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Abstract— Neuroscience has revealed many properties of
neurons and of the functional organization of visual cortex that
are believed to be essential to human vision, but are missing in
standard artificial neural networks. Equally important may be
the sheer scale of visual cortex requiring ~1 petaflop of
computation. In a year, the retina delivers ~1 petapixel to the
brain, leading to massively large opportunities for learning at
many levels of the cortical system. We describe work at Los
Alamos National Laboratory (LANL) to develop large-scale
functional models of visual cortex on LANL’s Roadrunner
petaflop supercomputer. An initial run of a simple region VI
code achieved 1.144 petaflops during trials at the IBM facility in
Poughkeepsie, NY (June 2008). Here, we present criteria for
assessing when a set of learned local representations is
“complete” along with general criteria for assessing computer
vision models based on their projected scaling behavior. Finally,
we extend one class of biologically-inspired learning models to
problems of remote sensing imagery.

I. INTRODUCTION

Neuroscience has revealed many properties of individual
neurons and of the functional organization of visual cortex
that are believed to be essential to reach human vision
performance, but are missing in standard artificial neural
networks. Among these are extensive lateral and feed-back
connectivity between neurons, spiking dynamics of neurons,
and spike timing dependent plasticity (STDP) of synapses.

Equally important may be the enormous scale of visual
cortex: ~10 billion neurons each with ~10 thousand synaptic
connections, a simple simulation (10 flop/neuron to process
one frame of data) therefore requiring ~1 petaflop (10" flop)
of computation. In a year, the 6 million cones in the retina and
~I million fibers in the optic nerve deliver ~1 petapixel to the
brain. A recent biologically-inspired model of visual cortex
regions V1-V4 and inferotemporal (IT) cortex (Serre, et al.,
[1,2], based on Fukushima’s “Neocognitron” [3] and
“HMAX” models of Poggio, et al., [4]) operating at a scale of
~10 million feed-forward neurons on a ~billion pixel library of
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images [5], was compared to human performance on a binary
classification task in a speed-of-sight psychophysics
experiment: detection ' of animal/no animal. Under these
conditions, in which subjects viewed images for a little as 20
msec before substitution of a 1/f noise mask (implying that
feed-forward pathways in cortex are likely to dominate), the
HMAX/ Neocognitron model achieved accuracy comparable
to the human subjects (~80% accuracy, and d’ performance
score of ~2.2 [1,6]).

Human performance on the Speed of Sight task improves to
near perfect accuracy as stimulus presentation time increases,
thus raising a number of questions: can these hierarchical
feed-forward models ultimately match human performance
under natural viewing conditions as we scale the model to
match the full size of human visual cortex? Do we need to
train these models with petascale image datasets? How much
of this training data needs to be labeled? How many distinct
object categories are required to support synthetic visual
cognition?

Computing hardware to support full-scale implementations
of feed-forward hierarchical models now exists. The Synthetic
Cognition team at Los Alamos National Laboratory is
developing large-scale functional models of visual cortex that
can operate on its Roadrunner petaflop supercomputer [7]. An
initial run of a simple VI code achieved 1.144 petaflops
during trials at the IBM facility in Poughkeepsie, NY (June
2008). The goal of this research is to build a full-scale
functional model of visual cortex that can process high
definition video (1080p) in real time.

In addition to standard computer vision problems, we are
also interested in exploring application of these models to
remote sensing datasets of satellite and aerial imagery.
Previous attempts to apply biologically inspired algorithms to
satellite imagery [8,9] focused on retinal and V1 features such
as edge and bar detectors, color opponency, and edge
continuation, provided as input to an ARTMAP supervised
classification algorithm [10]. Pinto, Cox and DiCarlo [11]
have argued that V1 alone, which characterizes only local
features in images (about 1 degree angle resolution) is
probably not enough to capture the invariant representations of



objects necessary to interpret natural scenes, and explicitly
demonstrated classification accuracy breakdown using
rendered image sets where the same object is presented over a
large number of poses, viewpoints and backgrounds, Here, we
present preliminary evidence to support several hypotheses
governing biologically-inspired learning.  Specifically, we
address the general question of how to determine when the
learned-representations over a restricted region of visual space
is “complete” by analyzing the frequency with which
individual features are activated by natural images. We also
illustrate a general method for comparing different computer
vision models by examining their scaling behavior as a
function of training set size, as opposed to the more common
method of comparing performance at a single scale. Finally,
we explore how hierarchical models of the ventral pathway
can be applied to object detection in overhead imagery.

