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On low-rank updates to the singular value and Tucker decompositions

Michael J. O’Hara∗

Abstract

The singular value decomposition is widely used in signal
processing and data mining. Since the data often arrives
in a stream, the problem of updating matrix decompositions
under low-rank modification has been widely studied. Brand
developed a technique in 2006 that has many superior
features to its long list of predecessors. However, the new
technique does not directly approximate the updated matrix,
but rather its previous low-rank approximation added to the
new update, and there were no published error bounds or
properties associated with this substitution. Further, the
technique is still too slow for large information processing
problems. We show that the technique minimizes the change
in error per update, so if the error is small initially it remains
small. We show that an updating algorithm for large sparse
matrices should be sub-linear in the matrix dimension in
order to be practical for large problems, and demonstrate a
simple modification to the original technique that meets the
requirements.

We extend Brand’s method to tensors, the multi-way

generalization of matrices. The few published comparable

techniques either focus on small-magnitude changes, are

iterative, or have no published error properties. We show

that the technique of Brand for updating the truncated

singular value decomposition can be redesigned as a low-rank

update scheme for the Tucker decomposition, with analogous

run-time and error properties.

Keywords: Updating, truncated singular value de-
composition, Tucker decomposition, low-rank approxi-
mation, tensor.

1 Introduction

In information processing, relationships between entities
are often represented as a matrix. Matrix decomposi-
tions then tell us many useful things about the data
[18, 8], with applications such as PageRank, latent se-
mantic indexing, similarity and community-finding [9],
and counting triangles [22], which is important in social
network analysis.

To be useful in data mining, matrix decompositions
need to be efficiently computed on a stream of data.
The challenges posed by the limited memory and short
processing times allowed by high-speed streaming en-
vironments have attracted interest [2]. In particular,
counting triangles and estimating PageRank have been
considered [7, 17]. We expect the streaming problem on
matrix decompositions to be represented as low-rank
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updates to the matrix, for instance, changing a few en-
tries, adding or deleting a column or row, etc. Such
updates are known to be computationally easier than
full recomputes, and the subject has been studied for
over thirty years, see, e.g., [10, 6, 19, 5, 11].

Two recent techniques stand out for their speed
and accuracy, namely those by Brand [5] in 2006 and
Koch and Lubich [11] in 2007 for updating the trun-
cated singular value decomposition (truncated SVD).
The essential difference between the Brand and Koch-
Lubich technique is that the Brand technique will
be accurate on large-magnitude changes, but become
computationally-expensive if those changes are large-
rank. The Koch and Lubich technique is efficient re-
gardless of rank, but becomes inaccurate if the changes
are large in magnitude. On the data we use for numer-
ical experiments in this paper, where the changes are
both low-rank and relatively small in magnitude, the
techniques have comparable complexity and accuracy.

One concern with the Brand technique is that it
does not directly approximate the updated matrix but
rather a previous low-rank approximation added to
the new update; the legitimacy of this substitution
has not been explored. We show that the technique
minimizes the change in error per update; therefore
if the error is small initially, it remains small after
updating. Another issue is that the technique is too slow
for large information processing problems; an updating
algorithm for large sparse matrices should be sub-linear
in the matrix dimensions, and the Brand technique is
linear in the matrix dimensions. We develop a simple
modification to the original technique that is sub-linear
in memory and run-time requirements.

Sometimes in information processing the relation-
ships cannot be described with a matrix but rather re-
quire a multi-way array, otherwise known as tensors.
This occurs when observations represent relationships
between several entities at once. For instance, this chat
user joined this chatroom and typed these key terms
[1], or this author contributed to that conference in this
year. Even to do Principle Components Analysis on
time-evolving data requires a three-way array - the in-
teraction between this variable and that variable at this
time. Several studies applying tensor decompositions to
information processing problems exist, e.g., [14, 1, 3].



Streaming tensor algorithms have been shown useful in
data mining applications [21, 20, 16].

We expect any update technique effective for the
truncated SVD can be extended to the Tucker decom-
position of tensors [21, 12, 16]. The challenge is ex-
tending the best technique in the best way. We extend
the Brand technique to the Tucker decomposition, with
analogous run-time and error properties.

