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Symmetrized local co-registration optimization 
for anomalous change detection 

Brendt Wohlberg and James Theiler 

Los Alamos National Laboratory, Los Alamos, NM 87545 

ABSTRACT 

The goal of anomalous change detection (ACD) is to identify what unusual changes have occurred in a scene, 
based on two images of the scene taken at different times and under different conditions. The actual anomalous 
changes need to be distingllished from the incidental differences that occur throughout the imagery, and one of 
the most common and confounding of these incidental differences is due to the misregistration of the images, 
due to limitations of the registration pre-processing applied to the image pair. 

We propose a general method to compen~ilte for residual misregistration in any ACD algorithm which con­
structs an estimate of the degree of "anomalousness" for every pixel in the image pair. The method computes 
a modified misregistration-insensitive anom,1.lousness by making loca.] re-registration adjustments to minimize 
the local anomalousness. In this paper we describe a symmetrized version of our initial algorithm, and find 
significant performance improvements in the a nomalous change detection ROC curves for a number of real and 
synthetic data sets. 

Keywords: Anomalous change detection, Registration, Multispectral imagery, Hyperspectral imagery 

1. INTRODUCTION 

Given t.wo images of the same scene, taken at different times and under different conditions, the aim of anomalous 
change detection (ACD) is to identify those changes that are unusual, compared to the "ordinary" differences 
that occur throughout the image. The motivation for making this distinction is that the unusual changes are 
generally expected to be more interesting, though - as an operational issue - we leave it to a human analyst to 
decide whether a given change is actually interesting or meaningful. What automated ACD offers is a way to 
cull through the mass of imagery, and to narrow down the changes that the analyst might want to examine. (See 
Ref. [1) for an overview.) 

One of the most confounding sources of "ordinary" change is misregistration of the images. While it is 
important to align the images as precisely as possiblein the first place, so that corresponding pixels in the two 
ilnages correspond to the same position in the scene, one has to assume that some residual misregistratioll will 
inevitably remain. Since the effects of misregistration are pervasive over the whole scene, ACD already provides 
some robustness to misregistration, at least in principle. But more active compensation is possible, and in an 
earlier paper, we proposed a misregist ration compensation algorithm2 In this paper, we extend those efforts , 
and demonstrate the ability of this extension to further reduce the rate of false alarms caused by the inevitable 
residual misregistration between pairs of images. 

Algorithms that have been proposed for ACD include the chronochrome,3 neural net prediction,4 covariance 
equalization," multivariate alteration detection ,6 and a machine learning framework 7 which as led to a number 
of variations that optimize for different situations, such as su bpixel anomalies8 or fat-tailed elliptically contoured 
data distributions9 , 10 In all of these pixel-based algorithms, a scalar "anomalousness" value is assigned to every 
pixel in the image, and those pixels with the highest anomalousness value are the top candidates for the locations 
of anomalous change. Our approach for misregistration compensation can be applied to any of these pixel-based 
ACD algorithms, but we will concentrate on the hyperbolic anomalous change detector. 7 
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1.1 Hyperbolic anomalous change detection 

Let x E IRd, be a pixel value in the first image, X, and y E IR'i" correspond to the associated pixel value in the 
second image, ,. In general, we will write A (x , y ) as as our measure of anomalousness. 

The Hyperbolic Anomalous Change Detector (HACD) is motivated by modelling the underlying probability 
distribution P(x, y) for values x and y assoc iated with corresponding pixels in an image. Write Px(x ) = 

J P(x , y) dy as the projection of P(x, y) onto the x subspace; this is the distribution of pixel values in X 
alone. One can similarly write Py(Y) = J P (x , y ) dx. Following the framework introduced in Ref. [7], we can 
characterize the anomalous changes as those with high values of mutual information. That is, 

A'(x,y) = 10gPx(x) + 10gPy(Y) -logP(x,y). (1) 

When the data distribution is Gaussian, these probability densities can be described in terms of the covariance 
a nd cross-covariance matrices of the data. Subtract the mean from both images, so that (x ) = 0 and (y) = 0; 
then write 

x = ( xxT ) y = ( yyT ) C = ( yxT ) . 

