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Abstract. The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab 
initio electronic structure method for large-scale nano material simulations. It is a divide-and-
conquer approach with a novel patching scheme that effectively cancels out the artificial 
boundary effects, which exist in all divide-and-conquer schemes. This method has made ab 
initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining 
essentially the same accuracy as the direct calculation methods. The LS3DF method won the 
2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s 
running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 
163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system 
containing 36,000 atoms. In this paper, we will present the recent parallel performance results 
of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which 
have potential applications in electronic devices and solar cells. 

1.  Introduction 
Nanostructures have wide applications in biological imaging, light emitting diodes, solar cells, and 
other electronic devices. The sizes of the nanostructures are so small that they have very different 
electronic and optical properties from their bulk counter parts, due to quantum confinement effects. 
Nevertheless, to study the properties of nanostructures, one needs to do ab initio calculations on 
systems containing 1,000 to 100,000 atoms, which are too large for direct ab initio methods. Direct 
methods have been applied to systems with 2,000 atoms at most [1]. This is because even the simplest 
ab initio methods, e.g., the density functional theory (DFT) methods under the local density 
approximation (LDA), are computationally expensive, scaling as O(N3), where N is the size of the 
system. In addition, due to communication bottlenecks the parallelization of direct LDA methods is 
limited to roughly 10,000 processors [1]. In fact, the most widely used direct LDA code, VASP, is 
difficult to scale to even several thousand processors. Therefore, both the computational costs and the 
limit on parallelization call for a new approach.  

Over the past decade, many O(N) methods have been developed [2]. These approaches can be 
classified into three main categories: the local orbital methods [3], the truncated D-matrix methods [4], 
and divide-and-conquer methods [5]. While these methods have successfully reduced the 



 
 
 
 
 
 

computational cost and have been applied to large systems, several fundamental technical issues 
remain that are difficult to overcome. For example, in the commonly used local orbital methods, there 
exist extraneous local minima in the total energy functional, which make the total energy minimization 
difficult (convergence problem). This is due to constraining the wavefunctions on the local orbital 
manifold. Moreover, the overlap between neighboring local orbitals makes it difficult to scale these 
methods to large numbers of processors. In short, for the previous O(N) methods, especially the local 
orbital methods and the truncated D-matrix methods, on top of some fundamental technical issues, a  
main challenge is to scale the codes to tens of thousands of computer processors while preserving the 
ab initio accuracy.  

Recently we have developed a new O(N) method, the linearly scaling  three-dimensional fragment 
(LS3DF) method [6,7]. It is a divide-and-conquer approach that scales to tens of thousands of 
computer processors quite easily, and yields essentially the same results as direct LDA methods. The 
LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation [8]. In this paper, we 
will briefly describe the LS3DF method, focusing on its recent parallel performance results, then 
describe how we have used LS3DF to study the electronic structures of asymmetric CdSe/CdS 
core/shell nanorods, which have potential applications in solar energy conversions.  

2.  The LS3DF method 
 
 The LS3DF method is based on the short-ranged 
nature of quantum mechanical effects. The total 
energy of a system can be split into the classical 
electrostatic energy and the quantum mechanical 
energy (kinetic energy and exchange correlation 
energy). The electrostatic interaction is long-
ranged, therefore the electrostatic energy must be 
calculated by solving a Poisson equation 
globally. But the quantum mechanical effects are 
short-ranged, therefore they can be solved 
locally, and the total quantum mechanical energy 
for the system can be obtained by combining the 
locally calculated quantum energies. In our 
LS3DF method, we divide a large system into 
small pieces (fragments), and independently 
calculate a solution on each fragment. We then 
patch the local solutions together to obtain the 
total energy and the total charge density for the 
whole system. The heart of the LS3DF method is 
a novel patching scheme that effectively cancels 
out the artificial boundary effects. Figure 1 and 2 
illustrate our division and patching scheme using 
a 2D example for simplicity. In Figure 1, a 
periodic super cell is divided into 4x4 pieces. At 
each grid point (i,j), we introduce 4 fragments 
(along the right-upper direction) with different 
sizes, 1x1, 2x1, 1x2 and 2x2. All fragments at all 
grid points (i,j) (i=1,…,4; j=1,…,4) will be calculated independently using a direct LDA method, e.g., 
PEtot [9],  a planewave pseudo potential LDA code. The fragments will then be summed up according 
to the patching scheme illustrated in Figure 2. Where the 1x1 (red) and 2x2 (blue) fragments are 
positive fragments, and the other two, the 1x2 (yellow) and the 2x1 (green) are negative fragments. 

