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Probabilistic interpretation of Peelle’s pertinent puzzle
and its resolution

Kenneth M. Hanson1, Toshihiko Kawano, and Patrick Talou

Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Abstract. Peelle’s Pertinent Puzzle (PPP) states a seemingly plausible set of measurements with their covariance matrix,
which produce an implausible answer. To answer the PPP question, we describe a reasonable experimental situation that is
consistent with the PPP solution. The confusion surrounding the PPP arises in part because of its imprecise statement, which
permits to a variety of interpretations and resulting answers, some of which seem implausible. We emphasize the importance
of basing the analysis on an unambiguous probabilistic model that reflects the experimental situation. We present several
different models of how the measurements quoted in the PPP problem could be obtained, and interpret their solution in terms
of a detailed probabilistic analysis. We suggest a probabilistic approach to handling uncertainties about which model to use.

PEELLE’S PERTINENT PUZZLE

Peelle’s original statement [1] of the PPP is as follows:
“Suppose we are required to obtain the weighted av-

erage of two experimental results for the same quantity.
The first result is 1.5, and the second result is 1.0. The
full covariance matrix of these data is believed to be the
sum of three components. The first component is fully
correlated with standard error 20% of each representative
value. The second and third components are independent
of the first and each other, and correspond to 10% ran-
dom uncertainties in each result.

The weighted average from the least-squares method
is 0.88 � 0.22, a value outside the range of the input
values! Under what conditions is this the reasonable
result that we sought to achieve by use of an advanced
data reduction technique?”

The PPP effect has been observed in numerous evalu-
ations of nuclear cross sections. [2, 3, 4, 5, 6]

Initially, the answer stated in the PPP seems implau-
sible. The seeming paradox arises because the state-
ment of the puzzle is ambiguous. For example, it is not
stated whether the correlated uncertainty contributes to
the measurements in an additive or multiplicative man-
ner. We propose a plausible experimental situation that
would correctly yield the answer of 0.88. Alternative in-
terpretations of the PPP may be more appropriate in the
context of nuclear cross-section evaluation. A precisely-
stated uncertainty model clarifies the probabilistic ap-
proach that needs to be taken.

1 Corresponding e-mail address: kmh@lanl.gov LA-UR-04-6722

Standard solution

We designate the two quantities that are measured
by x1 and x2, and represent them by the vector x �

�x1 x2�
T. The measurements m1 = 1.5 and m2 = 1.0

are represented by m � �m1 m2�
T. The measurements

have relative independent standard errors of ρ 1 = ρ2 =
0.1, and a relative common error ρ c = 0.2. Assuming
that normal distributions are appropriate, the probability
density function (pdf) for x is given by [7, 8]

p�x �m� ∝ exp
�
� 1

2�x�m�TC�1�x�m�
�

� (1)

where the covariance matrix is

C �

�
m2

1�ρ2
1 �ρ2

c � m1m2ρ2
c

m1m2ρ2
c m2

2�ρ2
1 �ρ2

c �

�
� (2)

The argument of the exponential in (1) is 1
2 χ2, gener-

alized to include correlations. Figure 1a shows the joint
distribution for x1 and x2, considered as separate vari-
ables. The strong correlation between x1 and x2 is evident
from the tilt of the contours.

Because x1 and x2 are the same quantity, we set x �
x1 � x2. Figure 1b shows the resulting one-dimensional
distribution p�x�, which is a normal distribution centered
on x � 0�882 and with a standard deviation of 0.228.

An identical result is given by the familiar least-
squares solution, which maximizes the probability (1):

x � �GTC�1G��1GTC�1m � (3)

and with the covariance V � �GTC�1G��1� where G
is the sensitivity matrix, i.e, the matrix of derivatives
of measured variables m with respect to the inferred
variables x; G � �1 1�.
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FIGURE 1. (a, top) Contour plot of the joint distribution
p�x1�x2 �m� given by Eq. (1) and (b, bottom) the distribution
along the diagonal for p�x � x1 � x2 �m�, centered at 0.882.