Finally, we apply the algorithms to network flow
data and perform experiments that yield insight into
the effective application of the techniques.

2 Updating the truncated singular value

decomposition

In the context of continuously evolving matrices A(t)
and evolving low-rank approximation L(t), Koch and
Lubich [11] observed that it is simpler to minimize
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then to minimize ||A(t) − L(t)||. If A(0) ≈ L(0), and
Ȧ(t) ≈ L̇(t), then we expect A(t) ≈ L(t) at least for a
while.

Let the error of the approximation E(t) be A(t) −
L(t), then clearly

(2.1) Ė(t) = Ȧ(t) − L̇(t) .

So we see that Koch and Lubich are really minimizing
the change in error, as opposed to the error itself. In
the discrete case, we have

(2.2) ∆E = ∆A − ∆L .

Let ∆L = L̄ − L where L = USV T and L̄ = Ū S̄V̄ T .
Then we write
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If we are requiring L(t) be a rank-k approximation,
then ||∆E|| is minimized provided Ū S̄V̄ T is a best
rank-k approximation of USV T + ∆A. This is very
significant. An update procedure based on the principle
of minimizing change in error does not require the
full representation of A, but merely its current low-
rank approximation. The resulting updating problem
is significantly easier.

The Brand technique efficiently computes the SVD
of USV T +XY T , where X and Y are assumed low-rank.
Thus we conclude that his method yields an optimal
updating scheme, in the sense of minimizing the change
in error per update, for low-rank updates. We review
the scheme here, for the slightly-simplified case of rank-
one updates.

The update technique starts with the observation:

(2.4) USV T + xyT = [Ux]

[

S 0
0 1

]

[V y]T .

The right-hand side of (2.4) looks like an SVD itself.
However, [U x] and [V y] are not orthogonal. Define
p = x − UUT x, the projection of x onto the space
orthogonal to the columns of U . Then it is easy to
verify

[U x] = [U p̂]

[

I UT x
0 ||p||

]

,(2.5)

where p̂ = p/ ||p||. Let Q1 = [U p̂] and R1 be the second
matrix in the product, so that [U x] = Q1R1. Evidently
Q1 is orthogonal and of size n×(k+1), and R1 is of size
only (k+1)×(k+1). Similarly, we can set q = y−V V T y,
and then

[V y] = [V q̂]

[

I V T y
0 ||q||

]

.(2.6)

Let us then define Q2 and R2 correspondingly. Then we
can write

(2.7) USV T + xyT = Q1R1

[

S 0
0 1

]

RT
2
QT

2
,

where Q1 and Q2 are orthogonal, and the inner three
matrices are of size (k + 1) × (k + 1).

Now, define

(2.8) K = R1

[

S 0
0 1

]

RT
2

.

Notice that K is only (k+1)×(k+1), so it is inexpensive
to compute the SVD K = ΨΣΦT if k is small. Then
the updated SVD is

(2.9) USV T + xyT = (Q1Ψ)Σ(Q2Φ)T .

Finally, we can truncate the least singular value to
obtain the best rank-k approximation.

2.1 Downdating There are two ways that we can
downdate, which we might characterize as “hard” and
“soft” downdates. A hard downdate involves including
only observations within a moving window. Downdates
then are the same as updates but with a negative
sign. A soft downdate is to decay the edge weights
exponentially. In that case, we update by finding the
best rank-k approximation to (1 − α)USV T + xyT for
some small α. The “half-life” of the edges is then
1/α. Soft downdates are more efficient and appealing
intuitively because old observations decay smoothly in
importance with age, so this is what we use in the
numerical experiments in this paper.



2.2 Run-time requirements for updating in

large problems Suppose A is m × n, where n > m.
The update process described requires a constant num-
ber of matrix multiplies and vector operations, the most
expensive of which is multiplying a n×(k+1) matrix by
a (k +1)× (k+1) matrix. For a small fixed k, the work
per update is O(n). This is a significant improvement
over the non-updating computation of the singular value
decomposition, which is iterative and uses matrix-vector
multiplies as the core operation. The work required for
a sparse matrix multiply is proportional to the number
of non-zero entries, which grows faster than n in infor-
mation processing graphs [15].

