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ABSTRACT

Standoff thermal protection system (TPS) panels are critical structural components in future aerospace vehicles
because they protect the vehicle from the hostile environment encountered during space launch and reentry.
Consequently, the panels are exposed to a variety of loads including high temperature thermal stresses, thermal
shock, acoustic pressure, and foreign object impacts. Transient impacts are especially detrimental because they
can cause immediate and severe degradation of the panel in the form of, for example, debonding and buckling of
the face sheet, cracking of the fasteners, or deformation of the standoffs. Loads identification methods for
determining the magnitude and location of impact loads provide an indication of TPS components that may be
more susceptible to failure. Furthermore, a historical database of impact loads encountered can be retained for
use in the development of statistical models that relate impact loading to panel life. In this work, simulated in-
service transient loads are identified experimentally using two methods: a physics-based approach and an inverse
Frequency Response Function (FRF) approach. It is shown that by applying the inverse FRF method, the
location and magnitude- of these simulated impacts can be identified with a high degree of accuracy. The
identified force levels vary significantly with impact location due to the differences in panel deformation at the
impact site indicating that resultant damage due to impacts would vary with location as well.

1. INTRODUCTION

Foreign object impact identification is an essential part of a thermal protection system (TPS) structural health
monitoring (SHM) system because impacts can instantaneously produce damage in TPS materials and
structures. Loads identification is the process of determining the magnitude and location of (impact) loads acting
on the TPS panels and is the first step in TPS SHM because this information can be used to identify areas of the
TPS that may be more susceptible to damage. Once these “hot-spots” are identified, immediate assessments of
TPS health can be made and future off-line NDT inspections can be scheduled. Two approaches for loads
identification are described in this work: a kinematics-based approach and an inverse Frequency Response
Function (FRF) approach.

1.1. Previous Work

Many scientists and engineers have worked to identify external structural loads. There are several technical
issues that arise when estimating external loads given a limited set of response measurements. First, this
problem is an ill-conditioned inverse problem with no unique solution because the system response is generally a
continuous function of the spatial coordinates, whereas the measured response is defined only at a few discrete
points [1]. Second, solutions are often highly sensitive to small amounts of signal noise. Third, spatial aliasing
can occur if there are poorly placed or too few sensors leading to incorrect approximated response fields.

There are many techniques that have been developed for loads identification. In 1990, Dobson and Rider [2]
published a review detailing the frequency domain model, modal model, and finite element model techniques.
Works on indirect force measurement, where the location of the force is known a priori can be found in, for



example, Carne et al. [3,4], Fabunmi [5], Hansen and Starkey [6], Hillary and Ewins [7], Hollandsworth and Busby
[8], Law et al. [9], Lee and Park [10], Verhoeven [11], Yu and Chan [12], Zhu and Law [13,14], and Zhu and Lu
[15]. Works that pertain to identification of loads where the location of the applied load is also unknown can be
found in, for example, Méller [1], D'Cruz et al. [16], Yanyutin and Voropai [17], Sydel and Chang [18-20], Tracy
and Chang [21], Choi and Chang [22]. Shih et al. [23] and Zhang et al. [24] also studied the possibility of
determining the number of potentially incoherent loads acting on a structure. Studies that pertain to ili-
conditioning and various techniques to alleviate such problems (e.g. regularization, see Zhu and Law [13,14], Lee
and Park [10], and Tikhonov and Arsenin [25]) can be found in Hillary and Ewins [7], Okubo et al. [26], Hansen
and Starkey [6], and Karlsson [27].