1I. DESCRIPTION OF THE MODEL

A. Base model.

We constructed a hierarchical model of visual cortex based
on the architecture of the Neocognitron [3], as developed by
HMAX models [4]. This class of model consists of alternating
layers of “simple™ and “complex” cells inspired by Hubel and
Wiesel’s model of primary visual cortex [12].

The input to our model is a grayscale image, padded by
enough zeros to allow efficient looping over the image. We
do not impose size constraints on the image, and have tested
our C++ code, called PANN (Petascale Artificial Neural
Network), with a range of image sizes.

We impose retina-like contrast equalization by carrying out
a local contrast adjusting transformation. For each pixel in the
image, we consider its neighborhood patcii, x = {x;}. This
patch is shifted and scaled to have zero mean ({x) = Z x; = 0)
and unit norm (|jx|| = £ x = 1). The central pixel value is then
kept. A regularization term is used to discount contributions
from image regions with negligible contrast.

Visual regions V1 and V2 are modeled with a columnar
organization of S and C cells, corresponding to simple and
complex cells in V1 and to their generalizations in higher
visual areas. Each column sees the same receptive field size
over its input (retina or V1, respectively). Each S cell has a
tuning. specified by a synaptic weight vector, and a tuning
width, which defines the feature to which that S cell is
sensitive, In principle, each column could develop a unique
set of weight vectors and tuning widths, but in practice the
models are greatly simplified by the imposition of a fixed
tuning width for all S cells, and by the imposition of
translational invariance by making all the columns in a layer
identical,

S cells are implemented as radial basis functions,

$; = Brer (wj,x) = exp(—(wj. - Jr)2 IZO') ;

where x = {x;} is the input to the S cell, w, represents the
synaptic weights, and o parameterizes the bell-shaped tuning

Fig. 1. V1 simple cell weight vectors generated by Gabor functions
covering a range of orientations, scales, and phases.
of the neuron. The input x has its mean subtracted ({x) = 0)
and is normalized (|lx/[=1). Alternative implementations for S
cells are described in [13].

To represent the observed range of edge-tuned and bar-
tuned neurons in primary visual cortex [14,15], it is common
[1] to choose the weight vectors w; to be a set of Gabor
functions parameterized by orientation ©, eccentricity Y,
envelope width o, spatial wavelength A, and phase ¢,

2rx, ""PJ

w;(6,7,0,4,9)= exp(—(xj +'yy;')!2o)cos[ =
where the pixel co-ordinates (x,y) have been rotated through
an angle @ to give (x yy). The weight vector has zero mean
({w; ) = 0) and unit norm (||w)|| = 1). Typical values for these
parameters are set by reference to experimental data [1], and
Figure 1 shows a set of such weight vectors for V1.

C cells are implemented as winner-take-all max functions
over the cell’s receptive field,

¢ = Smx(s) = max({s,.m‘ })’

where the input s is a patch of responses from the previous S
cell layer, and N, defines the receptive field of the j"’ C cell.
Alternative implementations and learning rules for complex
cells in V1 are discussed in [16-18].

In cortical region V2, the S cell layer is again implemented
as a layer of radial basis functions with input from the
complex cell layer of V1, s, = ge(w'", ¢). There is no
standard closed-form expression for calculating V2 S cell
weight vectors, and so these are learned though either
“imprinting” (memorization of patches of V1 complex cell
output produced during presentation of a training set of images
[1,2]) or other biologically inspired learning rules as described
below.

The final stage of this model representing inferotemporal
cortex (IT) is implemented using a supervised classification
algorithm, typically a support vector machine (SVM) [19].
We use the standard LIBSVM package [20]. To reduce the
complexity of the image representation given to the support
vector machine, the final C cell layer is a global max over
each of the features learned by the final S cell layer [1,2].



Additionally, in keeping with estimates of the number of
neurons in different regions of visual cortex, the spatial extent
of each layer is reduced by a down-sampling factor that should
match the increase in the number of features calculated in a
cortical column over each pixel. We use a down-sampling
value of 2, consistent with experimental data showing the
growth of neuron receptive fields between layers [21,22].

B. Unsupervised Learning in V1, V2.

Published results with HMAX/Neocognitron models have
used a pre-selected set of Gabor tunings for V1 neurons, and
imprinting of neurons in V2 [1,2]. Alternatively, several
learning rules to compute these representations have been
proposed [16-18].

One of the simplest of these is a modified Hebbian learning
rule [23,24], applied to feed-forward hierarchical models in
[16,17],

AwJ.:a-yj-(x—yj-wj),

where y; is the activity of the neuron in response to input x,
and & is a parameter controlling the learning rate.

