s

degeneracy,15 which results from a combination of time-reversal and inversion symmetries.

This can be seen as follows: time-reversal symmetry requires that E(k, ↑) = E(−k, ↓),

where E(k, ↑) is the energy of the state with momentum k and spin-up. In bulk crystals

(with a center of inversion), inversion symmetry additionally requires E(k, ↑) = E(−k, ↑).

The combination then requires E(k, ↑) = E(k, ↓); bulk states must remain spin-degenerate,

even in the presence of spin-orbit coupling. This is why the spin polarized photoelectrons

described in section 3.2 are only obtained with the use of circularly polarized light to take

advantage of selection rules.

The surface, however, lacks inversion symmetry, and so surface states are not subject to

Kramer’s degeneracy and may in fact be spin-split by spin-orbit coupling. From section 1.2.3

we can rewrite equation 1.20 in terms of the Pauli matrices, substituting S = ~
2σ to give

HLS =
e~

4m2
ec

2
σ · [p×E] . (6.2)

The electric field can be expressed as the gradient of a potential energy, V , as E =

− (1/e)∇V , allowing the interaction to be written

HLS =
~

4m2
ec

2
σ · [∇V × p] . (6.3)

If one approximates the electrons of the surface state as being a two-dimensional free electron

gas, they are only constrained in the z-direction giving ∇V = dV
dz ẑ, where V is the potential

confining the electrons to the surface, and ẑ is the unit vector perpendicular to the surface.

Confined to the surface, the electrons must occupy states with p parallel to the surface,

with k-vectors ~k‖ = p. Thus the spin-orbit interaction is reduced to the so-called Rashba
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form of

HR =
~2

4m2
ec

2

dV
dz

σ ·
(
ẑ × k‖

)
= αRσ ·

(
ẑ × k‖

)
(6.4)

where the Rashba parameter, αR, represents the strength of the interaction and is propor-

tional to the surface potential gradient (the atomic spin-orbit strength also significantly

contributes to this parameter, which is why it is so readily observed in Au).

Without the Rashba term, the parabolic electronic states are given by E(k‖,±σ) =

E0 + ~2k2
‖/(2m

∗), where the ±σ refers to the two possible spin directions, and m∗ is the

effective electron mass. The Rashba perturbation splits the spin-degeneracy as (dropping

the ‖ subscripts from k for simplicity)

E(k,±σ) = E0 +
~2k2

2m∗ ± αRk (6.5)

= E′
0 +

~2 (k ±∆k)2

2m∗ , (6.6)

thus resulting in two 100% polarized parabolic bands, offset from each other in k‖ by 2∆k.

In the above, E′
0 = E0− ~2(∆k)2

2m∗ and ∆k = αRm
∗/~2. Inspection of equation 6.4 shows that

the spin quantization axis (i.e. the direction of the spin polarization) is perpendicular to

both the surface normal, ẑ, and the momentum, k‖.

ARPES is able to directly observe the splitting of the surface state into two offset

parabolic bands, as shown in Figure 6.11(a). The spin polarization from the Rashba model

is illustrated by the colored lines highlighting each parabola. Electrons in the red band

are 100% spin polarized into the page, while those in the blue band are 100% polarized

out of the page. The total Hamiltonian is isotropic within k‖, and so the parabolas sweep

out two concentric circular Fermi surface pieces, also confirmed by ARPES as shown in

Figure 6.11(b). As P must remain perpendicular to k‖, the polarization directions are

tangent to the Fermi surface circles, as shown. This shows that despite the spin structure,

there is no net polarization through all k-space, and there is no net macroscopic magnetic

moment; k-resolution is required to observe any spin polarization in the photoemitted elec-

trons. However, with k-resolution, spin polarization should be observed in photoelectrons

emitted even with linear or unpolarized light.

The band splitting was first experimentally resolved by LaShell et. al. in 1996,186
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Figure 6.11. ARPES data of Au(111) L-gap surface states, taken with hν=21.22 eV at
T=30K. Figures adapted from ref. 187. (a) Binding energy vs. kx ARPES plot (at ky=0).
Solid curves added as guides to the eye. Red marks band with spin-up (i.e. into the page
in this view). Blue marks band with spin-down (i.e. out of the page). (b) ARPES Fermi
surface plot. Arrows show direction of spin polarization around each Fermi contour. Red
and blue arrows correspond to the spin directions as marked in (a).

proposing the cause to be the Rashba spin-orbit interaction. Full confirmation of this

requires spin-resolved ARPES to verify the actual spin-structure. This was first successfully

done for the Au surface state by Hoesch et. al. in 2004.189 Their spin-resolved EDCs along

kx (at ky = 0), corresponding to Figure 6.11(a), are shown in Figure 6.12(a), confirming

the spin polarization given by the Rashba model. It is worthwhile to note that the Rashba

bandstructure remains spin-degenerate right at k = 0, resulting in zero spin polarization

in photoelectrons emitted perfectly normal to the surface, confirmed in Figure 6.12(a).

