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Abstract. In an earlier work we proposed the chordal axis transform (CAT) as
a more useful alternative to the medial axis transform (MAT) for obtaining
skeletons of discrete shapes. Since then, the CAT has benefited various
applications in 2D and 3D shape analysis. In this paper, we revisit the CAT to
address its deficiencies that are an artifact of the underlying constrained
Delaunay triangulation (CDT). We introduce a valuation on the internal edges
of a discrete shape’s CDT based on a concept of approximate co-circularity.
This valuation provides a basis for suppression of the role of certain edges in
the construction of the CAT skeleton. The result is a rectified CAT skeleton that
has smoother branches as well as branch points of varying degrees, unlike the
original CAT skeleton whose branches exhibit oscillations in tapered sections
of shapes and allows only degree 3 branch points. Additionally, the valuation
leads to a new criterion for parsing shapes into visually salient parts that closely
resemble the empirical decompositions of shapes by human subjects as
recorded in experiments by M. Singh, G. Seyranian, and D. Hoffman.

1. Introduction

The skeleton of a shape is an important descriptor that provides structural
information about the shape. Skeletons are used to compare shapes, identify shape
parts, and, in case of thin objects such as textual characters, even represent the shapes
themselves. Blum [1] defined the skeleton of a two dimensional shape with a
continuous closed contour as the locus of centers of maximal discs (i.e., discs
touching the shape contour at two or more points) interior to the shape, with each
center attributed the radius of the corresponding maximal disc. This definition of a
shape’s skeleton is known as the medial axis transform (MAT) of the shape. While
the MAT is an elegant characterization of the skeleton of a shape with a continuous
boundary, it has proved to be difficult to use as a practical tool to analyze shapes.
Indeed, for example, minor oscillations in shape contours due to insignificant features
or noise result in skeletal branches are not easy to isolate, a skeletal feature may be
spatially far-removed from the contour feature it represents, and a skeleton part may
greatly exaggerate (Figs. 1 & 2) or diminish the importance of the contour feature that
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gave rise to it. The medial axis transform is not defined for shapes specified by
discretely sampled contours, as typically encountered in digital imagery. Several
extensions of the MAT to discrete shapes have been formulated using pixel
morphology [2] and geometry [3]. These methods however require a uniform, dense
representation of the shape boundary to yield satisfactory skeletons.

Fig. 1. Rectangle with Fig. 2. MAT skeleton
boundary feature exaggerating feature

2. Background

In earlier [4, 5, 6] works we proposed the chordal axis transform (CAT) as a more
useable and robust definition of the skeleton of a shape. Since then it has gained
currency among researchers in the area of 2D and 3D shape analysis and modeling [9,
10, 11]. In this section, we will review the CAT, its strengths, and drawbacks to set
the context for this paper.

Definition 1: A maximal chord of tangency (Fig. 3) connects two points of tangency
of a maximal disc inscribed in a shape such that at least one of the two arcs of the
maximal disc’s bounding circle subtended by the chord is free of points of tangency
with the shape's boundary.

Definition 2: The Chordal Axis Transform (CAT) of a planar shape is the set of all
ordered pairs (p,d), where p and J are either the midpoint and half the length,
respectively, of a maximal chord of tangency, or the center and radius, respectivély,
of a maximal disc with three or more maximal chords of tangency.

