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Abstract- Neu roscience has revealed many properties of 
neurons and of the functional organization of visual cortex that 
are believed to be essential to human vision, but are missing in 
standard artificial neural networks. Equally important may be 
the sheer scal'e of visual cortex requiring -1 petaflop of 
computation. In a year, the retina delivers -J petapixel to the 
brain, leading to massively large opportunities for learning at 
many levels of the cortical system. We describe work at Los 
Alamos National Laboratory (LANL) to develop large-scale 
functional models of visual cortex on LANL's Roadrunner 
petaflop supercomputer. An initial run of a simple region VI 
code achieved 1.144 petaflops during trials at the JBM facility in 
Poughkeepsie, NY (June 2008). Here, we present criteria for 
assessing when a set of learned local representations is 
"complete" along with general criteria for assessing computer 
vision models based on their projected scaling behavior. Finally, 
we extend one class of biologically-inspired learning models to 
problems of remote sensing imagery. 

1. INTRODUCTION 

Neuroscience has revealed many properties of individual 
neurons and of the functional organization of visual cortex 
that are believed to be essential to reach human vision 
performance, but are missing in standard artificial neural 
networks. Among these are extensive lateral and feed-back 
connectivity between neurons, spiking dynamics of neurons, 
and spike timing dependent plasticity (STDP) of synapses. 

Equally important may be the enormous scale of visual 
cortex: -10 billion neurons each with -10 thousand synaptic 
connections, a simple simulation (10 flop/neuron to process 
one frame of data) therefore requiring -I petaflop (10 15 flop) 
of computation. In a year, the 6 million cones in the retina and 
-I million fibers in the optic nerve deliver -I petapixel to the 
brain. A recent biologically-inspired model of visual cortex 
regions V 1-V 4 and inferotemporal (IT) cortex (Serre, et aI. , 
[1,2], based on Fukushima's "Neocognitron" [3] and 
"HMAX" models ofPoggio, et aI., [4]) operating at a scale of 
-10 million feed-forward neurons on a -billion pixel library of 
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images [5], was compared to human performance on a binary 
classification task in a speed-of-sight psychophysics 
experiment: detection 0 of animal/no animal. Under these 
conditions, in which subjects viewed images for a little as 20 
msec before substitution of a !If noise mask (implying that 
feed-forward pathways in cortex are likely to dominate), the 
HMAX/ Neocognitron model achieved accuracy comparable 
to the human subjects (-80% accuracy, and d' performance 
score of -2.2 [1,6]). 

Human performance on the Speed of Sight task improves to 
near perfect accuracy as stimulus presentation time increases, 
thus raising a number of questions: can these hierarchical 
feed-forward models ultimately match human performance 
under natural viewing conditions as we scale the model to 
match the full size of human visual cortex? Do we need to 
train these models with petascale image datasets? How much 
of this training data needs to be labeled? How many distinct 
object categories are required to support synthetic visual 
cognition? 

Computing hardware to support full-scale implementations 
of feed-forward hierarchical models now exists. The Synthetic 
Cognition team at Los Alamos National Laboratory is 
developing large-scale functional models of visual cortex that 
can operate on its Roadrunner petaflop supercomputer [7]. An 
initial run of a simple V I code achieved 1.144 petaflops 
during trials at the IBM facility in Poughkeepsie, NY (June 
2008). The goal of this research is to build a full-scale 
functional model of visual cortex that can process high 
definition v ideo (I 080p) in real time. 