Up to unimportant additive cllld multiplicative cOllstants, the anomalousness in Eq . (1), in this Gaussian case, 
becomes a quadratic expression: 

A (x , y) = [ xT yT 1 Q [ ; ] , (2) 

where the coefficient matrix Q is given by 

(3) 

For HACD, the matrix Q has negative as well as positive eigenvalues, ;1.nd the boundaries of constant A(x, y) 
are hyperbolas in (x,y) space. Another consequence of these negative eigenvalues is that , in contrast most other 
pixel-based ACD algorithms, the anomalousness measure A (x , y ) for HACO can be positive OT negative. The 
largest (i.e., most positive) anomalousness values correspond to the most anomalous changes . 

2. MINIMUM ANOMALOUSNESS REGISTRATION 

Since they are based on the statistics of corresponding pixels, the class of ACO algorithms described above 
depends critically on accurate image registration , which cannot , in practice , be expected to be perfect, given the 
limitations of registation algorithms. The following simple scenario provides a motivation for our algorithm for 
reducing the sensitivity of ACO a lgorithms to registation errors. 

In an image pair , consider a pixel x , in the first image , and a small window, containing pixels Ym, about the 
corresponding pixel, Yo, in the second image. If x is cL true anomalous change consisting of a n object not present 
in the corresponding position in the second image, then all joint vectors txT y;;f are likely to have a large 
anomalousness measure (see Fig. 1). Conversely, if x does not represent a true anomalous change, but [xTY6jT 
has a large anomalousness measure due to misregistration , we can expect that some joint vectors txT y;;jT will 
have a low anomalousness measure if the window is large enough to encompass the misregistration (see Fig. 2). 

2.1 Asymmetric Algorithm 

Motivated by this argument , we previously proposed2 the following misregistration compensation scheme: For 
each pixel in X, consider a window about the corresponding pixel in / , and find the pixel within this window 
that gives the lowest anomalousness when paired with the pixel ill X. Take that pixel as the misregistration 
compensated pixel value. 

We define the window by offset vectors W h and W,,' the simplest example being a 3 x 3 window about the 
central pixel 
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The procedure (see Fig. 3) is described by the local co-registration adjustment (LCRA) algorithm: 



Image X Image "( 
Figure 1. Real anomalies: pixel x in image X has content not present in the window a bout the registered pixel , Yo in 
image /, and all pairs [xT y?,;jT have high anomalollsness . 

Image X Image "( 
Figure 2. Misregistration anomalies: pixel x in image X has different content from registered pixel , Yo in image /, but 
pixel Y4 in the window about Yo has similar content to x, so that the pair [x T ylf has low anomalousness . 

Asymmetric Local Co-Registration Adjustment algorithm 

Compute Q for the image pair X and, 
for all pixel indices k , [ do 

for all window vector indices m do 
Set k' = k + Wh,m and [' = [ + w v,m 

Set Ak,/,m = [xL ,0,11] Q [ Xk,/ ] 
"( k',l' 

end for 
Set A k ,/ = minm Ak,/,m 

end for 

An equivalent but more efficient implementat ion is to apply a shift to , for each rela tive position in the 
chosen window and then to compute an anomalousness map for this image pair (see Fig. 4) , as described below: 
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Figure 3. Construction of a set of joint vectors from a s ingle pixel in image X and all pixels within a window about the 
corresponding pixel in image -y. 

Asymmetric Local Co-Registration Adjustment algorithm 
(more efficient implementation) 

Compute Q for the image pair X and 'Y 
for all window vector indices m do 

Construct 'Ym by applying shift (Wh,m, wv,m) to 'Y 
for all pixel indices k, l do 

Set Am,k,l = [xL 'Y;',k,l] Q [ 'Y:\~,l ] 
end for 

end for 
for all pixel indices k, l do 

Set Ak,l = minm Am,k,l 
end for 

The offset Wm. th at minimizes Ak.l ,m is naturally interpreted as the misregistration at the point k, I in the 
image. We do not, however, treat it as an accurate estimator of misregistration per se; instead we interpret 
it more loosely as a way to compens<lte for the misregistration. Never t heless, given the mutual information 
interpretation of the HACO anomalousness measure (see (1)), it is interesting to note the strong similarity 
between the approach proposed here for reducing the sensitivity of ACO algorithms to registration errors, and 
the well known mutual information based regbtration algorithms. ll )3 

In the above algorithms covariance Q is computed once and then applied for every shifted image. A plausible 
alternative is to recompute Q for every X and shifted { image pair , but this turns out to be a bad idea: (i) it 
effectively (and incorrectly) assumes th<lt the same fixed shift is applied over the entire image, (ii) it results in 
differences of normalization between the resulting anomalousness maps, and (iii) it works poorly in practice. 