Probabilistic model

The above analysis effectively hides the source of the
correlation between the uncertainties in the measure-
ments. A detailed probabilistic formulation helps eluci-
date what is going on. We first treat the case in which
each measurement is affected by a correlated additive
offset, as could arise from a background subtraction.

We consider the joint probability of x � x1 � x2 and
∆, a systematic additive offset in x, which is uncertain
(e.g., x � m1 �∆). We use Bayes law [9] to obtain the
posterior distribution, p�x�∆ �m� � p�m �x�∆�p�x�∆� �
p�m �x�∆�p�x�p�∆�, where p�m �x�∆� is the likelihood,
and p�x� and p�∆� are the priors on x and ∆. We assume
p�x� is uniform, indicating no prior information about x,
and p�∆� is normally distributed with its peak at ∆ � 1,
and a standard error of σ∆ � σc � 0�2, to reflect what we
know from the PPP statement.
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FIGURE 2. Schematic view of an experimental situation that
could yield data consistent with the assumptions made in the
standard PPP solution given by Eqs. (1) and (2).

Referring to the logarithm of p�x�∆� as �ϕ ,

2ϕ �
�x�m1�∆�2

σ2
1

�
�x�m2�∆�2

σ2
2

�
�∆�1�2

σ2
∆

� (4)

where σi � ρi mi; i � 1�2 are the independent standard
errors in the measurements. This equation clearly identi-
fies each contribution to the overall uncertainty.

The desired distribution for x is obtained by integrat-
ing p�x�∆ �m� over the nuisance parameter ∆ (a process
called marginalization):

p�x �m� �
� ∞

�∞
p�x�∆ �m�d∆ � (5)

The analytic result for this integral is identical to the PPP
answer, Eq. (1). We refer to this approach as Method A.

Plausible experimental scenario

Suppose that to measure a cross section we must work
in an experimental environment in which the background
grows linearly in time, as shown in Fig. 2. This back-
ground could be caused by increasing activation of the
apparatus, for example. Let us say that the measured rates
m1 and m2 are made in the intervals shown, and that the
background function is measured at some other time.

Knowing that the background always increases lin-
early from t � 0, we would estimate a background for
the m1 measurement to be 1.5 times that for m2. Clearly
this scenario could lead to a “fully correlated” contribu-
tion to the covariance with a ratio of 1.52:1.

In this situation, the background subtraction leads an
additive correlated uncertainty, and the PPP answer of
0.882 is appropriate.
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FIGURE 3. Probability density functions for methods B
(solid line; normalization error), C (dashed; normalization er-
ror, log-normal prior), and D (dotted; logarithmic analysis).

ALTERNATIVE APPROACHES

In this section we offer several other interpretations of
the stated facts. In the context of nuclear physics, a high
degree of correlation might come from an overall nor-
malization uncertainty, common to both measurements.

Normalization error

We use a probabilistic analysis to include a common
error that arises from uncertainty in normalization. We
assume the measurements must be divided by a normal-
ization factor c to get x � m�c. Assuming normal distri-
butions for the likelihood and for the uncertainty in c, the
negative logarithm of the posterior distribution is

2ϕ �
�cx�m1�

2

σ2
1

�
�cx�m2�

2

σ2
2

�
�c�1�2

σ2
c

� (6)

written as function of cx and c. Transforming to variables
x and c, we must divide the pdf by �J�, where J is the
Jacobian for the transformation, i.e. the determinant of
the first derivatives of the new variables with respect to
the old ones; J � 1�c. Thus, p�x�c� ∝ �J��1 exp��ϕ�.
We remove the nuisance parameter c by numerically
integrating p�x�c� over c. Figure 3 shows the result

The distribution is clearly not symmetric, and there-
fore not normal. For asymmetric distributions, a better
estimate for x than x̂max is the posterior mean x̂mean �
�x�� x̄ � where � � stands for averaging over the posterior
distribution. The variance is estimated from the second
moment around x̄: var�x� � ��x� x̄�2� �

The results for this approach, which we refer to as
Method B, are x̂max � 1�074, x̂mean � 1�200, and σx �

�
var�x� � 0�276. This analysis was offered as the best

solution to the PPP by Don Smith [8] (p. 205ff). A similar
approach is taken in [10]. Zhao and Perey [2] suggest a
similar approach, but use the standard nonlinear least-
squares technique to obtain x = 1.15 and σx � 0�24.

