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ABSTRACT

Trident is a compiler for floating point algorithms written
in C, producing circuits in reconfigurable logic that exploit
the parallelism available in the input description. Trident
automatically extracts parallelism and pipelines loop bodies
using conventional compiler optimizations and scheduling
techniques. Trident also provides an open framework for
experimentation, analysis, and optimization of floating point
algorithms on FPGAs and the flexibility to easily integrate
custom floating point libraries.

1. INTRODUCTION

Over the past twenty years, Field Programmable Gate Ar-
rays (FPGAs) have been successfully applied to data- and
compute-intensive tasks on small fixed point integers, oper-
ations prevalent in signal and image processing, cryptogra-
phy, network packet processing, and bioinformatics. Float-
ing point operations, which dominate supercomputing, have
been regarded as too expensive to implement in an FPGA.
However, with the Moore’s Law growth in FPGA resources,
it has become feasible to build high performance floating-
point operators on FPGAs [1].

Several floating point libraries [2, 3, 4], applications [5,
6] and application kernels [7, 8] have already been realized
in FPGAs. The applications and kernels achieve high per-
formance exceeding that of microprocessors, however, at the
cost of hand-coding a custom design in a hardware descrip-
tion language (HDL). Use of a high-level language (HLL)
compiler for floating-point could reduce this burden.

Previous HLL work with floating-point and FPGAs con-
sists of analyzing floating point operations for conversion
into fixed point operations [9]. This takes advantage of the
fixed point operations that can easily be mapped to FPGAs.
However, when it is not possible or desirable to convert the
operations to fixed point, floating point must be used.

Several HLL Compilers already exist for FPGAs [10,
11]. Celoxica DK [12] and the SRC Map compiler [13] sup-
port floating point operations in a limited fashion as external
libraries. Most C-to-FPGA compilers do not support float-
ing point data-types and operations. Without rapid prototyp-

ing through automatic compilation, exploration of different
algorithms and approaches is difficult. An HLL compiler for
FPGAs enables designers to experiment with alternative par-
titioning schemes and quickly determine how an algorithm
will perform on a particular FPGA.

We have developed the Trident compiler to provide an
open framework for rapid prototyping of floating point al-
gorithms in a HLL. Trident accepts C language input with
float and double data types and translates the description into
FPGA hardware. Trident allows the user to select from sev-
eral different floating point libraries [3, 4] or to include a
user developed custom floating point library.

2. TRIDENT COMPILER

The Trident compiler builds on and shares code from the
SeaCucumber(SC) compiler[14]. Trident extends SC in sev-
eral new directions: by accepting floating point operations,
parsing C input, performing extensive operation scheduling
and generating VHDL. Trident also provides a framework
for additional compiler optimization and research at differ-
ent levels of abstraction.

The Trident compiler consists of four principal steps
shown in Figure 1. The first step is the LLVM C/C++ front-
end. The LLVM (Low Level Virtual Machine) compiler
framework[15] is used by Trident to parse input languages
and produce a low-level platform independent object code.
The second step transforms this low-level object code into
the Trident predicated intermediate representation (IR). The
Trident IR is further optimized and mapped into a specific
hardware library of operations. The third step schedules and
pipelines the hardware operations according to the resources
available. Finally, the scheduled operations are synthesized
into VHDL.

3. LLVM FRONT-END

The Trident Compiler uses the LLVM compiler framework
front-end with a few extensions. LLVM’s front-end accepts
programs written in C, C++ or potentially other languages,
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Fig. 1. Four principal steps in the Trident Compiler.

as input and can generate optimized LLVM assembly lan-
guage. Trident parses the assembly into its own intermedi-
ate representation. In the future, we plan to use LLVM to do
run-time analysis, since it can provide profiling information.

3.1. Description of LLVM

LLVM was developed at the University of Illinois at Urbana-
Champaign to support transparent, lifelong program anal-
ysis and transformation for arbitrary programs. LLVM is
language-independent and does not require programs or build
scripts to be modified, so is transparent to the developer1.
At the same time, it supports optimization at compile-time,
link-time, run-time and offline (idle-time reoptimizer).

