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REACTIVE THERMAL WAVES IN ENERGETIC MATERIALS 

Larry G. Hill 

Shock and Detonation Physics Group (DE-g) 

Los Alamos National Laboratory 

Los Alamos, t\lM 87545 

ABSTRACT 

Reactive thermal waves (RTWs) arise in several energetic material applications, 
including self-propagating high-temperature synthesis (SHS), high explosive cookoff, 
and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, 
by which I mean that 1) material motion is neglected, 2) the state dependence of 
reaction is Arrhenius in the temperature, and 3) the reaction rate is modulated by an 
arbitrary mass-fraction-based reaction progress function . Numerical simulations 
demonstrate that one's natural intuition, which is based mainly upon experience with 
inert materials and which leads one to expect diffusion processes to become relatively 
slow after a short time period, is invalid for high energy, state-sensitive reactive 
systems. Instead, theory predicts that RTWs can propagate at very high speeds. This 
result agrees with estimates for detonating heterogeneous explosives, which indicate 
that RTWs must spread from hot-spot nucleation sites at rates comparable to the 
detonation speed in order to produce experimentally-observed reaction zone 
thicknesses. Using dimensionless scaling and further invoking the high activation 
energy approximation, I obtain an analytic formula for the steady plane RTW speed 
from numerical calculations . I then compute the RTW speed for real explosives, and 
discuss aspects of their behavior. 

APPLICA TIONS 

Reactive thermal waves (RTWs) play an important role in many energetic material 
systems, from self-propagating high-temperature synthesis (SHS) to high explosive (HE) 
cook off to the detonation of heterogeneous explosives. The detailed mechanisms of 
reactive thermal waves depend on the system in question . For SHS, reaction occurs 
between two powders (e.g ., aluminum and iron oxide in the case of the well-known thermite 
reaction) . This problem involves both mass and heat diffusion, and therefore depends on 
the respective particle sizes and their morphology, as well as the constituent thermal 
properties 1. 

Deflagrating energetic materials exhibit purely conductive burn waves under special 
circumstances. The classic example is the strand burner test, in which a (typically 
unconfined) stick of energetic material is ignited at one end . A burn front travels down the 
stick, and the propagation speed is measured as a function of atmospheric pressure. The 
resulting curve, known as Vieille 's law, depends on the pressure raised to a power that is 
typically less than unity. The value of the pressure exponent is an important metric for 
rocket propellant safety. In this low-pressure regime, the density of combustion product 
gases is of order 1000 times less than that of the solid reactants. The associated expansion 
produces a significant amount of reaction product motion, such that even this simple system 
is far from a purely thermal wave. 

For neat-pressed energetic material pellets, and even for materials with binder, there 
is a tendency for product gases zip ahead through cracks, pores, and flaws in the energetic 
material. This process has been called erratic burninr/' Because it exploits random flaws in 
the material, and because it also generates high internal pressures that tend to fracture 
unconfined pellets, this process (as the name implies) is very non-steady. Rocket 
propellants are formulated with rubbery binder to specifically avoid this dangerous behavior. 
We have recently derived a simple model that describes the basic features of flame intrusion 
into energetic material cracks3
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The cookoff of secondary explosives tends to be violent only if the system is heavily 
confined. In these situations reaction products have no volume to expand into; therefore, 
hot product gas is forced into flaws, and may also create its own damage via the formation 
of burning crack networkss. Such systems can develop RTWs of a sort, but they are less 
well defined than conductive burn waves, in that they necessarily involve convective burning 
within pre-existing flaws and/or artificially-generated damage features. Hot gases are forced 
into porous spaces, which ignite exposed surfaces. Once these surfaces are lit they 
subsequently burn in a conductive manner unless or until additional flaws are accessed. 
Thus, convective burning increases the global burning rate by increasing the amount of 
burning surface area. Generally, there is a complex competition between how fast surface 
area is ignited (which promotes explosion), and how fast confinement is lost (which 
quenches explosion). I have recently presented a simple model that addresses the basic 
physical mechanisms by which reaction in cookoff explosions runs away6 

In a detonating heterogeneous explosive, the post-shocked, pre-burned temperature 
field is spatially nonuniform. Depending on HE material properties and conditions, there is a 
often a strong tendency for reaction to start at the hottest regions and to spread out, in the 
form of RTWs, to consume the surrounding material. In general this heterogeneous reaction 
mode competes with homogeneous volumetric burning of the explosive. In contrast to the 
cook off problem, the detonation shock pressure is evidently high enough to not only 
homogenize the initially heterogeneous material, but also to convert it to a supercritical fluid. 
In this situation the density of the reactants is of the same order as that of the reaction 
products. In the limit that the two densities are equal, reaction propagates as a purely 
thermal wave, without any bulk fluid motion. That is the case that I shall examine here. 