Of particular pertinence to this work are several papers that pertain to the use of frequency domain methods (see,
e.g. [5,28-32]), which have shown that this approach can be highly sensitive to small perturbations in response
measurements and can easily result in ill-conditioning of the Frequency Response Function matrix. One
approach to reducing this problem is to over-define the problem, i.e. measure the response at more points than
there are input points [29]; however, this approach can be impractical for situations where there are many input
locations and few places to measure the response. Giasante et al. [32] studied the rotor hub loads of a helicopter
during flight. They measured the response with 37 accelerometers, given four single-frequency excitation forces
whose location was known a priori. The forces that were computed from the in-flight tests were then applied to
the helicopter during ground tests. A high degree of correlation was noted between the in-flight and ground test
response. Similarly, Kinns et al. [33] used the same method to estimate the magnitude of the forces acting within
a marine turbo-alternator. In their work, 12 accelerometers were used to estimate the variation in nine unknown
forces acting on the alternator over an 18-month period. It was shown that the forces varied considerably;
however, the precise cause for the changes in the estimated force magnitude were unknown. They postulated
that the differences were a result of altered damping mechanisms present in the bearing oil films between on-
ground stationary tests and in-flight running tests.

There has also been a good amount of work in impact loads identification in plates. Yanyutin and Voropai [17]
present a method for deriving the equations of motion for a rectangular plate using Timoshenko plate theory,
which accounts for transverse shear and rotary inertia effects, and apply an impulsive load to a small area of the
plate (relative to the plate size). Given the differential equations of motion of the plate, they transform into an
integral equation related to the impulsive loads, from which they solve a linear integral Volterra equation of the
first kind. In order to solve the integral equation, they apply Tikhonov’s regularization [34,35], which can account
for errors on the measured response. They compared theoretical results to results from experiments where a ball
was dropped on the plate. Minor differences aside, the results between theoretical and experimental showed
positive correlation. It is important to note that the location of the applied load was known beforehand. Tracy and
Chang [21] present an algorithm for determining both the magnitude and location of impulsive loads applied to a
36-inch by 30-inch composite plate. In this work, they use a set of 13 distributed piezoelectric elements as
sensors and compare the estimated dynamic response of the plate to that which was measured. A computer was
used to iteratively compare the actual and estimated responses, after which the model is updated until the actual
response and estimated response match one another within a specified tolerance. They showed that their
computer code could accurately identify both the magnitude and location of impulsive forces applied to the
composite plate. One drawback to this system is the use of a rather high density of sensors. For more
information on the method presented in [21], see references [18-20,22].

2. IDENTIFICATION OF EXTERNAL IMPULSIVE LOADS
2.1. Rigid Body Kinematics-Based Approach

The fundamental assumption behind the kinematics-based approach to loads identification presented here is the
assumption that the panel behaves like a rigid body at low frequencies. With this assumption, Chasles’ theorem
can be applied. This theorem states that “The most general displacement of a rigid body is equivalent to a screw
displacement,” [36]. Paraphrasing, Chasles’ theorem indicates that every rigid body motion can be realized by
the sum of all rigid body translations and rotations about an axis. Eq. (1) describes this relationship between a
perimeter point motion and the motion of the center of mass:;
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where p is a point on the body, {R} is a vector describing the motion of the center of mass (CM), the double dot

signifies the second spatial derivative with respect to time and X, cm, ¥p.em @and z,.n are the coordinates of point p
relative to the CM (Figure 1).
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Figure 1: Relationship of Perimeter Point Motion to Center of Mass Motion.

Thus, if the motion of the CM is known, the motion of any perimeter point can be calculated [37]. However, the
reverse problem — calculating the motion of the CM given the motion at a single point p — results in an
underdetermined system: 6 unknowns in 3 equations. This problem of having too few equations can be alleviated
by measuring the response at multiple points on the panel and using a least-squares approximation to invert [TxJ:
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where n denotes the number of response points, and [Tg/' denotes the pseudoinverse of [Tg]. The pseudoinverse

function is based on the minimization of the least-squared error in a set of linear equations and is sometimes
referred to as the minimal norm least squares solution.



Once the motion of the CM is known, the Newton-Euler equations can be implemented to determine an equivalent
force-moment couple acting at the CM using the following equation of motion:

F1* [m 0 0 0 o0 o] (x|™

F, 0O m 0 0 0 0 ¥

F, joomo o of |Z o)
M, 000 1,1 1| lof

M, 00 0 I, I, L,| |8,

Mz 6x1 _0 O O = ¥ Z 1 6x6 éz 6x1

where F,, Fy, F;, My, M,, and M,, are the equivalent forces and moments acting at the CM (respectively), m is the
mass of the panel, and the /;; ; i,j={x,y,z} terms are the mass-moments of inertia.

