
LA-UR-05-0333

Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Metropolitan Road Traffic Simulation on FPGAs

Justin L. Tripp
Henning S. Mortviet
Anders Å. Hansson
Maya Gokhale

IEEE Symposium on Field-Programmable Custom Computing
Machines

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of
California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the
publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department
of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher s right to publish; as an
institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8/00)



Metropolitan Road Traffic Simulation on FPGAs

Justin L. Tripp, Henning S. Mortveit, Anders Å. Hansson, Maya Gokhale
Los Alamos National Laboratory

Los Alamos, NM 87545
Email: {jtripp, henning, hansson, maya}@lanl.gov

Abstract

This work demonstrates that road traffic simulation of
entire metropolitan areas is possible with reconfigurable
supercomputing that combines 64-bit microprocessors and
FPGAs in a high bandwidth, low latency interconnect. Pre-
viously, traffic simulation on FPGAs was limited to very
short road segments or required a very large number of FP-
GAs. Our data streaming approach overcomes scaling is-
sues associated with direct implementations and still allows
for high-level parallelism by dividing the data sets between
hardware and software across the reconfigurable supercom-
puter. Using one FPGA on the Cray XD1 supercomputer,
we are able to achieve a 34.4× speed up over the AMD mi-
croprocessor. System integration issues must be optimized
to exploit this speedup in the overall simulation.

1. Introduction

Modern society relies on a set of complex, interrelated
and interdependent infrastructures. Over the past ten years,
Los Alamos National Laboratory has developed a sophis-
ticated suite for simulating various infrastructure compo-
nents, such as road networks (TRANSIMS [12]), communi-
cation networks (AdHopNet [1]), and the spread of disease
in human populations (EpiSims [6]). These powerful sim-
ulation tools can help policy makers understand and ana-
lyze interrelated dynamical systems and support decision-
making for better planning, monitoring, and proper re-
sponse to disruptions. TRANSIMS, for example, can simu-
late the traffic of entire cities, with people traveling in cars
on road networks. It is based on interacting cellular au-
tomata (CA), and requires the use of large computer clusters
for efficient computation.

A short description of how TRANSIMS operates is as
follows: First, a synthetic population is created based on
survey data for the given city. It is created in a such a way
that all statistical quantities and averages considered are
consistent with the survey data. Examples of such quantities

are age distributions, household sizes, income distributions,
and car ownership distributions. In the next stage, realistic
travel plans are made for all the individuals for a twenty-
four hour day. An example plan could be: 1) bring kids to
school, 2) go to work, 3) pick up kids, 4) stop at the grocery
store, 5) drive home. The router coordinates the plans of all
individuals to produce realistic travel routes with realistic
travel times. The router operates together with the micro-
simulator which is the module responsible for moving enti-
ties around. TRANSIMS uses the actual transportation in-
frastructure of the city, so a route could look like: 1) start at
A, 2) drive to B, 3) walk to C, 4) take shuttle to D. Further
information can be found at [12] along with descriptions of
a recent study of the Portland metro area. Our FPGA imple-
mentation accelerates the micro-simulator and is presently
limited to cars. The details of the micro-simulator are given
in the next section.

The Portland TRANSIMS study is representative of a
large traffic micro-simulation [2]. The Portland road net-
work representation has roughly 124,000 road segments
with average length about 250 meters. Assuming that there
are on average 1.5 lanes in each direction on a road seg-
ment and using the TRANSIMS standard 7.5 meter road
cell length, there are roughly 6.25 million road cells. For
cities like Chicago, Houston, and Los Angeles this number
is larger by a factor of 3× to 10×.

In this work we study the acceleration of the road net-
work simulation through an FPGA implementation. Since
the simulation is parallel, with independent agents that
make decisions based on local knowledge, it seems natu-
ral to map to the large-scale spatial parallelism offered by
FPGAs. The high degree of regularity found in the road
network is another reason that this application is well suited
application to FPGAs. In contrast, other networks such as
ad hoc wireless communication networks or social contact
networks relevant for transmission of contagious disease are
much more irregular and dynamic.



2. Related Work

FPGAs have previously been applied to the traffic sim-
ulation problem. The earliest system, by George Milne
[7, 11], simulated road networks by directly implementing
their behavior in hardware. Milne’s direct implementation
uses Algotronix’s CAL FPGAs to create a long single-lane
road of traffic. The cars can be placed on the road and their
behavior with respect to each other simulated. Results of
the simulation are obtained using read-back from each of
the chips used in the simulation. Cars were able to have two
speeds (go/stop) and their behavior was determined based
on the presence of their nearest neighbor. The direct imple-
mentation approach has a very high degree of concurrency
that is limited by the amount of hardware available and the
level of data visibility required by the simulation.

