LA-UR- 04 -7085

Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

o Los Alamos

NATIONAL LABORATORY

Detection of Configuration Memory Upsets Causing
Persistent Errors in SRAM-based FPGAs (Paper)

D. Eric Johnson, Brigham Young University

Keith S. Morgan, Brigham Young University/ISR-3, LANL
Michael J. Wirthlin, Brigham Young University

Michael P. Caffrey, ISR-3, Los Alamos National Laboratory
Paul S. Graham, ISR-3, Los Alamos National Laboratory

7th Annual Military and Aerospace Programmable Logic
Devices International Conference, Washington D.C., 8-10
September 2004

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (8/00}

=

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.

For additional information or comments, contact:

Los Alamos National Laboratory Research Library

Los Alamos, NM 87545

Phone: (505)667-5809

E-mail: reports@lanl.gov

Detection of Configuration Memory Upsets Causing
Persistent Errors in SRAM-based FPGAs

D. Eric Johnson!, Keith S. Morgan', Michael J. Wirthlin!,
Michael P. Caffrey?, and Paul S. Graham?
dej23@ee.byu.edu, ksm{@et.byu.edu, wirthlin@ee.byu.edu, mpc@lanl.gov, and grahamp@lanl. gov
1Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT. 84602

2Los Alamos National Laboratory, Los Alamos, NM

Abstract FPGA designers are becoming increasingly
aware of fault tolerance issues in modern FPGA designs,
especially designs destined for a radiation environment.
We classify errors due to upsets within the configura-
tion bitstream into two categories; namely, persistent and
non-persistent. Persistent errors generally cannot be tol-
erated. However, non-persistent errors can be tolerated
in certain types of designs as long as they are prop-
erly accounted for. We discuss situations in which non-
persistent errors are acceptable, and describe a technique

for the detection of upsets causing persistent errors within’

the configuration memory of an SRAM-based FPGA.

1 Introduction

FPGAs are increasingly used in radiation harsh en-
vironments capable of causing single event upsets
(SEUs). These SEUs may potentially modify an
FPGA design, causing incorrect design behavior. In
order to properly operate in a radiation environment,
SRAM-based FPGA designs must employ some sort
of SEU mitigation technique, whether it be half-latch
removal (1], configuration memory scrubbing [2], or
triple module redundancy (TMR) [3]. However, full
mitigation techniques such as TMR can be, expen-
sive in terms of power, area, and clock rate [4].

We are investigating the effects of configuration
memory SEUs and gain insight into SEU mitigation
costs. Certain FPGA designs cannot afford the costs
of full mitigation. For these designs, alternate miti-
gation strategies need to be developed. These strate-
gies may include tradeoffs between reliability, circuit
area, power consumption, and clock rate.

In order to aid our investigation of SEU mitiga-
tion costs, we propose a new way of classifying the
errors caused by configuration memory upsets, di-
viding them into two categories, namely persistent
and non-persistent. We can take advantage of the
properties of these errors in order to increase relia-

bility at a low hardware cost. Certain types of errors,
namely non-persistent errors, cause only brief inter-
ruptions in the correct operation of a design when
configuration memory scrubbing is used. By employ-
ing a mitigation technique which allows these non-
persistent errors while preventing persistent errors,
we can increase the reliability in comparison to the-
non-mitigated design at a low additional hardware
cost. .

We will begin this paper with a. background of
fault testing techniques, both fault injection testing
and radiation testing. Next, we will further develop

the idea of persistent errors and our reasons for inves-

tigating them. We will then present the testbed we
have created which searches for persistent errors in a
design. Finally, we will show the results we have ob-
tained through our persistence testing, and present
our conclusions.

2 Configuration Memory Up-

sets

FPGAs perform very well at custom computation-
ally intensive applications. For this reason, they are
often used in specialized signal processing applica-
tions. Satellite missions especially serve to benefit
from the capabilities provided by FPGAs. However,
the radiation environment inherent in space missions
can cause severe problems in SRAM-based FPGAs,
particularly within the configuration memory.