This then upholds the rule stated in section 3.2, forbidding polarized photoelectrons from

nonmagnetic samples illuminated by linear or unpolarized light at normal emission.

The spin-splitting of the Au(111) surface state makes for a great system for testing a

spin-resolved spectrometer for a couple reasons. The required k-resolution to observe any

spin polarization allows one to prove some degree of angular resolution if spin polarization is

observed. Additionally, to ensure any measured asymmetry is truly due to spin polarization,

one only has to rotate the Au sample a few degrees to the other side of normal emission to

flip the spin polarization of the two EDC peaks (i.e. to go from the bottom to top EDC

209



Figure 6.12. Spin-resolved ARPES EDCs of Au(111) surface state along kx (at ky=0). Left
panel is taken from previous work of ref. 189 with hν=21.1 eV at T=150K. Right panel is
taken with the spin-TOF spectrometer with hν=36.6 eV at room temperature.

in Figure 6.12(a)), in contrast to flipping the magnetization of the ferromagnetic sample as

was required in the Fe example of section 6.2.2. Also, a high quality, flat (111) surface is

obtainable by evaporation on the W(110) substrate.190,191

Performing spin-resolved ARPES with Mode #2 of the spin-TOF on the Au(111) surface

state is shown in Figure 6.12(b). As the entire surface state bandwidth is ∼ 500 meV, the

full band and EDC lineshapes should fit within the bandpass window (in contrast to the Fe

example in section 6.2.2). Six EDC’s were taken at the different horizontal emission angles

(k-points along kx at ky = 0) shown. The spin polarization clearly flips as the emission

angle passes through 0◦, strongly supporting the correct operation of the spectrometer. The

overall similarity with the previous data shown in panel (a) also supports this. There are

some differences in overall lineshapes upon closer inspection. This is likely due to remaining

influence of the BPF transmission function in addition to an imperfect Au surface (the

Au thin film should be annealed after growth, or grown with the substrate at elevated

temperatures,190 however this was not done in the current experiment).
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The spectra also seem slightly noisier than the previous work. This requires a careful

analysis for a fair comparison. The data in Figure 6.12(a) were obtained with a SDA/Mott

polarimeter combination with 120 meV energy resolution and 1.8◦ angular resolution and

show 1 data point per 10 meV, likely spending ∼1 hour for each EDC. As discussed in

sections 6.1.4 and 6.2.2, although the time dispersions of the presently available lens table

limit the energy resolution to above 100 meV, corrected lens tables would result in the true

TOF-limited energy resolution of ∼20 meV for the given average kinetic energy. In other

words, the statistics were obtained at the same rate as they would be if the analyzer truly

achieved 20 meV resolution. For the previous data, this improved resolution would have

required 6 times longer, for a total of ∼6 hours per EDC. Also, following the standard rule

of thumb of taking 5 data points per resolution width, the spin-TOF data in panel (b)

were binned to keep 1 data point per 4 meV. This increased bin density would have taken

the previous data an additional 2.5 times longer, for a total of ∼15 hours per EDC. The

spin-TOF data of panel (b) in fact only took <30 minutes per EDC, already suggesting a

large increase in total efficiency (∼ ×30). As argued above in section 6.2.2, one must also

note that the large beamspot size being used (∼3 mm) likely diminishes the possible count

rate quite a bit as the lens system is meant to transmit only a 100 µm beamspot through

the BPF and into the polarimeter. When operated with an appropriate beamspot size, the

performance of the spin-TOF will be much further improved.