Unfortunately, O(n) is also the minimum work for
any exact update procedure, because each of the entries
in the singular vectors need to be changed upon each
update. If the number of observations is t, then the
overall work is O(nt). But n and t may both be in
the billions, as in the PageRank matrix [8], so the total
computation is impractical with current computers at
any scale over any period of time.

There is also the issue of memory requirements.
Large graphs in information processing may be stored
on distributed systems, but we would not like to have to
access memory on all the distributed systems for each
update. We prefer the update procedure to have both
run-time and memory requirements that are O(log n).

Our central observation for speeding up the Brand
technique is that we can compress U and V by keeping
only C log n of the largest-magnitude non-zero entries
in each column, for some constant C. The first time
this is done, we have to sort the columns which requires
time O(n log n). However, assuming the update vectors
x and y very sparse, the update then only costs O(log n)
for fixed k. Further, each column of U and V now has
at most kC log n non-zero entries, so we can quickly
re-sort the columns and again keep only the C log n
largest-magnitude entries. Thus, subsequent updates
are O(log n) in their entirety, for a fixed k.

While extremely simple, we view this idea as im-
portant for making updating reasonable for large prob-
lems. It succeeds provided that the singular vectors are
amenable to approximation with sparse vectors.

Numerical experiments on network traffic data, dis-
cussed in more detail in Section 4, show that sparsifying
the singular vectors does degrade the accuracy, but not
catastrophically (Figure 4) on this data, and speeds up
the computation (Figure 3).

3 Updating the Tucker decomposition

The generalization of the SVD to higher dimensions is
called the higher-order SVD (HOSVD) [8]. It is cal-
culated by finding the SVD of all the unfoldings (re-

arrangements of the tensor into a matrix), and applying
the resulting transformations to the tensor. Unfortu-
nately, unlike for matrices, truncations of the HOSVD
do not lead to optimal low-rank approximations.

Tucker decompositions, which we take to mean op-
timal low-rank tensor factorizations, are usually com-
puted with an iterative alternating least-squares (ALS)
technique. For instance, in a three-mode tensor, we can
use some guess for the factor matrices for two of the
modes, and then solve for the third mode as a linear
least squares problem. Now we can assume the third
mode and solve for one of the first two, etc. This pro-
cess is assumed to converge to a local minimum solution.

The HOSVD calculation or the ALS process can
be modified for a streaming environment in obvious
ways. We can use SVD updating to update the HOSVD,
and we can use the previous solution from ALS to
initialize a new round of ALS - further, we can choose
to use only one round of ALS to compute updates.
Finally, the SVD is used as a subroutine and we
can use efficient SVD updating in the obvious way to
accelerate these computations. These ideas are explored
in several papers [21, 20, 16]. The downside is that these
techniques have no error bounds, nor, when relevant,
convergence properties. A more sophisticated approach
is taken by Koch and Lubich [12], who generalize their
results for the SVD nicely to the Tucker decomposition.
We show how the concepts developed by Brand for
low-rank modifications to the SVD generalize nicely to
Tucker decomposition.

3.1 Tensor Notation We briefly review our nota-
tion. Vectors are lowercase, matrices are uppercase, and
tensors are script uppercase. Each dimension will usu-
ally be refered to as a mode, e.g., modes one, two, and
three.

We define the outer product of three (column)
vectors x, y, and z as the three-way tensor with entries
xiyjzk in the (i, j, k) position. We denote this outer
product as x ◦ y ◦ z. Notice that x ◦ y = xyT .

We define the rank of a tensor to be the minimum
number of outer products that have to be added to-
gether to give you that tensor.

Columns in each dimension are called fibers. Recall
that matrix multiplication XY can be thought of as
transforming each column of Y by the matrix X .
So a matrix-tensor product in a given mode is the
transformation of the fibers in that mode by the matrix,
and is denoted ×i. For instance

(3.10) (A×1 U)ijk =
∑

m

uimAmjk .