In the case of the TPS panel, the only moments acting on the system are in the form of couples (due to the
standoff forces and impact forces), so in order to determine those loads, the equivalent force-moment couple
acting at the CM must be replaced by a general forcing distribution that encompasses the force contributions from
the standoffs and the foreign object impact. The relationship between the force-moment couple acting at the CM
and the perimeter forces is given by
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where f,, f, and f, are the forces acting at point p on the panel. An issue arises when attempting to solve the
reverse of Eq. (4); in the case of the TPS panel, there are forces acting at five points on the panel: three
orthogonal forces at each corner due to the standoffs and three forces acting at some unknown point due to the
impact. In all, there are 17 unknowns: 15 unknown forces and two impact locations (the z coordinate of the
impact is zero) in only six equations. A solution to this problem of too few equations is to directly calculate the
stiffness of each standoff. By muitiplying the stiffness at the standoffs by the standoff displacements (obtained by
twice integrating the acceleration response at each standoff), 12 of the unknowns are eliminated leaving the three
unknown impact forces and two impact locations to be determined.

2.2. Inverse Frequency Response Function Approach

An alternative approach to the kinematics-based approach to loads identification is the inverse FRF method. The
FRF is analogous to the impedance of an electrical circuit; it is a relationship between the effort (e.g. voltage) and
the flow (e.g. current) through the circuit as a function of frequency. In structural dynamics, the FRF is defined as
the ratio between the response and the input of the system as a function of frequency. This relationship is given
by
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where {X} is the response of the system at response DOFs p; {F} is the input to the system at input DOFs q; and
[H] is the system impedance, or FRF. The inverse FRF approach uses the FRF as a “fingerprint” of the system,
i.e., measure the FRF of a system and use the FRF, in conjunction with measured response, to identify loads
acting on the system. This approach can be expressed in equation form as
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where [H]' denotes the pseudoinverse of [H] and [H*T] is the complex conjugate transpose of [H]. The use of a

pseudoinverse is necessary if [H] is not square, but the number of response DOFs (p) must be greater than or
equal to the number of input DOFs (q) to avoid erroneous results. Theoretically, the number of response DOFs
need only equal the number of input DOFs; however, because experimental measurements are often subject to
slight errors and inconsistencies, many more response DOFs than input DOFs should be used to solve for the
forces acting on the system with a least-squares algorithm such as the pseudoinverse [29,32]. One drawback to
this approach is that at each arbitrary frequency, the gxq size matrix must be inverted, resulting in decreased
computational efficiency when q or the number of discrete frequencies becomes large.

3. EXPERIMENTAL VERIFICATION OF TECHNIQUES

Experimental impact tests were performed to confirm the validity of the kinematics-based and inverse FRF
approaches. Two sets of tests were performed; the first was designed around the kinematics-based approach to
loads identification and involved impacting the panel at nine different locations and measuring the time-domain
response at the standoff locations. The second test was designed around the inverse FRF approach to loads
identification and involved an identical testing regimen as the kinematics-based approach, but instead of
collecting time histories, the FRFs were measured.

3.1. Kinematics-Based Approach Experimental Results
Impacts were made with a TMS 086M92 electric impact hammer at nine points on the panel. The response (x, y

and z direction) was measured at each standoff location (points one, two, three, and four) on the panel with PCB
T356B18 tri-axial accelerometers (Figure 2).



B = Response/lmpact Point
O = Impact Point

Figure 2. Panel Impact and Response Points.

The TPS panel was mounted to a 500-pound steel test table that was designed to provide a rigid stationary
boundary condition. Figure 3 shows the experimental testing fixture and accelerometers used. The electric
impact hammer was fitted with a PCB 288C01 force/acceleration impedance head with a delrin tip to provide a 10
dB roll-off in the input power spectrum out to 400 Hz.

“'ﬁ »

—

g |

Figure 3: Experimental Impact Testing Fixture and Accelerometer.