6.3 Summary

The spin-TOF spectrometer is formed by integrating the high efficiency exchange po-

larimeter of Chapter 5 into the TOF electron energy analyzer of Chapter 4. The spec-

trometer stands to gain 2-3 orders of magnitude in total efficiency with this combination

compared to current state-of-the-art SARPES systems. Despite not being fully calibrated

or commissioned, a recent 2-bunch mode period at the ALS was taken advantage of for

testing the spectrometer. The spin-TOF demonstrated the strengths of operating in Mode

#1 for convenient sample characterization and preparation. Signal was obtained in Mode
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#2, and two experiments successfully showed correct spin resolution. Improved lens tables

for improved energy resolution, expanded software capabilities for bandpass sweeping, a

smaller beamspot for improved resolution and transmission efficiency, and enhanced sample

preparation capabilities would all contribute to much improved experimental results. De-

spite these remaining steps, the spin-TOF already shows very encouraging results exhibiting

full spin, angle, and energy resolved spectroscopy at significantly improved efficiencies than

other state-of-the-art systems.
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Chapter 7

Outlook, applications, and

conclusions

7.1 Future outlook

Although there are important steps remaining to realize the complete spectrometer,

the present successes make the remaining issues exciting ones to tackle. A full set of lens

tables must be thoroughly developed for maximizing throughput and minimizing the tim-

ing dispersions around the BPF. The photocathode electron source in the lab provides an

ideal tool to complete this task. In parallel, a more extensive software package will be

developed for handling the lens tables, controlling scanning of the BPF, and acquiring the

spin-resolved spectra in an automated and convenient manner. Progress will also be made

to more precisely measure the polarimeter scattering target’s Sherman function and its en-

ergy dependence for accurate polarization analysis. This can be done by utilizing the same

spin polarized GaAs photocathode technique as described in section 3.2 and used in the

SPLEEM. Work can always continue to develop better scattering targets, both by analyzing

effective Sherman functions and FOMs with the SPLEEM and by adapting the preparation

recipes in the polarimeter’s prep chamber. One specific area which could likely be im-
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proved with further investigation is target stability; surface oxidation171,169 and graphene

overlayers192,193 are particularly intriguing possibilities.

Progress in these areas will certainly be followed by further ALS 2-bunch mode exper-

iments. Demonstration of accurate reproduction of previously published SARPES results

will be a necessary early goal. A new horizontal focusing mirror in place at the ALS beam-

line 12.0.1 will provide a smaller beamspot for much improved experiments. Additionally,

room is provided at the new MERLIN beamline for 2-bunch spin-TOF use once construc-

tion is complete. The full photon polarization control (any linear, circular, and in between)

of the MERLIN elliptically polarized undulator (EPU) will provide additional flexibility for

spin-TOF experiments with both magnetic and nonmagnetic systems. Between the sched-

uled ALS 2-bunch periods, the lab-based 6 eV laser source will provide light for interesting

experiments at ultra-low photon energies as well as open the door for exciting pump-probe

style time-resolved studies. Once the functionality of the spin-TOF is fully demonstrated,

these light sources provide an abundance of exciting applications in SARPES experiments.

7.2 Exciting applications

The electron spin is, in one sense, an extremely simple component to a solid’s electronic

structure. After all, it can only have two possible values in any particular measurement. De-

spite this inherent simplicity, the spin degree of freedom leads to a vast amount of emergent

complexity and technologically useful phenomena, much of which is not well understood or

even explored. Manipulation of electron spin and intricate magnetic structures are increas-

ingly important focal points in current materials science research, and yet direct probes of

the spin dependence in a material’s electronics have remained rare and less feasible and

accessible than spin-integrated counterparts. The progress in understanding the role of

spin in condensed matter needed in the coming decades will require a strong commitment

to the development of powerful spin-sensitive experimental tools. The large successes of

ARPES in the past decade in uncovering fascinating momentum-dependent phenomena in

the solid state illustrates the key role SARPES could play in future investigations if it can
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be performed with similar resolutions. The spin-TOF represents a significant step in this

direction, and I would like to summarize a few areas which I think will be particularly

exciting applications for the spectrometer.

7.2.1 CMR manganites

The term Colossal Magnetoresistance (CMR) refers to the anomalously large decrease

in electrical resistivity with the application of a magnetic field observed in the manganites,

a large family of manganese oxide based materials originally studied in the 1950’s.194,195

The application of this large MR for a wide range of sensor and device technology (in the

blossoming field of spintronics17,18) was quickly seized upon196,197 helping to ignite the

current renaissance of active research in the field. The manganites, with similar chemical

and structural make-up to the HTCs, are now also recognized as prototypical correlated

electron systems which require charge, spin, orbital, and lattice degrees of freedom to be

simultaneously accounted for. The relevance of the manganite problem to the problems of

HTC and correlated systems in general, have greatly boosted the field of CMR manganites,

which is now one of the premier areas of research in solid state physics.198,199,200,201