A more recent system, by Marc Bumble [3], implements
a generalized system for parallel event-driven simulation.
His system consists of an event generator, an event queue, a
scheduler, and a unifying communications network in each
processing element. Each of the processing elements can
be built in reconfigurable hardware at a cost of 30–34 Al-
tera Apex FPGAs. The traffic simulation is calculated by
streaming data into processing elements. Each processing
element is capable of simulating one source, intersection,
or destination node with the associated outbound roads of
traffic. Bumble states that a system composed of 8000 pro-
cessing elements could simulate a large traffic network (at a
cost of 240,000 FPGAs).

Bumble does not address the scalability of his approach,
the visibility of the simulated traffic or how data is trans-
fered in and out of the system. Also, his road models
are limited to single-lanes with simple four-way intersec-
tions. This approach does not lend itself to the simulation
of metropolitan areas.

The work presented here differs from previous ap-
proaches in three ways. First, we are using simulation mod-
els which are currently in production use. TRANSIMS
models include acceleration, stochastic slow-down, differ-
ent velocities and cars with routes. Second, we extend our
simulation to entire metropolitan areas rather than special-
ized configuration with a small number roads and intersec-
tions. Previously, the cost of metropolitan scale traffic sim-
ulations solely on FPGAs was too expensive, so as a third
point we will examine the cost of partitioning the simulation
between the microprocessors and FPGA. All of these differ-
ences help determine the utility of FPGAs in the context of
large-scale simulations such as TRANSIMS.

3. CA Traffic Modeling

The TRANSIMS road network simulator, which is based
on [8–10], can best be described as a cellular automaton

computation on a semi-regular grid or cell network: The
representation of the city road network is split into nodes
and links. Nodes correspond to locations where there is
a change in the road network such as an intersection or a
lane merging point. Nodes are connected by links that con-
sist of one or more unidirectional lanes (see Figure 3). A
lane is divided into road cells each of which are 7.5 meters
long. One cell can hold at most one car, and a car can travel
with velocity v ∈ {0, 1, 2, 3, 4, 5} cells per iteration step.
The positions of the cars are updated once every iteration
step using a synchronous update, and each iteration step ad-
vances the global time by one second. The basic driving

Figure 1. CA traffic in TRANSIMS

rules for multi-lane traffic in TRANSIMS can be described
by a four-step algorithm. In each step we consider a single
cell i in a given lane and link. Note that our model allows
passing on the left and the right. To avoid cars merging into
the same lane, cars may only change lanes to the left on odd
time steps and to the right on even time steps. This conven-
tion, along with the four algorithm steps described below,
produces realistic traffic flows as demonstrated by TRAN-
SIMS.

3.1. Local driving rules

The micro-simulator has four basic driving rules. We
let Δ(i) and δ(i) denote the cell gap in front of cell i and
behind cell i, respectively. v is the velocity of the car in cell
i and vmax(i) is the maximum velocity for this particular
road cell, which may be lower than the global vmax (e.g., a
local speed limit).

1. Lane Change Decision: Odd time step t: If cell i has a
car and a left lane change is desirable (car can go faster
in target lane) and permissible (there is space for a safe
lane change) flag the car/cell for a left lane change.
The case of even numbered time steps is analogous. If
the cell is empty nothing is done.

2. Lane Change: Odd time step t: If there is a car in cell i,
and this car is flagged for a left lane change then clear
cell i. Otherwise, if there is no car in cell i and if the
right neighbor of cell i is flagged for a left lane change

2



then move the car from the neighbor cell to cell i. The
case of even time steps t is analogous.

3. Velocity Update: Each cell i that has a car updates that
car’s velocity using the two-step sequence:

• vnext := min(v + 1, vmax(i), Δ(i)) (accelera-
tion)

• If [UniformRandom() < pbreak] and[v > 0]
then vnext := v − 1 (stochastic deceleration).

4. Position Update: If there is a car in cell i with velocity
v = 0, do nothing. If cell i has a car with v > 0 then
clear cell i. Else, if there is a car δ(i) + 1 cells behind
cell i and the velocity of this car is δ(i) + 1 then move
this car to cell i. The nature of the previous velocity
update pass guarantees that there will be no collisions.

All cells in a road network are updated simultaneously. The
steps 1–4 are performed for each road cell in the sequence
they appear. Each step above is thus a classical cellular au-
tomaton Φi. The whole combined update pass is a product
CA, that is, a functional composition of classical CAs:

Φ = Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1

Note that the CAs used for the lane change and the velocity
update are stochastic CAs. The rationale for having stochas-
tic braking is that it produces more realistic traffic. The fact
that lane changes are done with a certain probability avoids
slamming behavior where whole rows of cars change lanes
in complete synchrony.

3.2. Intersections and Global Behavior

The four basic rules handle the case of straight roadways.
TRANSIMS uses travel routes to generate realistic traffic
from a global point of view. Each traveler or car is assigned
a route that he/she has to follow. Routes mainly affect the
dynamics near turn-lanes and before intersections as cars
need to get into a lane that will allow them to perform the
desired turns.