2.1 Definitions

To aid in our discussion, we make the following defi-
nitions:

configuration memory upset a single event up-
set (SEU) within the configuration memory of an

FPGA, having the potential to modify an FPGA
design and alter its behavior

error incorrect design behavior resulting from an
SEU within either the configuration memory or
user mernory space

sensitive configuration bit a configuration bit
which, when upset, results in an error

non-sensitive configuration bit a configuration
bit which, when upset, does not result in an er-
ror

2.2 Configuration Upsets

In a radiation environment, any volatile memory
source is susceptible to the effects of single event up-
sets (SEUs). Such an upset can be caused by a high
energy particle interfering with the charge state of a
memory latch. Typically, such upsets are observed as
a change of state in a memory location; a stored logic
value of 1 is inappropriately set to 0, or vice versa.
When occuring within the configuration memory of
an FPGA, this incorrect change of state in the mem-
ory is referred to as a configuration memory upset.

SRAM-based FPGAs use volatile memory to store
the configuration information for a given design. The
configuration memory defines the interconnection
and functionality of all programmable logic blocks
in an FPGA design. Because of the the volatile na-
ture of the configuration memory of an FPGA, SEUs
can cause configuration memory upsets. As a conse-
quence of these configuration upsets, the FPGA de-
sign may actually be modified.

The occurance of a single event upset within an
FPGA configuration memory is illustrated in Figure
1. This figure illustrates a typical logic block of an
FPGA. The configuration memory defines the func-
tion of the logic block, in this case a four input AND
gate followed by a flip-flop, as illustrated in part b
of Figure 1. However, an SEU within the configura-
tion memory may potentially change the function of
the logic block, in this case, changing the function
of the four input and gate to a four input or gate,
as shown in part ¢ of Figure 1. For this reason, it
is highly important to mitigate against the effects of
SEUs within the configuration memory of an FPGA.

The configuration memory is sub-divided into two
categories; sensitive and non-sensitive bits. Sensi-
tive bits are those bits which are crucial to the cor-
rect operation of a design. The composition of the
set of sensitive bits is design dependent. Those bits
which are sensitive generally correspond to parts of

)

)

Look Up
Table

16100
10100
10100

Figure 1: a) typical basic programmable block of an
FPGA. b) this figure illustrates how the configuration
memory defines the function of an FPGA. c¢) a fault
within the configuration memory of an FPGA can alter
the design.

the FPGA which are utilized by a given design. Ev-
ery bit within the configuration memory of an FPGA
is classified either as sensitive or non-sensitive.

2.3 Single Event Upset Simulation

We have developed a fault injection tool based on
the SLAACI1-V computing board, which causes up-
sets within the configuration memory of an FPGA
[5]. With this tool, a design specific map of the sensi-
tive bits can be created. Faults are injected using the
partial reconfiguration capabilities of the Xilinx Vir-
tex parts on the board. The behavior of the design is
subsequently monitored for errors while the fault is
present, and then the fault is repaired. This process
is repeated for every bit within the CLB space of the
configuration memory.

The fault injection tool is sometimes referred to as
a configuration SEU simulator because it simulates
the introduction of faults within the configuration
memory of an FPGA. In a true radiation environ-
ment, these faults occur as a result of SEUs due to
high energy particles. With the configuration SEU
simulator, we can inject faults into the configura-
tion memory and observe their effects directly. The
fault injection tool offers several advantages, includ-
ing the ability to perform targeted tests. Factors such
as fault introduction rate, fault persistence time and
fault locations can all be controlled; this is not true

for ground-based radiation tests, where the process
is random. As such, the fault injection tool is very
useful for FPGA designers wishing to validate the
performance of configuration SEU mitigation tech-
niques.

2.4 Fault Detection and Correction

Systems containing FPGAs intended for use in a ra-
diation environment often find it necessary to employ
some sort of strategy for fault detection and correc-
tion. Even an FPGA design employing an SEU miti-
gation technique which guarantees fail-safe operalion
in the presence of a single configuration memory up-
set is susceptlible to multiple upsets over time if a
fault correction strategy is not used. As such, a fault
correction mechanism should be implemented for any
radiation destined FPGA-based platform.

Two main forms of fault correction exist [2]. The
first consists of fault detection and correction. A sys-
tem utilizing such a method performs periodic read-
back operations on the configuration memory of the
FPGA, searching for faults. When found, these lo-
cations are repaired.

The second form of fault correction is commonly
referred to as scrubbing. The method simply consists
of periodically refreshing the contents of the entire
configuration memory of the FPGA. Regardless of
when or where a fault occurs, it will eventually be
repaired.

