

Genome sequence of the Fleming strain of *Micrococcus luteus*, a simple free-living actinobacterium

Michael Young^{1*}, Vladislav Artsatbanov², Harry R. Beller³, Govind Chandra⁴, Keith F. Chater⁴, Lynn G. Dover⁵, Ee-Been Goh³, Tamar Kahan⁶, Arseny S. Kaprelyants², Nikos Kyrpides⁷, Alla Lapidus⁷, Stephen R. Lowry⁷, Athanasios Lykidis⁷, Jacques Mahillon⁸, Viktor Markowitz⁹, Konstantinos Mavrommatis⁷, Galina V. Mukamolova¹⁰, Aharon Oren¹¹, J. Stefan Rokem¹², Margaret C. M. Smith¹³, Danielle I. Young¹ and Charles L. Greenblatt¹²

¹ Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DD, UK.

² Bakh Institute of Biochemistry, Leninsky Pr. 33, Moscow 119071, Russia.

³ Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

⁴ John Innes Centre, Norwich NR4 7UH, UK.

⁵ Biomolecular and Biomedical Research Centre, School of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.

⁶ Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel.

⁷ DOE-Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA94958, USA.

⁸ *Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.*

⁹Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

¹⁰ Department of Infection, Immunity and Inflammation, University of Leicester, PO Box 138, Leicester, LE1 9HN, UK.

¹¹ Department of Plant and Environmental Sciences, The Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.

¹² Department of Microbiology & Molecular Genetics, IMRIC, Hebrew University Hadassah Medical School, P.O.B. 12272, IL-91120 Jerusalem, Israel.

1 ¹³ *Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK.*

2

3

4

5

6

7 *Corresponding author. Mailing address: Institute of Biological, Environmental and Rural
8 Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, Ceredigion SY23 3DD,
9 UK. Phone: 44-1970-622348. Fax: 44-1970-622354. Email miy@aber.ac.uk

10

1

Abstract

2 *Micrococcus luteus* (NCTC2665, “Fleming strain”) has one of the smallest genomes of free-
3 living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097
4 bp (G+C content 73%) predicted to encode 2403 proteins. The genome shows extensive
5 synteny with that of the closely related organism, *Kocuria rhizophila*, from which it was
6 taxonomically separated relatively recently. Despite its small size, the genome harbors 73 IS
7 elements, almost all of which are closely related to elements found in other actinobacteria. An
8 IS element is inserted into the *rrs* gene of one of only two *rrn* operons found in *M. luteus*. The
9 genome encodes only four sigma factors and fourteen response regulators, indicative of
10 adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of *M.*
11 *luteus* to β-lactam antibiotics may result from the presence of a reduced set of penicillin-
12 binding proteins and the absence of a *wblC* gene, which plays an important role in antibiotic
13 resistance in other actinobacteria. Consistent with the restricted range of compounds it can use
14 as a sole source of carbon for energy and growth, *M. luteus* has a minimal complement of
15 genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose
16 as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase.
17 Uniquely among characterized bacteria, *M. luteus* appears to be able to metabolize glycogen
18 only via trehalose, and to make trehalose only via glycogen. It has very few genes associated
19 with secondary metabolism. In contrast to other actinobacteria, *M. luteus* encodes only one
20 resuscitation-promoting factor (Rpf) required for emergence from dormancy and its
21 complement of other dormancy-related proteins is also much reduced. *M. luteus* is capable of
22 long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three-
23 gene cluster essential for this metabolism has been identified in the genome.

1 **INTRODUCTION**

2 *Micrococcus luteus*, the type species of the genus *Micrococcus* (family *Micrococcaceae*, order
3 *Actinomycetales*) (117), is an obligate aerobe. Three biovars have been distinguished (138). Its
4 simple, coccoid morphology delayed the recognition of its relationship to actinomycetes, which
5 are typically morphologically more complex. In the currently accepted phylogenetic tree of the
6 actinobacteria, *Micrococcus* clusters with *Arthrobacter* and *Renibacterium*. Some other
7 coccoid actinobacteria originally also called *Micrococcus*, but reclassified into four new genera
8 (*Kocuria*, *Nesterenkonia*, *Kytococcus* and *Dermacoccus*), are more distant relatives (121). The
9 genus *Micrococcus* now includes only five species, *M. luteus*, *M. lylae*, *M. antarcticus*, *M.*
10 *endophyticus* and *M. flavus* (20, 69, 70, 121).

11 In this paper we report the genome sequence of *Micrococcus luteus* NCTC2665 (= DSM
12 20030^T), a strain of historical interest, since Fleming used it to demonstrate bacteriolytic
13 activity (due to lysozyme) in a variety of body tissues and secretions (29, 30), leading to its
14 designation as *Micrococcus lysodeikticus* until its taxonomic status was clarified in 1972 (59).
15 *M. luteus* has been used in a number of scientific contexts. The ease with which its cell wall
16 could be removed made it a favored source of bacterial cell membranes and protoplasts for
17 investigations in bioenergetics (28, 34, 89, 93). Because of the exceptionally high GC content
18 of its DNA, *M. luteus* was used to investigate the relationship between codon usage and tRNA
19 representation in bacterial genomes (51, 52, 61). Although it does not form endospores, *M.*
20 *luteus* can enter a profoundly dormant state, which could explain why it may routinely be
21 isolated from amber (39). Dormancy has been convincingly demonstrated under laboratory
22 conditions (53-55, 83) and a secreted protein (Rpf) with muralytic activity is involved in the
23 process of resuscitation (81, 82, 84, 85, 87, 125, 133).

24 Micrococci are also of biotechnological interest. In addition to the extensive exploitation of
25 these and related organisms by the pharmaceutical industry for testing and assaying
26 compounds for antibacterial activity, micrococci can synthesize long-chain alkenes (1, 2, 127).
27 They are also potentially useful for ore dressing and bioremediation applications, since they are
28 able to concentrate heavy metals from low grade ores (26, 66, 67, 116).

29 Given its intrinsic historical and biological importance, and its biotechnological potential, it is
30 perhaps surprising that the genome sequence of *Micrococcus luteus* was not determined
31 previously (130). Here we consider the strikingly small genome sequence in these contexts and
32 also in relation to the morphological simplicity of *M. luteus* as compared with many of its

1 actinobacterial relatives, which include important pathogens as well as developmentally
2 complex, antibiotic-producing bacteria with some of the largest bacterial genomes.

3

1 **METHODS**

2 **Genome sequencing, assembly and gap closure.** The genome of *M. luteus* was sequenced at
3 the Joint Genome Institute (JGI) using a combination of 8-kb and fosmid (40-kb) libraries and
4 454 pyrosequencing. All general aspects of library construction and sequencing performed at
5 the JGI can be found at <http://www.jgi.doe.gov/>. Pyrosequencing reads were assembled using
6 Newbler assembler (Roche http://www.454.com/downloads/protocols/1_paired_end.pdf).
7 Large Newbler contigs were chopped into 2793 overlapping fragments of 1000 bp and entered
8 into assembly as pseudo-reads. The sequences were assigned quality scores based on Newbler
9 consensus q-scores with modifications to account for overlap redundancy and adjust-inflated q-
10 scores. Hybrid 454/Sanger assembly was performed with Arachne assembler (8). Possible mis-
11 assemblies were corrected and gaps between contigs were closed by custom primer walks from
12 sub-clones or PCR products. The error rate of the completed genome sequence of *M. luteus* is
13 less than 1 in 50,000.

14 Genome annotation was performed with the Integrated Microbial Genomes Expert Review
15 (IMG-ER) annotation pipeline (72). Predicted coding sequences (CDSs) were additionally
16 manually evaluated using JGI's Quality Assurance pipeline (<http://geneprimp.jgi-psf.org/>).

17 **Genome analysis.** Comparative analysis of *M. luteus* with related organisms was performed
18 mainly using a set of tools available in IMG. The cutoff for the minimal size of an open
19 reading frame (ORF) was set to 30 residues. Unique and homologous *M. luteus* genes were
20 identified by using BLASTp (cutoff scores of $E < 10^{-2}$). Reciprocal hits were calculated based
21 on these values. Comparisons between genes for the identification of common genes were
22 conducted using BLAST similarities of e value 10^{-5} and similarity > 20% (3). For the
23 determination of orthologs in selected other genomes BLASTp (3) was employed with an
24 expect value threshold of $1e^{-4}$. Two proteins were considered orthologous only if they were
25 reciprocal best hits of each other in BLAST databases consisting of all proteins encoded by
26 their respective genomes. In some situations where detailed “manual” evaluation was made,
27 apparent orthologs which showed less than 50% amino acid identity or covered less than 80%
28 of the longer protein were flagged as doubtful, and rejected unless they were part of a
29 syntenous segment. Signal peptides were identified using SignalP 3.0 (10) and TMHMM (62)
30 at default values.

31 Following automated annotation of the completed genome sequence, a workshop was held in
32 Jerusalem (April 13th – 18th, 2008), as part of the IMG expert review process, to compare *M.*

1 *luteus* with other closely related actinobacteria and illuminate its relationship to *Arthrobacter*
2 and *Kocuria rhizophila* (formerly *Sarcina lutea*) (123), which are two of its closest relatives.
3 Comparative genomic studies were performed in the context of the Integrated Microbial
4 Genomes system (IMG) v.2.2 (73). Habitat information was retrieved from the Genomes
5 OnLine Database (68).

6 **Nucleotide sequence accession numbers.** The sequence data described here have been
7 deposited in GenBank (NC_012803) and the Genomes OnLine Database accession number
8 Gc01033.

1 **RESULTS AND DISCUSSION**

2 **General features and architecture of the genome.** The genome consists of one circular
3 chromosome of 2,501,097 bp with a 73% GC content. It is one of the smallest actinobacterial
4 genomes sequenced to date. The origin of replication was identified in a region upstream of
5 *dnaA*, where a significant shift in the GC skew value was observed (Fig. 1). In common with
6 *K. rhizophila*, there is no evidence of the global GC skew (preference for G on the leading
7 strand) that is commonly observed in many other bacterial genomes, including those of some
8 of its close relatives, including *Arthrobacter aurescens* and *Renibacterium salmoninarum* (78,
9 123, 137). Of 2458 predicted genes, 2403 encode proteins. Putative functions were assigned to
10 74.2% of genes while the remaining 25.8% were annotated as hypothetical proteins. The ATG
11 start codon is used most frequently (1718 times) followed by GTG and TTG (665 & 20 times,
12 respectively). There is an even stronger bias to the use of TGA as stop codon (2238 times),
13 with TAG and TAA being used only 115 & 50 times, respectively.

14 The properties and statistics of the *M. luteus* genome are summarized in Table 1. There are two
15 rRNA operons with the typical order of 16S, 23S and 5S RNA genes. However, in one of them
16 (Mlut_14290), the *rrs* gene (encoding the 16S rRNA) is interrupted by an ISL3 family
17 transposase (see below). Apart from the transposon insertion, Mlut_03860 has an additional
18 'A' residue at position 1437 that is absent in Mlut_14290. A BLAST search of the nucleotide
19 data base with Mlut_03860 showed that of the top 100 hits (classified as *M. luteus*,
20 *Micrococcus* sp. or uncultured bacterium) 95 clearly do not have the A at position 1437. The
21 transposon insertion has therefore inactivated the *rrs* gene that mostly closely resembles that of
22 the species. Possibly the presence of both functional *rrs* genes was detrimental to the
23 functionality of the ribosome and the transposon insertion in Mlut_14290 rescued fitness.
24 Forty-eight tRNA genes were identified encoding tRNAs theoretically capable of translating all
25 codons including AGA, which had previously been found to be untranslatable using an *in vitro*
26 system derived from a *M. luteus* strain (61). Eighteen additional RNA genes were predicted
27 using models from the RNA families database (Rfam) (40). The substantially reduced number
28 of paralogous genes present (9.2%) as compared with *Arthrobacter* spp. (57.6% for
29 *Arthrobacter aurescens* TC1 and 61.3% for *Arthrobacter* sp FB24) correlates with the reduced
30 size of the *M. luteus* genome. This indicates that most of the gene reduction or expansion that
31 post-dates the last common ancestor of *Micrococcus* and *Arthrobacter* has affected paralogous
32 gene families.

1 Genes found in a 0.9 Mbp segment including the presumed origin of replication show no
2 particular strand bias, whereas genes located in the remainder of the genome (0.5 – 2.1 Mbp)
3 are more abundant on the presumed leading strand (Fig. 1). RNA genes are more abundant on
4 one chromosome arm (0 – 1.25 Mbp) than on the other (1.25 – 2.5 Mbp).

5 In order to evaluate the functional content of the genomes of various members of the
6 *Micrococcaceae*, the numbers of genes assigned to different COG functional categories are
7 compared in Table 2 and Fig. 2. Generally speaking, the relative proportions of genes in
8 different functional categories are in line with expectation, based on its small genome size, as
9 described previously (60). *M. luteus* devotes a greater proportion of its genome to core
10 processes of translation, replication, and repair than do the other members of the
11 *Micrococcaceae* except *K. rhizophila*, which has a reduced complement of genes concerned
12 with replication and repair. On the other hand, *Arthrobacter* spp. and *Renibacterium*
13 *salmoninarum* devote a greater proportion of their genomes (between 10% and 11%) to
14 transcription and its regulation than do either *M. luteus* or *K. rhizophila* (6% and 7%,
15 respectively), and have a greater repertoire of sigma factors and associated regulatory proteins.
16 Other prominent differences are the reduced number and proportion of genes concerned with
17 carbohydrate metabolism in *M. luteus* (and *K. rhizophila*) as compared with other members of
18 the *Micrococcaceae* and also, the presence of a very large number of genes encoding
19 transposases in the *M. luteus* genome (see below). In line with their small genome sizes, both
20 *M. luteus* and *K. rhizophila* have fewer genes concerned with secondary metabolism than *R.*
21 *salmoninarum* and the two *Arthrobacter* spp. Genes within the other COG functional
22 categories shown in Table 2 (amino acid metabolism, lipid metabolism, energy production and
23 ion transport) increase in number in proportion to genome size.

24 Dot plots comparing the positions of genes in *M. luteus* with their putative orthologs in other
25 actinobacteria reveal extensive synteny with other members of the *Micrococcaceae*, with
26 evidence for one and two inversions about the presumed replication origins in the comparisons
27 with *K. rhizophila* and *Arthrobacter* sp. FB24, respectively (Fig. 3). Synteny, though
28 interrupted by many more inversions about the origin, was also evident with more distantly
29 related organisms, such as *Clavibacter michiganensis*, *Renibacterium salmoninarum* and
30 *Mycobacterium tuberculosis*, and even with *Streptomyces coelicolor* A3(2), despite the
31 linearity and ca. three-fold larger size of this streptomycete genome (11).

32 **TTA-containing genes are exceptionally rare in *M. luteus*.** The high G+C content of
33 actinobacterial genomes is correlated with a paucity of A+T-rich codons. This is particularly

1 marked for the TTA codon, one of six encoding leucine, to the extent that in streptomycetes the
2 codon is found only in genes that are non-essential for growth. For example, *S. coelicolor* has
3 only 145 TTA-containing genes, and the determinant for the cognate tRNA can be deleted
4 without impairing vegetative growth. It has been proposed that the translation of UUA-
5 containing mRNA is subject to checkpoint control by regulation of the availability of charged
6 cognate tRNA (Ventura et al., 2007; Chandra and Chater, 2008; Chater and Chandra, 2008).
7 Remarkably, an even smaller proportion of *M. luteus* genes, just 24 out of 2403, contain a TTA
8 codon. It would be of considerable interest to find out whether the elimination of the relevant
9 tRNA determinant has any phenotypic consequences.

10 **Mobile genetic elements.** Although *M. luteus* has one of the smallest actinobacterial genomes,
11 it harbors more than 70 IS elements, or their remnants. Thirty distinct IS elements are present,
12 representing eight of the 23 well-characterized IS families, *viz*: IS3, IS5, IS21, IS30, IS110,
13 IS256, IS481 and ISL3 (Table 3). No elements related to the Class II transposon, Tn3, were
14 found. Although the IS3 family elements show the greatest diversity (8 distinct elements are
15 present), only one of them is intact. There are five distinct types of IS256 family elements,
16 most of which (19/24 copies) are intact. Some regions contain several elements, including
17 examples of one IS being inserted into another. For example, there are three IS3 elements into
18 which IS256 family members (ISMu1, ISMu2 or ISMu11) have inserted. With only one
19 exception (*Burkholderia mallei*), all ISMu transposases have their closest relatives in other
20 actinomycetes, *viz*: *Brevibacterium linens*, *Corynebacterium diphtheriae*, *Corynebacterium*
21 *jeikeium*, *Corynebacterium striatum*, *Leifsonia xyli*, *Mycobacterium avium*, *Mycobacterium*
22 *branderi*, *Mycobacterium marinum*, *Mycobacterium smegmatis*, *Rhodococcus aetherivorans*,
23 *Rhodococcus erythropolis*, *S. coelicolor*, and *Terrabacter* sp. One copy of ISMu4 (ISL3
24 family) has inserted into one of the two *M. luteus* *rrs* genes (Mlut_14290) (see above). There is
25 evidence from *Escherichia coli* that such insertions are not necessarily polar, so the genes
26 encoding the 23S and 5S ribosomal RNA downstream of Mlut_14290 may be expressed (15,
27 79). Another element, ISMu9 (IS481 family), is located just downstream of the corresponding
28 5S rRNA.

29 A complete compilation of the “ISome” of *M. luteus* is given in the ISfinder database (115).
30 The plethora of IS elements in *M. luteus* may be responsible, at least in part, for the intra-
31 species heterogeneity that has been described previously (90, 138).

32 A search for integrated genetic elements associated with integrase/recombinase proteins
33 revealed 3 serine recombinases, Mlut_16170, Mlut_06210 and Mlut_00100. Mlut_00100 and

1 Mlut_06210 are members of the family of large serine recombinases which are common in
2 amongst the actinomycetes and low GC% Gram-positive bacteria (118). These recombinases
3 can be phage-encoded or present on integrating conjugative elements (ICEs) where they excise
4 an element from the chromosome to form a circle of DNA that then undergoes conjugation to a
5 new host (16, 88). In the recipient the circular molecule integrates, often site-specifically via
6 the action of the recombinase. Mlut_00100 lies at one end of 59 genes, generally of low GC%,
7 that interrupt a region with synteny with *Arthrobacter* (Fig. 4). This element, IEMlut1, may be
8 conjugative as it carries a putative relaxase and DNA primase which could act to initiate
9 conjugal transfer of an excised circle of DNA. Paralogues of *dnaK*, *grpE*, *dnaJ*, *clpB* and
10 thioredoxin metabolism genes encoded on IEMlut1 may have a role in overcoming
11 environmental stress.