MORE ON REACTIVE THERMAL WAVES IN HETEROGENEOUS DETONATIONS 

Despite their importance, RTWs do not appear to have received a great deal of 
theoretical attention as isolated entities. Y. Partom formulated a numerical model to 
calculate RTW speeds, for use in his void collapse model for shock initiation7. In this paper I 
study RTWs in isolation , with the goals of examining their structure and determining an 
analytic function for their propagation speed. Such an expression, with its parameter 
dependence, would comprise one of several important ingredients needed for the 
formulation of a physically-based reaction rate law. 

Following Partom 7 who followed Boddington8 (who studied the hot spot criticality 
problem), I argue that RTW propagation within a detonation reaction zone can be 
reasonably modeled as a purely thermal problem. Ignoring mass motion simplifies the 
analysis considerably, and allows one to obtain simple answers at an approximate level. 
Lest this assumption seem extreme, I have previously noted that virtually all reactive-burn 
models implicitly make it (though not in a self-consistent manner), in that they implicitly 
assume that the reactant and product densities are equal in the way that they treat burn 
topology9. Thus, the connection to cookoff (the subject of this session) is that I am treating 
the detonation reaction zone using a classical cookoff-type description, which, ironically, I 
have argued is not particularly valid for post-ignition cookoff problems. 

It is straightforward to estimate that RTWs in heterogeneous detonation reaction 
zones must propagate at several kilometers per second in order to explain observed 
behavior. The residence time of a fluid element in a reaction zone of thickness LI is of order 
Llle, where e is the sound speed at the sonic surface. If reaction proceeds as RTWs from 
hot-spot nucleation sites, then the time necessary to complete the reaction will depend on 
the number density of nucleation sites. Nevertheless, it seems sensible that hot spots will 
occur preferentially at grain boundaries, because that is where most of the deformation, 
inter-particle interaction, and energy dissipation occur. Assuming this to be the case, the 
time to complete reaction will be of order the time necessary for a thermal wave to 
propagate from the edge of large particles to the center. Thus, the reaction time can also be 
expressed as rlv, where r is the radius of the largest particles and v is the thermal wave 
speed. Equating the two expressions for the reaction time, we find that vic = o [riLl]. For 
heterogenous explosives it is often the case that riLl = 0[1], such that v = Ole]. 



Menikoff and Sewel19 have pointed out that inferred RTW speeds are much faster than 
can be explained by classical (inert) diffusion, and have suggested that hot spots must 
therefore propagate by a different mechanism. In this paper I propose that the mechanism 
is classical diffusion in the presence of a very large and highly state-sensitive heat release. I 
demonstrate that, under these conditions, the character and rate of conductive heat transfer 
profoundly changes . Temperature gradients no longer dissipate over time, but are 
maintained at very high values that lead to a much faster spreading of thermal disturbances. 

Imagine the limit in which the RTW thickness approaches zero. In that case the wave 
is a temperature shock; however, under the present assumptions there is no pressure or 
density change associated with it. The temperature shock is propagated forward as 
molecules on the hot side of the surface perturb those on the cold side, thereby initiating 
prompt reaction and heat release. If the medium were an ideal gas, perturbations would 
occur via molecular collisions . In the reaction zone of a condensed-phase explosive , in 
which the density is -2 glcc, molecular interaction occurs via close-range intermolecular 
forces. In either case, the disturbance is propagated forward at acoustic speeds. Specifi­
cally, the RTW speed evidently cannot exceed the acoustic speed of burned material. 

In summary, I have argued that both the theoretical upper bound of RTW speeds and 
experimentally-inferred RTW speeds in detonation reaction zones are of order the acoustic 
speed of burned high-pressure explosive. Let us now examine the mathematical behavior of 
RTWs to see whether they possess the required temperature-shock-like character. 

MODEL PROBLEM 

Consider a RTW propagating in a pre-mixed energetic material , in which the density of 
the reactants is equal to that of the reaction products. We shall consider waves in planar, 
cylindrical, and spherical geometry. The reactive heat equation is : 

(1 ) 

where T is temperature, / is time, x is distance, " is thermal diffusivity, X is product mass 
fraction , q is specific heat release, c is specific heat capacity (assumed to be constant) , and ) 
is an integer index, the value of which is set according to the problem dimensionality (0 = 
planar, 1 = cylindrical, 2 = spherical) . 