Neither technique can guarantee that a design will
be 100% free of all configuration faults. The liklihood
of the existence of a fault depends on how often the
entire configuration memory can be either checked or
refreshed.

In our discussion throughout the remainder of this
paper, we will assume that all systems employ some
sort. of technique for fault correction.

3 Persistence

Errors occuring within an FPGA design due to con-
figuration faults can generally be classified into one of
two categories, namely persistent and non-persistent
errors, In the following subsections we will explain
in more detail what we mean by persistent and non-
persistent errors. Further, we will show how we sub-
divide the category of sensitive bits into two cate-
gories based on the type of error that generally re-
sults when they are upset. These two subdivisions
are non-persistent and persistent bits.

3.1 Non-Persistent Bits

Non-persistent errors are errors, which, given time
and the employment of a fault correction strategy,
will flush out of a system. They can be thought of
as temporary errors. In other words, if a fault occurs
within an FPGA design and is subsequently repaired,
errors occuring as a result of that fault will be present
for only a finite amount of time. Non-persistent bits
are those bits in the configuration memory of an
FPGA which, when upset, result in a non-persistent
erTor.

cycle a b status

0 0x2 | Oxb OK
1 Oxa | Ox1 OK
2 0x9 OK

Ox 2
7 Oxd

Figure 2: An upset within the configuration memory of
a multiplier design with inputs @ and b and output p may
cause a temporary failure. Once the configuration mem-
ory is repaired, the operation of the multiplier returns to
normal without the need of a reset.

A simple example of non-persistence is illustrated
in Figure 2. This table shows the operation of a com-
binational multiplier design with 4-bit inputs a and
b, and with an 8-bit output p. The operation of the
multiplier over 7 eycles is shown along with the val-
ues of the inputs and output. Between cycle 2 and 3
ol execution, an SEU occurs at a location which af-
fects the operation of the design. As indicated by the
status column, the behavior of the multiplier is in-
correct for the next 3 cycles. We assume that a fault
correction technique, such as bitstream scrubbing??,
is being used for this design. Between cycles 5 and 6,
the configuration memory of the design is repaired.
Since the multiplier is a purely feed-forward design
its operation returns back to normal, as indicated
again by the status column.

3.2 Persistent Bits

Persistent errors are defined as those which will never
flush out of a design unless a reset is applied. Even
then, it is necessary to employ a fault correction
strategy in order to correct the configuration memory
upset caused by an SEU, otherwise the reset will not

be able to fix the prablem. Once the configuration
upsel has been repaired, the error condition will not
go away without external intervention of some sort,
such as a reset.

cycle ¢ status
0 0x0 OK
1 0x1 OK
~ SEU occurance

2 Oxa | ERROR
3 0Oxb | ERROR
. U

/ Oxe | ERROR
5 Oxd | ERROR
§ Oxe | ERROR

.. | ERROR

Figure 3: An upset within the configuration memory of a
simple 4-bit counter design with output signal ¢ may po-
tentially cause a permanent error condition. Even when
the configuration memory is repaired, the operation of
the counter does not return to normal without a reset.

Persistent bits are those bits in the configuration
memmory which result in a persistent error when up-
set. The consequences ol upsetting a persistent bit
are more harsh than those resulting from upsetting
non-persistent bits, and consequently more thought
should probably be given to mitigating these types
of bits within an FPGA design.

An example of a persistent error can be illustrated
through the operation of a simple 4-bit counter de-
sign shown in Figure 3. Under normal operating con-
ditions, this counter repeats the sequence in order
from 0 to 15, or 0x0 to Oxf. From the table we see
that the first two cycles of the output ¢ are correct.
However, between cycles 1 and 2 an SEU within the
configuration memory occurs causing a stuck at one
condition on the MSB of the counter. For the next
two cycles the counter is in error. Between cycles
3 and 4 the SEU is corrected. However, because of
the feedback nature of the counter design, the correct
value of the counter never recovers without further
intervention. The design has been repaired, but the
current bad state of the counter will incorrectly effect
al future states as well. The counter assigns the next
state of the counter, seen in cycle 4, to be Oxc, based
on the previous incorrect value, Oxb. In order to
prevent such errors within feedback loops mitigation
should be applied through design level techniques or
else need to be corrected through external interven-
tion, such as a system reset.