12 A second element, IEMlut2, appears to have integrated into a flavin dependent oxidoreductase
13 represented by the gene fragments Mlut_06220 and Mlut_06130. When these two fragments
14 are spliced together and used to search the protein database, they align well with close
15 homologues e.g. from *Arthrobacter*. The large serine recombinase, Mlut_06210, is at one end
16 of this element and is probably responsible for the integration in the ORF. There is a putative
17 relaxase gene, albeit annotated as a pseudo-gene, suggesting that this element might once have
18 been conjugative. IEMlut2 encodes a putative mercuric reductase and a MerR-like regulator.

19 IEMlut3 and IEMlut4 were probably mobilized by a conserved gene triplet acting together. An
20 alignment of the XerD homologues (which are members of the tyrosine recombinase family of
21 site-specific recombinases) shows that Mlut_06590 and Mlut_20700 are almost identical as are
22 Mlut_06600 and Mlut_20690. In addition Mlut_06610 is 83% identical to Mlut_20680. These
23 6 genes therefore represent two examples of a conserved triplet of genes that can also be seen
24 in *Mycobacterium* sp. KMS, *M. smegmatis*, *Arthrobacter*, an organism denoted *Vibrio*
25 *angustum* S14 in the Genomes OnLine Database (<http://genomesonline.org/index2.htm>) and
26 others. In *M. luteus* the triplets are located at each end of two low GC rich regions, IEMlut3
27 and IEMlut4 (Fig. 4). IEMlut3 encodes one of the few sigma factors in *M. luteus* so
28 acquisition of this element may have had a global effect on gene expression. The extent of this
29 element is currently defined only by the lower than average GC% as it lies in a region with
30 little synteny with *Arthrobacter*. IEMlut4 contains putative arsenic and cadmium resistance
31 determinants (Mlut_20620 & Mlut_20660 respectively).

32 Two of the four putative integrated elements may therefore have been the vehicles for
33 introducing mercury, arsenic and cadmium resistance into *M. luteus*. In addition, Mlut_18330

1 (a DDE family transposase; no other paralogues in *M. luteus*) is adjacent to a putative copper
2 resistance protein (68% GC; Mlut_18340) suggesting the possible presence of a small, fifth
3 element within *M. luteus*.

4 **Regulation and signal transduction.** Detailed analysis of individual genes revealed that only
5 103 *M. luteus* genes, i.e. 4.4%, including its four sigma factors (see below), encode likely
6 DNA-interacting regulatory proteins, while 27 others (1.1%) have roles in signal transduction.
7 One might expect that as genome size approaches some minimal level for a fully functional
8 organism, the proportion of regulatory genes that have orthologs in related genomes of larger
9 size would approach (though not reach) 100%. However, the suite of *M. luteus* regulatory
10 genes includes many that do not appear to be conserved in the genomes of other members of
11 the *Micrococcaceae* (*K. rhizophila* and *Arthrobacter* sp. strain FB24). To evaluate this more
12 closely, we carried out a limited “manual” analysis of apparent orthologs, based on the
13 relatively stringent criteria of reciprocal BLASTp hits plus at least 50% amino acid identity
14 over at least 80% of the length of the longer protein. On this basis, 69 of the 99 genes
15 (excluding sigma factors) were considered to be orthologous with genes in one or more of the
16 other genomes (see supplementary material Table 1S).

17 Of the four genes likely to encode sigma factors, Mlut_13280 encodes the principal sigma
18 factor (RpoD). It is very similar to the principal sigma factor (HrdB) of *S. coelicolor* (84%
19 identity over the C-terminal 344 residues; 35% identity over the N-terminal 153 aa). The other
20 three appear to encode ECF sigma factors, which are usually involved in responses to extra-
21 cytoplasmic stresses or stimuli. One of these, Mlut_07700, is widely conserved and
22 corresponds to SCO5216 of *S. coelicolor*, whose product (SigR) plays a key role in responses
23 to disulfide stress. Mlut_07700 is located immediately upstream of an ortholog of *rsrA*, which
24 in other actinomycetes encodes an anti-sigma that antagonizes SigR. The micrococcal RsrA
25 retains the conserved cysteine residues involved in sensing disulphide stress. Another sigma
26 factor gene, Mlut_06410, is species-specific, and located within IEMLut3 (see above and Fig.
27 4), and the third, Mlut_14900, appears to be present in *Arthrobacter* and possibly other
28 actinobacteria. The absence of any Class III sigma genes (i.e., related to sigma B of *Bacillus*
29 *subtilis*), and of any genes encoding the relevant classes of anti-sigmas or anti-anti-sigmas, is
30 unusual among Gram-positive bacteria. In general, members of that class of sigmas are
31 involved either in non-nutritional stress responses or sporulation. There was no gene identified
32 for a sigma-54 – this class of sigmas appears to be confined to Gram-negative bacteria. Since
33 sigma factors underpin nearly all cellular developmental programs in bacteria, the simplicity of

1 the sigma factor profile suggests that there is no undiscovered developmental program in *M.*
2 *luteus* and that its range of stress responses may be exceptionally narrow.
3 The genome encodes 14 response regulators, accounting for an unusually high proportion
4 (14%) of the total suite of regulatory proteins (only about 6% of *Streptomyces coelicolor*
5 regulatory proteins are response regulators). Eleven of them form clear two-component
6 systems with an adjacent gene encoding the cognate histidine kinase, two of which are widely
7 conserved. PhoRP (Mlut_03740 & Mlut_03750) probably respond to phosphate limitation and
8 MtrAB (Mlut_14770 & Mlut_14760) probably play a role in cell-cycle progression (but here
9 without the widely conserved adjacent gene *lpqB*, which appears to play an accessory role in
10 the action of MtrAB in other actinobacteria). In addition, the Mlut_14100 & Mlut_14110 genes
11 are probably involved in the regulation of citrate/malate metabolism, whereas the Mlut_04120-
12 Mlut_04130 gene pair, of unknown function, is present in many simple actinobacteria, but
13 absent from *S. coelicolor*. Three response regulator genes are “orphans” not located very close
14 to genes for histidine protein kinases, while just two of the 13 genes for histidine protein
15 kinases are located away from any response regulator gene. All but one (Mlut_03350) of the
16 “orphan” response regulators retain the highly conserved aspartate expected to be
17 phosphorylated, as well as other conserved residues in the typical “phosphorylation pocket”,
18 suggesting that their regulation is via phosphorylation. Atypical response regulators that seem
19 unlikely to be regulated by conventional phosphorylation are found in other organisms, e.g. *S.*
20 *coelicolor* (45). Among the three orphans, one is widespread among the actinobacteria
21 (Mlut_11030) but there appears to be no information about the functions of the orthologs, at
22 least among streptomycetes. One is confined to the *Micrococcinaceae* (Mlut_03350) and one
23 (Mlut_21850) is genome-specific.

24 *M. luteus* has three *pkn* genes encoding serine/threonine protein kinases (STPKs): Mlut_00760,
25 Mlut_00750, and Mlut_13750, which correspond to *pknA*, *pknB*, and *pknL* found in *My. leprae*,
26 *C. glutamicum*, and *My. tuberculosis* (which has 11 *pkn* genes) (6, 22, 23, 96). The three STPK
27 genes (see also below, under cell division, morphogenesis, and peptidoglycan biosynthesis),
28 together with a gene encoding a partial STPK sequence apparently fused to a protein of
29 unknown function, represent about 4% of the “regulatory” genome (a similar proportion as in
30 *S. coelicolor*).

31 Unusual small iron-sulfur cluster-containing regulatory proteins resembling the archetypal
32 WhiB sporulation protein of streptomycetes (hence the term Wbl, for WhiB-like) have been
33 found in all actinobacteria, and no other bacteria. *M. luteus* has an unusually small number

1 (two) of them. In general, orthologs of some of these small genes are widely conserved, though
2 their small size makes it difficult to be confident about orthology. One of the two
3 (Mlut_05270) appears to be orthologous with the near-ubiquitous archetypal *whiB*, which is
4 important not only for development in streptomycetes, but also for cell-division in
5 mycobacteria (38, 119). The other is similar to *wblE*, which is also near-ubiquitous, but whose
6 role is less clear, though it has been implicated in the oxidative stress response in
7 corynebacteria (58). The absence of a *wblC* gene may account for the sensitivity of *M. luteus* to
8 many antibiotics. In mycobacteria and streptomycetes *WblC* is a pleiotropic regulator that
9 plays an important role in resistance to diverse antibiotics and other inhibitors (80).

10 The presence of two *crp*-like genes (Mlut_09560 & Mlut_18280), and a putative adenylate
11 cyclase gene (Mlut_05920), indicates that cAMP plays a signaling role in *M. luteus*, as in most
12 other actinobacteria. Mlut_18280 is conserved among other actinobacteria, so it probably plays
13 the major role in sensing cAMP.

14 The *M. luteus* genome contains a strikingly high representation (11) of genes related to *merR*,
15 whose products typically exert their regulatory effects by compensating for aberrant spacing
16 between the -10 and -35 regions of the promoters they regulate (95). There are two putative
17 *hspR* genes for the regulation of the heat-shock response (Mlut_00590 & Mlut_18780), both
18 located next to *dnaJ*-like genes, and three genes for *ArsR*-like regulators. The *arsR*-like genes
19 are adjacent to genes encoding a cation (zinc, cobalt, cadmium) diffusion facilitator
20 (Mlut_13910), an arsenic resistance protein (Mlut_20620) and a cadmium transporter
21 (Mlut_20660) and they are all located in regions mainly comprising *M. luteus*-specific genes
22 (see above). One of the *merR*-like genes (Mlut_06140) is close to genes involved in mercury
23 resistance (e.g. mercuric reductase, Mlut_06150) and another (Mlut_20770) is related to
24 certain excisionases. At least four of the *MerR/ArsR* proteins are likely to play a role in metal-
25 resistance, which is of interest, since *M. luteus* may have potential utility for gold recovery
26 from low-grade ores (66, 67).

1 **Cell division, morphogenesis, and peptidoglycan biosynthesis.** Many of the known genes
2 dedicated to peptidoglycan synthesis, cell division, and morphogenesis are conserved between
3 *M. luteus* and *My. tuberculosis*. *M. luteus* peptidoglycan is of subgroup A2, in which an L-Ala-
4 D-Glu-L-Lys-D-Ala stem peptide (with a glycyl modification of the D-Glu component) is cross-
5 linked to the D-Ala residue of its counterpart by an identical tetrapeptide (107). All but one of
6 the expected genes required for production of a UDP-N-acetylmuramate-pentapeptide-N-acetyl
7 glucosamine precursor were readily identified (Table 4), the exception being that for the
8 enzyme responsible for the glycyl modification of the D-glutamate residue of the stem
9 peptide.

10 Schleifer (106, 107) proposed that the use of a stem peptide as a functional interpeptide, which
11 is a feature of *M. luteus* peptidoglycan, could involve cleavage between the *N*-acetylmuramate
12 moiety of one PG monomer and the L-Ala of its peptide component after that peptide had been
13 directly cross-linked to the L-Lys of a neighboring chain. Thereafter, the terminal D-Ala would
14 be linked to the ϵ -amino group of the L-Lys of a third stem peptide. Either a single
15 transpeptidase (TP) with broad acceptor specificity, or two specific TPs are required. The
16 Mlut_16840 product, which is probably a member of the amidase_2 superfamily (pfam 01510,
17 9e⁻¹⁵ BITS score 53.7), appears to be a strong candidate for the *N*-acetylmuramoyl-L-alanine
18 amidase. It bears a twin-arginine transporter type N-terminal signal sequence in conjunction
19 with a Cys residue occupying position 33, suggesting that it is a lipoprotein, as required for this
20 proposed function.

21 According to Ghuyzen (35), class A high-molecular-mass-penicillin-binding proteins (HMM-
22 PBPs) can perform all the basic functions required for PG polymerization. Many bacteria
23 possess several class A HMM-PBPs (37) that may functionally substitute for each other (57),
24 but *M. luteus* possesses only one, encoded by Mlut_18460.

25 Class B HMM-PBPs possess transpeptidase activity and contain additional modules that may
26 mediate protein-protein interactions (44) or assist with protein folding (37). They are involved
27 in septation, lateral wall expansion and shape maintenance (48, 100, 120, 136). *M. luteus* and
28 *My. tuberculosis* share similar complements of class B HMM-PBPs. As is seen with the
29 cognate *My. tuberculosis* genes, Mlut_13660 (*ftsI*) is associated with the division/cell wall
30 (DCW) cluster and Mlut_00770 is clustered with other genes encoding cell division and cell
31 shape-determining factors such as FtsW and the regulatory elements PknAB (37). *M. luteus*
32 lacks an ortholog of the third *My. tuberculosis* PBP, Rv2864c, which may contribute to its
33 well-known β -lactam sensitivity.

1 The products of Mlut_01190 and Mlut_16800, potentially D-alanyl-D-alanine
2 carboxypeptidases, may be involved in cell wall remodeling or provide the extra TP potentially
3 required to incorporate the inter-peptide unit of PG. Mlut_16800 is close to Mlut_16840,
4 encoding the putative MurNAc-L-alanine amidase that may also be involved in this process.
5 Similarly, the putative soluble murein transglycosylase encoded by Mlut_13740 probably
6 participates in cell wall remodeling.

7 The DCW cluster is present in many organisms, and a hypothetical archetypal cluster has been
8 defined (92, 114) (Fig. 5) that has been broadly maintained in bacilli. It has been dispersed or
9 rearranged in other lineages such as coccoid firmicutes, or has been modified to accommodate
10 developmental processes such as sporulation (75). Most of the genes that have dispersed from
11 the DCW clusters of Gram-positive organisms encode enzymes that supply cytoplasmic PG
12 precursors. The organization of the *M. luteus* DCW cluster appears almost identical to that of
13 its rod-shaped relative, *My. tuberculosis*. This might seem paradoxical given the dispersal that
14 has occurred in other lineages (e.g. firmicutes), in which representatives have developed a
15 coccoid morphology. However, unlike *B. subtilis* and *E. coli*, actinomycetes (including the rod-
16 shaped *My. tuberculosis*) do not show appreciable intercalary insertion of new PG; this activity
17 is more or less restricted to the cell poles (126). It is not known whether the spherical shape of
18 *M. luteus* cells masks a hidden polarity in relation to growth and division.

19 The Div1B/FtsQ proteins encoded by the DCW clusters found in several cocci possess an
20 extended hydrophilic region immediately preceding the largest hydrophobic region of the
21 protein towards the N-terminus (98). Although FtsQ from several actinobacteria (*My.*
22 *tuberculosis* *C. glutamicum*, *Arthrobacter* spp., *K. rhizophila*, *R. salmoninarum*) also possesses
23 this extended hydrophilic region, it is absent from the *M. luteus* FtsQ homolog encoded by
24 Mlut_13580, which is some 90 residues shorter. Moreover, the N-terminus of the predicted *M.*
25 *luteus* protein lacks 33 amino acid residues compared with *B. subtilis* Div1B, inviting the
26 speculation that these differences in protein architecture may have functional significance in
27 the organism's transition to a coccoid form.

28 Two of the STPK determinants (see above), the *pknAB* genes, are part of a conserved
29 actinobacterial gene cluster implicated in cell division and morphogenesis that also includes
30 *rodA* (Mlut_00780), whose product is involved in the control of cell shape, *pbpA*
31 (Mlut_00770) encoding a transpeptidase involved in PG cross-linking, and *pstP* (Mlut_00790)
32 encoding a protein phosphatase that dephosphorylates PknA and PknB in *My. tuberculosis* (13,
33 21). In *My. tuberculosis*, the genes in this cluster have a single transcriptional start site and the

1 start and stop codons of successive genes overlap, suggesting transcriptional and translational
2 coupling. This relationship is apparently conserved in *M. luteus*. Furthermore, the
3 extracellular domain of PknB has been described as a penicillin-binding and Ser/Thr kinase-
4 associated (PASTA) domain that is also found in the bifunctional HMM-PBPs involved in PG
5 synthesis. This domain may bind both penicillins and PG-related analogues (141) as well as
6 muropeptides, effectively coupling cell envelope synthesis to other core processes including
7 transcription and translation (111). One of the phosphorylation targets of *My. tuberculosis*
8 PknA is the product of *wag31* (50). This essential gene (104), also found in *M. luteus*
9 (Mlut_13520) with a conserved genetic context and neighboring the DCW cluster, encodes a
10 homolog of DivIVA that controls placement of the division septum in *B. subtilis* (18) but
11 appears to differ functionally in actinomycetes. Recent studies using *C. glutamicum* and other
12 actinobacteria suggest its role in polar peptidoglycan synthesis is more significant than its
13 involvement in septation (65, 105).

14 **Anionic wall polysaccharides.** The cytoplasmic membrane of *M. luteus* bears a α -D-
15 mannosyl-(1 \rightarrow 3)- α -D-mannosyl-(1 \rightarrow 3)-diacylglycerol (Man₂-DAG) glycolipid and a
16 succinylated lipomannan (sucLM) based on it (64, 94, 97). The lipomannan components of
17 *Corynebacterium glutamicum* and *M. luteus* have structural similarities (76, 77, 124), and the
18 genes encoding sucLM biosynthesis in *M. luteus* were identified by comparison with the
19 cognate genes from *C. glutamicum*. The product of Mlut_04450 is a strong candidate for one of
20 the mannosyltransferases that forms Man₂-DAG. Genes encoding homologs of MptA
21 (Mlut_09700) and MptB (Mlut_09690) form a cluster with another gene (Mlut_09710) that
22 encodes a GT-C family glycosyltransferase, suggesting that Mlut_09710 is also involved in
23 sucLM biosynthesis. These three genes are co-transcribed and probably translationally
24 coupled, since each overlaps its predecessor by 4 nucleotides, suggesting coordinate regulation
25 through a polycistronic mRNA, whereas their homologs in corynebacteria and mycobacteria
26 are widely dispersed. Assuming Mlut_09690 and Mlut_09700 are MptBA orthologues, they
27 would, in concert, provide an α -(1 \rightarrow 6) linked mannosyl backbone, a common feature in other
28 lipoglycans. Mlut_09710 might then provide either the 2- or 3-linked mannose residues
29 reported in early characterizations (108). However, it is also possible that each of these three
30 GT-C glycosyltransferases produces a distinct linkage and that this operon provides all of the
31 biosynthetic capability to produce the bulk of the sucLM mannan. A homolog of
32 mycobacterial and corynebacterial polyprenyl monophosphomannose synthases, necessary to
33 provide mannosyl donors to MptAB, is encoded by Mlut_12000. Interestingly, a gene

1 encoding a C-N hydrolase commonly found immediately downstream or, in the case of *My.*
2 *tuberculosis*, fused in a continuous reading frame, is absent from *M. luteus* (36, 41).