To incorporate routes the road links need to have IDs
assigned to them. Moreover, to keep computations as local
as possible, cells need to hold information about the IDs of
upcoming left and right turns.

The following describes the extension of the four basic
driver rules to handle turn-lanes and intersections.

Modification of the lane change rule:

We consider a car in cell i. As before, lane changes to the
left/right are only permissible on odd/even numbered time
steps. We refer to the adjacent candidate cell as the target
cell.

1. If the link ID of the target cell matches the next leg of
the travel route and differs from the current link ID, a
lane change is desirable (desirable turn-lane).

2. Else, if the target cell has a link ID that does not match
the next leg of the route and it differs from the cur-
rent link ID of the route, a lane change is not desirable
(wrong turn).

3. Else, if the current cell’s nextLeftLink (nextRightLink)
ID matches the next leg of the route and the simulation
time is an odd (even) integer, a lane change is desirable
(prepare for turn-lane or intersection).

4. Else, apply the basic lane changing rule described
above.

Note that this handles lane changing prior to turn-lanes
as well as intersections.

Intersection Logic

An intersection has a number of incoming and outgoing
links associated with it. A simplified set of turning rules
(assuming a four-way intersection) are as follows:

1. Only cars in an incoming left(right)-most lane of link
can turn left(right). A car that turns left(right) must
initially use the left(right)-most lane of the target link.

2. A car in any incoming lane can go straight. A car that
goes straight must use the same lane number in the tar-
get link as it used in the incoming link. It is assumed
that the lane counts for the relevant links agree.

More intricate intersection geometries can, of course, occur
but the basic idea remains the same. When intersections are
close it is natural to modify the first rule: when a left turn
is followed by an immediate right turn the rightmost lane is
chosen as target lane for the left turn.

An intersection has a set of immediate adjacent road
cells. We refer to these as the intersection road cells. The
intersections operate by dynamically assigning the front and
back neighbor cell IDs of the intersection road cells. This
allows us to naturally extend the driving rules for multi-lane
traffic to intersections without any modifications. The sub-
set of the intersection road cells that come from incoming
links have their front neighbor cell set to zero by default.
The same holds for the back neighbor of the intersection
cells belonging to outgoing links. The intersections operate
by establishing front/back pairs between cells to accommo-
date the routes. Stop intersections and traffic signal inter-
sections impose additional constraints on which cars are al-
lowed to drive at what times by controlling the correspond-
ing connections.

3



Link

Node
Merge

Intersection
Node

Road Cell

Velocity
Update

Lane
Change

Random 5 Cell Neighbor Info

Neighbor
Info

State

State
Machine

State Id

Computation Engine

Neighbor
Info

Figure 2. Road Network and Cell Design

4. Implementations

Normally the TRANSIMS micro-simulator is executed
on a cluster of computer workstations [13]. In this work,
the simulation is divided between multiple microprocessors
and one or more FPGAs. The system has been designed to
take advantage of the computational strengths of micropro-
cessors and FPGAs.

4.1. Direct Implementation

With CAs, a straightforward way to take advantage of the
concurrency is to build the CA directly in hardware. The di-
rect implementation of the traffic simulation CA instantiates
a separate road cell for each road cell in the traffic network.
The road cell provides its current state to its neighbors so
that all the cells in that local neighborhood can calculate
their next state. Figure 2 shows a road network and the ba-
sic structure of a basic road cell.

The road cell consists of three main parts: the compu-
tation engine, the current state and a state machine. The
state machine drives the computation engine using the cur-
rent state and inputs from external road cells to compute
the road cell’s next state. The local driving rules define the
operations of the computation engine.

The four rules for traffic simulation are executed using
six different states in the state machine. Each rule in the
computation engine requires a single cycle to calculate ex-
cept for Velocity Update (Rule 3). The velocity update rule
has three separate operations: Accelerate, Collision, and
Stochastic. Each of these operations take a cycle to com-
plete.

In the LaneChange state, the computation engine calcu-
lates the lane change decision (Rule 1). To do this, the
Δ(i) and δ(i) are calculated from the forward and backward
neighborhoods. Likewise the neighbors in the left and right

neighborhoods execute the same calculation. The computa-
tion engine then determines whether it is permissible for a
car to come to this lane and whether the current car desires
to change lanes. These results are used in the LaneMove
(Rule 2) state to actually perform the lane change. Both
lanes have to agree that it is both permissible (where we
are going) and desirable (if the gap ahead of us is smaller
than the gap in the neighboring lanes) for a lane change to
happen.

Rule 3 requires three states, Accelerate, Collision, and
Stochastic. In the Accelerate state, a car’s velocity is cal-
culated using the following formula: vnext = min(v +
1, vmax(i)). vmax(i) is the maximum velocity for this par-
ticular road cell, which may be lower than the global vmax

(e.g., a local speed limit).

