skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genome sequence of the Fleming strain of Micrococcus luteus, a simple free- living actinobacterium

Journal Article · · Journal of Bacteriology
OSTI ID:980734

Micrococcus luteus (NCTC2665, Fleming strain) has one of the smallest genomes of free living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content 73%) predicted to encode 2403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 IS elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and fourteen response regulators, indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to {Beta}-lactam antibiotics may result from the presence of a reduced set of penicillin binding proteins and the absence of a wblC gene, which plays an important role in antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose, and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three gene cluster essential for this metabolism has been identified in the genome.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
Genomics Division
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
980734
Report Number(s):
LBNL-2898E; JOBAAY; TRN: US201015%%2110
Journal Information:
Journal of Bacteriology, Vol. 192, Issue 3; ISSN 0021-9193
Country of Publication:
United States
Language:
English