CMR manganites feature a field and temperature driven insulating paramagnetic to

metallic ferromagnetic phase transition. The low temperature ferromagnetic phase is of

course an obvious sign of the importance of spin in this correlated system, and indeed it has a

large role in the CMR effect through the double-exchange interaction.202,203,204 Of additional

interest is that the manganites are predicted to be true “half metals”, featuring a gap at EF

for electrons of one spin but not the other. The resulting 100% spin polarization of charge

carriers makes the manganites even more enticing for technology applications. Half-metals

in general are extremely desirable for spintronics applications, and predicting, searching,

engineering, and characterizing possible half-metals has become an active field.205,206 From

the wide range of magnetic orderings exhibited by the manganites,200,207 to the role that

double-exchange plays in the CMR transition, to the expected half-metallicity, it is clear

that the spin degree of freedom is quite pertinent to understanding manganite physics.
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Figure 7.1. ARPES results from the bilayer manganite La2−2xSr1+2xMn2O7, with
x=0.36,0.40. Figures adapted from ref. 208. (a) ARPES derived FS for x=0.36. Cal-
culations of the three bands contributing to the Fermi surface209,54 are plotted in green,
blue, and red in one quadrant of the Brillouin zone. (b) Corresponding FS of x=0.40. (c)
ARPES intensity map (2nd derivative) of binding energy vs. kx directed in k-space along
dotted line in (a). MDC-extracted dispersions plotted in blue and purple. Theory from
(d) plotted in red. (d) Calculations209 of majority and minority bandstructure along same
direction. (e) MDCs of ARPES intensity maps, similar to (c), for both dopings.

Viewed along the opposite direction, it is also clear that working with the manganites offers

a way to experimentally extend our understanding of spin physics in the solid state.

A particularly exciting development was the discovery of CMR in layered manganites

formed by aggregates of layered pseudo-2D Mn-O planes.210,207 In addition to exhibiting

an enhanced CMR and increased correlation effects from reduced dimensionality, the lay-

ered manganites opened the door for intensive ARPES study due to their natural cleavage

plane providing high-quality in-situ surfaces, in contrast to the 3D manganites. The re-

sulting ARPES studies have made great progress in exploring the bilayer CMR electronic

structure.211,212,54,56,213 The most notable advances were made possible by the high en-

ergy and momentum resolutions offered by current ARPES instrumentation. For instance,
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high resolution experiments allowed resolving the coherent quasiparticle peaks and their

renormalized dispersion at EF .54,56 The ability to take this type of data efficiently allowed

exploring a large phase space of temperature, momentum, and doping in our own study,208

partly shown in Figure 7.1. This particular ARPES study represents the first complete

simultaneous mapping of all three predicted components of the bilayer Fermi surface (FS)

shown in panel (a), with 36% chemical doping. This type of mapping exposes an important

change taking place in the electronic structure with a slight change of doping, as the FS

appears quite different at 40% doping shown in panel (b). Momentum resolution is also

key to obtaining the first mapping of the Mn 3d3z2−r2 derived band dispersion responsible

for the central electron pocket at Γ. The ARPES map along the dotted line in panel (a) is

shown in panel (b), along with the MDC-extracted dispersions of the three peaks required

for fitting. The two outer peaks match the red band in the calculated majority bandstruc-

ture in panel (d), however the central, vertical spectral weight (purple dispersion in (c) and

evident in the MDCs of panel (e)) could have a number of possible sources. For instance,

the spectral weight could be due to the unoccupied orange majority band in the calculated

bandstructure (d), or it could be due to the near EF minority band colored pink.

Despite the progress made, there is much left unresolved. The ARPES work has ob-

served bandstructure near EF that matches calculations qualitatively well, but are they

really 100% spin majority bands? Does this spin polarization cover all of momentum space,

or does it have some unexpected momentum dependence like the quasiparticles studied in

ref. 54? Is the spin polarization constant through the CMR doping range, or is there a

strong doping dependence? Could the differences in recent ARPES works54,56 be linked to

differences in spin character? Is the spin polarization the same for both in- and out-of-plane

related bands? What is the spin character of the unidentified spectral weight at Γ (the two

possibilities presented above would have opposite spin character)? Each of these questions

and more could have a large impact on our understanding of CMR and our ability to develop

successful applications. Each question could also be directly addressed with high efficiency

spin resolved ARPES.