The Accelerate state is followed by the Collision state
which ensures that the next state does not exceed the gap
ahead of the car. It determines vnext = min(vnext, Δ(i)).
This prevents the car from accelerating into a car in front of
it—avoiding a collision.

The final step of the velocity update determines if the
car should randomly slow down. This stochastic step pro-
vides some realism in the behavior of drivers and makes
their speeds less predictable. If a random value is less than
a threshold, pbreak, then its speed will be lowered as de-
scribed in Section 3.

After the velocity update rule is finished, the state ma-
chine executes an update of the car positions. To do this, a
cell determines if a car exists in its backward neighborhood
that has a velocity that will bring it to this cell’s location. If
it does, then the cell sets its velocity and car ID to the arriv-
ing car. Otherwise, if no car is arriving at this cell, the cell
sets its velocity and car ID to zero.

4



4.2 A Scalable Approach

A common approach used on FPGAs in many appli-
cations (like DSP) is to stream data through a number of
computational units. In the context of traffic simulation,
streaming can be achieved through a computation engine
that processes a stream of road data and subsequently out-
puts a stream of updated data. Thus, the number of road
cells are no longer limited to available FPGA area. Instead,
the only limiting factor is the size of the memory to hold
the state of the road cells and the associated access time.
Thus, a streaming hardware design becomes scalable and
can handle large-scale road networks.

In our streaming design, we partition the road network in
such a way that straight road sections are processed by the
hardware, while intersections and merging nodes are up-
dated by a software module. Most importantly, this hybrid
hardware/software strategy means that hardware processing
is governed by a simple, homogeneous set of traffic rules,
while all road plan decisions are handled by software.

traffic flow update direction

overlap region II overlap region I

Figure 3. Road Link Structure.

The data representing straight lanes is fed to the hard-
ware update engine against the flow of traffic, starting from
the end of each lane. However, due to the partitioning of
the road network, the cars in the last vmax cells of each lane
cannot be updated since the engine lacks knowledge about
the network topology and the road plans. For this reason we
define an overlap region I (see Figure 3), which is the last
vmax cells of each lane, and because of the processing di-
rection of the computation engine, these cells are processed
first. Although cars that are inside an overlap region at the
beginning of the hardware computation cannot be updated
by the engine, it is important to note that the engine can
move other cars into these first cells during its computa-
tional pass. Naturally, the software module needs to update
the position and velocity of cars inside the overlap regions
at the end of each hardware update pass.

The software must also write information to the first
vmax cells of each lane, which corresponds to new cars
moving into a lane (arriving from other lanes, either through
an intersection or by merging). However, computing ve-
locities and positions of these new cars requires complete
knowledge of the first vmax cells of each lane. In a sense,
the first vmax cells of each lane then constitute another over-
lap region (see overlap region II in Figure 3) that needs to

be touched by software at the end of each pass. However,
the hardware can only move cars from these first cells, and
if the cells were empty at the beginning of the update pass,
the software module does not need to read back the updated
status. Also, in order to minimize the cost of memory syn-
chronization, we have chosen to process only single-lane
traffic in hardware.1 In fact, 90% of all roads in Portland
are one-lane roads, which means that most road cells are
still updated in hardware.

The hardware design, shown in Figure 4 implements a
memory interface, whose main responsibility is to generate
read and write addresses used for accessing the memories.
Both the read and write addresses are generated by counters.
The counter associated with the read starts from the lowest
address each new time the computation engine is requested
to process data, and it continues to count until the software
module schedules a new update request. The counter asso-
ciated with the write address, on the other hand, monitors a
status signal provided by the computation engine, and stops
counting as soon as the engine signals it is done.

Update engine

Read Write

MemoryMemory

Addr_genAddr_gen

Enable

Figure 4. Structure of a straightforward
streaming implementation.

Inside the compute engine, the car’s velocity is updated
first, and then its position. Of course, if no car exists in the
incoming road cell, or if the incoming road cell belongs to
an overlap region, the incoming velocity is passed out un-
changed. In all other cases, the engine initially tests whether
an acceleration is permissible. There is also a probability
of stochastic deceleration. A car slows down if a pseudo-
random number is less than a predefined threshold value,
pbreak.2 In order to test for acceleration permissibility, in-
coming cars are streamed into a shift register, and this reg-

1Clearly, multiple-lane traffic requires overlap regions longer than
vmax cells since the lane changing rules assume knowledge of preceding
cells. Only succeeding cell information is needed for single-lane traffic.

2The random number is internally generated by a standard 32-bit linear
feedback shift register.

5



ister is scanned to find the maximum number of cells a car
can move ahead.