3 The *M. luteus* cell wall is decorated with a teichuronic acid (TUA) consisting of repeating
4 disaccharide units of *N*-acetyl-mannosaminuronic acid (ManNAcU) and glucose (Glc) (42, 47).
5 The polymer is attached to PG *via* the phosphate group of a reducing terminal trisaccharide
6 consisting of two ManNAcU residues and an *N*-acetylglucosamine (GlcNAc) phosphate
7 residue (33). The TUA operon of *B. subtilis* provides few useful search queries and the genes
8 concerned with TUA biosynthesis in most other organisms have not been well characterized.
9 *M. luteus* contains three homologs of UDP-ManNAcU dehydrogenase (Mlut_05630,
10 Mlut_08960 & Mlut_08980), which might produce the ManNAcU nucleotide donor.
11 Mlut_05630 is clustered with a single putative glycosyltransferase (Mlut_05650) and two other
12 genes of unknown function, while Mlut_08960 and Mlut_08980 lie within a large cluster
13 encoding several putative GTs as well as other functions necessary for TUA biosynthesis and
14 export. The individual glycosyl residues of the repeating polymer unit are both derived from
15 UDP-glycosyl donors (43). A likely biosynthetic route to UDP-ManNAcU, predominantly
16 based in this cluster, is apparent. UDP-GlcNAc may be formed by the Mlut_05450 product, a
17 homolog of *E. coli* GlmU (a bifunctional enzyme with glucosamine-1-phosphate *N*-
18 acetyltransferase and GlcNAc-1-phosphate uridyltransferase activities). UDP-GlcNAc could
19 then be transformed to UDP-ManNAc *via* a putative UDP-GlcNAc 2-epimerase encoded by
20 Mlut_09080. The oxidation of this precursor to UDP-ManNAcU could be achieved by either of
21 the UDP-*N*-acetyl-D-mannosaminuronate dehydrogenase homologs encoded by Mlut_08960 or
22 Mlut_08980. Mlut_08720 appears to encode a UDP-Glc 6-dehydrogenase; together with the
23 apparent aminosugar preference of both Mlut_08960 and Mlut_08980, this suggests that there
24 may be greater heterogeneity in TUA biosynthesis than is currently recognized. As both
25 Mlut_08960 and Mlut_08980 appear to be twinned with GT genes as immediate upstream
26 neighbors, these might reflect potentially interchangeable functional units for the introduction
27 of aminosugar-derived glycuronic acid residues into a TUA polymer.

28 The complement of GTs necessary for TUA biosynthesis can be estimated from biochemical
29 data. A polyprenyl pyrophosphate-GlcNAc-(ManNAc)₂ acceptor is synthesized initially and
30 then extended by separable Glc and ManNAcU transferases that intervene alternately in
31 polymer elongation (43, 122). Acceptor synthesis will require TagO (Mlut_08100), a
32 polyprenyl phosphate-dependent GlcNAc phosphate transferase that is implicated universally
33 in the attachment of polymers to PG together with (probably) two ManNAcU transferases. The

1 only partially characterized GT involved in *M. luteus* TUA biosynthesis is the
2 glucosyltransferase responsible for the deposition of the α -D-Glc residues within the polymer;
3 two apparent subunit types of mass 54 kDa and 52.5 kDa with an estimated pI~5 for the
4 octameric active enzyme were described previously (25). These parameters show a good match
5 with the predicted GT product of Mlut_09020 (molecular mass = 56.8 kDa and pI = 5.94).
6 Finally, the secretion of the TUA may be accomplished by the products of Mlut_09060 and
7 Mlut_09070, which together constitute a predicted ABC family polysaccharide export system.
8 The Mlut_08990, Mlut_09000 and Mlut_09010 genes that complete this cluster encode
9 products related to aminosugar-*N*-acetyltransferases, a pyridoxal phosphate-dependent
10 aminotransferase and a dehydrogenase, respectively. These activities are consistent with the
11 provision of a further *N*-acetylated amino sugar for glycuronic acid formation. Interestingly
12 Mlut_09000 is a pseudogene; analysis of the *in silico* translated sequence reveals homology
13 with several predicted UDP-4-amino-4-deoxy-L-arabinose-oxoglutarate aminotransferases over
14 the full sequence length with the incorporation of a stop codon through a nucleotide
15 substitution in codon 121. Thus, the structure of this gene cluster is entirely consistent with the
16 biosynthesis of the TUA described for *M. luteus* and taken together with the apparent
17 redundancy in *N*-acetylglycosaminuronate provision and transfer, the apparent loss of
18 Mlut_09000 function suggests a previously more diverse TUA profile.

1 **Energy Metabolism.** The *M. luteus* genome contains genes encoding the various respiratory
2 chain components including complex I (NADH-quinone oxidoreductase: Mlut_18970 –
3 Mlut_18940, Mlut_11050, Mlut_11060 & Mlut_05010), complex II (succinate dehydrogenase
4 with cytochrome *b* and a Fe-S cluster: Mlut_04850-04820) and complexes III and IV (quinol-
5 cytochrome *c* oxidoreductase with cytochrome *b* and a Fe-S center and the cytochrome *c* -
6 cytochrome *aa*₃ oxidase complex: Mlut_12150-12120, Mlut_12210 & Mlut_12220). The *M.*
7 *luteus* respiratory chain also contains the quinol-oxidase complex with cytochrome *bd*
8 (Mlut_13220 & Mlut_13210), which is usually responsible for the growth of bacteria under
9 low oxygen conditions (128). Genes encoding a membrane-bound malate-menaquinone
10 oxidoreductase (Mlut_08440) and transmembrane L-lactate–menaquinone oxidoreductase
11 (Mlut_21510) are present and the corresponding activities have been demonstrated
12 experimentally in isolated membrane particles (5). The *M. luteus* respiratory chain may also
13 contain a membrane-bound pyruvate dehydrogenase (cytochrome; Mlut_02710), glycerol-3-
14 phosphate dehydrogenase (Mlut_23030), and L-proline dehydrogenase (Mlut_19430) as in *C.*
15 *glutamicum* (14).

16 **Central carbon metabolism.** Genes encoding a complete set of enzymes of the citric acid
17 cycle are present. The genes for the α and β subunits of succinyl-CoA synthetase lie adjacent
18 to each other (Mlut_04280 & Mlut_04270) and genes for the succinate dehydrogenase subunits
19 A-D form a cluster (Mlut_04820-04850). The other genes encoding citrate synthase
20 (Mlut_15490), aconitase (Mlut_13040), isocitrate dehydrogenase (Mlut_04530), the E1 and E2
21 components of 2-oxoglutarate dehydrogenase (Mlut_07730 & Mlut_13330), fumarase
22 (Mlut_05170) and malate dehydrogenase (Mlut_00950) are located separately.

23 *M. luteus* can use acetate as a sole source of carbon for energy and growth (V. Artsatbanov,
24 unpublished results), so it must contain the isocitrate lyase and malate synthase A components
25 of the glyoxylate shunt (and, despite its small genome, must have all the necessary pathways to
26 synthesize amino acids, nucleotides, carbohydrates, and lipids from acetate). The isocitrate
27 lyase and malate synthase A components are functionally active (E. Salina, unpublished
28 results) and they are encoded by adjacent genes (Mlut_02080 & Mlut_02090). Interestingly,
29 the isocitrate lyase is considered as a “persistence factor” in *My. tuberculosis* where it “allows
30 net carbon gain by diverting acetyl-CoA from β -oxidation of fatty acids into the glyoxylate
31 shunt pathway” (74, 112).

32 All of the main enzymes of glycolysis are present other than the first enzyme, glucokinase,
33 responsible for the phosphorylation of glucose. This is consistent with the observed inability of

1 *M. luteus* to grow with glucose as sole carbon source (140), but it may not serve to explain it,
2 since the product of Mlut_13470 is predicted to be a polyphosphate glucokinase. Other closely
3 related species e.g. *R. salmoninarum*, *Arthrobacter* spp. and *Rhodococcus* sp. do have
4 glucokinase genes. *M. luteus* is able to synthesize all glycolytic intermediates (presumably by
5 gluconeogenesis) from phosphoenolpyruvate or pyruvate obtained from oxaloacetate through
6 the agency of phosphoenolpyruvate carboxykinase (Mlut_03380) or pyruvate carboxylase
7 (Mlut_13810). It has a complete complement of enzymes concerned with triose metabolism,
8 and genes for all of the pentose phosphate pathway enzymes are annotated except for 6-
9 phosphogluconolactonase. While this open cycle could produce all intermediates, pentoses
10 would presumably be synthesized via the non-oxidative pentose phosphate pathway that is not
11 coupled to the reduction of NADP⁺.

12 **Does glycogen serve mainly as a biosynthetic intermediate for trehalose in *M. luteus*?** One
13 remarkable feature of some actinobacteria is the importance of the glucose-related storage
14 metabolites, trehalose and glycogen, and the complexity of associated metabolic processes: in
15 some organisms, this area of metabolism appears to be essential for viability (9, 17). There are
16 at least three ways in which mycobacteria and streptomycetes can make trehalose (17) and
17 some interconnections between trehalose and glycogen metabolism (110).

18 *M. luteus* has strikingly fewer genes concerned with carbohydrate metabolism than its close
19 relatives (Table 2). All the genes for conventional glycogen biosynthesis from central
20 metabolism are present: *pgm* (Mlut_01060), *glgA* (Mlut_11690), *glgB* (Mlut_03850), *glgC*
21 (Mlut_11680), together with a debranching enzyme gene, *glgX* (Mlut_16760) and the
22 incompletely characterized, glycogen-related gene *glgE* (Mlut_03840). Remarkably, though,
23 there is no obvious candidate gene for glycogen phosphorylase, a highly conserved enzyme
24 that is almost universal and which provides the major route for glycogen breakdown. This
25 raises the question of whether *M. luteus* can metabolize glycogen.

26 Equally surprising is the absence of the *otsAB* genes for the conventional synthesis of
27 trehalose. However, in the last 10 years, another pathway (present in many actinobacteria) has
28 been discovered, in which the terminal reducing glucosyl residue on chains of α -1,4-linked
29 glucose polymers is “flipped” by the TreY trehalose malto-oligosyl trehalose synthase enzyme
30 so that it is now α -1,1-linked, and then this terminal trehalosyl disaccharide is cleaved off by
31 the TreZ malto-oligosyltrehalose trehalohydrolase enzyme. This pathway is present in *M.*
32 *luteus* (Mlut_03980, *treY*; Mlut_03990, *treZ*), and could therefore provide a route for glycogen
33 breakdown to give trehalose. In other *Micrococcaceae* greater numbers of trehalose

1 biosynthetic genes have been annotated (4 in *Arthrobacter* sp FB24, 6 in *K. rhizophila* and 8 in
2 *R. salmoninarum* and *A. aurescens* TC1), and in more distantly related organisms such as *C.*
3 *glutamicum*, multiple trehalose biosynthetic pathways may be present (139). The degradation
4 of trehalose to yield glucose is catalyzed by trehalase. Although it is generally difficult to
5 recognize trehalases by homology, Mlut_17860 encodes a protein with 35% identity to a
6 trehalase recently characterized in *My. smegmatis* (17). It seems possible that the breakdown of
7 glycogen in *M. luteus* may well take place via trehalose.

8 Another pathway for trehalose biosynthesis, found in many actinobacteria, uses the trehalose
9 synthase enzyme to interconvert maltose and trehalose – see (110), for references. There is no
10 close homolog of *treS* in *M. luteus*. Thus, the only obvious route for trehalose synthesis
11 appears to be via glycogen. In this respect, it is relevant to note that the *treYZ* genes of *M.*
12 *luteus* are separated from *glgE* and *glgB* only by a group of genes peculiar to *M. luteus* that
13 were therefore probably acquired by lateral gene transfer. The *glg* and *tre* genes may
14 previously have been adjacent, consistent with the idea of a combined glycogen-trehalose
15 biosynthetic pathway. We are not aware of a comparable system in any other organism.

16 ***M. luteus* has relatively little capacity for secondary metabolism.** The genome of *M. luteus*
17 includes only 39 genes (2.2%) annotated as being concerned with secondary metabolism
18 (Table 2). Among these are 11 clustered genes (Mlut_21170-21270) implicated in carotenoid
19 synthesis (Table 5). Yellow pigmentation has long been an important for the identification of
20 *M. luteus*, suggesting that the genes concerned with pigment production would show a
21 restricted distribution. The phytoene synthetase (Mlut_21230), phytoene desaturase
22 (Mlut_21220) and polypropenyl transferase (Mlut_21210) genes lie in the centre of the cluster
23 and have homologs in many different organisms, including the photosynthetic bacteria
24 (*Synechococcus*), where the carotenoids might function to protect against radiation damage, as
25 has been proposed in *M. luteus* (4). Other genes towards the extremities of the cluster show a
26 more restricted distribution (Table 6). Although homologs of most of these genes are present in
27 other high G+C Gram-positive bacteria, a high level of synteny is restricted to only a few
28 organisms, *viz*: *L. xyli*, *Corynebacterium efficiens*, *C. glutamicum* and *C. michiganensis*.

29 There is little evidence from the genome annotation for the presence of other secondary
30 metabolic functions. There is a cluster of genes involved in siderophore transport (Mlut_22080
31 – Mlut_22120) as well as single genes that according to the annotation, might be involved in
32 non-ribosomal peptide synthesis (COG1020) and benzoate catabolism (protocatechuate 3,4
33 dioxygenase – COG3485). The genome is among the minority of actinobacterial genomes

1 (including *C. diphtheriae* and *Tropheryma whipplei*) that encode no obvious cytochromes P450
2 – for example, free-living mycobacteria and streptomycetes generally encode more than ten
3 (130). There is no evidence for a significant repertoire of genes that might be involved in
4 polyketide production (only Mlut_20260 & Mlut_22550) or xenobiotic catabolism. Finally, *M.*
5 *luteus* uses the non-mevalonate pathway for C5 isoprenoid biosynthesis (Table 7). The genes
6 are dispersed about the bacterial chromosome with Mlut_03780 encoding a bifunctional
7 enzyme comprising IspD (2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase,
8 EC:2.7.7.60) and IspF (2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase EC:4.6.1.12) as
9 is also the case in several other actinobacteria, e.g. *Kytococcus sedentarius*, *C. michiganensis*,
10 *L. xyli* and *T. whipplei* (58%, 48%, 46% & 42% identity, respectively).

11 **Osmotolerance.** *M. luteus* is salt tolerant and grows in rich medium, such as nutrient broth,
12 containing 10% NaCl, although pigment production is abolished at concentrations above 5%
13 NaCl (G. Price and M. Young, unpublished). Heterotrophic bacteria that are salt-requiring or
14 salt-tolerant generally use organic solutes such as amino acids (glutamate, proline), glycine
15 betaine, ectoine, and trehalose for osmotic balance.

16 When grown in rich media, most heterotrophic bacteria accumulate glycine betaine (46).
17 However, very few heterotrophs are capable of *de novo* synthesis of betaine; they tend to
18 accumulate the compound from the medium (yeast extract is a good source of betaine).
19 Accordingly, *M. luteus* encodes an ABC transporter system for proline/glycine betaine with
20 four components clustered in the genome (Mlut_15720-15750). In addition, two
21 choline/carnitine/betaine transporters have also been annotated (Mlut_01900 & Mlut_16530).
22 All of these genes have homologs throughout the actinobacteria.

23 Although an ectoine synthetase gene is annotated (Mlut_02920), the remainder of the operon
24 required for production of this molecule is apparently absent. The *M. luteus* gene has greatest
25 similarity to genes found in *Stigmatella aurantiaca* and *Burkholderia ambifaria* (55% and 54%
26 identity, respectively), in which the remaining genes required for ectoine synthesis are also
27 apparently absent. Complete ectoine operons are found in the genomes of many actinobacteria
28 including *Brevibacterium linens* BL2 and *Streptomyces avermitilis*.

29 As noted above, *M. luteus* has two genes potentially concerned with trehalose production from
30 glycogen: a trehalose malto-oligosyl trehalose synthase (Mlut_03980) and a malto-
31 oligosyltrehalose trehalohydrolase (Mlut_03990). This suggests that of the common
32 compatible solutes, *M. luteus* can only produce glutamate, proline and trehalose (the last of

1 these only via glycogen) though, like many heterotrophic bacteria, it does have transporters for
2 other compatible osmoprotectants.

3 **Long-chain alkene biosynthesis by *M. luteus*.** Four decades ago, two research groups
4 studying a close relative of *M. luteus*, *Sarcina lutea* ATCC 533 (now *Kocuria rhizophila*),
5 reported the biosynthesis of *iso*- and *anteiso*-branched, long-chain (primarily C₂₅ to C₂₉)
6 alkenes (1, 2, 127). Although the biosynthetic pathway was postulated to involve
7 decarboxylation and condensation of fatty acids, the underlying biochemistry and genetics of
8 alkene biosynthesis have remained unknown until very recently. *M. luteus* strains have also
9 been shown to produce primarily branched C₂₉ monoalkenes; this includes the sequenced strain
10 (based upon analysis by gas chromatography-chemical ionization-time of flight mass
11 spectrometry; H. R. Beller, E. B. Goh, J. D. Keasling, submitted for publication) and strain
12 ATCC 27141 (31).