2,2 Symmetric Algorithm 

The motivation for the LCRA algorithm is based on a scenario in which the anomalous change occurs in the 
first image, X, of the pair, and this asymmetry carries through to the resulting algorithm. In particular, when 
the anomalous change is a pixel in the second image , {, it may elude detection. This is because it is always part 
of a window of pixels, and its neighbors will be chosen as the registr<l.tion-adjusted matches for the pixels in X. 
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Figure 4. Minimization over the stack of anomalous ness maps for each pair of X and shifted / images. 
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Figure 5. Symmetric version of the LCRA algorithm illustrated in Fig. 3. At each pixel , the minimum anomalousness pair 
is selected in each direction (i.e. image X to /. and image / t o X) and the final anomalousness value is the maximum of 
these two minima. 



Note, however, that while a true anomalous change will give either a high or low a nomalousness depending on 
the direction of minimizat ion (i.e. X to " or vice versa), a spurious anomalous change due to misregistration 
is symmetric, in that s imilar minimum anomalousness should be obtained independent of the direction of min­
imization . This observation suggests the Symmetric LCRA algorithm , in which minimization is performed in 
both directions, and the maximum of the resulting minima is selected as the final result, as illustrated in Fig. 5. 

The symmetric algorithm, like the original asymmetric version, is more efficiently implemented in terms of 
shifts applied to whole images, as in the following algorithm: 

Symmetric Local Co-Registration Adjustment algorithm 
(more efficient implementation) 

Compute Q for the image pair X and I 
for all window vector indices m do 

Construct X m by applying shift (Wh ,m, w u,m) to X 

Construct 1m by applying shift (Wh ,m, w u,m) to I 
for all pixel indices k, l do 

Set A O,m ,k ,l = 

Set A],m,k ,l = 
end for 

end for 

T T 
Xm ,k,l I k, l 

T T 
Xk,l I m,k ,/ 

for all pixel indices k, l do 
Set Ak,l = max{minm AO,m,k,l , minm A1 ,m,k,t} 

end for 

2.3 Simulation Framework 

Because anomalies are by definition rare, evaluat ing the utility of anomaly detection algorithms can be problem­
atic; anecdotal evidence has some value, but quantitat ive comparisons require an adequate supply of anomalies. 
In the simulation framework proposed in Ref. [1 4], one can start with two images which are presumed to contain 
pervasive differences but no a nomalous changes. ' 'vVe call these the base image and the normal change image 
(and they correspond to the, and X images, respectively). A third image, th e anomalous change image, is 
simula ted by choosing a pixel in the normal change image, and replacing it with a randomly chosen pixel from 
somewhere in the rest of the normal change image. The idea is tha t the pixel is not itself unusual, but in the 
context of the corresponding pixel in the base image, it exhibits an unusual change. When purely spectral ACD 
algorithms are employed , one can take a shortcut and produce an anomalous change image in which every pixel 
constitutes an anomalous change - in this case, the anomalous change image is obtained from the normal change 
image simply by scrambling its pixels. The anom alous change detection algorithm is "trained" (which is to say 
that the quadratic coefficient matrix Q is computed) using the base- normal pair. Applying the algorithm, at 
a given threshold, to the base- normal pair provides an estimate of the false a larm rate. Applying the same 
algor ithm at the same threshold to the base-anomalous pair, one can estimate the detection rate. By varying the 
threshold , a receiver operator characteristic (ROC) can be generated: this provides detection rate as a function 
of false a larm rate . 

• Of course it is possible to generate these pervasive differences by simulation as well ; where the anomalous change is 
generated for a single pixel at a· time, the pervasive difference is applied to t he whole image at once. 