The virtual instruction set used by LLVM, the LLVM
“bytecode”, is a low-level object code representation that
uses simple RISC-like instructions, but provides rich,
language-independent, type information and dataflow (SSA)
information about operands. The information it provides en-
ables LLVM to do sophisticated optimizations, yet its sim-
plicity allows it to be light weight enough to be attached to
the executable, thus enabling transformations throughout the
program’s lifetime.

LLVM’s infrastructure supports its strategy for trans-
parency and lifelong program analysis. The LLVM sys-
tem architecture contains static compiler front-ends that
emit code in the LLVM representation. The front-ends can
perform language-specific optimizations as well as LLVM
passes for global or interprocedural optimizations at the
module level. The LLVM bytecode is then combined to-
gether by the LLVM linker. At link time, aggressive inter-
procedural optimizations can be performed. Finally, the re-
sulting LLVM bytecode is translated into native code for a
given target. The native code generator inserts profiling in-
strumentation in order to do run-time optimization. In ad-

1LLVM is not a high-level virtual machine like Java, for example, with
garbage collection. However, optional LLVM components can be used to
build high-level virtual machines and other systems that need these ser-
vices.

dition, end-user profile data can be used by an offline opti-
mizer during idle-time.

3.2. How Trident uses LLVM

LLVM was chosen for Trident because it provides a GCC-
based C and C++ front-end which produces machine-
independent bytecode. C and C++ are more suitable than
some other languages for the supercomputing applications
Trident will compile. Machine-independent bytecode is an
attractive intermediate representation when the end goal is
to synthesize circuits on FPGA hardware.

The first step in compiling a C program in Trident is to
use the LLVM gcc to produce the LLVM bytecode. Trident
disables optimizations at this time, however does them in a
later step. Trident also does not do any linking at this point.
It should be noted that the C programs Trident expects, due
to its target hardware, should not contain print statements,
recursion, malloc or free calls, function arguments or re-
turned values, calls to functions with variable length argu-
ment lists, or arrays without a declared size.

An LLVM Trident pass optimizes the LLVM bytecode
using optimization passes provided by LLVM. These passes
include constant propagation, small function inlining, loop
invariant hoisting, tail call elimination, small loop unrolling,
common subexpression elimination, and others. Calling the
optimizations from the LLVM Trident pass gives Trident the
flexibility of adding or removing some of these optimiza-
tions as needed. For example, a loop unrolling pass for op-
erations containing floating point operands has been added.

4. TRIDENT IR TRANSFORMATIONS

The IR transformation step of the Trident Compiler, accom-
plishes several important tasks. First, operations are con-
verted into predicated form to allow the creation of hyper-
blocks. Next, further optimizations are performed to re-
move any unnecessary operations. Finally, all operations are
mapped into a specific hardware library selected by the user.



The compile phase parses the output of the LLVM Tri-
dent pass into the Trident IR. Trident IR includes predica-
tion for every operation and static single assignment (SSA)
representations for all operands. The low-level object code
representation produced by LLVM provides SSA operands.
Trident IR extends this by adding predication for every op-
eration and allowing basic blocks to be expanded into hy-
perblocks.

Hyperblocks are created by using if-conversion [16] and
predication to allow branches to be converted into data-flow
operations. A hyperblock, described in [16], is an extended
basic-block of instructions which has one input path but may
have any number of output paths. The creation of hyper-
blocks causes the predicated operations to be merged to-
gether, leaving only loop-control edges in the control-flow
graph. Hyperblocks allow more operations to be considered
for concurrent scheduling. This combined with pipelining
extracts the available parallelism in the algorithm descrip-
tion.

In addition to the optimizations performed in LLVM,
Trident optimizes the code to remove any unnecessary in-
structions that may be created during if-conversion and hy-
perblock formation. The optimizations include: common
subexpression elimination, dead-code elimination, strength
reduction, constant propagation, and alias analysis. These
optimizations reduce the number of operations that will be
synthesized.