13 Recently, Friedman and Rude (international patent application WO 2008/113041) reported that
14 heterologous expression of *oleACD* from a range of bacteria (including *Stenotrophomonas*
15 *maltophilia*, *Xanthomonas axonopodis*, and *Chloroflexus aggregans*) resulted in long-chain
16 alkene biosynthesis, and *in vitro* studies indicated that the alkenes indeed result from fatty acyl-
17 CoA or fatty acyl-ACP precursors. Beller and co-workers have heterologously expressed the
18 three-gene *M. luteus* cluster comprising *oleA* (Mlut_13230), *oleBC* (a gene fusion;
19 Mlut_13240), and *oleD* (Mlut_13250) in *E. coli* and observed C₂₇ and C₂₉ alkenes that were
20 not detectable in negative controls with a plasmid lacking any *M. luteus* genes (H. R. Beller, E.
21 B. Goh, J. D. Keasling, submitted for publication). *In vitro* studies with *M. luteus* OleA
22 indicated that it catalyzes decarboxylation and condensation of activated fatty acids (H. R.
23 Beller, E. B. Goh, J. D. Keasling, submitted for publication).

24 Some close relatives of *M. luteus* that also produce long-chain alkenes, such as *K. rhizophila*
25 and *A. aurescens* TC1, have similar *oleABCD* gene organization (Fig. 6) and a relatively high
26 degree of sequence identity. To illustrate, the OleA, OleBC, and OleD sequences of *K.*
27 *rhizophila* and *A. aurescens* TC1 share 45-57% identity with those of *M. luteus*. In contrast,
28 *Arthrobacter* sp. FB24, which does not produce alkenes (31), appears to lack an *oleB* gene and
29 has OleA and OleD sequences that share only 25-27% sequence identity with those of *M.*
30 *luteus*. It is possible that the divergence of *ole* sequences in strain FB24 from those in the
31 other strains discussed here explains its inability to produce long-chain alkenes. In the Gram-
32 negative, alkene-producing bacterium *S. maltophilia*, *oleB* and *oleC* are separate genes, in
33 contrast to the Gram-positive species represented in Fig. 6, but there is still relatively strong

1 similarity between the *S. maltophilia* and *M. luteus* sequences (e.g., OleA and OleD both share
2 39% sequence identity between these two organisms).

3 Although BLASTp searches with *M. luteus* OleA (Mlut_13230) showed best hits to β -
4 ketoacyl-ACP-synthase III (FabH), a key enzyme involved in fatty acid biosynthesis, the true
5 *fabH* in the *M. luteus* genome, Mlut_09310, falls in a cluster of genes critical to the
6 biosynthesis of branched-chain fatty acids, including a putative branched-chain α -keto acid
7 decarboxylase (Mlut_09340), malonyl-CoA:ACP transacylase (*fabD*; Mlut_09320), acyl
8 carrier protein (ACP; Mlut_09300), and β -ketoacyl-ACP-synthase II (*fabF*; Mlut_09290).

9 **Dormancy.**

10 *M. luteus* can enter a profoundly dormant state from which it can be resuscitated by a secreted
11 protein called resuscitation-promoting factor (Rpf) (85). Amongst its closest relatives,
12 *Arthrobacter* sp. FB24, *R. salmoninarum* and *K. rhizophila*, all encode a secreted protein with
13 an N-terminal transglycosylase-like domain and a C-terminal LysM domain that closely
14 resembles *M. luteus* Rpf (123, 137). A second protein belonging to the highly conserved RpfB
15 family (99) is encoded by genes found in *Arthrobacter* sp. FB24 and *R. salmoninarum*. RpfB is
16 also present in *Arthrobacter aurescens* TC1, which does not encode a protein with a similar
17 domain structure to that of *M. luteus* Rpf.

18 Dormancy has been extensively studied in *My. tuberculosis*, which has five *rpf* genes involved
19 in controlling culturability and resuscitation (12, 27, 86, 102, 113, 129) and the remainder of
20 this section will focus on a comparison with this organism. In *My. tuberculosis*, a state of
21 growth arrest often referred to as dormancy is occasioned by hypoxia *in vitro* (135). This leads
22 to the expression of a cohort of ca. 50 genes (the Dos regulon) under the control of the *devRS*
23 (*dosRS*) two-component system (101). Microarray studies have been accomplished using five
24 different dormancy models and many genes belonging to the Dos regulon are up-regulated in
25 these datasets (see supplementary material – Table 2S). Throughout these datasets, between
26 45% and 50% of the genes that are significantly up-regulated have homologs in *M. luteus*
27 (Table 8). Several of the *M. luteus* genes in these lists have multiple paralogs in *My.*
28 *tuberculosis*, the most striking example being Mlut_01830. This gene encodes the universal
29 stress protein UspA. It is represented once in the *M. luteus* genome, whereas there are six
30 homologs in *My. tuberculosis* (Rv1996, Rv2005c, Rv2028c, Rv2623, Rv2624c and Rv3134c).
31 Out of a cohort of 17 genes that are up-regulated in all five *My. tuberculosis* dormancy models
32 in Table 2S, nine have homologs in *M. luteus* (Table 9). Notable among these are genes

1 encoding the universal stress protein UspA (Mlut_01830), ferredoxin (Mlut_15510), an
2 erythromycin esterase homolog (Mlut_05460), an Hsp20 family heat shock protein
3 (Mlut_16210) and a zinc metalloprotease (Mlut_11840) that lies within a cluster including
4 putative proteasome components. This cluster shows a high degree of synteny with
5 *Arthrobacter* sp. FB24.

6 Recent studies of the enduring hypoxic response of *My. tuberculosis* (103) revealed that more
7 than two hundred genes are up-regulated, only five of which belong to the Dos regulon, and
8 only two of these five were up-regulated more than threefold (103). However, comparison of
9 the 47 genes up-regulated more than 3-fold in the enduring hypoxic response with up-regulated
10 genes from the other 5 dormancy models (Table 8) showed that 22 of them (47%) were up-
11 regulated more than 3-fold in at least one of those models. 62% of these 47 genes have
12 homologs in the *M. luteus* genome (Table 3S).

13 *M. luteus* therefore contains many genes similar to genes up-regulated in different *My.*
14 *tuberculosis* dormancy models. Among them are members of the Dos regulon, including the
15 *devRS* (*dosRS*) genes encoding the sensory histidine kinase and response regulator that control
16 the regulon (possibly Mlut_18530 & Mlut_18540, although other gene pairs such as
17 Mlut_16250 & Mlut_16240 or Mlut_21850 & Mlut_21860 might fulfill this role). The total
18 number of *M. luteus* dormancy-related genes revealed by these various comparisons is roughly
19 proportional to the two-fold difference in genome size between *M. luteus* and *My. tuberculosis*.
20 The elevated number of dormancy-related genes in *My. tuberculosis* is accounted for, in part at
21 least, by the presence of multiple paralogs that do not exist in *M. luteus*, indicating that the
22 dormancy machinery of *M. luteus* is highly minimized in comparison with that of *My.*
23 *tuberculosis*, though it clearly remains fully functional (24, 27, 49, 54, 56, 113, 131, 132, 134).

24 **Conclusion.** The *M. luteus* genome is very small compared with those of other free-living
25 actinobacteria, raising speculation that this may be connected with both its simple morphology
26 and a restricted ecology. Soil-dwelling organisms typically have a substantial capability for
27 environmental responses mediated through two-component systems and sigma factors, but the
28 *M. luteus* genome encodes only fourteen response regulators and four sigma factors, indicative
29 of adaptation to a rather strict ecological niche. We therefore speculate that its primary
30 adaptation is to (mammalian?) skin, where it is often found, and that its occasional presence
31 elsewhere (water, soil) might possibly arise from contamination by skin flakes. The somewhat
32 minimized nature of the genome may also provide opportunities to evaluate the roles of
33 conserved genes that, in other actinobacteria, are members of substantial paralogous families.

1 Despite its small size, the *M. luteus* genome contains an exceptionally high number of
2 transposable elements. These do not seem to have resulted in large-scale genome
3 rearrangements, since the genome sequences for the phylogenetically closest actinobacteria
4 available show only one or two multigene inversions spanning the *oriC* region, and none that
5 do not include *oriC*, when compared with *M. luteus*. The possibility remains, however, that
6 some of the transposable elements could have played a part in the contraction of the *M. luteus*
7 genome from a larger ancestral version. Such elements are present at a number of points of
8 discontinuity between the genomes of *M. luteus* and its closest characterized relatives (not
9 shown).

10 The simple morphology of *M. luteus* is reflected in the absence of nearly all genes known to be
11 concerned with developmental decisions in more complex actinobacteria, and the confinement
12 of genes for cell division and cell wall biosynthesis to a minimal set. The only obvious
13 exception to this is the presence of orthologues of the *Streptomyces* sporulation genes *whiA* and
14 *whiB*, but this is not surprising since *whiA* orthologues are found in virtually all Gram-positive
15 bacteria, both firmicutes and actinobacteria, and *whiB* orthologues are nearly universal among
16 actinobacteria. The roles of these two genes in such a simple organism as *M. luteus* merit
17 exploration. The presence of only a single class A PBP, and only two of class B, may be
18 connected with the adoption of spherical morphology, and with high sensitivity to β -lactams
19 and lysozyme. The well-known sensitivity of *M. luteus* to diverse other antibiotics may
20 possibly be due to its lack of a *wblC* gene: this gene confers increased resistance to a wide
21 range of antibiotics and other inhibitors on streptomycetes and mycobacteria, apparently by
22 affecting the expression of a large number of genes that include many predicted to affect
23 resistance (80).

24

1 ACKNOWLEDGEMENT

2 We are grateful to the British Council, the Israeli Ministry of Science and Technology and the
3 Hebrew University for funding a workshop on the *M. luteus* genome held in Jerusalem 13th –
4 18th April, 2008. For HRB and EBG, this work was part of the DOE Joint BioEnergy Institute
5 (<http://www.jbei.org>) supported by the U. S. Department of Energy, Office of Science, Office
6 of Biological and Environmental Research, through contract DE-AC02-05CH11231 between
7 Lawrence Berkeley National Laboratory and the U. S. Department of Energy. MY thanks the
8 UK BBSRC for financial support and VA and ASK thank the MCB RAS program for financial
9 support.

1

2 FIGURE LEGENDS

3

4 FIG. 1. Circular representation of the *M. luteus* chromosome. Genome coordinates are given in
5 Mbp. From outside to inside, the various circles represent: genes on the forward strand; genes
6 on the reverse strand, RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content
7 and GC skew. Genes are color coded according to their COG category.

8 The color code of function category for top COG hit is shown below.

COG Code	COG Function Definition
[A]	RNA processing and modification
[B]	Chromatin structure and dynamics
[C]	Energy production and conversion
[D]	Cell cycle control, cell division, chromosome partitioning
[E]	Amino acid transport and metabolism
[F]	Nucleotide transport and metabolism
[G]	Carbohydrate transport and metabolism
[H]	Coenzyme transport and metabolism
[I]	Lipid transport and metabolism
[J]	Translation, ribosomal structure and biogenesis
[K]	Transcription
[L]	Replication, recombination and repair
[M]	Cell wall/membrane/envelope biogenesis
[N]	Cell motility
[O]	Posttranslational modification, protein turnover, chaperones
[P]	Inorganic ion transport and metabolism
[Q]	Secondary metabolites biosynthesis, transport and catabolism
[R]	General function prediction only
[S]	Function unknown
[T]	Signal transduction mechanisms

[U]	Intracellular trafficking, secretion, and vesicular transport
[V]	Defense mechanisms
[W]	Extracellular structures
[Y]	Nuclear structure
[Z]	Cytoskeleton
NA	Not assigned

1

2

3 FIG. 2. Percentage of genes assigned to different COG categories in *M. luteus* and related
4 organisms.

5

6 FIG. 3. Synteny between actinobacterial genomes. For each genome the first gene is *dnaA*,
7 except in the case of the linear *S. coelicolor* genome, in which *dnaA* is located centrally. Each
8 dot represents a reciprocal best match (BLASTp) between proteins in the genomes being
9 compared. Dots are positioned according to their genome locations. See Methods for further
10 details. Abbreviations: Mlu, *Micrococcus luteus*; Krh, *Kocuria rhizophila* (123); Art,
11 *Arthrobacter* sp. strain FB24; Cmm, *Clavibacter michiganensis* subsp. *michiganensis* (32);
12 Mtb, *Mycobacterium tuberculosis* (22); Sco, *Streptomyces coelicolor* (11); Rsa, *Renibacterium*
13 *salmoninarum* (137).

14

15 FIG. 4. Proposed integrated elements (IEs) in *M. luteus* Fleming. Block arrows containing
16 numbers represent ORFs and their %GC values. The proposed function of the gene products is
17 shown where predictions from database searches are informative. All four of the proposed IEs
18 are within regions of lower than average %GC for *M. luteus* and three of the elements
19 (IEMlut1, IEMlut2 & IEMlut4) interrupt regions with good synteny with *Arthrobacter*. The
20 ORFs are colored as follows: Brown indicates synteny of gene order with *Arthrobacter*; grey
21 indicates that the gene product might be involved in plasmid replication or transfer; green is a
22 transposase or fragment thereof; red is used to highlight the putative metal resistance genes. A
23 and B. IEMlut1 (approximate coordinates 11840-72798) and IEMlut2 (approximate
24 coordinates 672329-680904) may have been integrated via the serine integrases, Mlut_00100
25 and Mlut_06210, respectively. The putative DnaK, GrpE, DnaJ and the ClpB-like chaperone

1 (Mlut_00560 - Mlut00580, Mlut_00600) have been included in IEMLut1 as they appear to have
2 been acquired horizontally. Their closest relatives are not the paralogous genes on the *M.*
3 *luteus* chromosome (Mlut_11810, Mlut_11800, Mlut_11790, Mlut_18660) but genes from
4 other actinomycetes such as *Streptomyces* sp, *Catenulispura* and *Gordonia*. On the other hand,
5 the closest relatives of Mlut_11790, Mlut_11800 and Mlut_18660 are from the
6 phylogenetically close *Arthrobacter* and *Kocuria*. IEMLut2 appears to have inserted into a
7 putative oxidoreductase to yield two gene fragments, Mlut_06130 and Mlut_06220 (yellow). C
8 and D. IEMLut3 (approximate coordinates 695571-717542) and IEMLut4 (approximate
9 coordinates 2,223,379-2,238,868) may have integrated via the action of the conserved triplet of
10 genes that includes two tyrosine recombinases (closest homologues are either purple,
11 Mlut_06600 and Mlut_20690, or light blue, Mlut_06590 and Mlut_20700) and a conserved
12 hypothetical (CH; colored blue-green) (Mlut_06610 & Mlut_20680).

13

14 FIG. 5. Conservation of Division/Cell Wall (DCW) clusters. The DCW clusters of several
15 bacteria are schematically represented. Coding sequences are not drawn to scale, in order to
16 facilitate alignment. The triangles denote the positions of single gene insertions unless
17 numerals are present that indicate the insertion of multiple genes. Where orthologues are
18 absent from the cluster but retained at a locus nearby, they are placed to one side. The key to
19 the gene symbols placed above each cluster are as follows: Z, *mraZ*; W, *mraW*; L, *ftsL*; I, *ftsI*;
20 I', *spoVD*; E, *murE*; Y, *mraY*; D, *murD*; Fw, *ftsW*; G, *murG*; C, *murC*; B, *murB*, Dd, *ddlB*; Q,
21 *ftsQ*; A, *ftsA*; Fz, *ftsZ*.

22

23

24 FIG. 6. Organization of the *ole* (olefin synthesis) genes in *M. luteus* and other bacteria.

1 REFERENCES

2 1. **Albro, P. W.** 1971. Confirmation of the identification of the major C-29 hydrocarbons
3 of *Sarcina lutea*. *J Bacteriol* **108**:213-8.

4 2. **Albro, P. W., and J. C. Dittmer.** 1969. The biochemistry of long-chain, nonisoprenoid
5 hydrocarbons. I. Characterization of the hydrocarbons of *Sarcina lutea* and the isolation
6 of possible intermediates of biosynthesis. *Biochemistry* **8**:394-404.

7 3. **Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
8 D. J. Lipman.** 1997. Gapped BLAST and PSI-BLAST: a new generation of protein
9 database search programs. *Nucleic Acids Research* **25**:3389-3402.

10 4. **Anwar, M., T. H. Khan, J. Prebble, and P. F. Zagalsky.** 1977. Membrane-bound
11 carotenoid in *Micrococcus luteus* protects naphthoquinone from photodynamic action.
12 *Nature* **270**:538-40.

13 5. **Artsatbanov, V., G. V. Tikhonova, and D. N. Ostrovskii.** 1983. [Generation of
14 membrane potential by aerobic bacteria *Micrococcus lysodeikticus*. Correlation
15 between coupled and uncoupled respiration]. *Biokhimiia* **48**:1568-79.

16 6. **Av-Gay, Y., and M. Everett.** 2000. The eukaryotic-like Ser/Thr protein kinases of
17 *Mycobacterium tuberculosis*. *Trends Microbiol* **8**:238-44.

18 7. **Bacon, J., B. W. James, L. Wernisch, A. Williams, K. A. Morley, G. J. Hatch, J. A.
19 Mangan, J. Hinds, N. G. Stoker, P. D. Butcher, and P. D. Marsh.** 2004. The
20 influence of reduced oxygen availability on pathogenicity and gene expression in
21 *Mycobacterium tuberculosis*. *Tuberculosis (Edinb)* **84**:205-17.

22 8. **Batzoglou, S., D. B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli, B. Berger,
23 J. P. Mesirov, and E. S. Lander.** 2002. ARACHNE: a whole-genome shotgun
24 assembler. *Genome Res* **12**:177-89.

25 9. **Belanger, A. E., and G. F. Hatfull.** 1999. Exponential-phase glycogen recycling is
26 essential for growth of *Mycobacterium smegmatis*. *J Bacteriol* **181**:6670-8.

27 10. **Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak.** 2004. Improved
28 prediction of signal peptides: SignalP 3.0. *J Mol Biol* **340**:783-95.

29 11. **Bentley, S. D., K. F. Chater, A.-M. Cerdeno-Tarraga, G. L. Challis, N. R.
30 Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A.
31 Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A.
32 Goble, J. Hidalgo, T. Hornsby, S. Howarth, C.-H. Huang, T. Kieser, L. Larke, L.
33 Murphey, K. Oliver, S. O'Neil, E. Rabinowitsch, M.-A. Rajandream, K.
34 Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares,
35 K. Taylor, T. Warren, A. Wietzorreke, J. Woodward, B. G. Barrell, J. Parkhill, and
36 D. A. Hopwood.** 2002. Complete genome sequence of the model actinomycete
37 *Streptomyces coelicolor* A3(2). *Nature* **417**:141-147.