2.3.1 Evaluating LCRA algorithm with simulation framework 

When spatial pre-processing is built into the ACD algorithm, the silllulation framework requires additional 
complexity.15 Because the LCRA algorithm incorporates spatial context, thb additional complexity is necessary 
here. It is possible to avoid this complexity for the specific case where the algorithm is R.'lymmetrical, and the 
anomalies are known to be on a particular image; that is the ca..<;e we investigated in our earlier work 2 But 
that b a special case, and for the results presented here, we employed a more sophisticated (and more robust) 
simulation framework. 

This framework incorporates the same ideas used in other work on spatial processing for anomalous change 
detectioll. 15 We begin by introducing another image, the target mask, which is a binary image with spatially 
isolated 1'8 surrounded by O '~. Anomalous changes are introduced only at locations in the image where the tmyet 
mask is 1. That is, the anomalous ch;tIlge image differs from the nOT'mal image only at those locations where 
the target mask is 1. Those anomalous pixels are chosen at random from the rest of the image. 

As before, we apply the algorithm at a given threshold to the base-normal pair to provide an estimate of 
the false ala rm rate. t We apply the same algorithm at the same threshold to the base-anomalo'us pair, but only 
consider the pixels where the target mask is nonzero. This provides our estimate the detection rate. 

Because the anomalous changes are spatially isolated, we can perform spatial processing without having the 
individual a.nomalies interfere with each other. It is of course required that the distance between the anomalies 
be larger than the diameter of the spatial processing window. 

For the asymmmetic LCRA algorithm, there are two cases. One in which the I image is shifted (as shown in 
Fig. 3), and one in which the X image is shifted. If we know that the anomalies, if they are to appear, will appear 
in the X image, the the approach illustrated in Fig. 3, and described in the asymmetric LCRA pseudocode (see 
Section 2.1 ), is appropriate. But if a single-pixel anomClly were to appear in the I image, then the effect of the 
min operator in Fig. 3 would be to effectively ignore the anomaly. 

In our earlier work, we assumed that the changes were introduced in the X imClge and the algorithm was 
evaluated with simulation fmmework that made the same assumption. But in pmctiCe, this means thClt the user 
has to guess correctly which image harbors the anomaly. If the user guesses incorrectly, the c1.Symmetric LCRA 
can fail catastrophicCllly. In the results presented here, we use the above simulation framework , but employ two 
different asymmetric LCRA algorithms: one that guesses correctly which image has the anomalies (fwd), and 
one that guesses incorrectly (rev) . For the symmetric LCRA , the forwClrd Clnd reverse algorithms are identical. 

3. RESULTS 

We present ACD results for both simulClted and real anomalous changes. In eClch case we evaluate the performance 
of the LCRA algorithm in correcting (i) a simple shift of the entire image by two pixels in the horizontal direction , 
and (ii) a misregistration consisting of a random (non-integer) offset at eClch pixel, in both the horizontal and 
vertical directions, with the offset vector field smoothed to reduce Clbrupt chClnges between adjClcent pixels. 
The maximum offset in this second case is two pixels. All LCRA and Symmetric LCRA (SLCRA) results Me 
computing using BACD as the base ACD algorithm. 

3.1 Hyperspectral data with simulated anomalous changes 

A fCllse color rendition of the AVIRIS (Airborne Visible/InfraRed Imaging Spectrometer 16 ) hyperspectral test 
datat is displayed in Fig. 6. Fig. 7 shows detection results for this data with pervasive differences consisting of a 
uniform 2 pixel horizontal offset. In Fig. 7(a), note thClt the LCRA in the forwClrd direction (i.e. with the correct 
choice of image ill which changes occur) gives the best performance, followed closely by Symmetric LCRA, Clnd 
that the LCRA in the reverse direction (i.e. with the incorrect choice of image in which chClnges occur) gives 
worse performance thCln unmodified BACD. In Fig. 7(b) , there i~ a la rge performance gap between SLCRA with 
r = 1 (corresponding to a 3 x 3 pixel window, and SLCRA with r = 2 and T = 3. Fig. 8 shows detection results 

tWe avoid pixels near the edge of the image when we make this estimate, since the shifting introduces artifacts there. 
j AVIRIS data is available from the Jet Propulsion Laboratory (.JPL) and National Aeronautics and Space Adminis­

tration (NASA) website: http://aviris . jpl. nasa. gov/html/aviris. freedata. html 