The last term in Eq . 1 is given by 

Ox.. _ 0"[ J ,-r i P ot - '"' X Zc , (2) 

where Z is the pre-exponential factor, T* = EIR is the activation temperature (where E is the 
activation energy and R is the universal gas constant) , and g is the reaction progress 
function. The most common expression for g is I - X, which expresses a first order reaction. 

Next we define a non-dimensional temperature </> as follows: 

. T - To 
0 = --­
. T m - Tn (3) 

where Tm is the maximum temperature that the system can attain via self-heating, and To is 
the temperature of the unreacted material ahead of the wave. The maximum temperature 
occurs for full reaction under adiabatic conditions. Thus Tm is given by the condition 

c (Tm - To) = q. (4) 

Substituting Eq . 4 into Eq. 3, if! becomes 



c(T - To) 
0 = . . q (5) 

Using the definition in Eq. 5, P IT becomes 

r 1 

T To + (j (/> (6) 

where To = To IT ' is the dimensionless initial temperature, and q = q I(c T ' ) is the dimension­
less heat release. 

In this problem the smallest value of PIT is order 10. In cases where P IT » 1, D. 
Frank-Kamenetskii (F-K) showed1o that T*IT can be approximated by 

r 1 
- ::::: --::- - R. 
T To (7) 

where () is the F-K temperature defined by 

(8) 

Unlike criticality applications for which the F-K high activation energy approximation 
(Eq . 7) was first introduced , the purpose for making the approximation in this case is not to 
simplify the mathematics per se. Based on previous experience, there seems little hope of 
solving this problem analytically either with or without the high activation energy 
approximation; moreover, the numerical problem is as easily performed with or without it. 
Instead, its purpose is to yield as simple a non-dimensional problem as possible by 1) 

reducing the overall number of parameters from two (namely, To and q) to a single 

composite parameter, a = q ITo 2
, and 2) eliminating all parameters from the initial conditions. 

Doing so will allow us to deduce an analytic expression for the RTW speed; moreover, we 
shall show that the parameter a usefully characterizes the degree of heterogeneity of 
reaction behavior. 

Next we define a non-dimensional distance x = x I X r ' and a non-dimensional time 
i = t I t r , where the reference values x, and I, are yet to be determined. Incorporating these 
definitions into Eqs. 1 and 2 gives 

(9) 
and 

(10) 

where Eq. 8 has been substituted into Eq. 10. Examination of Eq. 10 shows that all free 
parameters except (J. are eliminated by defining 

C i / Til 
t, = ---z . 

Upon inserting Eq . 11 into Eq . 9, all free parameters in Eq. 9 are eliminated by defining 

. _!!{ , l I e! ] ,, ) .r.,. - zL . 

(11 ) 

(12) 



Thus, the reference speed v r = X r / Ir is given by 

r-;::; 1/(2 i; ) 
V.,. = V h Z e - () . (13) 

The dimensionless wave speed, V = V / vr can depend only on a, which is the only parameter 
in the problem . Thus, the exact dimensional wave speed is 

(14) 

where V[a], which depends on the reaction progress function g, must be determined with 
the aid of numerical computations . 

The speed in Eq . 14 depends on the geometric mean of the fundamental diffusion and 
reaction rate constants. This mathematical structure underscores the fact that this is a 
reactive-diffusive wave. If either effect were to go away (i.e. , if either K or Z were to be zero) 
then the wave speed would likewise be zero. Moreover, the wave speed is exponentially 
modulated by the upstream temperature. In other words, the speed is very sensitive to how 
close the upstream material is to spontaneously cooking off. The fact that the reactive 
thermal wave speed depends on the upstream temperature was previously observed by 
Partom 7

, and the result is not widely known. 

The equations to be solved are 

and 

subject to the initial condition 

[Jcf> [Yo j ao a\ _ = _ + _ _ -1- _ 

i:Ji D.72 [ . 0./· ' aF 

a.\: [I (\('/ di = g Xl' ' . 

¢ [.'i: . OJ = 0 00 e - (.i:j a )" . 

(15) 

(16) 

(17) 

Equation 17 represents an idealized hot-spot nucleation site, which, for a detonation wave in 
a heterogeneous material , is generated by the mechanical work associated with shock 
compression. 