The work of J.-H. Park et. al.214,215 offers a great example of spin resolved PES be-
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Figure 7.2. Spin resolved PES on La0.7Sr0.3MnO3. (a) Spin-resolved PES spectra at 40
K (�TC) and corresponding difference spin difference spectrum. (b) The same at 380 K
(>TC). Figure adapted from Ref. 214. (c) Full temperature dependence of spin polarization
of eg and t2g states measured at 1.0 and 2.2 eV binding energy, respectively. These binding
energies correspond to the peaks in the spin difference spectrum at 40 K, marked by the
dashed arrows in (a). Figure adapted from Ref. 215.

ing used to investigate the pseudo-cubic CMR manganite, La0.7Sr0.3MnO3. Their data is

presented in Figure 7.2. Panel (a) shows the angle integrated (the rough sample surface

used prohibited angle resolved measurements) PES spectrum at 40 K, decomposed into

spin majority and minority channels, with the spin difference spectrum showed below. The

measurement suggests that there is finite majority spectral weight at EF and near zero

minority weight from EF to past -0.5 eV binding energy, strong evidence in favor of half-

metallicity. The same data taken above TC at 380 K is shown in panel (b) and exhibits

no spin asymmetry, reflecting the transition to a paramagnetic state. Panel (c) shows the

measured spin polarization at two binding energies as a function of temperature, showing

a smooth monotonic decrease to zero near TC .

These results are quite promising and hint at the power of spin-resolved photoemission

in addressing the physics in these materials. However they do not offer the level of data

required to resolve the questions presented above. Due to the inefficiency of the instrumen-

tation, this experiment was performed with no momentum resolution and 0.2 eV energy

resolution. The bilayer manganite ARPES works and the vast experience with the HTCs

illustrate the need for higher energy resolution and momentum resolution to make substan-
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tial progress in correlated systems.30 The spin-TOF analyzer was developed to satisfy these

requirements, and addressing these questions will be an extremely interesting project for

the spin-TOF. Just as the field of HTC cuprates and ARPES have both grown together in

a symbiotic-like relationship, CMR manganites and spin-resolved ARPES may push each

other to currently unimaginable frontiers.

7.2.2 Rashba effect

One of the most prominent topics in current condensed matter physics is the develop-

ment of materials and devices capable of utilizing the spin degree of freedom instead of,

or in addition to, the charge degree of freedom for information handling. These so-called

‘spintronics’ applications envision vastly improved performance over traditional electronics

in terms of speed, information density, and power consumption.18 Central to these aims will

be the ability to manipulate single electron spins with applied electric fields in nanoscale and

low-dimensional materials and systems. That the manipulation of electron spin through an

applied electric field can be made possible is beautifully illustrated by the so-called Rashba

effect, introduced in section 6.2.3 and the center of much recent attention in the ARPES

community.

In addition to extensive studies of the Rashba splitting of the Au(111) surface

state,186,187,189 ARPES has also been used to study similar splitting in the W216 and

Gd217 surfaces. Adding to the excitement is the ARPES observed changes in the mag-

nitude of the splitting with rare gas adsorption,218,219,220 alkali metal adsorption,221 sur-

face alloying,222,220 and monolayers of noble metals on W and Mo surfaces.223 All of these

demonstrate the possibility of controlling the spin-dependent parameters of the materials,

and the number of recent high-profile papers displays the excitement in this area. Despite

the excitement, only a few of the above systems have been successfully studied with full

spin-resolution,216,189,223 with the others remaining unverified.

A very recent, and extremely exciting SARPES work has observed possible Rashba

splitting in 2-dimensional graphene sheets.224 The apparent ideal electronic properties of
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Figure 7.3. Figures taken from ref 224. (a) Model bandstructure of graphene, spin-split by
the Rashba effect on the right. (b) SARPES data at 4 k-points approaching the K-point.
(c) Expanded view of data in (b), offset for comparison

graphene has lead to the current explosion of graphene related research and a push for the

so-called ‘graphene revolution’ over the Si-based electronics industry. ARPES, in particular,

has played an active role in this research.69,225,226,227 It may be that graphene can be useful

for spintronics applications as well if its spin transport can be well controlled. Rashba

splitting of the conical Dirac dispersions in graphene would result in the spin-polarized

bandstructure shown in Figure 7.3(a). SARPES data along one side of the linear dispersion

is shown in panel (b). The expanded view of panel (c) exposes a very slight shift in the

spin resolved bands, reported as a 13±3 meV splitting.224 This splitting is much larger than

expected for a free-standing graphene sheet, and is suggested to be due to interaction with

the heavy nuclei of the Au substrate below the graphene layer (again suggesting a form

of control over spin properties). The tiny splitting compared to the apparent resolution

achieved suggests that much more could be learned if investigated with higher resolutions

and higher efficiencies for entire Fermi surface measurements.