38 12. **Biketov, S., V. Potapov, E. Ganina, K. Downing, B. D. Kana, and A. Kaprelyants.**
39 2007. The role of resuscitation promoting factors in pathogenesis and reactivation of
40 *Mycobacterium tuberculosis* during intra-peritoneal infection in mice. *BMC Infect Dis*
41 **7**:146.

42 13. **Boitel, B., M. Ortiz-Lombardia, R. Duran, F. Pompeo, S. T. Cole, C. Cervenansky,
43 and P. M. Alzari.** 2003. PknB kinase activity is regulated by phosphorylation in two
44 Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase,
45 in *Mycobacterium tuberculosis*. *Mol Microbiol* **49**:1493-508.

46 14. **Bott, M., and A. Niebisch.** 2003. The respiratory chain of *Corynebacterium
47 glutamicum*. *J Biotechnol* **104**:129-53.

1 15. **Brewster, J. M., and E. A. Morgan.** 1981. Tn9 and IS1 inserts in a ribosomal
2 ribonucleic acid operon of *Escherichia coli* are incompletely polar. *J Bacteriol*
3 **148**:897-903.

4 16. **Burrus, V., J. Marrero, and M. K. Waldor.** 2006. The current ICE age: biology and
5 evolution of SXT-related integrating conjugative elements. *Plasmid* **55**:173-83.

6 17. **Carroll, J. D., I. Pastuszak, V. K. Edavana, Y. T. Pan, and A. D. Elbein.** 2007. A
7 novel trehalase from *Mycobacterium smegmatis* - purification, properties, requirements.
8 *FEBS J* **274**:1701-14.

9 18. **Cha, J. H., and G. C. Stewart.** 1997. The *divIVA* minicell locus of *Bacillus subtilis*. *J*
10 *Bacteriol* **179**:1671-83.

11 19. **Chandler, M., and J. Mahillon.** 2002. Insertion sequences revisited, p. 305-366. *In* N.
12 L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz (ed.), *Mobile DNA II*. ASM
13 Press, Washington, D. C.

14 20. **Chen, H. H., G. Z. Zhao, D. J. Park, Y. Q. Zhang, L. H. Xu, J. C. Lee, C. J. Kim,**
15 **and W. J. Li.** 2009. *Micrococcus endophyticus* sp. nov., isolated from surface-
16 sterilized *Aquilaria sinensis* roots. *Int J Syst Evol Microbiol* **59**:1070-5.

17 21. **Chopra, P., B. Singh, R. Singh, R. Vohra, A. Koul, L. S. Meena, H. Koduri, M.**
18 **Ghildiyal, P. Deol, T. K. Das, A. K. Tyagi, and Y. Singh.** 2003. Phosphoprotein
19 phosphatase of *Mycobacterium tuberculosis* dephosphorylates serine-threonine kinases
20 PknA and PknB. *Biochem Biophys Res Commun* **311**:112-20.

21 22. **Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V.**
22 **Gordon, K. Eiglmeier, S. Gas, C. E. Barry, F. Tekaia, K. Badcock, D. Basham, D.**
23 **Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles,**
24 **N. Hamlin, S. Holroyd, T. Hornby, K. Jagels, A. Krogh, J. McLean, S. Moule, L.**
25 **Murphy, K. Oliver, J. Osborne, M. A. Quail, M. A. Rajandream, J. Rogers, S.**
26 **Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S.**
27 **Whitehead, and B. G. Barrell.** 1998. Deciphering the biology of *Mycobacterium*
28 *tuberculosis* from the complete genome sequence. *Nature* **393**:537-544.

29 23. **Cole, S. T., K. Eiglmeier, J. Parkhill, K. D. James, N. R. Thomson, P. R. Wheeler,**
30 **N. Honore, T. Garnier, C. Churcher, D. Harris, K. Mungall, D. Basham, D.**
31 **Brown, T. Chillingworth, R. Connor, R. M. Davies, K. Devlin, S. Duthoy, T.**
32 **Feltwell, A. Fraser, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, C. Lacroix, J.**
33 **Maclean, S. Moule, L. Murphy, K. Oliver, M. A. Quail, M. A. Rajandream, K. M.**
34 **Rutherford, S. Rutter, K. Seeger, S. Simon, M. Simmonds, J. Skelton, R. Squares,**
35 **S. Squares, K. Stevens, K. Taylor, S. Whitehead, J. R. Woodward, and B. G.**
36 **Barrell.** 2001. Massive gene decay in the leprosy bacillus. *Nature* **409**:1007-1011.

37 24. **Daniel, J., C. Deb, V. S. Dubey, T. D. Sirakova, B. Abomoelak, H. R. Moribondi,**
38 **and P. E. Kolattukudy.** 2004. Induction of a novel class of diacyl glycerol transferases
39 and triacylglycerol accumulation in *Mycobacterium tuberculosis* as it goes into a
40 dormancy-like state in culture. *J Bacteriol.* **186**:5017-5030.

41 25. **Deng, L., and J. S. Anderson.** 1997. Biosynthesis of teichuronic acid in the bacterial
42 cell wall. Purification and characterization of the glucosyltransferase of *Micrococcus*
43 *luteus*. *J Biol Chem* **272**:479-85.

44 26. **Doddamani, H. P., and H. Z. Ninnekar.** 2001. Biodegradation of carbaryl by a
45 *Micrococcus* species. *Curr Microbiol* **43**:69-73.

46 27. **Downing, K. J., V. V. Mischenko, M. O. Shleeva, D. I. Young, M. Young, A. S.**
47 **Kaprelyants, A. S. Apt, and V. Mizrahi.** 2005. Mutants of *Mycobacterium*
48 *tuberculosis* lacking three of the five *rpf*-like genes are defective for growth *in vivo* and
49 for resuscitation *in vitro*. *Infection and Immunity* **73**:3038-3043.

1 28. **Erickson, S. K., and G. L. Parker.** 1969. The electron-transport system of
2 *Micrococcus lutea* (*Sarcina lutea*). *Biochim Biophys Acta* **180**:56-62.

3 29. **Fleming, A.** 1922. On a remarkable bacteriolytic substance found in secretions and
4 tissues. *Proceedings of the Royal Society of London Series B* **93**:306-317.

5 30. **Fleming, A., and V. D. Allison.** 1922. Further observations on a bacteriolytic element
6 found in tissues and secretions. *Proceedings of the Royal Society of London Series B*
7 **94**:142-151.

8 31. **Frias, J. A., J. E. Richman, and L. P. Wackett.** 2009. C₂₉ olefinic hydrocarbons
9 biosynthesized by *Arthrobacter* species. *Appl Environ Microbiol* **75**:1774-7.

10 32. **Gartemann, K. H., B. Abt, T. Bekel, A. Burger, J. Engemann, M. Flugel, L.**
11 **Gaigalat, A. Goesmann, I. Grafen, J. Kalinowski, O. Kaup, O. Kirchner, L.**
12 **Krause, B. Linke, A. McHardy, F. Meyer, S. Pohle, C. Ruckert, S. Schneiker, E.**
13 **M. Zellermann, A. Puhler, R. Eichenlaub, O. Kaiser, and D. Bartels.** 2008. The
14 genome sequence of the tomato-pathogenic actinomycete *Clavibacter michiganensis*
15 subsp. *michiganensis* NCPPB382 reveals a large island involved in pathogenicity. *J*
16 *Bacteriol* **190**:2138-49.

17 33. **Gassner, G. T., J. P. Dickie, D. A. Hamerski, J. K. Magnuson, and J. S. Anderson.**
18 1990. Teichuronic acid reducing terminal N-acetylglucosamine residue linked by
19 phosphodiester to peptidoglycan of *Micrococcus luteus*. *Journal of Bacteriology*
20 **172**:2273-2279.

21 34. **Gel'man, N. S., G. V. Tikhonova, I. M. Simakova, M. A. Lukyanova, S. D.**
22 **Taptykova, and H. M. Mikelsaar.** 1970. Fragmentation by detergents of the
23 respiratory chain of *Micrococcus lysodeikticus* membranes. *Biochim Biophys Acta*
24 **223**:321-31.

25 35. **Ghuysen, J. M.** 1991. Serine beta-lactamases and penicillin-binding proteins. *Annu*
26 *Rev Microbiol* **45**:37-67.

27 36. **Gibson, K. J., L. Eggeling, W. N. Maughan, K. Krumbach, S. S. Gurcha, J. Nigou,**
28 **G. Puzo, H. Sahm, and G. S. Besra.** 2003. Disruption of Cg-Ppm1, a polypropenyl
29 monophosphomannose synthase, and the generation of lipoglycan-less mutants in
30 *Corynebacterium glutamicum*. *J Biol Chem* **278**:40842-50.

31 37. **Goffin, C., and J. M. Ghuysen.** 1998. Multimodular penicillin-binding proteins: an
32 enigmatic family of orthologs and paralogs. *Microbiol Mol Biol Rev* **62**:1079-93.

33 38. **Gomez, J. E., and W. R. Bishai.** 2000. *whmD* is an essential mycobacterial gene
34 required for proper septation and cell division. *Proc. Natl. Acad. Sci. USA* **97**:8554-
35 8559.

36 39. **Greenblatt, C. L., J. Baum, B. Y. Klein, S. Nachshon, V. Koltunov, and R. J. Cano.**
37 2004. *Micrococcus luteus* - Survival in amber. *Microbial Ecology* **48**:120-127.

38 40. **Griffiths-Jones, S., S. Moxon, M. Marshall, A. Khanna, S. R. Eddy, and A.**
39 **Bateman.** 2005. Rfam: annotating non-coding RNAs in complete genomes. *Nucleic*
40 *Acids Res* **33**:D121-4.

41 41. **Gurcha, S. S., A. R. Baulard, L. Kremer, C. Locht, D. B. Moody, W. Muhlecker,**
42 **C. E. Costello, D. C. Crick, P. J. Brennan, and G. S. Besra.** 2002. Ppm1, a novel
43 polypropenol monophosphomannose synthase from *Mycobacterium tuberculosis*.
44 *Biochem J* **365**:441-50.

45 42. **Hase, S., and Y. Matsushima.** 1972. Structural studies on a glucose-containing
46 polysaccharide obtained from cell walls of *Micrococcus lysodeikticus*. 3. Determination
47 of the structure. *J Biochem* **72**:1117-28.

48 43. **Hildebrandt, K. M., and J. S. Anderson.** 1990. Biosynthetic elongation of isolated
49 teichuronic acid polymers via glucosyltransferase and N-

1 acetylmannosaminuronosyltransferases from solubilized cytoplasmic membrane
2 fragments of *Micrococcus luteus*. Journal of Bacteriology **172**:5160-5164.

3 44. **Höltje, J. V.** 1996. A hypothetical holoenzyme involved in the replication of the
4 murein sacculus of *Escherichia coli*. Microbiology **142**:1911-8.

5 45. **Hutchings, M. I.** 2007. Unusual two-component signal transduction pathways in the
6 actinobacteria. Adv Appl Microbiol **61**:1-26.

7 46. **Imhoff, J. F., and F. Rodriguez-Valera.** 1984. Betaine is the main compatible solute
8 of halophilic eubacteria. J Bacteriol **160**:478-9.

9 47. **Johnson, S. D., K. P. Lacher, and J. S. Anderson.** 1981. Carbon-13 nuclear magnetic
10 resonance spectroscopic study of teichuronic acid from *Micrococcus luteus* cell walls.
11 Comparison of the polysaccharide isolated from cells with that synthesized in vitro.
12 Biochemistry **20**:4781-5.

13 48. **Joseleau-Petit, D., D. Thevenet, and R. D'Ari.** 1994. ppGpp concentration, growth
14 without PBP2 activity, and growth-rate control in *Escherichia coli*. Mol Microbiol
15 **13**:911-7.

16 49. **Kana, B. D., B. G. Gordhan, K. J. Downing, N. Sung, G. Vostroktunova, E. E.**
17 **Machowski, L. Tsenova, M. Young, A. Kaprelyants, G. Kaplan, and V. Mizrahi.**
18 2008. The resuscitation-promoting factors of *Mycobacterium tuberculosis* are required
19 for virulence and resuscitation from dormancy but are collectively dispensable for
20 growth *in vitro*. Mol Microbiol **67**:672-84.

21 50. **Kang, C. M., D. W. Abbott, S. T. Park, C. C. Dascher, L. C. Cantley, and R. N.**
22 **Husson.** 2005. The *Mycobacterium tuberculosis* serine/threonine kinases PknA and
23 PknB: substrate identification and regulation of cell shape. Genes Dev **19**:1692-704.

24 51. **Kano, A., Y. Andachi, T. Ohama, and S. Osawa.** 1991. Novel anticodon composition
25 of transfer RNAs in *Micrococcus luteus*, a bacterium with a high genomic G + C
26 content. Correlation with codon usage. J Mol Biol **221**:387-401.

27 52. **Kano, A., T. Ohama, R. Abe, and S. Osawa.** 1993. Unassigned or nonsense codons in
28 *Micrococcus luteus*. J Mol Biol **230**:51-6.

29 53. **Kaprelyants, A. S., J. C. Gottschal, and D. B. Kell.** 1993. Dormancy in non-
30 sporulating bacteria. FEMS Microbiol Rev **104**:271-286.

31 54. **Kaprelyants, A. S., and D. B. Kell.** 1993. Dormancy in stationary-phase cultures of
32 *Micrococcus luteus*: flow cytometric analysis of starvation and resuscitation. Appl
33 Environ Microbiol **59**:3187-3196.

34 55. **Kaprelyants, A. S., G. V. Mukamolova, and D. B. Kell.** 1994. Estimation of dormant
35 *Micrococcus luteus* cells by penicillin lysis and by resuscitation in cell-free spent
36 medium at high dilution. FEMS Microbiol Lett **115**:347-352.

37 56. **Karakousis, P. C., T. Yoshimatsu, G. Lamichhane, S. C. Woolwine, E. L.**
38 **Nuernberger, J. Grosset, and W. R. Bishai.** 2004. Dormancy phenotype displayed
39 by extracellular *Mycobacterium tuberculosis* within artificial granulomas in mice. J Exp
40 Med **200**:647-57.

41 57. **Kato, J., H. Suzuki, and Y. Hirota.** 1985. Dispensability of either penicillin-binding
42 protein-1a or -1b involved in the essential process for cell elongation in *Escherichia*
43 *coli*. Mol Gen Genet **200**:272-7.

44 58. **Kim, T. H., J. S. Park, H. J. Kim, Y. Kim, P. Kim, and H. S. Lee.** 2005. The *whcE*
45 gene of *Corynebacterium glutamicum* is important for survival following heat and
46 oxidative stress. Biochem Biophys Res Commun **337**:757-64.

47 59. **Kocur, M., Z. Paova, and T. Martinec.** 1972. Taxonomic status of *Micrococcus*
48 *luteus* (Schroeter 1872) Cohn 1872, and designation of the neotype strain. International
49 Journal of Systematic Bacteriology **22**:218-223.

1 60. **Konstantinidis, K. T., and J. M. Tiedje.** 2004. Trends between gene content and
2 genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A
3 **101**:3160-5.

4 61. **Kowal, A. K., and J. S. Oliver.** 1997. Exploiting unassigned codons in *Micrococcus*
5 *luteus* for tRNA-based amino acid mutagenesis. Nucleic Acids Res **25**:4685-9.

6 62. **Krogh, A., B. Larsson, G. von Heijne, and E. L. Sonnhammer.** 2001. Predicting
7 transmembrane protein topology with a hidden Markov model: application to complete
8 genomes. J Mol Biol **305**:567-80.

9 63. **Krubasik, P., M. Kobayashi, and G. Sandmann.** 2001. Expression and functional
10 analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the
11 mechanisms for C₅₀ carotenoid formation. Eur J Biochem **268**:3702-8.

12 64. **Lennarz, W. J., and B. Talamo.** 1966. The chemical characterization and enzymatic
13 synthesis of mannosugars in *Micrococcus lysodeikticus*. J Biol Chem **241**:2707-19.

14 65. **Letek, M., E. Ordonez, J. Vaquera, W. Margolin, K. Flardh, L. M. Mateos, and J.**
15 **A. Gil.** 2008. DivIVA is required for polar growth in the MreB-lacking rod-shaped
16 actinomycete *Corynebacterium glutamicum*. J Bacteriol **190**:3283-92.

17 66. **Levchenko, L. A., A. P. Sadkov, N. V. Lariontseva, E. M. Koldasheva, A. K.**
18 **Shilova, and A. E. Shilov.** 2002. Gold helps bacteria to oxidize methane. J Inorg
19 Biochem **88**:251-3.

20 67. **Levchenko, L. A., A. P. Sadkov, S. A. Marakushev, and N. V. Lariontseva.** 1997.
21 Participation of biological membranes in colloidal gold transformation by *Micrococcus*
22 *luteus* cells. Membr Cell Biol **11**:131-5.

23 68. **Liolios, K., K. Mavromatis, N. Tavernarakis, and N. C. Kyrpides.** 2008. The
24 Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic
25 projects and their associated metadata. Nucleic Acids Res **36**:D475-9.

26 69. **Liu, H., Y. Xu, Y. Ma, and P. Zhou.** 2000. Characterization of *Micrococcus*
27 *antarcticus* sp. nov., a psychrophilic bacterium from Antarctica. International Journal
28 of Systematic and Evolutionary Microbiology **50**:715-9.

29 70. **Liu, X. Y., B. J. Wang, C. Y. Jiang, and S. J. Liu.** 2007. *Micrococcus flatus* sp. nov.,
30 isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol **57**:66-9.

31 71. **Mahillon, J., and M. Chandler.** 1998. Insertion sequences. Microbiology and
32 Molecular Biology Reviews **62**:725-774.

33 72. **Markowitz, V. M., K. Mavromatis, N. N. Ivanova, I. M. Chen, K. Chu, and N. C.**
34 **Kyrpides.** 2009. IMG ER: a system for microbial genome annotation expert review and
35 curation. Bioinformatics **25**:2271-8.

36 73. **Markowitz, V. M., E. Szeto, K. Palaniappan, Y. Grechkin, K. Chu, I. M. Chen, I.**
37 **Dubchak, I. Anderson, A. Lykidis, K. Mavromatis, N. N. Ivanova, and N. C.**
38 **Kyrpides.** 2008. The integrated microbial genomes (IMG) system in 2007: data content
39 and analysis tool extensions. Nucleic Acids Res **36**:D528-33.