The term "hot spot" has become somewhat of a catchall phrase in the explosives 
business. I contend that this condition is unfortunate, in that inadequate descriptive termin­
ology may significantly obfuscate the essential physical mechanisms. In this paper, I define 
a hot spot as a local maximum in the post-shocked , pre-burned temperature field . This 
relatively hot region comprises a potential nucleation site. Each such site is either subcritical 
(meaning that it is insufficient to initiate an RTW) or supercritical (meaning that it is sufficient 
to initiate an RTW). The essential point is that one must clearly distinguish between 
unreacted hot-spot nucleation sites, and the RTWs that each mayor may not initiate. This 
distinction becomes dramatic in the following section where we examine RTW behavior. 

Subcritical hot spots would dissipate without producing a significant amount of 
reaction , if given that chance. In reality, subcritical hot spots in a detonation reaction zone 
are consumed by RTWs emanating from supercritical hot spots before that can happen. For 
supercritical hot spots, the energy released by reaction soon swamps that contained in 
triggering hot spots. Consequently a RTW soon "forgets" its starting conditions, such that all 
established RTWs are nominally identical. The criticality question is settled after a brief 
time; subsequently, the post-shocked, pre-burned explosive is left with a number density 1J 
of nominally identical (and ideally, randomly-centered) RTWs. This state of affairs is an 
underappreciated simplifying feature, with a likely complication being that RTW progress 
may be nontrivially staggered according to differing explosion times associated with 
supercritical hot spots of different sizes, peak temperatures, and temperature profiles. 



NUMERICAL RESULTS FOR STEADY 10 WAVES 

One may seek steady solutions to_ Eqs. 15 an_d 16 by attempting to eliminate x and t 
in favor of a composite variable ~ = x - V t, where V is the yet-to-be-determined dimension­
less propagation speed in Eq. 14. Doing so, one finds that the equations can only be 
expressed in terms of ~ alone if) = 0 (i .e., in the planar case) . Consequently, the cylindrical 
and spherical cases do not possess steady travelling wave solutions. On the other hand, 
cylindrical and spherical waves become progressively more planar as they grow, and will 
propagate at essentially the plane wave speed above some radius. It is tempting to assume 
that all RTWs propagate at the plane wave speed despite any curvature, just as one often 
assumes that curved detonation shocks travel at the Chapman-Jouguet speed. We shall 
leave that subject for another time, and concentrate on steady plane waves only. 

Solutions of Eqs. 15 and 16 for a first order reaction are plotted in Figs. 1-4 for four 
values of a, each progressive value of which is twice the proceeding one. In Fig . 1 (a = 3), 
reaction is completely homogeneous in character. The hot spot perturbation simply "rides 
on top of' a homogeneous cookoff response. The behavior of Fig. 2 (a = 6) is similar; 
however, comparing the two figures one can see that a slight amount of reaction occurs due 
to the hot spot. In Fig. 3 (a = 12) the behavior is quite different. There is an induction time, 
followed by thermal explosion of the hot spot. Upon thermal explosion an RTW is initiated 
that propagates outward. At the same time, the material that it is propagating into is 
homogeneously cooking off. The upstream material cooks off completely when the RTW 
has reached the point x = 5. The behavior of Fig. 4 (a = 24) is qualitatively like that of Fig . 3. 
Quantitatively, 1) thermal explosion of the hot spot occurs sooner, 2) homogeneous thermal 
explosion occurs sooner and more suddenly , 3) the RTW travels faster, and 4) the RTW 
travels farther (to x = 8) prior to homogeneous cookoff. 

Presumably these trends continue as a is further increased; however, there are 
complications in doing so. In Sec. 2 I argued that RTWs would be expected to propagate 
fast enough to reproduce observed detonation behavior only if their structure is sufficiently 
shock-wave-like. Figures 3 and 4 demonstrate that this is in fact the case. What is not clear 
from these figures is that RTW structure becomes increasingly narrow (and hence 
increasingly difficult to calculate) as a increases. The computations in this study were 
performed using the Mathematica POE solver, for which the highest value I have been able 
to calculate is a = 27. Presumably, specialized algorithms employing shock-capturing 
methods could compute higher values. As we shall see in the following section, the current 
capability is adequate; however, an ability to compute higher values of a would be useful. 

a) Dimensionless Temperature b) Mass Fraction Reacted 

Figure 1: a = 3. Reaction is homogeneous in character. The initial temperature 
perturbation "rides on top of" the homogeneous cookoff. 