Although the definition of the CAT is a variation of the MAT, there are important
differences between the two transforms. The CAT, as defined, yields a piecewise
smooth disconnected protoskeleton (Fig. 5). By joining the midpoints of the maximal
chords of a maximal disc with three or more chords to the center of the maximal disc
if the center lies within the polygon determined by the chords, or to the center of the
longest chord otherwise, we obtain a connected skeleton of the shape (Fig. 6).
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The CAT can be stably defined for shapes whose boundary is discrete (i.e.,
specified as sequences of points separated in space). This is done by replacing
maximal discs by empty circles that pass through three or more points of the shape’s
discrete boundary, and do not contain any boundary points in their interior. Each such
empty circle identifies a triangle, whose edges lying in the shape’s interior replace
maximal chords of tangency in the discrete version of the CAT (Fig. 4). The triangles
so formed are indeed the Delaunay triangles of a constrained Delaunay triangulation
(CDT) of the shape’s interior. It is worth noting here that this extension of the CAT to
discrete shapes is natural from the point of constructing skeletons. This is because the
constrained Delaunay triangulation is the geometric dual of the generalized Voronoi
axis of the contour point set. Indeed, the MAT is essentially the Voronoi skeleton of a
closed contour shape. In using the dual of the Voronoi axis, we can define a more
robust and manipulable skeleton than the MAT that applies to discrete shapes whose
boundaries are sparsely and unevenly sampled. We can also ensure strong invertibility
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of the skeleton to recover the shape. The CDT of a shape’s interior gives rise to three
kinds of triangles, namely Junction triangles (J) that have all their edges inside the
shape, Sleeve triangles (S) that have one edge in common with the shape boundary,
and Terminal triangles (T) that have two edges in common with the shape boundary.
The connected CAT skeleton for a discretized shape is obtained from its CDT by
joining the midpoints of the internal edges of cach S-triangle by a line segment,
joining the midpoints of the internal edges of each J-triangle to its circumcenter if the
triangle is acute, or to the midpoint of its longest side if it is obtuse (Figs. 7, 8). We
will restrict ourselves to the structure of the CAT skeleton in the rest of the paper and
direct the interested reader to [6] for other details and implications of the CAT.

Fig. 7. Construction of skeletal segments in the various types of triangles in the CDT of
a shape. From left to right, skeleton segments in a sleeve, an obtuse junction, an acute
Junction, and a terminal triangle.

(a) (b) (©) (d)
Fig. 8. Construction of the CAT skeleton of a sparsely and unevenly sampled shape
and comparison with its discrete MAT skeleton:
(a) A discrete shape, (b) CDT and construction of sleeve skeletal segments,
(¢) Connected skeleton after construction of skeletal segment in the junction triangle,
(d) Discrete MAT skeleton obtained by connecting adjacent Voronoi vertices (circumcenters
of triangles) of the contour points. The comparison shows the stability of the CAT
skeleton over that of the MAT

3. Drawbacks of the discrete CAT skeleton

The CAT skeleton of a discrete shape is robust to sparse and irregular presentations
of the shape boundary. It also allows easy excision of insignificant and noisy features
via a simple pruning criterion [4, 5, 6]. Finally, it enables parts based decomposition
of shapes into structurally meaningful components. However, the CAT skeleton, as
defined above, has certain structural deficiencies (which are also present in discrete
realizations of the MAT skeleton,) that warrant remedying. The CAT skeleton
exhibits oscillations through shape regions that are tapered (Fig. 9). The CAT
skeleton allows only branches of degree three to represent shape ramifications even
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when higher degree branches are more natural to represent them (Fig. 10). These
deficiencies are an artifact of giving equally important roles to all chords (i.e., internal
triangle edges of the shape’s CDT) in constructing the CAT skeleton. Indeed, in a
previous work [6], we considered special cases where more than three points on a
shape boundary are co-circular. We noted that the triangle edges that form the chords
of the polygon determined by the co-circular points are not uniquely defined (i.e., any
triangulation of the interior of the co-circular polygon will be consistent with the
Delaunay criterion of triangulation.) We proposed that the restriction of the shape’s
skeleton to such a polygon be constructed by joining all the midpoints of the polygons
edges that are internal to the shape to the circumcenter of the polygon or, if the latter
falls outside the polygon, to the longest polygon boundary edge internal to the shape.
In effect, we discarded internal shape edges that are common to two co-circular
triangles in the CDT of a shape. We will generalize this notion of co-circularity to
define a valuation on the chords of a shape that will help filter chords which are
nearly co-circular in the above sense. The motivation for this is to prevent common
edges of nearly co-circular triangles from participating in the construction of the
skeleton. This will greatly reduce skeleton oscillations in tapered regions of shapes.
Indeed, consider two adjacent, co-circular, sleeve triangles. Unless the external edges
of the triangles are parallel, the midpoints of the internal edges of the two triangles
will not lie on a straight line, thus producing an oscillation in the skeleton. If the
common internal edge of this triangle pair is discounted, then the skeleton of the
polygon determined by the triangle pair is given by the line segment joining the
midpoints of the remaining two internal edges, thus locally rectifying the CAT
skeleton of the shape (Fig. 12).