40 74. **McKinney, J. D., K. H. zu Bentrup, E. J. Munoz-Elias, A. Miczak, B. Chen, W. T.**
41 **Chan, D. Swenson, J. C. Sacchettini, W. R. Jacobs, and D. G. Russell.** 2000.
42 Persistence of *Mycobacterium tuberculosis* in macrophages and mice requires the
43 glyoxylate shunt enzyme isocitrate lyase. Nature **406**:735-738.

44 75. **Mingorance, J., J. Tamames, and M. Vicente.** 2004. Genomic channeling in bacterial
45 cell division. J Mol Recognit **17**:481-7.

46 76. **Mishra, A. K., L. J. Alderwick, D. Rittmann, R. V. Tatituri, J. Nigou, M. Gilleron,**
47 **L. Eggeling, and G. S. Besra.** 2007. Identification of an alpha(1-->6)
48 mannopyranosyltransferase (MptA), involved in *Corynebacterium glutamicum*
49 lipomanann biosynthesis, and identification of its orthologue in *Mycobacterium*
50 *tuberculosis*. Mol Microbiol **65**:1503-17.

1 77. **Mishra, A. K., L. J. Alderwick, D. Rittmann, C. Wang, A. Bhatt, W. R. Jacobs, Jr., K. Takayama, L. Eggeling, and G. S. Besra.** 2008. Identification of a novel alpha(1-->6)mannopyranosyltransferase MptB from *Corynebacterium glutamicum* by deletion of a conserved gene, NCgl1505, affords a lipomannan- and lipoarabinomannan-deficient mutant. *Mol Microbiol* **68**:1595-613.

2 78. **Mongodin, E. F., N. Shapir, S. C. Daugherty, R. T. DeBoy, J. B. Emerson, A. Shvartzbeyn, D. Radune, J. Vamathevan, F. Riggs, V. Grinberg, H. Khouri, L. P. Wackett, K. E. Nelson, and M. J. Sadowsky.** 2006. Secrets of soil survival revealed by the genome sequence of *Arthrobacter aurescens* TC1. *PLoS Genet* **2**:e214.

3 79. **Morgan, E. A.** 1980. Insertions of *Tn10* into an *E. coli* ribosomal RNA operon are incompletely polar. *Cell* **21**:257-65.

4 80. **Morris, R. P., L. Nguyen, J. Gatfield, K. Visconti, K. Nguyen, D. Schnappinger, S. Ehrt, Y. Liu, L. Heifets, J. Pieters, G. Schoolnik, and C. J. Thompson.** 2005. Ancestral antibiotic resistance in *Mycobacterium tuberculosis*. *Proc Natl Acad Sci USA* **102**:12200-5.

5 81. **Mukamolova, G. V., A. S. Kaprelyants, D. I. Young, M. Young, and D. B. Kell.** 1998. A bacterial cytokine. *Proc Natl Acad Sci USA* **95**:8916-8921.

6 82. **Mukamolova, G. V., S. S. Kormer, D. B. Kell, and A. S. Kaprelyants.** 1999. Stimulation of the multiplication of *Micrococcus luteus* by an autocrine growth factor. *Arch Microbiol* **172**:9-14.

7 83. **Mukamolova, G. V., S. S. Kormer, N. D. Yanopolskaya, and A. S. Kaprelyants.** 1995. Properties of dormant cells in stationary-phase cultures of *Micrococcus luteus* during prolonged incubation. *Mikrobiologia* **64**:284-288.

8 84. **Mukamolova, G. V., A. G. Murzin, E. G. Salina, G. R. Demina, D. B. Kell, A. S. Kaprelyants, and M. Young.** 2006. Muralytic activity of *Micrococcus luteus* Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. *Mol Microbiol* **59**:84-98.

9 85. **Mukamolova, G. V., O. A. Turapov, K. Kazaryan, M. Telkov, A. S. Kaprelyants, D. B. Kell, and M. Young.** 2002. The *rpf* gene of *Micrococcus luteus* encodes an essential secreted growth factor. *Mol Microbiol* **46**:611-621.

10 86. **Mukamolova, G. V., O. A. Turapov, D. I. Young, A. S. Kaprelyants, D. B. Kell, and M. Young.** 2002. A family of autocrine growth factors in *Mycobacterium tuberculosis*. *Mol Microbiol* **46**:623-635.

11 87. **Mukamolova, G. V., N. D. Yanopolskaya, D. B. Kell, and A. S. Kaprelyants.** 1998. On resuscitation from the dormant state of *Micrococcus luteus*. *Antonie van Leeuwenhoek* **73**:237-243.

12 88. **Mullany, P., A. P. Roberts, and H. Wang.** 2002. Mechanism of integration and excision in conjugative transposons. *Cell Mol Life Sci* **59**:2017-22.

13 89. **Munoz, E., J. H. Freer, D. J. Ellar, and M. R. Salton.** 1968. Membrane-associated ATPase activity from *Micrococcus lysodeikticus*. *Biochim Biophys Acta* **150**:531-3.

14 90. **Murayama, O., M. Matsuda, and J. E. Moore.** 2003. Studies on the genomic heterogeneity of *Micrococcus luteus* strains by macro-restriction analysis using pulsed-field gel electrophoresis. *J Basic Microbiol* **43**:337-40.

15 91. **Muttucumar, D. G., G. Roberts, J. Hinds, R. A. Stabler, and T. Parish.** 2004. Gene expression profile of *Mycobacterium tuberculosis* in a non-replicating state. *Tuberculosis (Edinb)* **84**:239-46.

16 92. **Nikolaichik, Y. A., and W. D. Donachie.** 2000. Conservation of gene order amongst cell wall and cell division genes in Eubacteria, and ribosomal genes in Eubacteria and Eukaryotic organelles. *Genetica* **108**:1-7.

1 93. **Ostrovskii, D. N., N. A. Pereverzev, I. G. Zhukova, S. M. Trutko, and N. S.**
2 **Gel'man.** 1968. [Some physico-chemical characteristics of the complex of NAD-H2
3 and malate dehydrogenases in *Micrococcus lysodeikticus* membranes]. *Biokhimiia*
4 **33**:319-25.

5 94. **Pakkiri, L. S., and C. J. Waechter.** 2005. Dimannosyldiacylglycerol serves as a lipid
6 anchor precursor in the assembly of the membrane-associated lipomannan in
7 *Micrococcus luteus*. *Glycobiology* **15**:291-302.

8 95. **Parkhill, J., and N. L. Brown.** 1990. Site-specific insertion and deletion mutants in the
9 *mer* promoter-operator region of Tn501; the nineteen base-pair spacer is essential for
10 normal induction of the promoter by MerR. *Nucleic Acids Res* **18**:5157-62.

11 96. **Peirs, P., L. De Wit, M. Braibant, K. Huygen, and J. Content.** 1997. A
12 serine/threonine protein kinase from *Mycobacterium tuberculosis*. *Eur J Biochem*
13 **244**:604-12.

14 97. **Pless, D. D., A. S. Schmit, and W. J. Lennarz.** 1975. The characterization of mannan
15 of *Micrococcus lysodeikticus* as an acidic lipopolysaccharide. *J Biol Chem* **250**:1319-
16 27.

17 98. **Pucci, M. J., J. A. Thanassi, L. F. Discotto, R. E. Kessler, and T. J. Dougherty.**
18 1997. Identification and characterization of cell wall-cell division gene clusters in
19 pathogenic gram-positive cocci. *J Bacteriol* **179**:5632-5.

20 99. **Ravagnani, A., C. L. Finan, and M. Young.** 2005. A novel firmicute protein family
21 related to the actinobacterial resuscitation-promoting factors by non-orthologous
22 domain displacement. *BMC Genomics* **6**:39.

23 100. **Reddy, P. S., A. Raghavan, and D. Chatterji.** 1995. Evidence for a ppGpp-binding
24 site on *Escherichia coli* RNA polymerase: proximity relationship with the rifampicin-
25 binding domain. *Mol Microbiol* **15**:255-65.

26 101. **Roberts, D. M., R. P. Liao, G. Wisedchaisri, W. G. Hol, and D. R. Sherman.** 2004.
27 Two sensor kinases contribute to the hypoxic response of *Mycobacterium tuberculosis*.
28 *J Biol Chem* **279**:23082-7.

29 102. **Russell-Goldman, E., J. Xu, X. Wang, J. Chan, and J. M. Tufariello.** 2008. A
30 double Rpf knockout *Mycobacterium tuberculosis* strain exhibits profound defects in
31 reactivation from chronic tuberculosis and innate immunity phenotypes. *Infect Immun*
32 **76**:4269-81.

33 103. **Rustad, T. R., M. I. Harrell, R. Liao, and D. R. Sherman.** 2008. The enduring
34 hypoxic response of *Mycobacterium tuberculosis*. *PLoS ONE* **3**:e1502.

35 104. **Sassetti, C. M., D. H. Boyd, and E. J. Rubin.** 2003. Genes required for mycobacterial
36 growth defined by high density mutagenesis. *Mol Microbiol* **48**:77-84.

37 105. **Scherr, N., and L. Nguyen.** 2009. *Mycobacterium* versus *Streptomyces*-we are
38 different, we are the same. *Curr Opin Microbiol*.

39 106. **Schleifer, K. H., and O. Kandler.** 1967. *Micrococcus lysodeikticus*: a new type of
40 cross-linkage of the murein. *Biochem Biophys Res Commun* **28**:965-72.

41 107. **Schleifer, K. H., and O. Kandler.** 1972. Peptidoglycan types of bacterial cell walls
42 and their taxonomic implications. *Bacteriol Rev* **36**:407-77.

43 108. **Schmit, A. S., D. D. Pless, and W. J. Lennarz.** 1974. Some aspects of the chemistry
44 and biochemistry of membranes of gram-positive bacteria. *Ann N Y Acad Sci* **235**:91-
45 104.

46 109. **Schnappinger, D., S. Ehrt, M. I. Voskuil, Y. Liu, J. A. Mangan, I. M. Monahan, G.**
47 **Dolganov, B. Efron, P. D. Butcher, C. Nathan, and G. K. Schoolnik.** 2003.
48 Transcriptional adaptation of *Mycobacterium tuberculosis* within macrophages: insights
49 into the phagosomal environment. *J Exp Med* **198**:693-704.

1 110. **Schneider, D., C. J. Bruton, and K. F. Chater.** 2000. Duplicated gene clusters
2 suggest an interplay of glycogen and trehalose metabolism during sequential stages of
3 aerial mycelium development in *Streptomyces coelicolor* A3(2). *Mol Gen Genet*
4 **263**:543-53.

5 111. **Shah, I. M., M. H. Laaberki, D. L. Popham, and J. Dworkin.** 2008. A eukaryotic-
6 like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan
7 fragments. *Cell* **135**:486-96.

8 112. **Sharma, V., S. Sharma, K. Hoener zu Bentrup, J. D. McKinney, D. G. Russell, W.**
9 **R. Jacobs, Jr., and J. C. Sacchettini.** 2000. Structure of isocitrate lyase, a persistence
10 factor of *Mycobacterium tuberculosis*. *Nat Struct Biol* **7**:663-8.

11 113. **Shleeva, M. O., K. Bagramyan, M. V. Telkov, G. V. Mukamolova, M. Young, D. B.**
12 **Kell, and A. S. Kaprelyants.** 2002. Formation and resuscitation of "non-culturable"
13 cells of *Rhodococcus rhodochrous* and *Mycobacterium tuberculosis* in prolonged
14 stationary phase. *Microbiology* **148**:1581-1591.

15 114. **Siefert, J. L., and G. E. Fox.** 1998. Phylogenetic mapping of bacterial morphology.
16 *Microbiology* **144**:2803-8.

17 115. **Siguier, P., J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler.** 2006. ISfinder:
18 the reference centre for bacterial insertion sequences. *Nucleic Acids Res* **34**:D32-6.

19 116. **Sims, G. K., L. E. Sommers, and A. Konopka.** 1986. Degradation of pyridine by
20 *Micrococcus luteus* isolated from soil. *Appl Environ Microbiol* **51**:963-968.

21 117. **Skerman, V. B. D., V. McGowan, P. H. A. Sneath, and (editors).** 1980. Approved
22 Lists of Bacterial Names. *International Journal of Systematic Bacteriology* **30**:225-420.

23 118. **Smith, M. C., and H. M. Thorpe.** 2002. Diversity in the serine recombinases. *Mol*
24 *Microbiol* **44**:299-307.

25 119. **Soliveri, J. A., J. Gomez, W. R. Bishai, and K. F. Chater.** 2000. Multiple paralogous
26 genes related to the *Streptomyces coelicolor* developmental regulatory gene *whiB* are
27 present in *Streptomyces* and other actinomycetes. *Microbiology* **146**:333-43.

28 120. **Spratt, B. G.** 1977. Properties of the penicillin-binding proteins of *Escherichia coli*
29 K12. *Eur J Biochem* **72**:341-52.

30 121. **Stackebrandt, E., C. Koch, O. Gvozdiak, and P. Schumann.** 1995. Taxonomic
31 dissection of the genus *Micrococcus*: *Kocuria* gen. nov., *Nesterenkonia* gen. nov.,
32 *Kytococcus* gen. nov., *Dermacoccus* gen. nov., and *Micrococcus* Cohn 1872 gen.
33 emend. *Int J Syst Bacteriol* **45**:682-92.

34 122. **Stark, N. J., G. N. Levy, T. E. Rohr, and J. S. Anderson.** 1977. Reactions of second
35 stage of biosynthesis of teichuronic acid of *Micrococcus lysodeikticus* cell walls. *J Biol*
36 *Chem* **252**:3466-72.

37 123. **Takarada, H., M. Sekine, H. Kosugi, Y. Matsuo, T. Fujisawa, S. Omata, E. Kishi,**
38 **A. Shimizu, N. Tsukatani, S. Tanikawa, N. Fujita, and S. Harayama.** 2008.
39 Complete genome sequence of the soil actinomycete *Kocuria rhizophila*. *J Bacteriol*
40 **190**:4139-46.

41 124. **Tatituri, R. V., P. A. Illarionov, L. G. Dover, J. Nigou, M. Gilleron, P. Hitchen, K.**
42 **Krumbach, H. R. Morris, N. Spencer, A. Dell, L. Eggeling, and G. S. Besra.** 2007.
43 Inactivation of *Corynebacterium glutamicum* NCgl0452 and the role of MgtA in the
44 biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. *J*
45 *Biol Chem* **282**:4561-72.

46 125. **Telkov, M. V., G. R. Demina, S. A. Voloshin, E. G. Salina, T. V. Dudik, T. N.**
47 **Stekhanova, G. V. Mukamolova, K. A. Kazaryan, A. V. Goncharenko, M. Young,**
48 **and A. S. Kaprelyants.** 2006. Proteins of the Rpf (resuscitation promoting factor)
49 family are peptidoglycan hydrolases. *Biochemistry (Mosc)* **71**:414-22.

1 126. **Thanky, N. R., D. B. Young, and B. D. Robertson.** 2007. Unusual features of the cell
2 cycle in mycobacteria: polar-restricted growth and the snapping-model of cell division.
3 *Tuberculosis (Edinb)* **87**:231-6.

4 127. **Tornabene, T. G., E. Gelpi, and J. Oro.** 1967. Identification of fatty acids and
5 aliphatic hydrocarbons in *Sarcina lutea* by gas chromatography and combined gas
6 chromatography-mass spectrometry. *J Bacteriol* **94**:333-43.

7 128. **Trutko, S. M., L. I. Evtushenko, L. V. Dorofeeva, M. G. Shliapnikov, E. Gavrish,
8 N. E. Suzina, and V. K. Akimenko.** 2003. [Terminal oxidases in different genera of
9 the family Microbacteriaceae]. *Mikrobiologiiia* **72**:301-7.

10 129. **Tufariello, J. M., K. Mi, J. Xu, Y. C. Manabe, A. K. Kesavan, J. Drumm, K.
11 Tanaka, W. R. Jacobs, Jr., and J. Chan.** 2006. Deletion of the *Mycobacterium*
12 *tuberculosis* resuscitation-promoting factor Rv1009 gene results in delayed reactivation
13 from chronic tuberculosis. *Infect Immun* **74**:2985-95.

14 130. **Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G. F. Fitzgerald, K. F. Chater,
15 and D. van Sinderen.** 2007. Genomics of Actinobacteria: tracing the evolutionary
16 history of an ancient phylum. *Microbiol Mol Biol Rev* **71**:495-548.

17 131. **Voskuil, M. I., D. Schnappinger, K. C. Visconti, M. I. Harrell, G. M. Dolganov, D.
18 R. Sherman, and G. K. Schoolnik.** 2003. Inhibition of respiration by nitric oxide
19 induces a *Mycobacterium tuberculosis* dormancy program. *J Exp Med* **198**:705-13.

20 132. **Voskuil, M. I., K. C. Visconti, and G. K. Schoolnik.** 2004. *Mycobacterium*
21 *tuberculosis* gene expression during adaptation to stationary phase and low-oxygen
22 dormancy. *Tuberculosis (Edinb)* **84**:218-27.

23 133. **Votyakova, T. V., A. S. Kaprelyants, and D. B. Kell.** 1994. Influence of viable cells
24 on the resuscitation of dormant cells in *Micrococcus luteus* cultures held in an extended
25 stationary phase: the population effect. *Appl Environ Microbiol* **60**:3284-3291.

26 134. **Wayne, L. G.** 1994. Dormancy of *Mycobacterium tuberculosis* and latency of disease.
27 *Eur J Clin Microbiol Infect Dis* **13**:908-914.

28 135. **Wayne, L. G., and C. D. Sohaskey.** 2001. Nonreplicating persistence of
29 *Mycobacterium tuberculosis*. *Annu Rev Microbiol* **55**:139-63.

30 136. **Weiss, D. S., K. Pogliano, M. Carson, L. M. Guzman, C. Fraipont, M. Nguyen-
31 Disteche, R. Losick, and J. Beckwith.** 1997. Localization of the *Escherichia coli* cell
32 division protein Ftsl (PBP3) to the division site and cell pole. *Mol Microbiol* **25**:671-
33 81.

34 137. **Wiens, G. D., D. D. Rockey, Z. Wu, J. Chang, R. Levy, S. Crane, D. S. Chen, G. R.
35 Capri, J. R. Burnett, P. S. Sudheesh, M. J. Schipma, H. Burd, A. Bhattacharyya,
36 L. D. Rhodes, R. Kaul, and M. S. Strom.** 2008. Genome sequence of the fish
37 pathogen *Renibacterium salmoninarum* suggests reductive evolution away from an
38 environmental *Arthrobacter* ancestor. *J Bacteriol* **190**:6970-82.