Fig. 1. A schematic view of the division of a system 
into small fragments. This 2D periodic super cell is 
divided into 4x4 fragment grids. At each fragment grid 
point (i,j), 4 fragments with different sizes are 
introduced. Where the red, green, yellow, and blue 
rectangles represent the fragments of size 1x1, 2x1, 
1x2 and 2x2, respectively.    
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Fig. 2. The schematic view of the fragment patching  
scheme in the LS3DF method for 2D systems. Here 
the yellow (1x2) and the green (2x1) fragments are 
negative fragments, and blue (2x2) and red (1x1) are 
positive fragments. 
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We can illustrate how the patching scheme yields the original system from the fragments.  Let’s 
consider the area covered by the red square in Figure 1. For convenience, we denote the fragment 1x1 
introduced at the grid point (i,j) as F11(i,j). By counting how many positive and negative fragments 
cover this area, one can easily see whether this area is described properly after all the fragments are 
added up.  This area is covered by 5 positive fragments, they are F11(i,j), F22(i-1,j-1), F22(i,j-1), F22(i,j) 
and F22(i-1,j). And this area is also covered by four negative fragments, which are F21(i,j), F21(i-1,j), 
F12(i,j) and F12(i,j-1). When these fragments are summed up using the patching scheme in Figure 2, the 
red square area is covered only once after 4 positive and 4 negative fragments cancel out. We can also 
show the artificial boundary is removed in this patching scheme. Let’s consider the left boundary of 
the red square (edge AB). We can define a direction (outward) for this boundary as shown with a left 
arrow in Figure 1. We can count how many fragments contain this boundary. They are three positive 
fragments, F11(i,j), F22(i,j), and F22(i,j-1) and three negative fragments, F12(i,j), F12(i,j-1), and F21(i,j). 
When these six fragments are summed up, the edges from the three negative fragments cancel out the 
edges from the other three positive fragments.  Similarly we can see the artificial corners (e.g., the 
corner BAC, outward direction) cancel.  

The patching scheme for 2D systems can be generalized to 3D systems straightforwardly. In 3D 
cases, at each grid point (i,j,k), eight fragments (along the right-upper direction) with different sizes 
are introduced, they are four positive fragments, 2x2x2, 2x1x1, 1x2x1 and 1x1x2, and four negative 
fragments, 2x2x1, 2x1x2, 1x2x2, and 1x1x1. The patching scheme is 

 
 

 
The boundary effect cancellation assumes that the fragments that share a given boundary have very 

similar charge densities near that boundary. Our tests have shown that this assumption always holds as 
long as the smallest fragment (1x1x1) is not too small and the fragments have a band gap (after some 
artificial boundary passivations). When a typical 8-atom unit cell is chosen as the 1x1x1 fragments, 
the errors of the total energy, charge density, atomic force and the dipole moment are well below the 
typical errors introduced by other approximations of the numerical calculations (e.g., pseudopotentials, 
planewave basis cut offs). Thus the LS3DF method gives essentially the same results as the direct 
methods. In contrast to the convergence issues that is common in other O(N) methods, the self 
consistent (SC) iterations in LS3DF converges at a comparable rate as the direct methods. For a 
system containing a few thousands atoms, the total energy typically converges to 10-6 a.u. within 50-
60 SC charge density mixing iterations. The LS3DF method outperforms the direct LDA methods 
when the system contains more than 550 atoms. For nanostructures with 10,000 atoms, the LS3DF 
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Fig.3. Weak scaling floating point operation rates (a) and the computational efficiency (b) of the LS3DF 
method on different machines. The systems used were ZnTe1-xOx alloy (x=8%) with various number of 
atoms. The planewave cut off energy was 60 Ry. The flops were measured for one SCF iteration step. The 
floating point operations were measured in the double precision, using the profiling tool Craypat 4.1. 
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would be faster by 3 orders of magnitudes, even presuming the direct LDA methods can scale up to 
thousands of processors. For more details, see [6,7]. 

One of the great advantages of the LS3DF method is its excellent parallel scaling. We have run our 
code on the Cray XT4 (Franklin) at NERSC, the Cray XT5 (Jaguar) at OLCF, and the Blue Gene/P 
(Intrepid) at ALCF. Figure 3 shows the weak scaling results on these three machines, indicating that 
LS3DF exhibits nearly linear scaling up to the maximum available processor cores on all three 
systems. It achieved 135 Tflop/s on 36,864 cores on Franklin at 40% efficiency; 224 Tflop/s on 
163,840 cores on Intrepid at 40% efficiency; 442 Tflop/s on 147,456 cores on Jaguar at 33% 
efficiency. Additional LS3DF performance results are given in [8].  

3.  Electronic structure calculations for  asymmetr ic CdSe/CdS core/shell nanorods 
With the advance of synthetic methods, numerous nanostructures with different shapes have been 
synthesized in research laboratories. Recently Carbone and his colleagues have synthesized 
asymmetric core/shell structures, using the newly developed seed growth method [10]. In the 
asymmetric core/shell nanorods, a CdSe core is embedded at one end of a CdS quantum rod shells. By 
changing the sizes of the core and the shell (both diameter and length), one can manipulate the 
electronic structures inside the nanorods. Hence these nanostructures appear to be particularly 
interesting for solar cell applications. In addition, these asymmetric core/shell structures provide a 
system on which one can study the quantum confinement effect, the band alignment, the strain (due to 
the core/shell lattice constant mismatch), and the surface effects.  