The compiler accomplishes operation selection by map-
ping a generic set of operations into a particular library. Two
different floating point libraries [3, 4] are supported by the
Trident compiler. The libraries have different goals, and
choosing one allows the user to trade off area, resources,
clock speed and latency. Mapping several libraries to a com-
mon set of floating point operations gives Trident unique
flexibility.

5. RESOURCE ALLOCATION AND SCHEDULING

Floating point data types, with 32- or 64-bit width, present
challenges in terms of resource allocation, both on- and off-
chip. Floating point modules require significantly more logic
blocks on the FPGA than small integer operations. For ex-
ample, a 64-bit floating point multiply takes 1,274 slices on
a Xilinx Virtex 2 (not including the hard multiplier) whereas
a representative 32-bit integer multiply occupies 239 slices.
The large operand size also implies that more memory band-
width is required for floating point arrays. Scheduling is fur-
ther complicated by the interaction with resource allocation.

The resource assignment and array allocation are calcu-
lated with respect to the control flow graph (CFG). First,
the hardware requirements for the circuit vis-à-vis FPGA
resources must be analyzed. Resource sharing of floating
point modules as well as assignment of arrays to memory

affects scheduling. Second, the operations will be scheduled
with one of four different scheduling algorithms: ASAP,
ALAP, Force Directed, and for pipelined loops, Iterative
Modulo scheduling. The resource allocation problem and
its interaction with scheduling are described in more detail
below.

5.1. Resource Allocation

Trident addresses two resource allocation problems: allo-
cating space for the logic on the FPGA chip, and allocat-
ing arrays to memory. Addressing the first problem, the re-
source allocation algorithm determines an ideal number of
modules, assuming infinite hardware. If the user chooses to
minimize area, Trident creates enough modules for the max-
imum used in a single cycle (which is found by performing a
preliminary schedule, assuming infinite area). For example,
if the circuit has five additions, but has at most three in any
cycle, only three adders will be created. If the ideal number
of modules does not fit on the FPGA, Trident uses a heuris-
tic to find the minimum number of modules to share, which
in turn minimizes execution slowdown.

The heuristic resource allocation algorithm (Fig. 2(a))
first re-uses those modules with the greatest latency and, in
case of equal latencies, the largest module. To minimize
resource sharing, the algorithm first checks to see if shar-
ing only one of the chosen modules will sufficiently reduce
space requirements, and if not it will reduce the number of
this module type available by half. This process is repeated
until there is only one module left or the space constraints
have been met. If there is still not enough room, Trident will
share the next slowest or biggest module.

foreach(hyperblock)
 foreach(operation in hyperblock) 
   sum area requirements for all 
       operators and save count 
       of each operator used
 if resource requirements too large
   sort operations in hyperblock 
     by latency then area
   while requirements are too large
     foreach(operation in hyperblock)
       share one resource if possible
       else reduce by half the # of available 
        resources

(a) Share Resources

       allocate array to this memory
   if array not allocated
     increment try count

       next mem

       next mem
     if space found 
       calculate cost
     if number of tries to allocate this array

     if array size > mem size

− cost == 0

read/write permissions

search for minimum array allocation cost:
while(not all arrays allocated)
 for each unscheduled array
   for each memory
     if array read/write req != mem

(b) Memory Allocation

Fig. 2. Pseudo-code for resource sharing and memory allo-
cation.

The second problem with floating point computation is
the bandwidth requirements due to large operand size when
communicating with memory. For example, if there are four
64-bit word external memories available, each with one read
bus, we can read at most eight 32-bit floating point val-



ues during a single clock tick. Since data arrays are often
too large for on-chip memory, external memory bandwidth
is the primary factor limiting parallelism within the circuit.
For example, if the target FPGA board has four 64-bit word
external memories with one bus each, it can access only 8
32-bit floating point data words per clock cycle. If there is
sufficient parallelism in the computation to use more than 8
words per clock cycle, it cannot be exploited. In addition,
when memory accesses are ordered sequentially, the circuit
may need additional pipeline registers and incur additional
latency.
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Fig. 3. Figure showing packed and unpacked arrays.