· a) Dimensionless Temperature b) Mass Fraction Reacted 

Figure 2: a = 6. Reaction is substantially homogeneous, but transitional. By com­
parison to Fig. 1, one can see that the initial temperature perturbation contributes a 
small amount of reaction. 

a) Dimensionless Temperature b) Mass Fraction Reacted 

Figure 3: a = 12. Reaction is substantially heterogeneous. An obvious RTW eman­
ates from the hot spot. Eventually, the material ahead of the RTW cooks off. 

a) Dimensionless Temperature b) Mass Fraction Reacted 

Figure 4: a = 24. The behavior is qualitatively like, but more heterogeneous than, Fig. 
3 (i.e., less reaction occurs ahead of the RTW prior to homogeneous cookoff) . 



DEDUCTION OF THE 1 D STEADY WAVE SPEED 

By judicious nondimensionalization together with the high activation energy approxi­
mation, we have reduced the problem of finding the RTW speed to the determination of a 
universal function V[al . It seems doubtful that Vlal can be derived analytically. If it can, 
solutions could evidently only be attained for sufficiently simple forms of g[x]-most likely 
the first order reaction assumed here. Lacking alternatives, I seek to deduce the form of 
V[a] by numerical calculations. At this point I make the distinction between an analytic 

solution and an analytic formula. Provided that we can numerically measure V[aJ with good 
accuracy, we can fit an analytic formula that contains the full parameter dependence, just as 
if the solution were fully analytic. Such a solution serves the same purpose as a fully 
analytic solution, with minimal error in the fit region for judiciously chosen fitting forms. 

The complication in finding V[aJ is that the problem is scaled by the initial tempera­
ture, which the calculation assumes is the upstream temperature for all time. However, at 
the a-values I am able to calculate, the bulk material starts to cook off in the time necessary 
for the wave to become established and the speed to be measured. Hence, there is a value 
of a associated with the exponential term in the computation, and a different time-changing 
value of a associated with the upstream condition . Thus, the behavior that develops differs 
from that which was assumed at the outset. The rising upstream temperature causes the 
established wave to accelerate, as shown in Fig . 5. 

-10 -5 o 5 10 
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Figure 5: Contour plot for a = 12. The established RTW accelerates as it travels into 
progressively hotter energetic material. This effect complicates the deduction of rial. 

There are a several ways that one could try to get around this problem. Firstly, if one 
had the capability to compute the RTW problem for a range of sufficiently large a, then the 
behavior would be sufficiently heterogeneous that, to an excellent approximation, rP would 
remain virtually zero ahead of the wave-over a long enough distance to obtain accurate 
wave speeds to pair with the calculated values of a. The problem with this method is that 
the behavior for smaller values of a (those that we are interested in, actually), would have to 
be extrapolated. 



Secondly, one could assume that wave propagation is quasi-steady, and continuously 
update the valued of a used in the calculation to match the current upstream value. The 
result would not reflect how a real wave develops in time; however, the local speed V[rJ, 
plotted parametrically versus ali], would trace the desired curve. The known problem with 
that scheme is that the standard Mathematica solver I am using does not support this 
capability. Specialized algorithms would have to be written. 

A third strategy would be to again assume that the wave is quasi-steady, and 
extrapolate the wave speed at calculable values of a, to its behavior in the large-a limit. 

This method does in fact work, but only because V[aJ turns out to be very simple in form. 
To implement the extrapolation method, we begin by computing the RTW speed curves for 
several values of a, as shown in Fig. 6. Each curve has a "U" shape, because the wave 
speed is infinite at the initiating hot spot, and is also infinite at the point where volumetric 
thermal explosion occurs. To minimize any nonsteady effects, we pick off the speed at the 
minimum of each curve, where the acceleration is zero. The locus of these points is 
illustrated by the dashed curve. 

Figure 6: RTW speed curves for seven values of a. The minimum speeds (the 
points of zero acceleration) are sampled for further analysis. 

Each of point sampled in Fig. 6 has a corresponding value of I/J = I/J~ far ahead of the 
wave. These values are plotted in Fig . 7 as a function of a. The curve asymptotically 
approaches zero as a increases, decaying approximately as the inverse 3/2 power of a. 
Specifically, we find that at the largest computed value of a, I/J~ is 1 % of the unity burned­
value. From this exercise we learn that at the largest computed value of a, the model 
assumptions are reasonably well satisfied at the minimum speed condition. 