In VI, a simple cell with receptive field size M x M
observing Boolean-valued pixels (a lower bound) can receive
2" > M possible input patches. If imprinting is a reasonable
leaning rule, then either V| needs sufficient capacity to learn a
significant fraction of these patterns, or else the statistics of
natural images have to be such that the most important
patterns are the most frequently observed.

V1 receives input from ~IM fibers in the optic nerve
projecting via lateral geniculate nucleus (LGN). Of the ~150M
neurons in V1, ~30M project forward to V2. Given the spatial
down-sampling in V1, we therefore expect that a cortical
column in V1 has ~100-1000 neurons tuned to features of the
receptive field, much less than the possible number of input
patches for small receptive fields, e.g., M=5 requires a
memory of 2** = 10”° to imprint all possible patterns. This
situation becomes geometrically worse in V2 (and higher
regions of visual cortex), where an S cell can in principle
receive input over a spatial neighborhood of cortical columns
each with F features, giving 2"***F possible input states.

Learning rules can improve this situation, by allowing the S
cells in each cortical column to adapt their tuning during
presentation of a large amount of training data. The issue
becomes how much training data is required to stabilize the
tunings of a population of neurons in a cortical column.

We consider a model of V1 with on-line Hebbian learning,
with additional conditions as follows. We initialize the V1
column by imprinting each of the F simple cells in the cortical
column. On presentation of an input x, we calculate the
activity of each simple cell,

Vj=1...F, sj=gRBF(w;,x],
The neuron j* with the largest activation s;« is selected

(winner-take-all) for updated according to the Hebbian
learning rule,
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Fig. 2. Number of activations per prototype for Hebbian leaming (solid line)
and imprinting (dashed line) in response to 18 million input patches.

Aw.=0-s, -(x—sj.-w}.).
and is then renormalized to unit norm (||w;«| = 1). As the input
pattern is mean zero ({x) = 0), Hebbian learning ensures that
the weight vector has zero mean ({w;+ ) = 0).

To explore convergence of the cortical column tunings in
V1, we extracted 18 million 5 x 5 pixel patches of images
from 600 animal/no animal images from the AnimalDB
dataset [25]. Patches are sampled randomly with replacement,
and we expect there to be ~10 copies of each patch in the
training set. We then train a set of 128 simple cells and keep
track of the number of times each patch is selected for update
by the winner-take-all competition. For comparison, we
imprint 128 simple cells by drawing randomly from the
collected patches, and then determine how many times each of
these unmodified patches would have won the winner-take-all
competition between simple cells.

Figure 2 shows the number of activations per prototype for
Hebbian learning and for imprinting. We see that the
distribution of activations flattens substantially with Hebbian
learning, suggesting that with enough input patterns the
column of weight vectors will converge to a population of
nearly equally active units. Only 100 out of the possible 128
prototypes are active with non-negligible frequency,
suggesting that this size set of features can represent the input
drawn from natural scenes.

Figure 3 shows these imprinted and Hebbian-learned
prototypes sorted by number of activations (most active are
shown first). Similar to the results in [17], we see that the
Hebbian rule learns a set of Gabor-like oriented edge and bar
weight vectors. These results suggest that by examining the
frequency distribution with which a column of S cells are
activated over a given image database, the minimum number
of feature prototypes necessary to form a “complete” set can
be empirically determined.



Fig. 3. VI simple cell weight vectors learned by imprinting (left) and by
Hebbian leaming (right). sorted by number of activations (Fig.2). Hebbian
rule learns a set of Gabor-like weight vectors (cf,, Fig.1).

C. Supervised Learning in IT.

The performance of the model with imprinted and learned
prototypes can be compared in terms of object classification
accuracy in a standard supervised learning task. HMAX/
Neocognitron models are used to classify whole images with a
single label. The IT layer of the model converts the final C
cell layer into a 1 dimensional vector, where the length of the
vector is equal to the number of S cells in the column. This
vector is sent to support vector machine for classification.
Serre, et al., [1,2], demonstrate their model on Caltech Vision
Group datasets (Caltech 101 [5]) and an animal/no-animal
dataset [25]. As shown in Figure 4, we achieve similar
classification results on object categories from the newer
Caltech 256 dataset [26]). The animal/no-animal dataset
contains 1200 images, enabling an investigation of the
behavior of the classifier as the training set size increases.
Figure 5 shows the result of training on different size sets of
images while testing on a fixed set of testing images (not seen
during training). Performance on the test set is seen to
increase, and suggests that perfect performance (100%
accuracy) will be achieved at a finite number of training
images. If we compare the behavior of a classifier trained
using the standard fixed Gabor V1 and imprinted V2, versus
Hebbian learned V1 and V2, we see that the fully learned
model starts at a lower accuracy, but eventually matches
performance of the standard model as the training set grows.
If we fit these models with a simple functional form [27],