In addition to standard computer vision problems, we are 
also interested in exploring application of these models to 
remote sensing datasets of satellite and aerial imagery. 
Previous attempts to apply biologically inspired algorithms to 
satellite imagery [8,9] focused on retinal and V I features such 
as edge and bar detectors, color opponency, and edge 
continuation, provided as input to an ARTMAP supervised 
classification algorithm [10). Pinto, Cox and DiCarlo [11] 
have argued that VI alone, which characterizes only iocal 
features in images (about I degree angle resolution) is 
probably not enough to capture the invariant representations of 



objects necessary to interpret natural scenes, and explicitly 
demonstrated classification accuracy breakdown using 
rendered image sets where the same object is presented over a 
large number of poses, viewpoints and backgrounds. Here, we 
present preliminary evidence to support several hypotheses 
governing biologically-inspired learning. Specifically, we 
address the general question of how to determine when the 
learned-representations over a restricted region of visual space 
is "complete" by analyzing the frequency with which 
individual features are activated by natural images. We also 
illustrate a general method for comparing different computer 
vision models by examining their scaling behavior as a 
function of training set size, as opposed to the more common 
method of comparing performance at a single scale. Finally, 
we explore how hierarchical models of the ventral pathway 
can be app lied to object detection in overhead imagery. 

II. DESCRIPTION OF THE MODEL 

A. Base model. 

We constructed a hierarchical model of visual cortex based 
on the architecture of the N eocognitron [3], as developed by 
HMAX models [4]. This class of model consists of alternating 
layers of "simple" and "complex" cells inspired by Hubel and 
Wiesel's model of primary visual cortex [12]. 

The input to our model is a grayscale image, padded by 
enough zeros to allow efficient looping over the image. We 
do not impose size constraints on the image, and have tested 
our C++ code, called PANN (Petascale Artificial Neural 
Network), with a range of image sizes. 

We impose retina-like contrast equalization by carrying out 
a local contrast adjusting transformation. For each pixel in the 
image, we consider its neighborhood patch , x = {Xi}' This 
patch is shifted and scaled to have zero mean (X) = E Xi = 0) 

and unit norm (I~II = Ex? = I). The central pixel value is then 
kept. A regularization term is used to discount contributions 
from image regions with negligible contrast. 

Visual regions VI and V2 are modeled with a columnar 
organization of Sand C cells, corresponding to simple and 
complex cells in VI and to their generalizations in higher 
visual areas. Each column sees the same receptive field size 
over its input (retina or V I, respectively). Each S cell has a 
tuning, specified by a synaptic weight vector, and a tuning 
width, which defmes the feature to which that S cell is 
sensitive. In principle, each column could develop a unique 
set of weight vectors and tuning widths, 'but in practice the 
models are greatly simplified by the imposition of a fIXed 
tuning width for all S cells, and by the imposition of 
translational invariance by making all the columns in a layer 
identical. 

S cells are implemented as radial basis functions, 

where x = {Xi} is the input to the S cell , wj represents the 
synaptic weights, and a parameterizes the bell-shaped tuning 

Fig. I. V I simple cell weight vectors generated by Gabor functions 
covering a range of orientations, scales, and phases. 
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of the neuron. The input x has its mean subtracted (X) = 0) 

and is normalized (I~II= I). Alternative imp lementations for S 
ce lis are described in [13]. 

To represent the observed range of edge-tuned and bar­
tuned neurons in primary visual cortex [14,15] , it is common 
[I] to choose the weight vectors Wj to be a set of Gabor 
functions parameterized by orientation e, eccentricity y, 
envelope width cr, spatial wavelength lv, and phase $, 

Wj (e, y,O",/t,tP) = exp( -( x~ + YY~) / 20" ) COs( 2:X~ + tP } 

where the pixel co-ordinates (x,y) have been rotated through 

an angle e to give (xe. Ye). The weight vector has zero mean 

(Wj ) = 0) and unit norm (Ilwill = I). Typical values for these 
parameters are set by reference to experimental data [I], and 
Figure I shows a set of such weight vectors for V I. 

C cells are implemented as winner-take-all max functions 
over the cell's receptive field, 

cj = gMAX (s) = max({ SiEN
i 
}), 

where the input s is a patch of responses from the previous S 
cell layer, and ~ defines the receptive field of the /h C cell. 
Alternative implementations and learning rules for complex 
cells in V I are discussed in [16-18] . 