Scan
cells
and
output

Velocity
update

Shift register

Figure 5. The Position Update

The streaming engine calculates a car’s position by shift-
ing the car one cell every clock cycle (see Figure 5) until
its newly calculated velocity matches the distance from the
end of the shift register, which is vmax +1 cells long. At the
point when there is a match, the change state block exports
all car information to the destination road cell. This pipelin-
ing design makes it possible for the computation engine to
read and write one word of road data every clock cycle. If
we have access to N concurrent memories, it would be ad-
vantageous to instantiate N parallel replicas of the compute
engine.

5. Using the Cray XD1

The Cray XD1 supercomputer combines high perfor-
mance microprocessors, a high speed, low latency intercon-
nect network, and reconfigurable computing elements. This
provides an environment where data transfer latencies and
bandwidth associated with I/O busses is greatly reduced.
The tight integration of processors and reconfigurable com-
puting changes the meaning of reconfigurable supercomput-
ing. A supercomputing problem can be split between the
CPU and FPGA with close synchronization and fast com-
munication between software and hardware.

5.1. Machine Description

A single chassis of the Cray XD1, consists of 12 AMD
Opteron 200 series processors, with up to 8 Gigabytes of
memory per processor. The processors are paired into a
SMP processor module as shown in Figure 6. Each pro-
cessor has 1 or 2 Cray RapidArray links that connect to
a fully non-blocking Cray RapidArray fabric switch. The
switch provides either 48 GB/s or 96 GB/s total bandwidth
between the SMP pairs. The RapidArray fabric switch is
able to achieve 1.8 μs MPI latency between SMPs.

As shown in Figure 7, one Xilinx Virtex-II Pro (30 or 50)
is available for each processor module from the RapidArray
fabric. An FPGA has 3.2 GB/s link to the RapidArray fab-
ric, which connects to the local processors or to other pro-
cessors on the fabric. The FPGA also has dedicated 2 GB/s
RocketIO links to the neighboring SMP module in the same

MemoryMemory Memory

Six SMP

Pairs

FPGA

Hyper−
Transport

Link

RapidArray Interconnect System
24 RapidArray Links

RapidArrayRapidArray

Opteron
Processor

Opteron
Processor

Link Link

Figure 6. XD1 Processor Module

RapidArray

2
GB/s

2
GB/s

2

GB/s

2
GB/s

QDRII
RAM

HyperTransport
to SMP

3.2
GB/s

3.2
GB/s

Neighbor
Compute Module

Neighbor
Compute Module

QDRII

QDRII

QDRII

RAM

RAM

RAM

FPGA

Accelerator

3.2 GB/s

RapidArray
Processor

Figure 7. FPGA Expansion Module

chassis. Four QDR SRAMs are connected to each FPGA
providing 3.2 GB/s of bandwidth at 200 MHz [4].

Manual partitioning of software and hardware is neces-
sary for an application to take advantage of the FPGAs. The
Opteron SMP modules run Linux, and MPI is provided to
communicate to other Opteron modules. The FPGAs are ac-
cessed under Linux using device drivers provided by Cray.
Cray’s FPGA API provides functions for loading, resetting,
and executing FPGA designs. Functions are also provided
for mapping the FPGA’s memory into the operating sys-
tem’s memory space and for accessing registers defined on
the FPGA.

5.2. TRANSIMS on the XD1

Since the FPGAs and processors have tighter integration
than most FPGA board systems (e.g., PCI boards), we have

6



partitioned the road traffic simulation between the FPGA
and CPUs available in the system. Single-lane roads make
up 90% of the road segments in the Portland network. The
FPGAs are tailored to process single-lane traffic. The CPUs
in the XD1 are responsible for data synchronization be-
tween the hardware and the software, and simulating mul-
tiple lanes and intersections. Based on the size of the data
required, two FPGA nodes are needed for simulation so that
all of Portland can fit in the memories available.

The implementation on the XD1 is an improvement over
our earlier Osiris based design [14] due in part to better
bandwidth between the memories and the FPGA. The QDR
SRAMs on the XD1 are fully dual ported and allow for si-
multaneous reads and writes to any memory location. This
provides a large amount of external memory bandwidth to
the FPGA.

Despite the large amount of bandwidth on the RapidAr-
ray network between the FPGA and the Opteron CPUs, the
simulation attempts to reduce the required amount of data
traffic. Synchronization of data only occurs if there are
cars on a particular road segment and only in the overlap
(shared) data regions. This allows for better trade-off be-
tween calculation and available bandwidth.

5.3. XD1 Communication Costs

As described in the XD1 FPGA Development manual [5],
there are asymmetric costs associated with reads and writes
between the host and the FPGA’s QDR SRAMs. Writes can
take advantage of write combining in the Linux kernel and
are non-blocking. On the other hand, reads are blocking
and cannot be combined. This creates an asymmetric cost
which must be overcome.

Rapid
Array
Proc.

QDR
Core QDR

Memory

Write Ctrl

Write

Read

RT

Core

FPGA

To CPU

Fabric
Array

RapidTo

Engine
Traffic

Figure 8. Default FPGA QDR SRAM access
(only one memory shown).