A=a+bIn(N,),

where A is the accuracy, Ny is the size of the training set,
and a and b are constants. We can extrapolate these graphs to
calculate the critical training set size at which accuracy
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Fig. 4. Accuracy achieved on 100 categories drawn from the Caltech 256
object identification dataset (test-set accuracy for supervised binary-
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Fig. 5. Accuracy for supervised binary-classification of animal versus

no animal images as a function of training set size for a visual cortex using
imprinting (open diamonds and dashed line) or Hebbian learning (crosses and
solid line). Lines show fit of a simple model, 4 =a + b In(N7) .
reaches 100%. For the standard model, this value is
Nr = 3996, whereas for the fully learned model Ny = 3130,
suggesting that learning VI and V2 can improve the
performance of the model with sufficiently large datasets.
These results suggest a general method for comparing
different computer vision models, a criteria based not on
performance at a single scale but on how performance
improves as the models themselves are scaled to better match
corresponding biological systems.

D. Modification of the model for remote sensing data

For remotely sensed imagery, whole image classification
needs to be modified to allow local detection of objects of
interest. This can be achieved by modifying the final complex
cell layer to calculate a local max rather than the standard
global max operation. The set of local max vectors can then
be sent a standard supervised classification algorithm to
generate a local decision on the presence or absence of the
object of interest. Note that the samples sent to the supervised
classifier are not independent (and so are not independent and



Fig. 6. Panchromatic aerial image over a typical urban scene.

Fig. 7. Part of the training markup for a vehicle detection task.
Target pixels marked green and background pixels marked red.

identically distributed, i.e., i.i.d.), but as is common in image
analysis, we treat these samples as though they were.

Figure 6 shows a patch of panchromatic aerial imagery over
a typical urban setting. Ground sample distance (GSD) for the
scene is ~0.3m, widely available from commercial aerial
platforms. As a demonstration of our approach, we consider
the problem of pixel-level vehicle extraction from this
imagery.

We marked up a region of the image (Figure 7) and trained
a model using a set of 128 V1 simple cells and 256 V2 S cells,
with all weight vectors learned using the modified Hebb rule.
The whole image is 1268x1012 pixels, of which 48,320 are
marked as target pixels and 403,154 are background pixels.
With this mark up, after V2 processing the SVM classifier
received 753 training samples (543 positive and 2031
negative). Classifier accuracy on the training set of V2
complex cell output was 89.1%. Projected back to the input
image, the pixel-level accuracy was 96.0% (90% detection
rate (DR) and 3.5% false alarm rate (FAR), Figure 8).

Figure 9 shows the result of applying the fully trained V1-
V2 model to a test image. There were 1511 testing samples

(204 positive and 1307 negative). The classifier achieves an
accuracy of 86.9% at the V2 complex cell level, and a pixel-
level accuracy of 92.5% (30.4% DR, 4.0% FAR). Receiver
Operating Characteristic (ROC) curves for training and testing
are shown in Figure 10.

[1I. DISCUSSION AND FUTURE WORK

Hierarchical, feed-forward models of Neocognitron/HMAX
type can be applied to remotely sensed overhead imagery by
modifying the final C cell layer to use local max operations.
Biologically-inspired learning rules, such as the modified
Hebb rule described in section [1.B above, can compete with
the use of predefined feature banks and imprinting. In future
work, we will explore adding color and motion visual pathway
channels to these models.

We have shown that under the operation of a learning rule,
and given enough unlabeled training data, the weight vectors
of a cortical column can converge to a distribution of nearly
equally active units. Those units active after convergence of
the population provide a “complete” representation of the
input patterns present at that level of the model. This principle
can be applied to the training of successive stages of a
hierarchical model. Further, we have argued that model
builders should consider the scaling behavior of the
performance of the model as the size of the training and
testing sets increase. Thorough investigation of scaling
behavior greatly increases the computational requirements of
studies. In future work we will explore hardware-accelerated
implementations of this models that can exploit new petascale
computing resources at Los Alamos National Laboratory.
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Fig. 8. Trained V1-V2 model applied to training scene. Pixels classified as
containing a vehicle are marked yellow (true positives) and orange (false
positives). False negatives are marked in cyan. True negatives are purple.

Fig. 9. Trained V1-V2 model applied 1o test scene (same color scheme).
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Fig. 10. Receiver Operating Characteristic (ROC) curve for
training scene (solid line) and test scene (dashed line).