3.3 Persistence Tradeoffs

The characteristic differences between persistent and
non-persistent bits allow us to explore tradeoffs in
[ault-tolerant systems. We can take advantage of the
fact that non-persistent errors, when permitted in a
system, will cause only momentary lapses in the reli-
ability of an FPGA design. A design which can tol-
erate such errors can avoid the extra hardware costs
involved with mitigating the effects of these errors.

However, designs which have not mitigated
against persistent errors will possibly experience per-
manent error conditions. Unless these errors are mit-
igated, external intervention will be necessary. One
of the simplest forms of such intervention is a system
reset. However, such an extreme measure is often
unacceptable for a given system. Consequentally, a
system will benefit from the mitigation of such errors.

Because all systems cannot tolerate full mitiga-
tion techniques, such as exhaustive TMR, for rea-
sons due to area, power or clock constraints, selec-
tive mitigation could be investigated. By mitigating
against persistent errors only, we may see a relatively
big increase in reliability at a low cost in terms of
area. Further, certain types of systems may be able
to tolerate temporary failures resulting from non-
persistent errors, as such errors do not require a sys-
tem reset in order to remove the error condition as
long as some sort of fault correction strategy is em-
ployed. Such systems may especially benefit from the
application of targetted mitigation techniques which
remove the possibility of persistent errors from the
design sensitive cross-section, hecause such a target-
ted application will in most cases be less expensive
than full mitigation in terms of circuit area.

In order to investigate mitigation techniques tar-
getted at removing the potential for persistent er-
rors, we need a method of determining whether a de-
sign contains any persistent bits in its sensitive cross-
section. Conceptually, we can categorize persistent
and non-persistent characteristics hy design styles.
For example, feed-forward and datapath sections of
a design typically contain no persistent bits. On the
other hand, control and feedback portions of a de-
sign generally do contain persistent bits. Although
this high level classification provides useful insight
when making design decisions, an accurate analysis
of persistence versus non-persistence is necessary in
order to effectively apply mitigation techniques. For
this purpose we have developed the persistence anal-
ysis tool.

4 Testing Methodology

In order to identify persistent bits in a design we
have extended the fault injection tool described in
Section 2. The tool now finds the subset of sen-
sitive bits which are persistent. The tool operates
in the following manner, also illustrated in Figure
4. First, a bit is corrupted in the configuration bit-
stream data, representing a fault, before the FPGA
is programmed. The FPGA is programmed with the
corrupt data and the output of the design is mon-
itored for errors. Second, the design is allowed to
operate for a finite length of time and then the fault
is repaired (see time 2z in figure 4). If an output er-
ror occurs before the bit is repaired, the circuit is
cycled for an additional amount of time in order to
allow errors to potentially fAlush out of the system
(see time y in figure 4). Finally, the behavior of the
design is again monitored for a short amount of time
in order to check for errors (see time z in figure 4).
An error within this last window of time indicates
with a certain probability that upsetting the given
configuration bit causes persistent errors.

This process is repeated for every bit within the
CLB space of the configuration memory. The lengths
of time (z, y, and z) that the simulator monitors the
output for errors are user defined parameters. Figure
4 shows these parameters with respect to upsetting
and repairing a configuration bit. The pseudo-code
for the tool’s persistence test loop is shown in Fig-
ure 5. With this tool, a design specific map of the
persistent bits can be created.

| 3
X f ¥ ‘ z

\ A - @

fime

0 Simulator upsets configuration bit.
A Simulator repairs configuration bit. Persistence test begins.
. Reset error counters,
. End of persistence test.
X Serub time.
Y Flush time.

Z. Persislence observalion time.

Iligure 4: Timeline of a persistence test showing the test
parameters x, y and z relative to the events which occur
during testing.

The degree of confidence with which we can say
a bit is persistent is dependent on the design under
test and the time parameters x, y, and z, as illus-
trated in Figure 4. A bit is marked as persistent if
an output error occurs durir]g time z. However, if
at some point in the future the error Hushes out of

01: do {

02: corrupt configuration bit

03: wait for time ’x’

04: test for output error

05: repair configuration bit

06: if output error occured

07: mark bit location as sensitive
08: wait for time ’y’

09: reset error counters

10: watch output for time ’z’

11: if output error occured

12: mark bit location as persistent
13: endif

14: endif

15: reset design

16: } until all bits have been tested
Figure 5: Persistence Check Inner-Loop

the system and never appears again, the bit was in-
correctly marked as persistent. Conversely, a bit is
marked as non-persistent if the output is absent of
discrepancies during time z. However. if an error sur-
faces later and never flushes out of the system, the
bit was incorrectly marked as non-persistent.