In cortical region V2, the S cell layer is again implemented 
as a layer of radial basis functions with input from the 
complex cell layer of V I, J~ = gRBF( Wllj , c\ There is no 
standard closed-form expression for calculating V2 S cell 
weight vectors, and so these are learned though either 
"imprinting" (memorization of patches of V I complex cell 
output produced during presentation of a training set of images 
[1,2]) or other biologically inspired learning rules as described 
below. 

The final stage of th is model representing inferotemporal 
cortex (IT) is imp lemented using a supervised classification 
algorithm, typically a support vector machine (SVM) [19] . 
We use the standard UBSVM package [20]. To reduce the 
complexity of the image representation given to the support 
vector machine, the final C cell layer is a global max over 
each of the features learned by the final S cell layer [1 ,2]. 



Additionally, in keeping with estimates of the number of 
neurons in different regions of visual cortex, the spatial extent 
of each layer is reduced by a down-sampling factor that should 
match the increase in the number of features calculated in a 
cortical column over each pixel. We use a down-sampling 
value of 2, consistent with experimental data showing the 
growth of neuron receptive fields between layers [21 ,22]. 

B. Unsupervised Learning in Vi , V2. 

Published results with HMAXlNeocognitron models have 
used a pre-selected set of Gabor tunings for V I neurons, and 
imprinting of neurons in V2 [1,2]. Alternatively, several 
learning rules to compute these representations have been 
proposed [16-1 8]. 

One of the simplest of these is a mod ified Hebbian learning 
rule [23,24] , applied to feed-forward hierarchical models in 
[16,17], 

tlWj = a· Yj . (x - Y j . wj ), 

where Yj is the activity of the neuron in response to input x, 
and a is a parameter controlling the learning rate . 

In V I, a simple cell with receptive field size M x M 
observing Boolean-valued pixels (a lower bound) can receive 
i'" x M possible input patches. If imprinting is a reasonable 

leaning rule, then either V I needs sufficient capacity to learn a 
significant fraction of these patterns, or else the statistics of 
natural images have to be such that the most important 
patterns are the most frequently observed. 

V I receives input from ~ I M fibers in the optic nerve 
projecting via lateral geniculate nucleus (LGN). Of the ~ 150M 
neurons in VI, -30M project forward to V2 . Given the spatial 
down-sampling in V I, we therefore expect that a cortical 
column in V I has -100-1000 neurons tuned to features of the 
receptive field, much less than the possible number of input 
patches for small receptive fields, e.g., M=5 requires a 
memory of 225 = 107

.
5 to imprint all possible patterns. This 

situation becomes geometrically worse in V2 (and higher 
regions of visual cortex), where an S cell can in principle 
receive input over a spatial neighborhood of cortical columns 
each with F features, giving 2M x M x F possible input states. 

Learning rules can improve this situation, by allowing the S 
cells in each cortical column to adapt their tuning during 
presentation of a large amount of training data. The issue 
becomes how much training data is required to stabilize the 
tunings of a population of neurons in a cortical column. 

We consider a model of VI with on-line Hebbian learning, 
with additional conditions as follows . We initialize the V I 
column by imprinting each of the F simple cells in the cortical 
column. On presentation of an input x, we calculate the 
activity of each simple cell, 

Vj = 1. . . F, S j = 8RBF (wj,X), 
The neuron j* with the largest activation Sj* is selected 

(winner-take-all) for updated according to the Hebbian 
learning rule, 

~ 
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Fig. 2. Number of activations per prototype for Hebbian learning (solid line) 
and imprinting (dashed line) in response to 18 million input patches. 

and is then renormalized to unit norm (1lwrll = I). As the input 
pattern is mean zero «x) = 0), Hebbian learning ensures that 

the weight vector has zero mean «wi" ) = 0). 
To explore convergence of the cortical column tunings in 