Besides bandwidth limitation to memory, the pattern of
array allocation to memory influences throughput [17, 18].
Three factors can limit memory throughput: First, the maxi-
mum number of reads or writes to a given memory during a
cycle. To help determine this, prior to array allocation, Tri-
dent performs a preliminary schedule of the design assum-
ing infinite memory communication bandwidth. Knowing
this, the maximum number of data accesses can be calcu-
lated for any given pattern of array to memory allocations.
The second major factor is the number of read and write
buses to external memories. The third major factor affecting
throughput is the possibility of packing arrays into the same
address space. For example, if a memory has 64-bit data
words, and the arrays use 32-bit words, it is possible to fit
two arrays in the same memory location and access both ar-
rays simultaneously with one read or write operation. This is
only possible if the arrays are accessed with the same index
and the same read or write operation is performed (Fig. 3).

The impact of these three factors will be referred to as
the “cost” of a given array to memory allocation pattern,
where the cost equals the number of extra cycles necessary
to perform memory access than what was used in the pre-
liminary schedule. The heuristic used by Trident (Fig. 2(b))
to search for the minimum cost, iterates through the list of
arrays, matching them individually with each memory. If
the read/write permissions for this memory and its available
space allow placing the array in this memory, the heuristic
attempts to find a place for the array in memory, attempt-

ing to pack it with other arrays where possible. If a place
is found, the cost for this allocation using the three factors
described above, is calculated. If the cost is zero, the array is
placed in this memory and otherwise the algorithm contin-
ues to the next memory. If no place is found, the algorithm
proceeds to the next array, but counts the number of attempts
to allocate the previous array. During future attempts to al-
locate an array, the cost is subtracted from the number of
tries. When this difference reaches zero, the array will be
allocated. This way, all arrays that can be allocated with a
cost of zero will be allocated first, followed by all those with
a cost of one, and so on. The heuristic loops until all arrays
have been allocated or memory is full.

5.2. Scheduler

The trident compiler provides four different schedulers for
scheduling operations. Non-loop blocks are scheduled us-
ing ASAP, ALAP, and Force-Directed [19]. Iterative Mod-
ulo [20] scheduling is applied to loop blocks to schedule the
block and calculate the Initiation Interval (II) for pipelining
the loop.

If hardware resources are limited, the scheduler must
take this into account and determine which operations should
be shared. If modules must be shared the operations sharing
a module cannot start in the same cycle. It is desirable to
assign operations to share a module if they can be scheduled
at different times. If this is not possible, the start of these
operations must be staggered over multiple cycles. This
limitation becomes another criteria along with data depen-
dencies that sets the soonest limit for ASAP, the latest limit
for ALAP, and an illegal slot for force-directed and mod-
ulo scheduling. Multiple accesses to a memory must also be
spread out as constrained by data dependencies and memory
communication bandwidth (i.e., the number of buses).

Although Trident uses predicated operations, the sched-
uler considers predicates only when the result is stored to a
register or memory. This implies that operations may be ex-
ecuted speculatively. However, since the operation must be
built in the FPGA, this cost is mitigated.

Scheduling for a circuit introduces issues not applicable
in a processor. For example, a processor has a fixed set of
registers for use by all operations. On the other hand, the
registers used in a circuit must be created. Also, data in a
circuit can be transmitted by wire between modules, but only
if the signal will not last multiple cycles or be transfered
between multiple hyperblocks. Different iterations of a loop
behave like separate hyperblocks. This becomes an issue
especially when implementing modulo scheduling.

In modulo scheduling, the resultant block of operations,
contains the equivalent of multiple iterations of the loop with
staggered starts. This modulo block is a sliding window of
operations of the fully unrolled loop. Each complete execu-
tion of an iteration of the modulo block executes the same



number of operations as the original loop, but speedup oc-
curs since multiple iterations of the original loop are running
simultaneously although in different stages.