Figure 6. False color AVIRIS 16 hyperspectral image of the Florida coastline, from dataset f960323tOlp02J04..scOl. 

for this data with pervasive differences consisting of a smooth random misregistration. In Fig. 8(a), for which t.he 
maximum misregistration radius was 1 pixel , LCRA in the reverse direction substantially reduces performance, 
while the Symmetric LCRA has very similar performance to the LCRA exploiting knowledge of the image in 
which the changes occur. In Fig. 8(b) there is a small performance difference for the three different window radii 
is small, but the best performance is obtained with r = 2, corresponding to the magnitude of the actual random 
misregis tration applied. 
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Figure 7. Results using AVIRIS data with simulated anomalous changes and uniform horizontal misregistration of 2 pixels: 
(a) comparing LCRA in both directions with SLCRA, and (b) comparing SLCRA for T E {l, 2,3}. 

3.2 Multispectral data with real anomalous changes 

A pair of images of desktop clutt.er is used to compute performance results for real data. These images are 
displayed in Fig. 9, with a circle surrounding the anomalous change, consisting of a sunflower seed which is rotated 
in the second image. The pervasive changes consist of different lighting conditions, and a misregistration. In 
Figs. 10 and 11 the "HACD (aligned)" curve provides reference performance for HACD with no misregistration. 
In both cases, LCRA (computed using T = 1 or r = 2 depending on the magnitude of the misregistration) 
provides a significant performance improvement. Note that the adjusted registration is often not observed to be 
very accurate, despite the significant improvement in detection performance based on the resulting anomalousness 
map. 
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Figure 8. Results using AVIRIS data with simulated anomalous changes and random misregistration: (a) radius one 
misregistration, comparing LCRA in both directions with SLCRA (the curves for "LCRA (fwd)" and "SLCRA" are 
indistinguishable) , and (b) raDius two misregistration , comparing SLCRA for r E {I , 2, 3} . 

Figure 9. Desktop clutter test image pair. Location of anomalous change indicated by white circle. 
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Figure 10. Desktop clutter detection results for uniform misregistration of (a) 1 pixel, and (b) 2 pixels. The "HACD 
(aligned)" curve corresponds to no misregistration, and provides an upper bound on misregistrat.ion compensation per­
formance. 



Q) 0.7 

~ 0.6 

" o 0.5 
'.;3 
u 
~ 0.4 
Q) 

o 0.3 

0.2 

0.1 

:.-.~,: .. 

HACD (aligned) - ­
HACD -----. 
LCRA ........ . 

SLCRA .--.. 
0.0 '---'~~'--'_.........J'-'-_""""'~~--'-'-~~-'-'.~~-'-' 

le-06 Ie-OS le-04 Ie-03 le-02 Ie-Ol le+OO 

False Alarm Rate 

Q) 0.7 

~ 0.6 

" .~ 0.5 
u 

'" 0.4 0; 
0 0.3 

0.2 

0.1 

0.0 
le-06 

HACD (aligned) -­
HACD -------
LCRA .... .... . 

SLCRA -_ .. 

Ie-OS 1e-04 1e-03 1e-02 Ie-Ol le+OO 

Fa.lse Alarm Rate 

Fig-ure 11. Desktop cluUl'r detection results for random misreg-istration of (a) radius 1, and (b) radius 2. The "HACD 
(aligned)" curve corresponds to no misregistration , and provides an upper bound On misregistration compensation per­
formance. 

4. CONCLUSIONS 

The LCRA algorithm is ob!;erved to significantly improve detection performance in the low false-alarm regime 
(sometimes at the expense of performance in the high false-alarm regime) for misregistered data. These per­
formance improvements have been observed for both the simu lation framework and real data. The Symmetric 
LCRA algorithm gives additional performance im provements, over a wider range of false-alarm rates. 

Future research will address a number of promising extensions to this approach, including: (i) iteratively ap­
plying the estimated registration adjustment, re-computing covariances, and re-computing the local co-registration 
adjustment: (ii) generalization of the registration window to allow explicit adjustmen t for sub-pixel misregistra­
tions; and (iii) incorporation of appropriate prior knowledge, such as smoothness, on the form of misregistration. 
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