5 Test Designs

For preliminary testing of our persistence tool, we
have created two FPGA designs. Our first design is
a contrived design, intended to emphasize the charac-
teristics inherent in both feed-forward and feedback
design styles. We chose this design hoping to see
the presence of both persistent and non-persistent
bits. The second design is a signal processing kernel
implemented by researchers at Los Alamos National
Laboratory. The purpose behind testing this design
was to get a feel for the persistence characterists of
a real world design.

Figure 6: Synthetic design

We refer to our first contrived design as the syn-
thetic design. The synthetic design is comprised of
banks of wide LFSRs, whose outputs feed banks of
pipelined multipliers (see Figure 6). The output of

these multipliers is fed into an adder tree, and the
final result is used as the design output. The LFSR
portions of the design emphasize the characteristics
typical ol persistent design styles with feedback. The
feed forward multiplier and adder tree exhibits char-
acteristics more indicative of non-persistent design

Polyphase EET Magnitude
Filter Operation

Figure 7: Snapshot recorder design

styles.

The signal processing kernel design is called the
snapshot recorder design. This design filters incom-
ing data through a polyphase filter bank, separating
this data into 32 separate channels. The polyphase
filter operation is followed by an FFT and a magni-
tude operation for each of the 32 channels received
from the polyphase filter (see Figure 7). The feed
forward nature of this design would suggest that it
is dominated by non-persistent characteristics. [t is
only through more detailed analysis, such as that of-
fered by persistence testing, however, that we can
verify such a presumption.

6 Persistence Testing Example

We illustrate a real life example of persistent test-
ing with the snapshot recorder design. Figure 8
illustrates the output obtained from the snapshot
recorder design when given random input. In this
figure, all 32 channels of the snapshot recorder are
overlayed on top of each other. The x-axis indicates
time in terms of clock cycles, and the y-axis repre-
sents the magnitude of the snapshot recorder output
data.

Figure 9 shows the difference of the expected and
actual output of the snapshot recorder for all 32 chan-
nels. This data was obtained from actually executing
the design in hardware. A value of zero indicates that
the snapshot recorder design is operating normally,
whereas a non-zero result indicates a deviation from
normal behavior,

Within Figure 9, we can see that an error cond-
tion occurs. This error is due to an upset within the
configuration bitstream memory of the FPGA design,
which has been inserted using the [ault injection tool.
A short time after the fault is inserted, it is repaired.
From the plot of the difference between expected and
actual output, we see that the snapshot recorder de-

sign operation returns to normal. This particular

Piot of the 32 channels of Snapshot Recorder DUT cutput data
AN ey = -

[y

—— v v

Magnitide

o 20 40 80 BO 100 120 140 160 180 200
Time

Figure 8: Snapshot recorder normal recorder output

instance illustrates the behavior of a non-persistent

error.
#10 of e Date e Of Ui S4apshol Booo der Dt #ne Golgon
o 1
“| Non-persistent Bitstream '
«| Upset repaired

Magniticie

180 200

Figure 9: Snapshot recorder non-persistent error exam-
ple. This graph shows the difference between expected
and actual ontput. A value of 0 indicates correct opera-
tion.

Figure 10 also illustrates the difference hetween
the expected and actual output of the snapshot
recorder. Again, an error in the operation of the
design occurs due to an upset within the configu-
ration bitstream memory. Similar to the previous
example, the upset is repaired shortly after its oc-
curance. However, in this instance the design never
recovers back to normal operation. We can clearly
see that the error condition continues in spite of the
configuration memory having been repaired. This is
an example of a persistent error, and the particular
configuration memory bit that was upset is an exam-
ple of a persistent bit.

Design Logic | Sensitive | Sensitivity | Persistent | Persistence
Slices Bits Bits
Snapshot | 5,775 | 568, 660 9.79% 12,382 0.213%
Synthetic | 5,924 | 421,874 7.26% 59, 369 1.02%

Table 1: Preliminary results obtained with our persistence tool for two designs

ot of e Diterence of v Snapsiat Heconosr O a~d Goden
200 —

Persistent
Upset

oy et
o

repaired

Figure 10: Snapshot recorder persistent error example.
This graph shows the difference between expected and
actual output. A value of 0 indicates correct operation.