V I, we extracted 18 million 5 x 5 pixel patches of images 

from 600 animal/no animal images from the AnimalDB 
dataset [25]. Patches are sampled randomly with replacement, 
and we expect there to be -10 copies of each patch in the 
training set. We then train a set of 128 simple cells and keep 
track of the number of times each patch is selected for update 
by the winner-take-all competition. For comparison, we 
imprint 128 simple cells by drawing randomly from the 
collected patches, and then determine how many times each of 
these unmodified patches would have won the winner-take-all 
competition between simple cells. 

Figure 2 shows the number of activations per prototype for 
Hebbian learning and for imprinting. We see that the 
distribution of activations flattens substantially with Hebbian 
learning, suggesting that with enough input patterns the 
column of weight vectors will converge to a population of 
nearly equally active units. Only 100 out of the possible 128 
prototypes are active with non-negligible frequency, 
suggesting that this size set of features can represent the input 
drawn from natural scenes. 

Figure 3 shows these imprinted and Hebbian-Iearned 
prototypes sorted by number of activations (most active are 
shown first). Similar to the results in [17], we see that the 
Hebbian rule learns a set of Gabor-like oriented edge and bar 
weight vectors. These results suggest that by examining the 
frequency distribution with which a column of S cells are 
activated over a given image database, the minimum number 
of feature prototypes necessary to form a "complete" set can 
be empirically determined. 



Fig. 3. VI simple cell weight vectors learned by imprinting (left) and by 
Hebbian learning (right), sorted by number of activations (Fig.2). Hebbian 

rule learns a set of Gabor-like weight vectors (cf. , Fig. I). 

C. Supervised Learning in IT. 

The performance of the model with imprinted and learned 
prototypes can be compared in terms of object classification 
accuracy in a standard supervised learning task. HMAXI 
Neocognitron models are used to classify whole images with a 
single label. The IT layer of the model converts the final C 
cell layer into a I dimensional vector, where the length of the 
vector is equal to the number of S cells in the column. This 
vector is sent to support vector machine for classification. 
Serre, et aI., [1,2], demonstrate their model on Caltech Vision 
Group datasets (Caltech 101 [5]) and an animal/no-animal 
dataset [25]. As shown in Figure 4, we achieve similar 
classification results on object categories from the newer 
Caltech 256 dataset [26]. The animal/no-animal dataset 
contains 1200 images, enabling an investigation of the 
behavior of the classifier as the training set size increases. 

Figure 5 shows the result of training on different size sets of 
images while testing on a fIXed set of testing images (not seen 
during training). Performance on the test set is seen to 
increase, and suggests that perfect performance (100% 
accuracy) will be achieved at a finite number of training 
images. If we compare the behavior of a classifier trained 
using the standard fixed Gabor VI and imprinted V2, versus 
Hebbian learned V I and V2, we see that the fully learned 
model starts at a lower accuracy, but eventually matches 
performance of the standard model as the train ing set grows. 

Ifwe fit these models with a simple functional form [27], 

where A is the accuracy, NT is the size of the training set, 
and a and b are constants. We can extrapolate these graphs to 
calculate the critical training set size at which accuracy 

20 

o 20 40 60 80 100 
CALTECH 256 OBJECT CATEGORY (30 TRAIN 130 TEST IMAGES) 

Fig. 4. Accuracy achieved on 100 categories drawn from the Caltech 256 
object identification dataset (test-set accuracy for supervised binary­

classification of object images versus background images). 
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fig . 5. Accuracy for supervised binary-classification of animal versus 
no animal images as a function of training set size for a visual cortex using 

imprinting (open diamonds and dashed line) or Hebbian learning (crosses and 
solid line). Lines show fit of a simple model , A = a + b In(NT) . 

reaches 100%. For the standard model, this value is 
NT = 3996, whereas for the fully learned model Ni = 3130, 
suggesting that learning V I and V2 can improve the 
performance of the model with sufficiently large datasets. 
These results suggest a general method for comparing 
different computer vision models, a criteria based not on 
performance at a single scale but on how performance 
improves as the models themselves are scaled to better match 
corresponding biological systems. 