The method for accessing the FPGA’s SRAMs is shown
in Figure 8. The multiplexor (mux) between the traffic en-
gine and the RapidArray Transport (RT) core allows both

the host and the traffic engine to write to the SRAMs. Reads
do not require a mux for the data, but both read and write
require muxes for the address lines (not shown). Using this
setup we benchmarked reads and writes from the host to the
FPGA.

Table 1. Read and Write Bandwidth (MB/s) for
Hosts to QDR SRAMS

Array Pointer Memcpy
Read 5.94 5.95 6.01
Write 1260 1320 1320

Table 1 shows the bandwidth results for reads and writes
accomplished using three different approaches. The FPGA
SRAMs are mapped into the hosts local memory and can
be accessed using arrays with indexes, using pointers, or by
using the memcpy function call. Array accesses were found
to be slight slower, but the bandwidth is roughly equivalent.
However, the difference in cost between reads and writes is
a factor of 200. This asymmetric cost is overcome by using
a “write-only” architecture as suggested by Cray. The host
must write data to the FPGA memory and the FPGA must
write the data that the host needs to read.

Traffic
Engine

Traffic
Engine

Traffic
Engine

Engine
Traffic

Round
Robin

Rapid
Array
Fabric

RT

Core

Fifos

Data
Push

Mux

Figure 9. FPGA Push to write data to the
Opteron host.

Figure 9 details the hardware added to the traffic design
to make it a write-only architecture. Only cars in overlap ar-
eas are transferred to the host. These overlap cars are stored
in FIFOs since they can arrive in bursts of up to ten cars.3

The number of cars in overlap areas is dependent on the
traffic data in the memories, so a data push process watches
each of the FIFOs through a mux that is rotating through the
FIFOs in a round-robin fashion. When the data push process
sees a FIFO with data in, it stops the round-robin control
and sends up to four data words to the host (due to Hyper-
Transport requirements). Finally, after sending the data the

3Bursts of ten cars can occur from overlap region 2 of the previous link
being adjacent to overlap region 1 of the next link.

7



round robin control moves the mux to the next FIFO. In-
dependent of the data push, if a FIFO becomes full it will
disable its traffic engine until the FIFO is empty again.

Use of the FPGA data push process allows the traffic de-
sign to reduce the time required to transmit the overlap data
updates between the FPGA and the host. This allows more
time on the processor and FPGA to be spent processing data
instead of communicating.

6. Results

The results for two different implementations of road
traffic simulation are presented here. The first, direct im-
plementation, creates a physical circuit for each road cell
to be simulated. The second, streaming implementation,
creates a small number of parallel engines and the data is
streamed through in time. The two implementations repre-
sent extremes in concurrency and scalability.

6.1. Direct Implementation

The direct implementation was written in VHDL and
synthesized to EDIF using Synplify v7.6. The EDIF de-
scription was passed into Xilinx ISE v6.2 to produce the
results reported.

The results for the direct implementation for multi- and
single-lane circular traffic are described in Table 2. The
hardware implementation of single-lane traffic has only four
states, since single-lanes do not require the extra hardware
for lane changes. The two-lane implementation that in-
cludes the hardware to perform lane changes is 63% larger
in area. As the table shows, both Xilinx chips can hold (at
least) 400 road cells.

Table 2. Direct Implementation Design Re-
sults

One-lane Two-lane
V2-6k V2p100 V2-6k V2p100

Cells 650 650 400 640
LUTs/Cell 104 97 169 128
Clock(MHz) 48.68 64.17 35.53 62.8
Slices 33790 31576 33790 40973
(% of Slices) (99%) (71%) (99%) (92%)

Table 3 compares the results for the two-lane traffic im-
plementation achieved by the Xilinx XC2V6000 (V2-6k)
and the XC2VP100 (V2p100) to a software implementation
running on a 2.2 GHz Opteron processor. The V2-6k sim-
ulates the road cells at a rate 415.8× the Opteron and the
V2p100 simulates traffic just short of 1175×. This speedup

comes primarily from the fact that the FPGA implementa-
tion is executing all cells concurrently, and the software im-
plementation, which may have instruction level parallelism,
calculates each cell individually.

Table 3. Direct Implementation Results Com-
parison for Two Lanes

2.2GHz
V2-6k V2p100 Opteron

Cells 400 640 2 Million
Cells/sec 2.37 × 109 6.70 × 109 5.7 × 106

Speedup 415.8 1175.4 1.0

Despite the large speedup that is possible using the direct
implementation, the FPGA can only handle a small number
of road cells. Using the data from the Portland TRANSIMS
study, we know that there are roughly 6.6 million road cells.
Simulating Portland would require at least 12,400 FPGAs
to simulate the entire city. Also, the direct implementation
does not provide high visibility to the simulation data.