4. A measure of chord strength

We introduce a valuation on the chords of a discrete shape’s CAT. The chords of the
CAT are edges of the CDT of the shape that are shared by two triangles. Let the
angles opposite a chord c¢ in its two flanking triangles be 8 and ¢. We then define the
strength of ¢ by

S(c)=1-( 8+ p)/x. -

Thus S is a valuation on the set of all chords of a shape, with values in the half-
open interval [0, 1). This is because the empty circle condition of the CDT ensures
that the sum of the angles across from a chord does not exceed « radians. We will
refer to this valuation as the chord strength. S takes the value 0 on chords that are
flanked by co-circular triangles. This observation is based upon an elementary fact of
Euclidean geometry that the opposite angles of a cyclic quadrilateral add up to =
radians. Hence, the smaller the strength of a chord, the closer its flanking triangles are
to being co-circular, and vice versa. We are now ready to suppress the chords of low
strength in the construction of the CAT skeleton. In what follows, we will address
shapes without holes to keep the discussion simple. The techniques described can
easily be extended to shapes with holes as well.
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Fig. 9. CAT skeleton showing oscillations Fig. 10. CAT skeleton showing
in tapered regions of a rectangular shape degree three branching for a star-like
shape

Fig. 11. Comer detail of Fig. 12. Rectificationof  Fig. 13. Skeleton in Fig. 11
Fig 9. showing CDT and skeleton (dotted line) by rectified by suppressing weak
skeleton oscillations suppressing weak chord AB  chords

Fig. 14. Rectified CAT skeleton of Fig. 15. Schematic of CDT in the neighborhood of
shape in Fig. 10, with a degree 8 chords at junction of part with shape (left) and shape
branch point necks (center and right)
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5. Chord strength profile extrema and shape decomposition

The directed chords of a shape can be ordered by traversing the boundary of the
shape and recording in sequence the chords encountered. Thus, for instance at
boundary point p a directed chord pq joining p to another boundary point q will be
recorded, as will the chord qp on arrival at point q. Thus each chord will be recorded
and counted twice in traversing the shape contour. We call the graph of chord
strengths versus chord numbers the chord strength profile (CSP). The CSP is a
circular function in that the first and last chords in this enumeration are neighbors.
Using the CSP, we select chords whose strengths are strictly greater than that of at
least one neighbor and greater than or equal to the strengths of both neighbors. More
precisely, the chord ¢; is selected if and only if

[ (Ste) > Steen) & (S(e) = Sein) 1] [ (S(e) = S(ei)) & (Se) > See))] P

i.e., the selected chords’ strengths are at least one-side local maxima of the CSP.
Only these selected chords will be allowed to play a role in determining the skeleton
of the shape.

5.1. Polygonal decomposition of shapes

Next, we construct a triangle grouping graph whose vertices are the triangles of the
CDT of the shape, and with an edge between two vertices corresponding to adjacent
triangles if and only if their common edge is a suppressed chord. A connected
component analysis via a depth-first-search traversal of this grouping graph yields a
polygonal decomposition of the shape, with each polygon comprised of pairwise
adjacent, approximately co-circular triangles belonging to the same connected
component. We refer to such polygons decomposing a shape as Delaunay polygons.
As in the case of the CDT of a shape, these polygons can be classified into terminal,
sleeve, and junction Delaunay polygons depending on whether they have one, two, or
more chords, respectively, among their bounding edges. Again, as in the case of
triangles, skeletal segments are constructed in each Delaunay polygon to obtain a
skeleton of the shape. The midpoints of chords of a sleeve Delaunay polygon are
joined together to yield a sleeve skeletal segment. In the case of a junction Delaunay
polygon, we define its barycenter as the weighted average of the midpoints of its
chords, where the weight of each chord’s midpoint is the (normalized) length of the
chord. The midpoints of the chords are then joined to this barycenter to yield a
skeletal segment of the junction Delaunay polygon. The collection of all the skeletal
segments, with their adjacencies inherited from the adjacencies of the parent
Delaunay polygons, form a connected rectified CAT skeleton of the shape. The
suppression of weak chords remedies not only the skeletal oscillations (Figs. 9, 11,
12, 13), but also the purely degree three branch points (Figs. 10, 14) forced by the
CDT in the original CAT skeleton prior to rectification.
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5.2 Skeleton pruning