Notice if A is a two-way tensor (a matrix), then A ×1
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Figure 1: Illustration of how we add a rank-one term to
a Tucker decomposition. The new factorization needs
to be orthogonalized and truncated.

U = UA and A×2 U = AUT .
The Tucker decomposition on a three-way tensor A

is

(3.11) A ≈ S ×1 U1 ×2 U2 ×3 U3 ,

where the core tensor S is a dense tensor of much smaller
dimension than A, and the transformation matrices Ui

are orthogonal.

3.2 Extending the Brand technique to the

Tucker decomposition The following analysis for
tensors is analogous as that for matrices in Section 2,
but we repeat it because the notation is different.

In the context of continuously evolving tensors A(t)
and evolving Tucker decompositions T (t), Koch and
Lubich [12] observed that it is simpler to minimize
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then to minimize ||A(t) − T (t)||. If

A(0) ≈ T (0), and Ȧ(t) ≈ Ṫ (t), then we expect A(t) ≈
T (t) at least for a while.

Let the error of the approximation E(t) be A(t) −
T (t), then clearly

(3.12) Ė(t) = Ȧ(t) − Ṫ (t) .

So we see that Koch and Lubich are really minimizing
the change in error, as opposed to the error itself. In
the discrete case, we have

(3.13) ∆E = ∆A− ∆T .

Let ∆T = T̄ − T . Then we write

||∆E|| =
∣

∣

∣

∣∆A− (T̄ − T )
∣

∣

∣

∣

=
∣

∣

∣

∣T̄ − (T + ∆A)
∣

∣

∣

∣ .(3.14)

As before, if we are requiring T (t) to be a k1 × k2 ×
k3 Tucker decomposition, then ||∆E|| is minimized
provided T̄ is a best k1 × k2 × k3 Tucker decomposition
of T + ∆A.

Now, let us compute T̄ for the case that ∆A is
rank-one. Let us take ∆A = x ◦ y ◦ z. We note that
the techniques generalize to higher-rank updates in the
same way the Brand technique generalizes to higher-
rank updates on matrices, but the notation becomes
more complex. So we want to find the k1 × k2 × k3

Tucker decomposition of

(3.15) S ×1 U1 ×2 U2 ×3 U3 + x ◦ y ◦ z .

As illustrated in Figure 1, we expand the core tensor S
to the (k1+1)×(k2+1)×(k3+1) tensor S̃. We fill out the
new entries with zeros, except set (k1 +1, k2 +1, k3 +1)
to one. Then we can write

S ×1 U1 ×2 U2 ×3 U3 + x ◦ y ◦ z =

S̃ ×1 [U1 x] ×2 [U2 y] ×3 [U3 z] .(3.16)

We factor [U1 x] = Q1R1 etc, as before, and set

(3.17) K = S̃ ×1 R1 ×2 R2 ×3 R3 .

This is a (k1 + 1)× (k2 + 1)× (k3 + 1) dense tensor. We
can compute the k1 × k2 × k3 Tucker decomposition of
it quickly if k1k2k3 is small, and we get

(3.18) K ≈ C ×1 Ψ1 ×2 Ψ2 ×3 Ψ3 .

So our updated Tucker decomposition is:

(3.19) T +x◦y◦z ≈ C×1(Q1Ψ1)×2(Q2Ψ2)×3(Q3Ψ3) .

We note that the same sparsification technique that
we applied to the Brand technique for updating the SVD
can be applied to this technique as well.

4 Numerical Experiments

We wrote Matlab functions to implement the described
algorithms, using the tensor toolbox[4]. We applied the
techniques to Lawrence Livermore National Laboratory
institutional datasets of network traffic.

For the singular value decomposition experiments,
we used the first million netflows from a conference
dataset. We used most of the netflows, holding out a
variable number of flows at the end, to build a large
matrix to update, using the source and destination IP
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Figure 2: By combining a few observations at a time
to form low-rank (instead of rank-one) updates, we can
speed up the rate at which we process observations. The
optimum is rank-three for the full Brand technique and
rank-five for the sparsified version.

addresses as the rows and columns and the number of
netflows seen as the matrix entries. We then used the
held out netflows as rank-one updates to the matrix.
To incorporate downdating, we decayed edge weights
exponentially as new observations were added, with a
downdate half-life of ten thousand observations.