7 Results

We have performed extensive testing on the synthetic
and snapshot recorder designs with our persistence
detection tool. The results from our tests are shown
in Table 1.

In column 1 of the table is listed the number of
logic slices occupied by each design. The Virtex part
on which these designs were tested contains a total
of 12, 288 logic slices. These numbers give us an idea
of the design size, a useful figure for comparing the
relative sensitivy and persistence results.

The second column shows the number of sensitive
bits found for each design, and column 3 shows the
percentage of configuration memory bits which are
sensitive. The total number of configuration mem-
ory bits on the Virtex part used for these designs is
5,810,048, This shows that on average the snapshot
recorder design, with a sensitivity of 9.79%, is more
susceptible to single event upsets than the synthetic
design, with a sensitivy of 7.26%.

Finally, columns 4 and 5 show the number of per-
sistent bits found and the persistence, respectfully.
The persistence is delined as the percentage of con-
figuration memory bits which were found to cause
persistent errors. Attention should be given to the
relatively small number of bits which cause persistent

bits for these two designs.

It is interesting to note that the snapshot recorder
design, which is more sensitive to SEUs than the syn-
thetic design, actually contains less persistent bits
than the synthetic design by almost a factor of 5.
However, this is as expected due to the nature of the
two designs. The snapshot recorder consists largely
of a datapath feed forward structure, whereas the
synthetic design was purposely constructed to con-
tain several feedback structures. This feedback is
present mainly in the LEFSRs which drive the multi-
pliers (see Figure 6). Feedback structures will typi-
cally cause errors to be persistent in nature.

We have also conducted a preliminary radiation
test in order to verify the validity of the results ob-
tained with our persistence tool. These results will
be forthcoming upon the completion of their analysis.

8 Conclusions

We have developed a technique for the detection of
persistent errors due to the upset of persistent con-
figuration memory bits within an FPGA design. Pre-
liminary results have been obtained, and indicate
that we can use the persistence tool for detection
of persistent bits within an FPGA design, as well as
for the validation of mitigation techniques targetted
at removing persistent bits from the sensitive cross
section of a given design.

Not all FPGA designs require bullet-proof mit-
igation techniques. The extreme consequences of
persistent errors indicate that they are an excel-
lent candidate for targetted mitigation techniques.
The relative increase in reliability due to the re-
moval of persistent bits from the sensitive cross sec-
tion is much higher than that gained from remov-
ing non-persistent bits, as the consequences of per-
sistent, errors are much more extreme than those of
non-persistent errors. Additionally, we can infer from
the results shown in Table 1 that the cost of apply-
ing mitigation for the persistent bits only should be
small, as the overall number of persistent hits rela-
tively small.

Mitigation techniques targetted at removing per-
sistent bits from the design sensitive cross section
can be validated using the persistence tool which we

have developed. As part of our future work, we wish
to develop techniques for detecting the presence of
structures having characteristics common to persis-
tent design styles, and applying mitigation to these
structures.

References

1]

2]

Paul Graham, Michael Caffrey, Eric Johnson,
Nathan Rollins, and Michael Wirthlin. SEU mit-
igation for half-latches in Xilinx Virtex FPGAs.
In IEFE Transactions on Nuclear Science, vol-
ume 50, pages 2139-2146, December 2003.

Carl Carmichael, Michael Caffrey, and Anthony
Salazar. Correcting single-event upsets through
Virtex partial configuration. Technical report,
Xilinx Corporation, June 1, 2000. XAPP216
(v1.0).

Carl Carmichael. Triple module redundancy de-
sign techniques for Virtex FPGAs. Technical
report, Xilinx Corporation, November 1, 2001.
XAPP197 (v1.0).

Nathan Rollins and Michael Wirthlin. Effects
of TMR on power in an FPGA. submitled to
MAPLD0M.

Eric Johnson, Micheal J. Wirthlin, and Michael
Caffrey. Single-event upset simulation on an
FPGA. In Proceedings of the International Con-
ference on Engineering of Reconfigurable Systems
and Algorithms (ERSA), pages 66-73, June 2002.