6.2. Streaming Implementation

The streaming implementation was written in VHDL and
placed in VHDL interfaces provided by Cray for the Rap-
idArray and QDR SRAMS (release 1.1). All of this was
synthesized using Xilinx XST and the bitstream generated
by Xilinx ISE v6.2.

Table 4. Comparison of Streaming with Soft-
ware Simulation

2.2GHz
V2p50 Opteron

Slices 1857
Clock(MHz) 180 2199
Cells/sec 7.2 × 108 5.7 × 106

Speedup 126.3 1.0

The results shown in Table 4 were timed using a timer
register, called the Time Stamp Counter (TSC), which mea-
sures processor ticks at the processor clock rate. The 64-
bit read-only counter is extremely accurate, as it is imple-
mented as a Model-Specific Register, inside the CPU. The
overhead of using this register is extremely low and the TSC
register on the 2.2GHz Opteron has a resolution of 450 pi-
coseconds.

The design on the FPGA includes four streaming engines
(limited by the number of available memories) and operates
at a rate 126.3× the speed of a comparable software version

8



running on a 2.2 GHz Opteron. Table 5 shows a more accu-
rate speedup which includes the cost of transferring data to
and from the FPGAs. If results calculated by the FPGA are
read directly by the host, the speed up is only 4.5×. This is
due to the blocking nature of reads from the host. Pushing
the results up to the host, as described in Section 5.3, results
in a more impressive speedup of 34.4×.

Although the streaming implementation is a factor of 30
slower than the direct approach, it is still enough of an im-
provement to provide significant overall speedup. Addi-
tional speedup is still possible with more FPGA boards. The
most crucial limiting factor in this implementation is the
number of memory banks on each board; additional banks
would allow us to increase the number of simultaneous data
streams. In fact, with the current design, one compute en-
gine requires less than 5% of chip area. Since each compute
node has four concurrent memories, it is advantageous to in-
stantiate four parallel engines, but already at this moderate
level of parallelism, we run into a bandwidth bottleneck.

The hardware performs extremely well with the straight
lane segments, which make up 70–90% of the road seg-
ments in a given simulation. FPGA aided simulation done
in the scalable, streaming approach may be the fastest way
to do extremely large metro-area traffic simulations, espe-
cially in light of the advances being made in combined mi-
croprocessor/FPGA computing systems. The cellular na-
ture of the road segments meshes well with hardware, and a
combined hardware/software approach for the full-fledged
simulation fits each of their computational strengths.

Table 5. Comparison of Streaming including
Communication Costs

w/o Push Push 2.2GHz
V2p50 V2p50 Opteron

Cells/sec 2.56 × 107 1.96 × 108 5.7 × 106

Speedup 4.5 34.4 1.0

6.3. System Integration Issues

We will now discuss costs associated with integrating the
FPGA computation engine with the microprocessor and its
software environment, and how a realistic road network de-
scription of Portland affects this integration.

A profile of the software execution time is shown in Ta-
ble 6. The transaction cost of transferring data from the
FPGA hardware to the software by having the micropro-
cessor read the FPGA memory proved to be unacceptably
long—12.3% of the overall execution time of one simula-
tion step. As a remedy for this problem, we implemented
a push back mechanism (Section 5.3) in which the FPGA

writes back data to a memory space that is local to the host.
This solution led to a hybrid design where the communica-
tion time for data transfer is negligible (see Table 6).

Another bottleneck is the size of the FPGA memory. Out
of 6.6 million road cells, the 16 MB available FPGA mem-
ory can only hold 2 million cells, assuming that 64 bits are
used to describe the status of each road cell. If the memories
were deeper, it would be possible to off-load significantly
more of the overall computation to the FPGA.

We are currently investigating two alternatives to getting
more road cells processed by hardware: (i) a more succinct
representation using only 32 bits instead of 64, and (ii) on-
line FPGA data compression. As already explained, the
software is responsible for putting new cars in each single-
lane road segment (corresponding to cars coming from adja-
cent segments). By also keeping track of the order in which
these new cars enter each segment, we would not have to en-
code and send along any car IDs, since cars obviously have
to leave a single-lane road segment in the order in which
they enter. This implicit road ID method would reduce the
size of a road cell to 32 bits.

To do compression, the FPGA could compress the
data written by the microprocessor using a simple on-line
scheme such as run-length encoding. This is possible be-
cause the data written by the microprocessor must first go
through the FPGA. We could also use more aggressive com-
pression techniques by exploiting the semantics of the traf-
fic data.