39 138. **Wieser, M., E. B. Denner, P. Kampfer, P. Schumann, B. Tindall, U. Steiner, D.
40 Vybiral, W. Lubitz, A. M. Maszenan, B. K. Patel, R. J. Seviour, C. Radax, and H.
41 J. Busse.** 2002. Emended descriptions of the genus *Micrococcus*, *Micrococcus luteus*
42 (Cohn 1872) and *Micrococcus lylae* (Kloos et al. 1974). *Int J Syst Evol Microbiol*
43 **52**:629-37.

44 139. **Wolf, A., R. Kramer, and S. Morbach.** 2003. Three pathways for trehalose
45 metabolism in *Corynebacterium glutamicum* ATCC13032 and their significance in
46 response to osmotic stress. *Mol Microbiol* **49**:1119-34.

47 140. **Wolin, H. L., and H. B. Naylor.** 1957. Basic nutritional requirements of *Micrococcus*
48 *lysodeikticus*. *J Bacteriol* **74**:163-7.

49 141. **Yeats, C., R. D. Finn, and A. Bateman.** 2002. The PASTA domain: a beta-lactam-
50 binding domain. *Trends Biochem Sci* **27**:438.

Table 1 Genome statistics for members of the *Micrococcaceae*.

	<i>Micrococcus luteus</i>	<i>Kocuria rhizophila</i>	<i>Arthrobacter aurescens</i> TC1	<i>Arthrobacter</i> sp. FB24	<i>Renibacterium salmoninarum</i>
Genome size (bp)	2,501,097	2,697,540	5,226,648	5,070,478	3,155,210
Coding region (bp)	2,296,689 (91.8 %)	2,408,673 (89.29 %)	4,705,572 (90 %)	4,573,776 (90.2 %)	2,863,187 (90.7 %)
G+C content	73 %	71 %	62 %	65 %	56 %
Plasmids	0*	0	2	3	0
Total genes	2,348	2,413	4,793	4,622	3,558
RNA genes	60 (2.6 %)	56 (2.4 %)	94 (2.0 %)	86 (1.9 %)	51 (1.4 %)
Protein-coding genes	2,288 (97.4 %)	2,357 (97.7 %)	4,699 (98.0 %)	4,536 (98.1 %)	3,507 (98.6 %)
Genes with function	1,742 (74.2 %)	1,478 (61.3 %)	3,419 (71.33 %)	3,279 (70.9 %)	2,679 (75.3 %)
Genes in ortholog clusters			4,316 (90.4 %)	4,216 (91.5 %)	
Genes in paralog clusters	217 (9.2 %)	967 (40.1 %)	2,749 (57.6 %)	2,824 (61.3 %)	
Genes assigned to COGs	1,717 (73.1 %)	1,799 (74.6 %)	3,307 (69.0 %)	3,361 (72.7 %)	2,389 (67.1 %)
Genes assigned to Pfam	1,731 (73.7 %)	1,822 (75.5 %)	3,525 (73.5 %)	3,426 (74.1 %)	2,478 (69.7 %)
Genes with signal peptides	487 (20.7 %)	653 (27.1 %)	1,442 (30.1 %)	1,454 (31.5 %)	1,030 (29.0 %)
Genes with transmembrane helices	543 (23.1 %)	569 (23.6 %)	1,187 (24.9 %)	1,168 (25.3 %)	836 (23.5 %)
Fused genes	195 (8.3 %)	135 (5.6 %)	292 (6.1 %)	320 (6.9 %)	125 (3.5 %)

*Although a plasmid denoted pMLU1 has previously been reported from the NCTC 2665 strain of *M. luteus* (81), there was no evidence of it in the DNA provided for the genome sequencing project

Table 2 Genes in selected COG functional categories

Organism	COG Genes	Amino acid Metabolism	Carbohydrate Metabolism	Energy	Ion Transport	Lipid Metabolism	Replication Repair	Secondary Metabolism	Transcription	Translation
<i>Micrococcus luteus</i> (Fleming) NCTC 2665	1768	195 (11.0 %)	97 (5.5 %)	118 (6.7 %)	113 (6.4 %)	92 (5.2 %)	172 (9.7 %)	39 (2.2 %)	106 (6.0 %)	147 (8.3 %)
<i>Kocuria rhizophila</i> DC2201	1799	212 (11.8 %)	125 (7.0 %)	123 (6.8 %)	110 (6.1 %)	101 (5.6 %)	107 (6.0 %)	44 (2.5 %)	129 (7.2 %)	150 (8.3 %)
<i>Arthrobacter aurescens</i> TC1	3307	370 (11.2 %)	441 (13.3 %)	213 (6.4 %)	198 (6.0 %)	153 (4.6 %)	157 (4.8 %)	108 (3.3 %)	364 (11.0 %)	165 (5.0 %)
<i>Arthrobacter</i> sp. FB24	3361	364 (10.8 %)	436 (13.0 %)	239 (7.1 %)	208 (6.2 %)	157 (4.7 %)	164 (4.9 %)	112 (3.3 %)	363 (10.8 %)	162 (4.8 %)
<i>Renibacterium salmoninarum</i> ATCC 33209	2389	288 (12.1 %)	250 (10.5 %)	155 (6.5 %)	142 (5.9 %)	141 (5.9 %)	183 (7.7 %)	84 (3.5 %)	238 (10.0 %)	158 (6.6 %)

Table 3 Distribution of *M. luteus* IS elements among the different families

Family	Chemistry ^a	Distinct elements	Total no of copies [Partial]
IS3	DDE	8	8 [7]
IS5	DDE	4	12 [0]
IS21	DDE	1	1 [0]
IS30	DDE	1	2 [0]
IS110	DDE?	1	2 [0]
IS256	DDE	5	24 [5]
IS481	DDE	6	7 [4]
Total		31	73 [19]

The various IS families have been described and documented by Mahillon and Chandler (19,71). IS1, IS4, IS6, IS66, IS91, IS200/IS605 IS607 IS630, IS701, IS982, IS1380, IS1634, ISAs1, ISH3, ISL3 and Tn3 family elements were not found.

^aDetails of transposase chemistry are given on the ISfinder website (<http://www-is.biotoul.fr/>).

Table 4 *M. luteus* genes concerned with production of polyprenyl lipid-linked peptidoglycan monomer precursors

Gene	Mlut identifier	Product function
<i>murA</i>	Mlut_08760	UDP-GlcNAc carboxyvinyltransferase
<i>murB</i>	Mlut_17500	UDP-MurNAc dehydrogenase
<i>murC</i>	Mlut_13590	UDP-MurNAc-L-Ala ligase
<i>murD</i>	Mlut_13620	UDP-MurNAc-L-Ala-D-glutamate ligase
<i>murE</i>	Mlut_13650	UDP-MurNAc-L-Ala-D-glu-L-Lys ligase
<i>alr</i>	Mlut_13550	Alanine racemase
<i>ddl</i>	Mlut_08790	D-Ala-D-Ala ligase
<i>murF</i>	Mlut_13640	UDP-MurNAc-tripeptide D-Ala-D-Ala ligase
<i>mraY</i>	Mlut_13630	Phospho-MurNac-pentapeptide transferase
<i>murG</i>	Mlut_13600	Polyprenyl diphospho-MurNAc-pentapeptide GlcNAc transferase
<i>murI</i>	?	UDP-MurNAc penataapeptide(D-Glu) glycinyltransferase

Table 5 Genes involved in carotenoid production

Mlut	aa	Annotation	Comment	EC/COG
21270	143	Thioredoxin	Ubiquitous oxidoreductase	1.8.7.1.
21260	209	Isopentenyl diphosphate delta isomerase	3-isopentenyl pyrophosphate → dimethylallyl pyrophosphate	2.5.1.1 (?)
21250	182	hypothetical	No matches	
21240		Geranylgeranyl pyrophosphate synthase	trans, trans-farnesyl diphosphate + isopentenyl diphosphate → diphosphate + geranylgeranyl diphosphate	2.5.1.29
21230	298	squalene/phytoene synthetase	Probably phytoene synthetase 2 geranylgeranyl diphosphate → diphosphate + prephytoene diphosphate	2.5.1.32
21220	566	Phytoene desaturase	Carotene desaturation, a step in carotenoid biosynthesis	<u>COG1233</u>
21210	294	4-hydroxybenzoate polyprenyltransferase & related prenyltransferases	<i>crtEB</i> * Lycopene elongation	2.5.1.39
21200	129	putative C50 carotenoid epsilon cyclase	<i>crtYe</i> * Ring closure	
21190	117	hypothetical	Matches short segments of lycopene e-cyclase isoprenoid and putative C50 carotenoid epsilon cyclase (<i>crtYf</i> *)	

* Notation for genes in *Corynebacterium glutamicum* (63)

Table 6 Distribution of genes involved in carotenoid synthesis

Gene number	Mlut_21190	Mlut_21200	Mlut_21210	Mlut_21220	Mlut_21230	Mlut_21240	Mlut_21250	Mlut_21260
Annotation	Partial carotenoid epsilon cyclase	C50 carotenoid epsilon cyclase	Polyprenyl transferase	Phytoene desaturase	Phytoene synthetase	Geranylgeranyl synthase	Hypothetical	Isopentenyl isomerase
Actinobacteria	+	+	+	+	+	+		+
α proteobacteria			+	+				+
β proteobacteria						+		
γ proteobacteria				+				
δ proteobacteria	+		+	+		+		
Firmicutes			+	+				
Archaea	+		+	+	+	+		
Green non-sulfur				+	+			
Green sulfur			+		+			
Cyanobacteria			+		+			
Planctomycetes			+	+	+			
Basidiomycetes				+				
Ascomycetes				+				
Verrumicrobia			+					

Table 7 Comparison of the non-mevalonate pathway for isoprenoid biosynthesis in *M. luteus* and *My. tuberculosis*

Enzyme	<i>My. tuberculosis</i> gene	<i>M. luteus</i> homolog	Percent identity
1-deoxy-D-xylulose-5-phosphate synthase [EC:2.2.1.7]	Rv2682c <i>dxs1</i>	Mlut_13030	57.5
1-deoxy-D-xylulose 5-phosphate reductoisomerase [EC:1.1.1.267]	Rv2870c <i>dxr</i>	Mlut_06920	56.3
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase [EC:2.7.7.60]	Rv3582c <i>ispD</i>	Mlut_03780*	42.6
4-diphosphocytidyl-2-C-methyl-D-erythritol kinase [EC:2.7.1.148]	Rv1011 <i>ispE</i>	Mlut_05400	44.7
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase [EC:4.6.1.12]	Rv3581c <i>ispF</i>	M.lut_03780*	60.5
4-hydroxy-3-methylbut-2-enyl diphosphate synthase [EC:1.17.4.3]	Rv2868c <i>ispG (gcpE)</i>	Mlut_06940	77.23
4-hydroxy-3-methylbut-2-enyl diphosphate reductase [EC:1.17.1.2]	Rv1110 <i>ispH, lytB</i>	Mlut_16300	62.7
isopentenyl-diphosphate delta-isomerase [EC:5.3.3.2]	Rv1745c <i>idi</i>	Mlut_21260	46.4

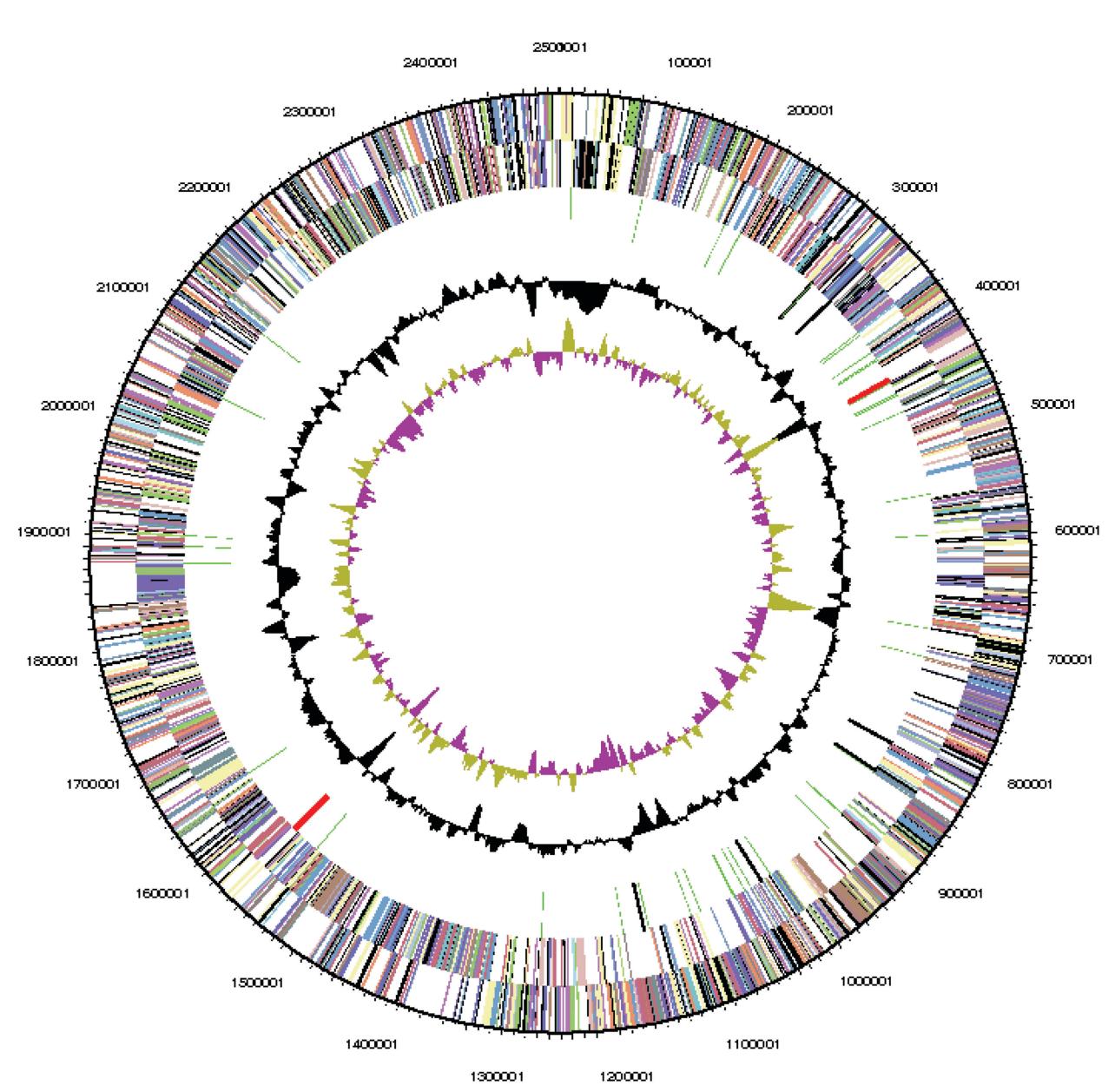
*Mlut_03780 encodes a bifunctional enzyme as also occurs in some other actinobacteria (see text)

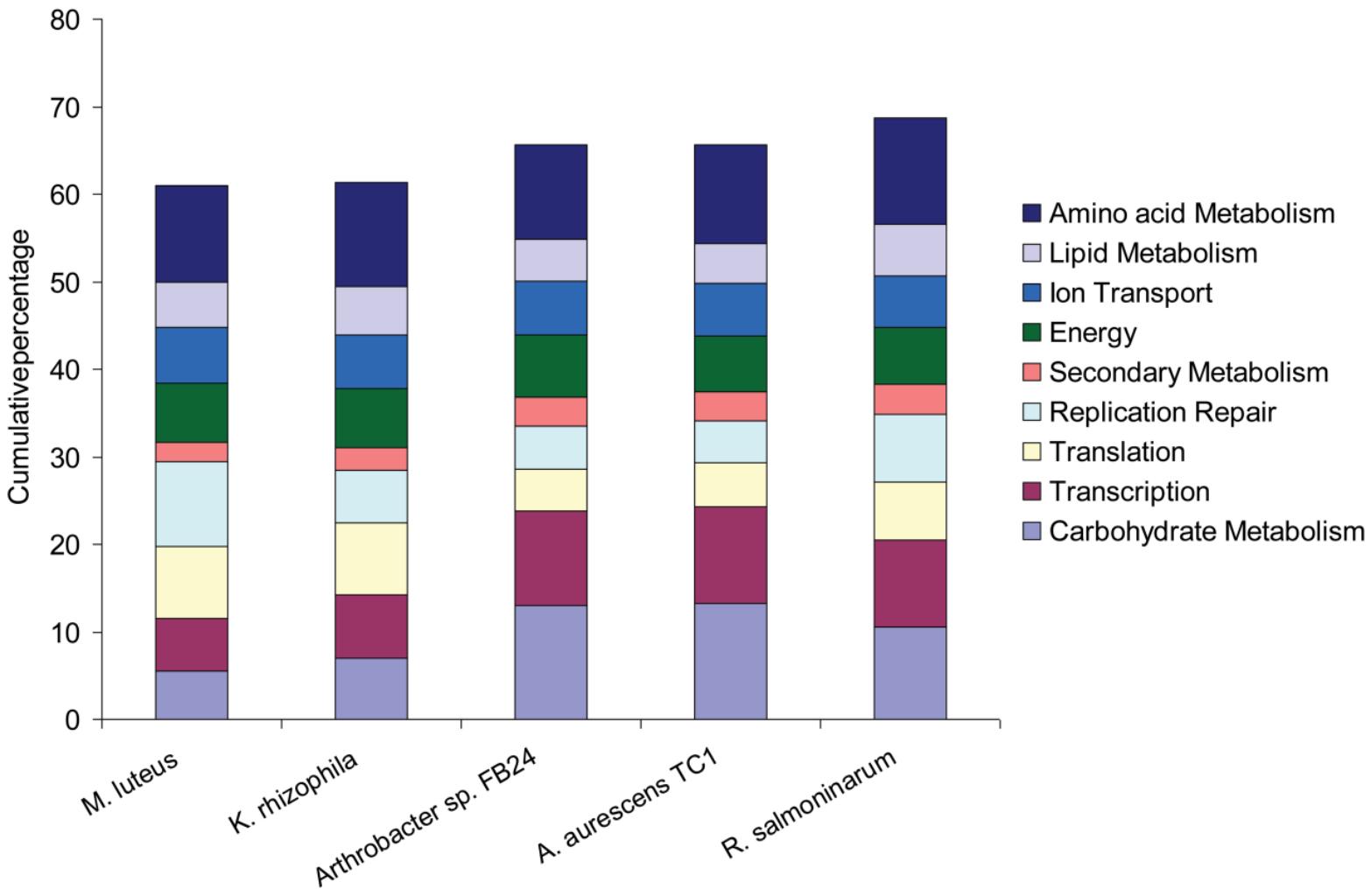
Table 8. Number of genes up-regulated (more than 3-fold induction) in different models of *M. tuberculosis* dormancy and their *M. luteus* homologs^a

	All genes	Seen in >2 models	Seen in all 5 models	Non-replicating Persistence (NRP1, 8 d) (132)	Non-replicating Persistence (NRP2, 20 d) (132)	Chemostat model (7)	Seen in both NRP1 and NRP2 (91)	Macrophages activated for 48 h (109)
Total	247	72	17	55	94	52	90	111
Homolog in <i>M. luteus</i>	137	36	9	24	53	30	44	61
% with <i>M. luteus</i> homolog	55.5	50.0	53	43.6	56.4	57.7	48.9	55.0

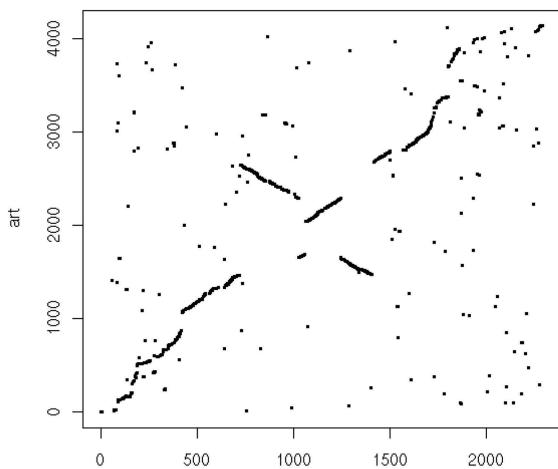
^a Minimum 20% identity; maximum e value 1e⁻². A low stringency was employed to identify as many genes as possible in *M. luteus* that might be homologs of the dormancy-related genes of *M. tuberculosis*. Even so, comparatively few candidates emerged from the analysis. Despite a significant reduction in the number of “dormancy-related” genes *M. luteus* can readily adopt a dormant state.