High resolution SARPES experiments are the most direct and powerful means for prob-

ing the spin structure of these systems. Rashba effects in general will be ideal sample systems

for our new spectrometer. Spin-TOF based investigations of spin-splitting in graphene and

possible engineered control of this splitting may have extremely widespread impact.
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Figure 7.4. Time-resolved responses after photoexcitation of Pr0.7Ca0.3MnO3. (a) Resis-
tivity at 30 K after illumination by 7 ns pulse of 1064 nm laser. Figure adapted from ref.
228. (b) Change in 800 nm reflectivity after excitation by 17.5 µm (solid line) and 800 nm
(dotted line) pulses. Figure from ref. 84.

7.2.3 Time-resolved spin dynamics and phase transitions

Another area of increasing significance in current experimental physics is the time res-

olution of fast and ultra-fast dynamics and processes. This pressure for time-resolution is

driven by the fundamental importance of time-dependence in physical processes, and by

the need for ever increasing speeds in device structures. Although a difficult experiment,

time-resolved ARPES has recently begun being performed with great success.79,81,82 Mag-

netization and spin dynamics are of particular technological interest for data processing

and storage applications, and spin- and time-resolved photoemission experiments have al-

ready been introduced80 for these types of investigations. Interesting on its own, this work

also adds to the excitement of the possibilities of such experiments performed with the

resolutions available with the spin-TOF.

The dynamics of phase transitions are an area of central importance and are the subject

of numerous recent high-profile experiments.228,83,79,84,82 The works of Fiebig et. al.228 and

Rini et. al.84 investigated the dynamics of the photoinduced and vibrationally induced,

respectively, insulator-to-metal transition in the perovskite manganite, Pr0.7Ca0.3MnO3.

Although this variety of manganite is insulating for all doping levels and all temperatures,

it can be driven to the metallic phase by the application of magnetic fields, high pressure, X-

rays, and optical photons,228 opening the door to studying the dynamics of such transitions.

221



Figure 7.4(a) shows the manganite’s resistivity as a function of time after exposure to a

pulse of 1064 nm laser light. The data shows a fast and long-lived 8 order of magnitude drop

in local resistance between two electrodes, suggesting possible high-speed optical switching

devices. Panel (b) shows the manganite’s reflectivity as a function of time after exposure

to an ultra-fast pulse of 17.5 µm laser light, tuned to the sample’s Mn-O stretching vibra-

tional mode. Here we see similar insulator-to-metal behavior, this time induced by exciting

a specific vibrational mode. In both cases, as metallic behavior is commonly associated

with CMR and ferromagnetism in the manganites, these results suggest the ultra-fast for-

mation and control of ferromagnetic domains, an exciting property for spintronics devices.

SARPES, performed with time-resolution in similar pump-probe type experiments will be a

powerful and direct technique for investigating these and other ultra-fast phase transitions.

As discussed throughout this thesis, because time-resolved pump-probe techniques al-

ready require a strictly pulsed excitation light source, TOF instruments (in comparison to

the common hemispherical analyzers) become even more ideal as orders of magnitude in

efficiency are gained without any comparative loss due to pulsing the source. Indeed, for

such time-, spin-, and angle-resolved photoemission experiments, the spin-TOF provides

an enormous advantage over other current spectrometers, and will open the door to many

fascinating discoveries in the realm of solid state spin dynamics.

7.3 Conclusions

This thesis has covered the complete development of a sophisticated electron spectrom-

eter for high resolution spin- and angle-resolved photoemission spectroscopy. The current

technology climate is steadily driving interest in the materials sciences towards explicit

understanding and manipulation of electron spin and magnetism in the solid state. The

obvious tool for furthering these goals is the extension of spin-resolution to the established

power of ARPES. In order to achieve the resolutions necessary for SARPES to address the

issues of current condensed matter physics, the spectrometer design takes a unique approach

to the difficult but powerful experimental technique. A major breakthrough in performance
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is realized by the incorporation of a custom, high performance spin polarimeter into an

efficient TOF electron energy analysis scheme. A thorough description of the design, fab-

rication, assembly, and usage of the entire instrument was given, along with an account of

the initial successful results. Although several issues remain to be addressed, the current

spectrometer performance promises a bright future of discovery in spin-physics.
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