A pruning criterion for excising skeleton segments corresponding to insignificant
shape features is easily specified. For each chord of a junction Delaunay polygon the
length of the shape boundary arc subtended by it, (and not including the polygon,) as
a fraction of total shape boundary length is computed. If this fraction falls below a
predetermined threshold, the chord is an external boundary segment of a pruned
shape. Accordingly, a new barycenter of the junction polygon is computed with the
remaining chords taken into consideration if the remaining chords number greater
than two. Otherwise, the junction Delaunay polygon is demoted to a sleeve or
terminal Delaunay polygon and appropriate skeleton segments are constructed anew.

5.3 Visually salient shape decomposition

The selection criterion for a shape’s chords, specified in condition (2), may be
applied repeatedly to the CSPs of successive generations of selected chords, yielding
chords whose strengths are higher order maxima in the original CSP. These strong
chords correspond to cuts of the shape into visually salient parts. They typically occur
at the intersection of limbs with the shapes and necks of the shape where there is a
narrowing of the shape girth. The reason for this is intuitively captured in Fig. 15
where the structure of the shape around the chord at part junctions and necks forces
the sum of the angles opposite the chord in the flanking triangles of the shape’s CDT
to be smaller, and hence the chord to have greater strength than in other places of the
shape. The strength of a chord weakens with increase in its length for the same
boundary geometry in the vicinity of its endpoints. We compensate for this loss of
strength with increasing length by weighting the CSP with the (smaller) arclength of
the shape subtended at each chord divided by the length of the chord. This will
enhance the strength of chords that subtend visually salient parts of the shape. It is
important to note that we do not process the boundaries of shapes by removing noise
or smoothing.

Thus, the CSP provides not only a means of rectifying the CAT skeleton (Fig. 16),
but also a means of decomposing shapes into visually meaningful parts (fig. 17). A
well known work in this area is that of K. Siddiqi et al [7]. Their approach to shape
decomposition is also motivated by considerations of visual saliency and yields good
results. However, our approach addresses obtaining good shape skeletons as well as
good shape decompositions in a unified manner by proposing a single criterion for
solving both problems. The CSP maps the two-dimensional problem of shape analysis
to the analysis of a one-dimensional function’s extrema. This opens up a slew of well
known techniques for analyzing 1D signals such as wavelet transforms to obtain
hierarchical decompositions of shapes. We note that the shape decompositions
obtained by our method closely resembles the outcomes of experiments in shape
decomposition by M. Singh, G. Seyranian and D. Hoffman [8] using human subjects.
We believe the property of-strong chords of CDTs to yield visually meaningful
decomposition of shapes outlined has the potential to be developed into a useful and
elegant tool in investigating and understanding shapes.
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Fig. 17. Shapes and their decomposition based on higher order (order 4) maxima of their CSP. Adjacent
parts are shown in alternating shades .
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6. Conclusion

In this paper we have demonstrated a property of the chords of constrained
Delaunay triangulations of shapes to induce a hierarchy of visually salient
decompositions by defining a valuation on the chords. This valuation we call chord
strength, along with the ordering induced by the shape boundary on the chords, maps
the two-dimensional problem of shape decomposition into a one-dimensional problem
of analyzing a function’s extrema. We have briefly demonstrated how one can obtain
rectified shape skeletons as well as visually meaningful shape decompositions using
successive selection of strong chords. The search for chords that best decompose a
shape using the extrema of the chord strength profile function introduced here can be
improved upon significantly and is part of our ongoing work in shape analysis. The
unified approach provided by our method to both skeletonization and decomposition
of shapes is the key contribution of this paper.
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