Table 9. Many of the genes up-regulated in all 5 *My. tuberculosis* dormancy models have *M. luteus* homologs

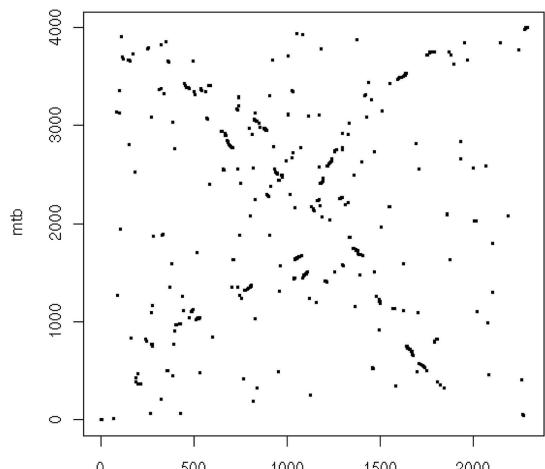

<i>My. tuberculosis</i> locus tag	Product name / assignment	<i>M. luteus</i> homolog	Product name / assignment	E-value	Percent identity / Bit Score
Rv0079	hypothetical protein				
Rv0080	conserved hypothetical protein	Mlut_04380	Predicted flavin-nucleotide-binding protein	3e-08	30.4 / 50
Rv1733c*	possible membrane protein				
Rv1738	conserved hypothetical protein				
Rv1996	COG0589 - Universal stress protein UspA and related nucleotide-binding proteins	Mlut_01830	Universal stress protein UspA and related nucleotide-binding proteins	9e-29	31.6 / 120
Rv2007c	ferredoxin	Mlut_15510	Ferredoxin	5e-36	58.0 / 142
Rv2030c	COG2312 - Erythromycin esterase homolog COG1926 – Predicted phosphoribosyltransferases	Mlut_18600\$	amidophosphoribosyltransferase (EC 2.4.2.14)	1e-03	27.9 / 38
Rv2031c	14kD antigen, heat shock protein Hsp20 family	Mlut_16210	heat shock protein Hsp20 (IMGterm)	6e-09	36.9 / 52
Rv2032	Conserved hypothetical protein Acg				
Rv2623	COG0589 - Universal stress protein UspA and related nucleotide-binding proteins	Mlut_01830\$\$	Universal stress protein UspA and related nucleotide-binding proteins	4e-34	36.8 / 137
Rv2624c	COG0589 - Universal stress protein UspA and related nucleotide-binding proteins	Mlut_01830	Universal stress protein UspA and related nucleotide-binding proteins	7e-22	32.4 / 97
Rv2625c	COG1994 - Zn-dependent proteases (probable conserved transmembrane alanine and leucine rich protein)	Mlut_11840	Zn-dependent proteases	7e-31	30.1 / 127
Rv2626c	conserved hypothetical protein				
Rv2627c	conserved hypothetical protein				
Rv3127	conserved hypothetical protein				
Rv3130c	IGR02946 acyltransferase, WS/DGAT/MGAT				

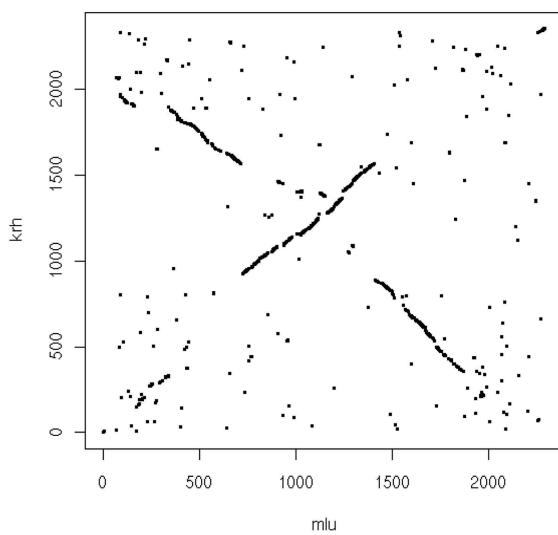

Rv3134c	COG0589 - Universal stress protein UspA and related nucleotide-binding proteins	Mlut_01830	Universal stress protein UspA and related nucleotide-binding proteins	2e-16	36.4 / 78
---------	---	------------	---	-------	-----------

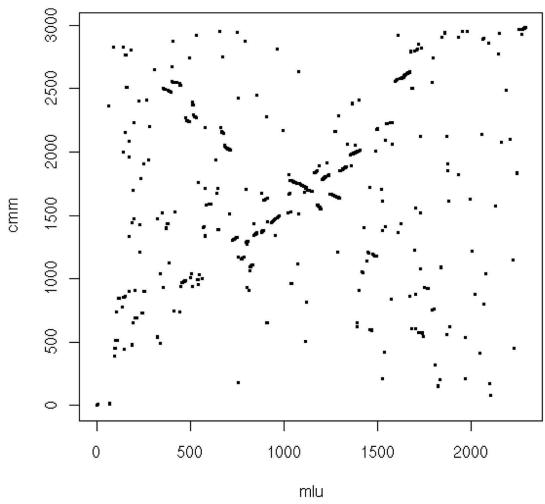
*All genes except Rv1733c belong to the DOS regulon

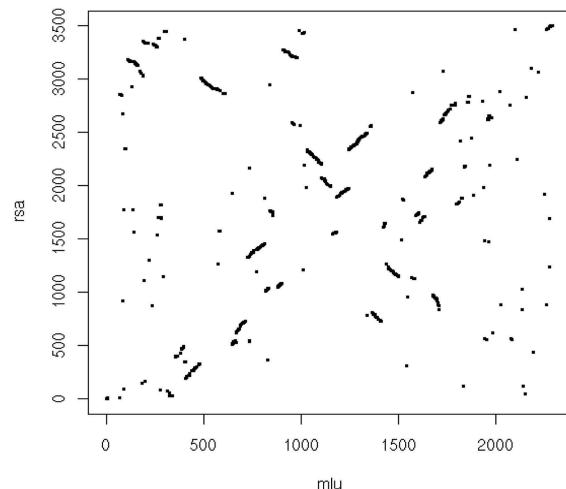

§3 more homologs

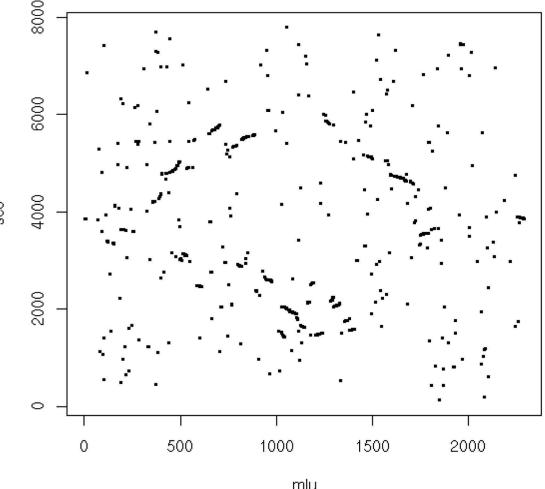
§§1 more homolog

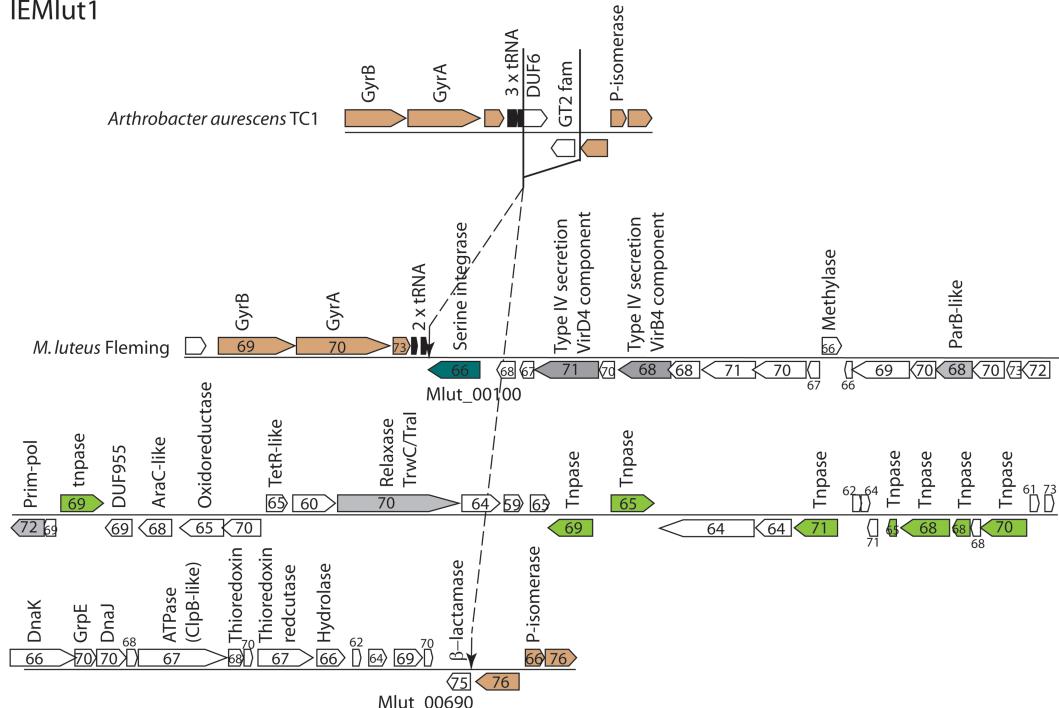


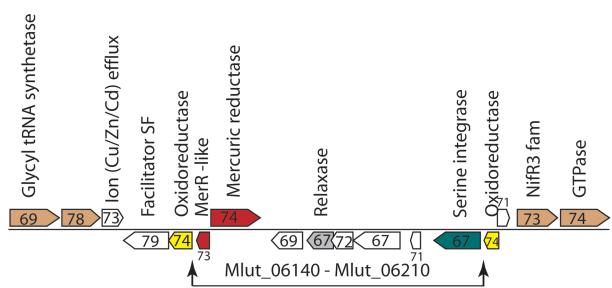

Synteny plot mlu vs art

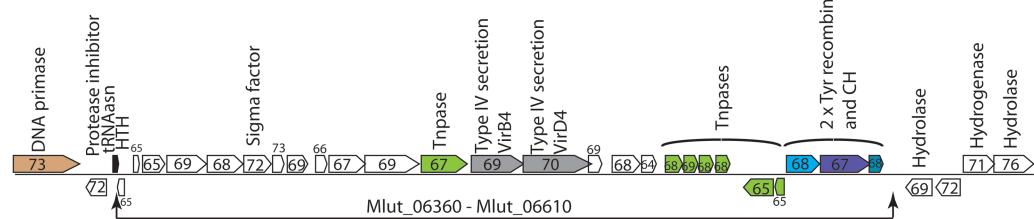

Synteny plot mlu vs mtb

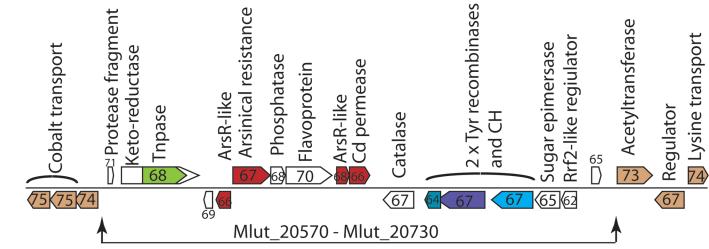

Synteny plot mlu vs krh


Synteny plot mlu vs cmm

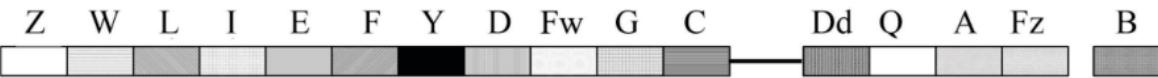

Synteny plot mlu vs rsa

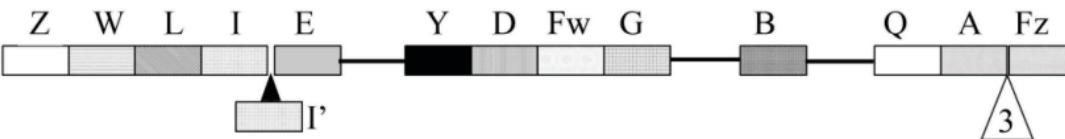

Synteny plot mlu vs sco

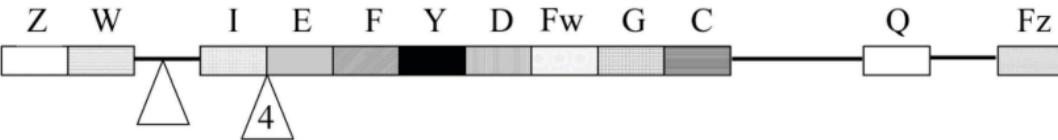

A. IEMlut1

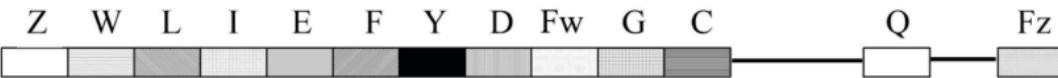

B. IEMlut2

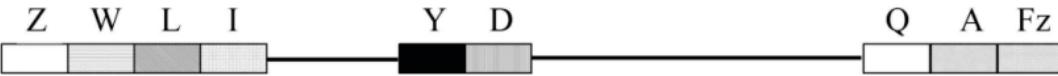
C. IEMlut3

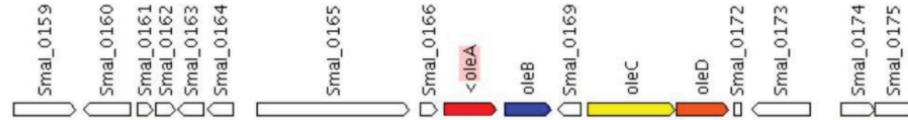

D. IEMlut4

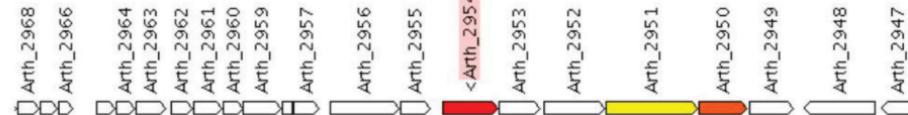

Putative ancestral cluster

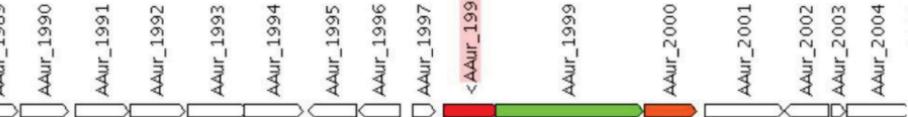

Escherichia coli

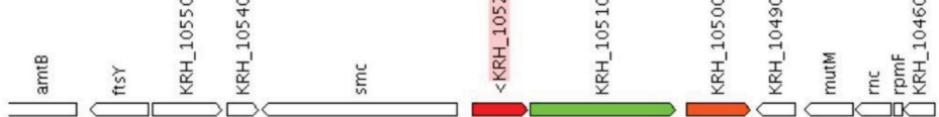

Bacillus subtilis

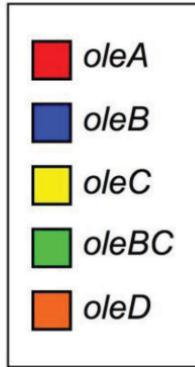
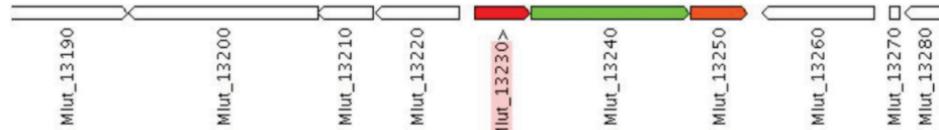

Mycobacterium tuberculosis


Micrococcus luteus


Staphylococcus aureus


Stenotrophomonas maltophilia R551-3


Arthrobacter sp. FB24



Arthrobacter aurescens TC1

Kocuria rhizophila

Micrococcus luteus