D. Modification of the model for remote sensing data 

For remotely sensed imagery, whole image classification 
needs to be modified to allow local detection of objects of 
interest. This can be achieved by modifying the final complex 
cell layer to calculate a local max rather than the standard 
global max operation. The set of local max vectors can then 
be sent a standard supervised classification algorithm to 
generate a local decision on the presence or absence of the 
object of interest. Note that the samples sent to the supervised 
classifier are not independent (and so are not independent and 
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Fig. 7. Part of the training markup for a vehicle detection task. 
Target pixels marked green and background pixels marked red. 
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identically distributed, Le" i.Ld.), but as is common in image 
analysis, we treat these samples as though they were. 

Figure 6 shows a patch of panchromatic aerial imagery over 
a typical urban setting. Ground sample distance (GSD) for the 
scene is --D.3m, widely available from commercial aerial 
platforms. As a demonstration of our approach, we consider 
the problem of pixel-level vehicle extraction from this 
imagery. 

We marked up a region of the image (Figure 7) and trained 
a model using a set of 128 VI simple cells and 256 V2 S cells, 
with all weight vectors learned using the modified Hebb rule. 
The whole image is 1268xl012 pixels, of which 48,320 are 

marked as target pixels and 403,154 are background pixels. 
With this mark up, after V2 processing the SVM classifier 
received 753 training samples (543 positive and 2031 
negative). Classifier accuracy on the training set of V2 
complex cell output was 89 .1 %. Projected back to the input 
image, the pixel-level accuracy was 96.0% (90% detection 
rate (DR) and 3.5% false alarm rate (FAR), Figure 8). 

Figure 9 shows the result of applying the fully trained Vi­
V2 model to a test image. There were 1511 testing samples 

5 

(204 positive and 1307 negative) . The classifier achieves an 
accuracy of 86.9% at the V2 complex cell level, and a pixel­
level accuracy of 92.5% (30.4% DR, 4.0% FAR). Receiver 
Operating Characteristic (ROC) curves for training and testing 
are shown in Figure 10. 

III. DISCUSSION AND FUTURE WORK 

Hierarchical, feed-forward models of Neocognitron/HMAX 
type can be applied to remotely sensed overhead imagery by 
modifying the final C cell layer to use local max operations. 
Biologically-inspired learning rules, such as the modified 
Hebb rule described in section II.B above, can compete with 
the use of predefined feature banks and imprinting. In future 
work, we will explore adding color and motion visual pathway 
channels to these models. 

We have shown that under the operation of a learning rule, 
and given enough unlabeled training data, the weight vectors 
of a cortical column can converge to a distribution of nearly 
equally active units . Those units active after convergence of 
the population provide a "complete" representation of the 
input patterns present at that level of the model. This principle 
can be applied to the training of successive stages of a 
hierarchical model. Further, we have argued that model 
builders should consider the scaling behavior of the 
performance of the model as the size of the training and 
testing sets increase. Thorough investigation of scaling 
behavior greatly increases the computational requirements of 
studies. In future work we will explore hardware-accelerated 
implementations of this models that can exploit new petascale 
computing resources at Los Alamos National Laboratory. 
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Fig. 8. Trained V 1-V2 model applied to training scene. Pixels classified as 
containing a vehicle are marked yellow (true positives) and orange (false 
positives). False negatives are marked in cyan. True negatives are purple. 

Fig. 9. Trained VI-V2 mod'el applied to test scene (same color scheme). 
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Fig. 10. Receiver Operating Characteristic (ROC) curve for 
training scene (solid line) and test scene (dashed line). 
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