Figure 2 shows the benefits of aggregating a few ob-
servations together before running the update routine.
Here, we read in the first 970,000 observations, and then
used the next thousand for updates, repeating the ex-
periment taking one, two, three, etc. observations at a
time per update. After 970,000 observations the matrix
has 212,968 non-zero elements and dimensions 131,731
× 131,734. At this scale, it takes about three seconds to
run Matlab’s “svds” routine, on the computer1 used for
the experiments. We see the work for larger-rank up-
dates grows asymptotically faster than the linear benefit
of aggregation, so there is an optimum. The optimum
in the experiment was rank-three updates for the full
Brand technique and rank-five for the sparsified version.

Figure 3 compares the run-time of updating be-
tween the original Brand technique and the sparsified
Brand technique with C = 5, and overlays the time
required to run Matlab’s “svds”. To vary the size of
the matrix, we vary the number of observations used to
construct the matrix to be updated. Then we take the
next thousand observations, using three observations
per update, and average over the update times. When
the initial matrix is constructed from a million observa-
tions, we can update 261 observations with the sparsi-

1MacBook Pro laptop with dual-core 2.5GHz CPU and 3GB

RAM.
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Figure 3: Time required to process updates using the
Brand technique and the sparsified Brand technique,
compared to the run-time of Matlab’s “svds” routine,
as a function of matrix size.

fied Brand technique in the time it takes to run “svds”
once. Note “svds” internally uses a highly-optimized
fortran routine, whereas the update routine is written
in high-level Matlab instructions.

Figure 4 shows the error of the Brand updated ap-
proximation compared to the accelerated version where
the small entries in the singular vectors are dropped.
We see degredation but the accelerated version is still
more accurate than not updating at all. Here, we read
the first 970,000 observations out of the netflow file, and
used the last 30,000 for updating. We took five observa-
tions per update, and the error was computed every ten
updates, using the formula in Kolda and Bader’s review
[13, p. 478].

For the tensor decompositions, which are much
slower to compute, we used a much smaller dataset of
13,355 netflows from a smaller conference dataset col-
lected over several days. We used source and destination
IP addresses for two of the modes, and divided times
into one-hour intervals for the remaining mode. The
resulting tensor had dimensions 67 × 1857 × 1958 with
2610 non-zero elements.

Figure 5 illustrates that it is important to use a
low-rank update technique as opposed to an incremental
update technique for sufficiently-large updates. Here we
use all but the last ten observations to build the original
tensor and 4×4×4 Tucker decomposition, and used the
last ten observations multiplied by a scaling factor for
updates. We repeated the experiment using different
scaling factors. For scaling factors of several hundred we
see that the error of the incremental technique strays,
but that the error of the low-rank method is contained.

We note that our implementation of our technique
was about twelve times faster than our implementation
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updated approximation. Both have been subtracted
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time it is better to sparsify and update than to not up-
date at all. For comparison, the Frobenius norm of A
after processing the updates is 1230.
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Figure 5: Error of our technique and of the Koch and
Lubich technique after ten updates, for different scalings
of the update magnitudes. As the updates are made
large, it becomes important to use a low-rank update
method instead of an incremental update method.

of the Koch and Lubich technique, and several dozen
times faster than one round of ALS as implemented in
the tensor toolbox.

5 Significance and Impact

We have revealed that the Brand technique [5] is the
natural analog to the Koch and Lubich technique [11]
for updating the truncated singular value decomposi-
tion, but for low-rank updates as opposed to incremen-
tal updates. We have extended the Brand technique to
low-rank updates of the Tucker decomposition. We de-
termined that O(n) update procedures are too slow for
large-scale information processing problems, and iden-
tified and implemented a candidate solution involving
replacing the singular vectors with approximate sparse
representations.
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