Figure 8 plots the speed points from Fig. 6 as a function of a. As a increases and I/J~ 

decreases, the behavior looks to be approaching a straight line through the origin . One may 
argue that because al~ha depends linearly upon q, and heat release is required to produce 
a wave speed, that V[OI=O . Constrained from both sides, there is little choice for the 
function to be anything other than a straight line through the origin . 

I therefore fit the data with the following fitting form, which exponentially relaxes to a 
straight line through the origin: 

(18) 



As noted in Eqs. 18, the best-fit line determined in this manner is VI a 1. Note that the value 
of a computed by the least-squares analysis is controlled by the relaxation rate. Therefore, 
the accuracy to which a can be determined depends on how well the assumed exponential 
relaxation law fits the numerical data points. Figure 8 shows the agreement to be excellent. 

0.15 

1;>. 0.10 

0.05 

to 15 20 25 30 35 40 

a 

Figure 7: Plot of the dependence of dimensionless temperature ,,~ far ahead of the 
wave, upon a. At the highest computed value of a, ,,~ is 1% of the burned value. 

a 

Figure 8: Plot of the dimensionless wave speed versus a. The trend looks to be 
approaching a straight line through the origin. 

By this means we determine that V[al= 7.48 a. Thus we obtain the final wave speed 
result, which is 

v = 7~48ij~ . 
T6 e1/ (2 Tc») (19) 



Written in fully dimensional form , Eq . 19 is: 

(qT*) [T*] V = 7.48 V K Z c TJ exp ; To . 
(20) 

The argument is that Eqs. 19 and 20 hold for essentially all a-values in which a quasi­
steady RTW is observed, the reason that the points in Fig . 8 deviate from the linear trend 
being that the calculation did not remain properly normalized as it proceeded . Thus, Eqs. 19 
and 20 should hold generally, except where the upstream material is rapidly cooking off. 

APPLICATION TO PBX 9501 AND PBX 9502 

The parameters needed for numerical examples, collected from various sources, are 
listed in Table 1. HIVIX-based explosives in general, and PBX 9501 in particular, have been 
very well studied. Good data exists for the parameters that we need . Most importantly, 
Henson et al. 11 have developed a wide-ranging set of Arrhenius parameters, based on a 
variety of different classes of experiments. Unlike most parameter sets that were obtained 
for slow decomposition (and of dubious applicability for other conditions) , Henson's 
parameter sets are applicable in the detonation regime. 

Table 1: RTW-Relevant Parameters for PBX 9501 and PBX 9502 
Class Property Symbol Unit PBX 9501 Ref# PBX 9502 Ref# 

Activation Temperature 1'* K 17,910 11 26,000 hered 

Arrhenius Pre-Exponential Factor log[Z] log[1/s) 12.8 11 16 here" 
Parameters Specific Heat Release kJ/g 5.6 12 3.6 12 q 

Temperature TV1I K 2,580 13 1,567 14 

Pressure PVI1 GPa 56.9 13 42.8 14 

Density PVI1 g/cmJ 3.070 13 3.049 14 

Specific Heat eVil J/(g-K) 2.1 13 2.1 14 
VN Spike Thermal Conductivity kVI1 W/(m-K) 2.5u 15 3.1 c 15,16 
Conditions 

Thermal Diffusivity K VI1 mL Is 3.9x10- mixu 4.8x10- mix 

Dimensionless Heat q vn ---- 0.15 mix 0.066 mix 

Dimensionless Temperature -
T vn 

---- 0.14 mix 0.060 mix 

Heterogeneity Parameter a vu ---- 7.1 mix 18.1 mix 

Temperature T ej K 3000 13 3,126 14 

Pressure PC) GPa 34 .8 13 28.3 14 

Density Pc} g/cmJ 2.430 13 2.525 14 

Specific Heat Gej J/(g-K) 2.1 13 2.2 14 
CJ Thermal Conductivity ke) W/(m-K) 1.9u 15 2.3" 15,16 

Conditions 
Thermal Diffusivity Kc} m' /s 3.6x10- mix 4.1x10- mix 

Dimensionless Heat qej ---- 0.16 mix 0.063 mix 

Dimensionless Temperature - 0.17 mix 0.12 mix 
Tej 

----

Heterogeneity Parameter ac) ---- 13,r mix 30.1 c mix 

a These parameters are deduced from internal evidence. b This value is for detonation products. In 
this model, thermal properties are the same for reactants and products. C Lacking PBX 9502 data 
under detonation conditions, this value is the 9501 value at detonation conditions, scaled by the 
9502/9501 values at STP. d "mix" means that the parameter is a combination of other parameters, the 
sources of which have already been identified. 'Value is based on unreacted material at the Pei' 