Data were collected with a 16 channel IOTech WavePort™ data acquisition system. Eight seconds of data were
recorded at a sample rate of 8,192 Hz. Subsequent signal processing was performed with MATLAB",

By measuring the response at four points on the panel, the motion of the CM could be found by rewriting Eq. (2)
as:
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where the subscripts, 7, 2, 3 and 4 denote location on the panel and X1cm, Y1.cms Z1.cmre- s Xacms Ya,0m Zacm are the
locations of the response points in relation to the CM (24 om,-.., Z4cm are zero in the case of this flat panel). A trial
was formulated to verify that the results of applying a pseudoinverse produced a reasonable approximation of the
motion of the CM (Figure 4). Beginning with the perimeter response measurements, Eq. (2) was applied to
generate an estimation of the CM mation; then the estimated CM motion was used along with Eq. (1) to calculate
the perimeter motions; finally, these estimated perimeter motions were compared with the original response
measurements. If the pseudoinverse is generating the correct CM motion, the two results should be identical
(minor differences notwithstanding). Figure 5 shows one example of a comparison of the measured and
estimated response; in all cases the correlation between the two plots was reasonably good. The error in the
beginning of the time history shown in Figure 5 is due to contributions from non rigid-body (flexible) motions of the
panel immediately following the impact. It is believed that the pane! motions were consistently underestimated in
magnitude as in Figure 5 due to a bias error in the location of the CM and perhaps some residual flexible body
motions in the time history.

Pseudoinverse

Perimeter Response (approximation) Estimated CM
Measurements (Eq. 2) Motion
l Forward Problem
(exact)
(Eq. 1)
Check: < Estimated Perimeter
Equivalent? Motion

Figure 4: Pseudoinverse Trial Flowchart.
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Figure 5: Comparison of Measured Perimeter Response (—) and Estimated Perimeter Response () Using
Pseudoinverse.

A dimensioned, three-dimensional solid model of the panel was created with Pro/E” CAD software to determine
the total mass and inertia tensors of the panel. These inertial properties were needed in order to calculate the
equivalent force-moment couple acting at the CM. A technique was applied in which the location of the impact
was assumed to be one of the nine points on the panel shown in Figure 2. This technique effectively partitioned
the panel into nine regions (local to each point) where the impact forces were then calculated. A plot of the
maximum estimated impact force versus panel location is shown in Figure 6. Each series in Figure 7 represents
the maximum estimated impact when that impact is assumed to be acting at one point (in the vertical direction) on
the panel. For example, if the response of the system is measured when an impact occurs at point three, and the
impact force is assumed to act (successively) at points one through nine, the maximum estimated impact force in
the series should correspond to location three on the panel. The other “hump” in Figure 6 near points six and
seven is thought to emerge in the estimated force because of the proximity of these points to the impact point
(three); however, the relatively high estimated force near points eight and nine cannot be explained in this way.
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Figure 6: Maximum Estimated Impact Force versus Panel Location for an Impact at Point Three.
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Figure 7. Maximum Estimated Impact Force versus Panel Location for Impacts at Points One Through Nine.

In five out of the nine cases the location of the impact was properly identified (Figure 7 (¢)); none of the cases
properly identified the impact magnitude. In eight out of nine cases the impact force was underestimated. There
are several reasons for these errors. The first reason is that the assumption of rigid-body behavior is invalid and



that the effects of panel flexural modes are distorting the results. The second reason is that the standoffs were
assumed to behave as springs with no dampers; this assumption would tend to result in an under-prediction of the
impact forces. The third reason is that the amplitude of response was consistently underestimated as was shown
in Figure 5; therefore, the force would consequently be underestimated. The final reason is that all of the impact
tests were performed without ensuring than an even preload was present in all bolts, and, given the inherent
nonlinear behavior of bolted joints, any perturbations in bolt preload would distort the effective stiffness of the
standoffs.

3.2. Inverse Frequency Response Approach Experimental Results

To determine the FRF matrix, impacts were performed on the TPS panel at the nine points shown in section 3.1,
Figure 2; in this set of experiments, the preload of the fasteners was set to 90 (+ 0.25) inch-lb; of torque. Data
were collected with a 16 channel Agilent 1401/1432 51.6 kHz VX! data acquisition system. The MRIT-VXI data
acquisition software was used to obtain the FRFs between each accelerometer response and the corresponding
input for each impact location. Fifteen linear spectral averages were taken at each impact location using a force-
exponential window on each set of measured data.