We have applied the LS3DF method to the asymmetric CdSe/CdS core/shell nanorods with both 
the Cd atoms terminated and with the Cd+S atoms terminated surfaces, as well as to their counterparts: 
the pure CdS nanorods, to study how the core and the surface affect the electronic structures inside 
these nanorods. The LS3DF calculations 
give us the total charge density and the total 
potential. Using the resulting potential, we 
have calculated the valence band maximum 
(VBM, hole) and the conduction band 
minimum (CBM, electron) states and the 
band gaps (Table 1), utilizing the folded 
spectrum method [11]. We have also 
calculated the dipole moments (Table 2) of 
these nanorods. One can see that in the 
nanorods with the Cd terminated surface, 
the introduction of the CdSe core results in 
a significant change in the band gaps (0.24 
eV) and dipole moment (-9.65 a.u.), while 
in the nanorods with the Cd+S terminated 
surface, the role of the CdSe core seems to 
be surprisingly small, both on the band gap 
and the dipole moment.  Figure 4 shows the 
charge density isosurface of the hole and 
the electron states of the four nanorods. 
One can see that in the nanorods with the 
Cd terminated surface, the introduction of 
the CdSe core significantly changes the 
localization of the hole states, while in the 
nanorods with the Cd+S terminated surface, 
the hole state localization seems not be 
affected by the presence of the CdSe core, 

 Cd termin. 
(eV) 

Cd+S 
termin. (eV) 

Band gap 
change (eV) 

Pure CdS 
nanorods 

2.655 2.498 -0.156 

CdSe/CdS 
Core/shell 

2.415 2.403 -0.011 

Band gap 
change (eV) 

-0.240 -0.095  

 

Table 1. The calculated band gaps of the four nanorods. The 
band gap changes due to the different surfaces (column 4) 
and the CdSe core (row 4) are also shown in the table. 

 Cd termin. 
(a.u.) 

Cd+S termin. 
(a.u.) 

Dipole mom. 
change (a.u.) 

Pure CdS 
nanorods 

-15.623 -28.415 -12.792 

CdSe/CdS 
core/shell 

-25.277 -28.108 -2.830 

Dipole mom. 
change (a.u.) 

-9.654 0.307  

 

Table 2. The calculated dipole moments along the c-axis of 
the four CdS nanorods (the components of the dipole 
moments in the other two directions are small, not shown 
here). The dipole moment changes due to the different 
surfaces (column 4), and the CdSe cores  (row 4) are also 
shown in the table. 
 



 
 
 
 
 
 

indicating the Cd+S terminated surface has the dominant effects to the hole localizations. Further 
study on the surface 
passivation effect is under 
way [12]. 

 

4.  Conclusions 
We have briefly described 
the LS3DF method for ab 
initio electronic structure 
calculations.  This scheme 
features O(N) scaling in 
terms of system size, and 
also scales very well in 
parallel performance. We 
presented parallel scaling 
results, summarized the 
accuracy and the SCF 
convergence rate, and then 
applied this method to 
analyze asymmetric 
CdSe/CdS core/shell 
nanorods. We demonstrated 
that the scheme scales 
linearly to hundreds of 
thousands of computer 
processors; it yields 
essentially the same results 
as the direct LDA methods; it can calculate a nanosystem with thousands of atoms self-consistently in 
a couple of hours. We expect wide applications of LS3DF method in nanostructure calculations.  
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Figure 4. Isosurface of the charge densities of the conduction band 
minimum (CBM, green) and the valance band maximum (VBM, red) states 
of the four CdS nanorods with/without CdSe core. Where (a) and (b) are for 
the pure CdS nanorods with the Cd terminated and the Cd+S terminated 
surfaces, while (c) and (d) are for the corresponding CdSe/CdS core/shell 
nanorods, respectively. The isovalue larger than 0.001 e/bhor3 was shown 
for both VBM and CBM states. The blue dashed circle shows the CdSe core 
area. These nanorods are constructed as a wurzite structure, and have 2.8 nm 
in diameter, and 8.4 nm in length (c-axis). The diameter of the CdSe core is 
2.1 nm. There are 3063 and 2298 atoms in the nanorods with the Cd 
terminated and the Cd+S terminated surfaces, respectively. Where the 
magenta, yellow, and blue dots represent the Cd, S, and Se atoms, 
respectively, and the white dots represent pseudo H atoms which passivate 
the surface dangling bonds.  
 

  

Cd terminated 
surface 

Cd+S terminated 
surface 

CdSe/CdS 
core/shell 
nanorods 

Pure CdS 
nanorods 

 

(b) (a) 

(c) (d) 