Let us first consider PBX 9501 (95 wt% HMX, 5 wt% binder). At the von Neumann 
(VN) spike, a = 7.1. Examination of Fig. 2 indicates that the reaction behavior is 
substantially, though not entirely, homogeneous. Menikoff13 has previously noted that PBX 
9501 detonation is well predicted by a homogeneous Arrhenius rate law, and the present 
result is basically consistent with that result. Because PBX 9501 is a heterogeneous 
composite material, hot spots are generated in the shocked explosive. However, these hot 
spots and the heterogeneity that causes them would appear to have a minimal effect on the 
ensuing reaction. In such situations I say that heterogeneity is incidental in its importance, 
in that reaction proceeds in a similar way with or without it. 

Note, however, that this HMX result is for a CJ wave. Values of a for convexly curved 
detonations will be higher. Because the CJ wave shows some signs of heterogeneity, 
weaker curved waves will evidently exhibit heterogeneous reaction. In a sufficiently large 
rate stick, for example, reaction will be largely homogeneous near the axis, and 
heterogeneous near the edges, with some sort of transition region in between. Thus, I 
would say that material heterogeneity is incidental near the center, and essential near the 
edge. HMX explosives are interesting in this sense, because they are "transitional forms". 
Primary explosives (PETN perhaps?) will exhibit incidental heterogeneity throughout a 
charge; whereas, IHEs (PBX 9502, as we shall show) will exhibit essential heterogeneity 
throughout a charge. By this means one can identify three classes of explosives with 
respect to heterogeneity effects in established detonations, 

Although there is not much tendency for RTWs to develop in PBX 9501 (at least near 
the VN spike), we can nevertheless compute a wave speed using Eq. 19. The predicted VN 
value is 2505 m/s. In light of the discussion in Sec. 2, this number is a physically sensible 
value. Not all Arrhenius parameter sets give sensible values for V; rather, I attribute this 
success to the applicability of Henson et al.'s wide-ranging Arrhenius parameters. One need 
only examine PBX 9502 to realize that not all Arrhenius parameter sets give sensible values 
of V. Several workers have produced Arrhenius parameters for TATB-based explosives, 
with activation temperatures ranging from -16,000 K to -30,0000 K. The corresponding 
predicted wave speeds can range from 0[10] mls to 0[105

] mls (plus or minus two orders of 
magnitude). 

This behavior illustrates that, although I have argued that RTW speeds cannot 
physically exceed the sound speed in the reacted material, the formula Eq. 19 knows 
nothing of acoustic limitations. The speed is very sensitive to the Arrhenius parameters, and 
can take on most any value depending on the values of 7* and Z. On the other hand, this 
makes the speed formula of Eq. 19 a sensitive selector of Arrhenius parameters. When one 
plots the collection of available Arrhenius parameters in logZ-7* space, one finds that the 
collection lies on a straight line. This is the well-known kinetic compensation effect. 

Restricting parameters to the line of "admissible" values, one finds that only a narrow 
range of the domain produces physically sensible values of V. In particular, the parameter 
set logZ = 16, P = 26,000 K gives similar speeds as were predicted for PBX 9501. These are 
the parameters listed in Table 1, and which I shall use for examples. This parameter set lies 
somewhere in the middle of the collection of parameter sets that previous workers have 
proposed. Hence, the RTW wave speed provides a sensitive and sensible means of 
selecting between a large number of equally plausible Arrhenius parameter sets. 

Using the parameters logZ = 16, P = 26,000 K, we find that at the PBX 9502 VN spike, 
a = 18.1. Examining Figs 3 and 4, we observe that this value puts the behavior solidly in the 
heterogeneous regime. a increases as the material flows through the reaction zone, to a 
value of -30 at the CJ point. Clearly, a is also greater for a convexly curved detonation as 
noted in connection with PBX 9501. Thus, we conclude that heterogeneity is everywhere 
essential for a PBX 9502 detonation. This conclusion holds for any plausible value of P. 