When the FRFs for each input/output pair were assembled into matrix form and placed into Eq. (5), the following
expression was obtained:
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where the Xy, Xy, X1z Xo..., X4, denote the acceleration response (in the frequency domain) at DOFs one
through four and Fy,, Fz,, Fs,..., Fs; denote the input (in the frequency domain) at DOFs one through nine.

The time-domain response data collected in the impact tests described in section 3.1 coulld now be used in
conjunction with the FRF matrix to identify the loads acting on the system. A brief summary of the MATLAB®
code used in this process is described below:

1) Form the FRF matrix that was identified by the steps described above in section 3.2 above and insert the
time-domain response data collected in the impact tests described in section 3.1.

2) Reconstruct the FRF matrix, [H], to include both positive and negative frequency content. This
reconstruction step is necessary because the MRIT data acquisition software only supplies the positive
frequency information.

3) Perform a Discrete Fourier Transform (DFT) using the MATLAB® command ff to transform the time-
domain impact test data into the frequency domain.

4) Multiply the frequency-domain response vector (X} by the pseudoinverse of [H] to obtain an
approximation of the frequency-domain input force vector {F}.

5) Perform an Inverse Discrete Fourier Transform of {F} to transform {F} into the time domain.



The results of the inverse FRF method described above were found to be very good. Table 3.1 summarizes the
results of the actual impact force comparison with the estimated impact force. The maximum error in impact force
is 4.02 percent, a dramatic increase in accuracy over the kinematics-based approach.

Table 3.1: Actual and Estimated Impact Forces for Inverse Frequency Response Function Loads |dentification.

Location | Measured Impact Force (lby) | Estimated Impact Force (Ibs) | Error (%)
1 23.369 23.201 -0.72
2 10.205 10.615 4.02
3 14.119 14.086 -0.23
4 14.819 14.805 -0.09
5 23.457 23.540 0.35
6 10.044 10.002 -0.42
7 9.763 9.784 0.22
8 8.292 8.461 2.04
9 15.168 14.863 -2.01

The location of the impact was correctly identified for all nine test locations (Figure 8). Additionally, the magnitude
of each impact was calculated to a high degree of accuracy. Figure 9 shows a typical result of the comparison of
the actual time-domain impact force with the estimated impact force; Figure 10 shows a side-by-side comparison
of actual and estimated impact force. Note that for approximately the same impact energy at locations one
through nine in Figure 10, there are significant differences in resultant maximum forces. A higher force would
likely result in more potential for damage to the TPS. Therefore, it can be concluded that the variation in
displacement at the nine different locations results in a different force and susceptibility to impact damage at the
nine locations.
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4. CONCLUSIONS

One issue that future work in the area of loads identification will need to address is that the FRF only
characterizes the original system for which the FRFs are computed. If the system is altered in any way, e.g,, is
damaged, the panel material properties change due to a significant increase in temperature, or the mass changes
as a result of oxidation or nitridation, then the original FRF is no longer a valid identifier for the system. The
second issue is that the FRF is a linear transfer function relating the input to a system to the response. For
situations in which the loading is extreme, e.g., high velocity impacts and the 180 dB sound pressure levels
experienced by these panels, the system will exhibit nonlinear behavior and again the FRF will no longer be valid.
A third issue that these techniques must address in future work is that the impacts applied in the experiments
described above were unidirectional and were only applied at points one through nine, not any points in-between.
In future work, the effects of slight off-axis excitations (e.g., impact occurs at point three with components in the z
direction and the x and y directions) and the effects of excitations applied at random locations on the panel on the
accuracy of these results must be assessed. These issues aside, the results of the inverse FRF approach to
loads identification are promising. It has been shown that impacts on a TPS panel can be located and quantified
to a high degree of accuracy. Loads identification will provide invaluable information to the flight crew and ground

inspectors because it will designate specific areas of the TPS that have been subjected to potentially detrimental
loads.
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