Table 6. Percentage of Overall Execution Time
of one Simulation Step

Without push With push
Network state update 8.3% 9.7%
Software to hardware 0.2% 0.18%
Intersections 14.0% 13.8%
Lane change update 13.3% 16.8%
Velocity update 21.9% 25.5%
Position update 30.0% 33.8%
Hardware to software 12.3% 0.14%

7. Conclusion and Future Work

In this paper, we investigated hardware acceleration of
the TRANSIMS road traffic simulator. Using a structural
approach yields an upper bound on the potential speedup.
For straight road segments, this speedup is as high as 1175,
under the assumption of no communication cost and using
a single FPGA. In comparison, the more scalable stream-
ing implementation achieves 126× speedup, which was ob-
tained for a very simple network topology, excluding in-

9



tersections. In order to handle complex network topolo-
gies, we relied on the hybrid nature of the Cray XD1, i.e.,
we partitioned the road network such that intersections and
multiple lanes were processed by a software module, while
straight road sections were processed by the FPGA. Our ap-
proach exploits the low latency, high bandwidth intercon-
nect network of the Cray XD1 to partition the the prob-
lem between software and hardware. For a realistic road
description of Portland, we were able to achieve 34.4×
speedup.

The next step with accelerating this TRANSIMS simu-
lation is to add one or more SMP modules to the system
and determine the cost of synchronizing data communica-
tion over MPI. It may also be possible to have a single SMP
module communicate to the other FPGAs via the RapidAr-
ray Fabric. The Cray XD1 system provides an interesting
testbed for reconfigurable supercomputing applications.

Acceleration of TRANSIMS opens the door to a whole
range of simulations where FPGAs or other dedicated hard-
ware can provide computational speedup. Many simulation
systems today, have a similar structure to the one found in
TRANSIMS: there are highly complex computations best
suited for software and a large collection of structured sim-
ple calculations as in the road network simulator. The
TRANSIMS accelerator provides a prime example of how
FPGAs can aid a large class of large-scale simulations.

References

[1] K. A. Atkins, C. L. Barret, R. J. Beckman, S. G. Eubank,
N. W. Hengarter, G. Istrate, A. V. S. Kumar, M. V. Marathe,
H. S. Mortveit, C. M. Reidys, P. R. Romero, R. A. Pistone,
J. P. Smith, P. E. Stretz, C. D. Engelhart, M. Droza, M. M.
Morin, S. S. Pathak, S. Zust, and S. S. Ravi. ADHOPNET:
Integrated tools for end-to-end analysis of extremely large
next generation telecommunication networks. Technical re-
port, Los Alamos National Laboratory, Los Alamos, NM,
2003.

[2] C. L. Barrett, R. J. Beckman, K. P. Berkbigler, K. R. Bisset,
B. W. Bush, K. Campbell, S. Eubank, K. M. Henson, J. M.
Hurford, D. A. Kubicek, M. V. Marathe, P. R. Romero, J. P.
Smith, L. L. Smith, P. E. Stretz, G. L. Thayer, E. Van Eeck-
hout, and M. D. Williams. TRansportation ANalysis SIMu-
lation system (TRANSIMS) portland study reports. Decem-
ber 2002.

[3] M. D. Bumble. A Parallel Architecture for Non-
deterministic Discrete Event Simulation. PhD thesis, Penn-
sylvania State University, 2001.

[4] Cray Inc., Seattle, WA. Cray XD1 Datasheet, September
2004.

[5] Cray, Inc., Seattle, WA. Cray XD1 FPGA Development,
2004.

[6] S. Eubank, H. Guclu, V. S. A. Kumar, M. V.Madhav,
A. Srinivasan, Z. Toroczkai, and N. Wang. Modelling dis-
ease outbreaks in realistic urban social networks. Nature,
429(6988):180–184, May 13, 2004.

[7] G. Milne, P. Cockshott, G. McCaskill, and P. Barrie. Re-
alising massively concurrent systems on the space machine.
In K. Pocek and D. Buell, editors, FPGAs for Custom Com-
puting Machines, pages 26–32, Napa, CA USA, April 1993.
IEEE Computer Society, IEEE Computer Society Press. In-
spec 4630521.

[8] K. Nagel and M. Schreckenberg. A cellular automaton
model for freeway traffic. Journal de Physique I, 2:2221–
2229, December 1992.

[9] K. Nagel, M. Schreckenberg, A. Schadschneider, and N. Ito.
Discrete stochastic models for traffic flow. Physical Review
E, 51:2939–2949, April 1995.

[10] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour.
Two lane traffic simulations using cellular automata. Phys-
ica A, 231:534–550, October 1996.

[11] G. Russell, P. Shaw, and J. McInnes. Rapid simulation of
urban traffic using fpgas. 1994.

[12] L. L. Smith. Transims home page. 2002.
[13] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A.

Ranawake, and C. V. Packer. BEOWULF: A parallel work-
station for scientific computation. In Proceedings of the
24th International Conference on Parallel Processing, pages
I:11–14, Oconomowoc, WI, 1995.

[14] J. L. Tripp, H. S. Mortveit, M. S. Nassr, A. A. Hansson, and
M. Gokhale. Acceleration of traffic simulation on recon-
figurable hardware. Technical Report LA-UR 04-2795, Los
Alamos National Laboratory, Los Alamos, NM USA, 2004.

10