In computing a at the CJ state, I have assumed that the upstream material remains 
unburned; i.e., that the behavior is perfectly heterogeneous. To simply estimate the 
unburned temperature at the CJ state, I assume isentropic expansion with an isentropic 



exponent of 3. That is, 

( 
P )h- 1lh 

T = Tvn P
vn 

' {= 3. 
(21 ) 

The temperature of unburned HE at the CJ state is determined by evaluating Eq. 21 at P el' 

Because the temperature of unburned explosive upstream of the RTWs decreases 
through the reaction zone, their speed also decreases. With the aid of Eq. 21, we may 
(neglecting domain dilation at this point) estimate the magnitude of this effect. With the 
assumed Arrhenius parameter set, the estimated RTW speed at the VN point is 2356 m/s. 
The estimated speed at the CJ point is 350 m/s. Hence, in this example rate slows by a 
factor of seven through the reaction zone. In his review of experiments related to hot 
spots 17, B. Davis catalogs experimental evidence that hot spots (as he colorfully describes 
it), "pop and go out" . He further notes that for unknown reasons, it is as if part of the 
explosive behaves as if it were dead (i .e., inert) . The exponential dependence of the RTW 
speed on temperature provides a means by which these effects could occur. 

The sensitive dependence of the RTW speed upon temperature may also be related 
to several other anomalous properties of T A TB-based explosives. The PBX 9502 reaction 
zone has a narrow (HMX-like) region in which some reaction occurs promptly, followed by a 
very long tail. This property causes an upturn in the diameter effect curve at large stick 
sizes, and an upturn in the detonation shock dynamics (DSD) calibration curve at small 
curvatures . The reason for this effect is usually imagined to be directly related to T ATB 
chemistry . Although this may very well be so, the notion that RTW propagation is 
exponentially sensitive to temperature provides an alternative explanation for a fast reaction 
start, followed by a long tail. At this point in time, T ATB has rather unique sensitivity 
properties. Unfortunately, there are few other explosives with which to compare it. As 
additional IHEs are developed and tested, we may find that properties that have been 
assumed to be T ATB chemistry-specific, are actually a generic attribute of explosives for 
which heterogeneity is fully essential. 

Most reactive burn models use a constant specific heat release with a state­
dependent burn rate. A sufficiently strong state-dependence of the rate can cause reactions 
to freeze on relevant time scales, such that they may not complete even when the flow has 
expanded to atmospheric pressure. When this is the case, rate effects result in a decrease 
in energy output. Thus, the two effects can be practically coupled in a way that is hard to 
separate. Depending on the particulars, the exponential temperature dependence of RTW 
propagation speed may manifest as a severe rate effect, causing reaction to freeze. 

The practical difficulty with frozen reactions is that the effect depends on conditions. 
Whether a reaction is homogeneous or heterogeneous, the freezing process depends on the 
pre-detonated HE temperature. The reason is that reaction rates are highly state-sensitive. 
Explosive that is hotter before the detonation shock is also hotter after. It therefore burns 
faster and more completely prior to freezing. For a heterogeneous reaction, the freezing 
process also depends on the material microstructure, and hence the HE the material lot. 
The reason for this dependence is that different material structures lead to different values of 
the RTW number density, TJ. Higher TJ -values consume the reactants faster and more 
completely before reaction freezes. 

CONCLUSIONS 

have illuminated the properties of reactive thermal waves, or "hot spot burn". 
showed that curved RTWs do not propagate at constant speed, but approach steadiness as 
they burn outward. Planar RTWs have a steady traveling wave solution in the limit that 
cookoff of the upstream material is negligible. Otherwise their propagation is quasi-steady, 
with the wave speed depending on the current upstream temperature. I have derived an 
analytic expression for planar RTW speed, the most important feature of which is that the 
speed depends exponentially on the upstream temperature. 



The degree of reaction heterogeneity induced by an individual supercritical hot spot 
depends on a single parameter, which I have called a. For a-values less than about 10, 
reaction is substantially homogeneous. For a-values greater than about 10, reaction is 
substantially heterogeneous. The more a is increased, the more heterogeneous reaction 
will be. The reasons are that 1) less reaction occurs ahead of the wave prior to bulk cookoff, 
and 2) RTWs propagate farther before bulk cookoff. For a given RTW number density 1], 

more material is consumed via RTWs, and less by homogeneous reaction, as a increases. 

The RTW speed is sufficiently sensitive to Arrhenius parameters that one is able to 
use it to substantially narrow the range of admissible parameters that lie on the kinetic 
compensation effect line. I have performed this exercise for T A TB, and suggest that logZ = 

16, T* = 26,000 K, are good values to use in the detonation regime. 

The exponential dependence of the RTW speed upon temperature can potentially 
explain a number of non-ideal "reaction freezing" effects that have been observed and/or are 
suspected for insensitive explosives such as TATB. In particular, it explains the effect of 
detonation properties upon PBX 9501 material lot. 
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