At the end of each fraction of the original loop, the re-
sultant data must be saved in a register and reread when
the modulo block starts a new iteration. This necessitates
the insertion of extra register read and write operations into
the body of the original loop. To do this, Trident checks if
two successive operations occur in different iterations of the
modulo block. If so, the parent’s results must be stored to
and loaded from a register and wired to the child with a new
wire to ensure the child is always using data from its same
iteration of the large loop. Since, operations can be sched-
uled and unscheduled multiple times in modulo scheduling,
sometimes parents and their children are in the same itera-
tion of the modulo block and sometimes not. Therefore in-
stead of always placing a load and store between operations,
Trident ensures there is always time for a load between cy-
cle zero and the beginning of the operation and between its
finish and cycle II-1, without checking if a load or store is
necessary due to a parent or child being in a different iter-
ation. The loads and stores are inserted after scheduling is
complete.

6. SYNTHESIS

After the scheduler finishes, the control flow graph has been
modified to include timing information which is then passed
to the synthesizer. Three major stages occur in the Tri-
dent synthesizer: library mapping, abstract design genera-
tion, and back-end code generation.
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Fig. 4. Abstract circuit design hierarchy

The abstract circuit structure, shown in Figure 4, con-
tributes to Trident’s flexibility. It enables the compiler to
generate a top-level blueprint for the design while leaving
the underlying technology open until the final code gener-
ation stage. The underlying technology consists of the tar-
get hardware description language, the target floating point
cores, and the target hardware architecture.

Hierarchy is utilized in the abstract circuit structure in
order to preserve the modularity. The top-level of the ab-
stract circuit contains subcircuits for each block in the con-
trol flow graph input and also a single register file. The reg-
ister file is shared by all block subcircuits. Each block sub-
circuit contains a state machine and a datapath subcircuit.
The state machine is determined by the initiation interval of
the design, and it controls the timing of the block’s datapath.

The datapath implements the logic needed to represent
the flow of data through all of the operations found in the
control flow graph. It contains operators, predicate logic, lo-
cal registers and wires that connect all of the components. If
the target is a pipelined design, pipeline registers are added
between operators in the datapath in order to preserve the
correct data flow behavior.

Trident’s internal technology-independent circuit repre-
sentation allows for targeting multiple hardware description
languages at the back-end generation stage. Currently, Tri-
dent targets VHDL, the common hardware description lan-
guage. In addition, Trident can output a file that can be used
to visually debug the structure of the design. The simplicity
of the back-end generation stage enables relatively simple
additions to the list of target technologies.

Each target technology’s back-end generator implements
the abstract circuit generator. Whenever an abstract compo-
nent is generated, a request is made to generate it in the tar-
get technology. If the request can be granted, the component
is created in the chosen technology. This process is contin-
ued for each abstract component until the target design is
complete.

Trident supports the Cray XD1 as a reconfigurable syn-
thesis target[21]. In order to integrate a Trident-generated
design with the XD1 architecture, application-specific logic
is created to connect the application’s memory uses with the
XD1’s memory bus interface. This logic, consisting of a se-
ries of address decoders and guarding muxes, controls how
data flows to and from memory.

7. CONCLUSIONS

Trident provides an open framework for exploration of
floating-point libraries and computation in FPGAs. The Tri-
dent framework allows for user optimizations to be added
at several levels of abstraction. Users can also trade-off
clock speed and latency through their selection of different
floating-point libraries and optimizations. Performance is
achieved through parallelism extraction at both the opera-
tion level and the hyperblock level by using predication and
pipelining. Operation scheduling is aware of the hardware
constraints existing in a particular system and uses several
techniques to take advantage of the available bandwidth.

Trident is still a work in progress. Currently, the tool
supports simulation and synthesis for two floating point li-



braries: Quixilica, and Arénaire FPLibrary. In addition, sev-
eral simple applications can be synthesized and executed in
the FPGA on the XD1 and we are currently working to in-
crease the subset of C that can be synthesized and enhance
performance.
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