Other approaches

The normalization factor is a scale variable. If we had
no knowledge of its approximate size, and wanted to use
a noninformative prior to capture that lack of knowledge,
it would be appropriate to use a uniform distribution in
its logarithm. When transformed into a distribution in c,
one gets p�c� ∝ c�1, which is called Jeffrey’s prior. See
[9] for a more complete argument involving the use of
the maximum entropy principle. In this case, the scaling
factor is taken to be unity with a stated uncertainty of
σc = 0.2. To provide a smooth transition to the Jeffrey’s
prior in the limit of σc � ∞, it seems appropriate to use
a normal distribution in log�c�, or log-normal in c.

Equation (6) now becomes

2ϕ �
�cx�m1�

2

σ2
1

�
�cx�m2�

2

σ2
2

�
log2 �c�

σ2
c

� (7)

The Jacobian in this case is J � 1. Figure 3 shows the
resulting posterior distribution, which is not very dif-
ferent from the previous result. The results for this ap-
proach, which we refer to as Method C, are x̂max � 1�101,
x̂mean � 1�177 and σx � 0�253.

Another approach to coping with the PPP effect is to
take the logarithms of the data [11]. Then multiplicative
(i.e., normalization) uncertainties become additive. If the
likelihoods are assumed to be normal distributions in
log�x�, they will be log-normal distributions in x with
standard deviations of ρ1 � ρ2 � 0�1, and

2ϕ �
�log�x�� log�m1�� r�2

ρ2
1

�
�log�x�� log�m2�� r�2

ρ2
2

�
r2

σ2
r

�

(8)

The Jacobian is J � x. Figure 3 shows the resulting
posterior distribution, which differs only slightly from
the previous two distributions. The results for this ap-
proach, which we refer to as Method D, are x̂max � 1�171,
x̂mean � 1�252 and σx � 0�267.

Chiba and Smith [12] suggest another approach in
which the 20% correlated error is applied to the inferred
value of x, not to each measurement. This assumption
may be appropriate, depending the experimental situa-
tion. An iterative procedure yields the result x̂ = 1.250
and σ � 0�28.
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FIGURE 4. (solid line) Probability density function from
combining two equally likely models, A and B (dashed lines).

TABLE 1. Results for various methods.

Method x̂max x̂mean σx

A 0.882 0.882 0.228

B 1.074 1.200 0.276

C 1.101 1.177 0.253

D 1.171 1.252 0.267

A + B 0.991 1.041 0.295

Model uncertainty

The conclusion from the above discussion is that,
without further information, we do not know which anal-
ysis model to use. This uncertainty can be handled in
the probabilistic framework [9] as follows: p�x �m� �
∑k p�x�Mk �m� � ∑k p�x �Mk�m�p�M�, where p�Mk� is
the prior on model k. If we take models A and B to be
equally likely, and ignore the other models, the result is
1
2 p�x �MA�m�� 1

2 p�x �MB�m�, which is shown in Fig. 4.
From the first and second moments of this distribution,
the estimated value of x is 1.041 � 0.295.

CONCLUSION

From Table 1 we see that the result given in the PPP
(Method A) stands out because of its implicit assumption
that the correlation contribution comes from an additive
effect. We suggested an experimental situation in which
this result is appropriate. The remaining methods all treat
the correlation effect as multiplicative, in one way or
another. Figure 3 shows that their posterior distributions
do not significantly differ relative to their width.

The choice of which analysis approach to use should
be made on the basis of one’s best knowledge of how

the measurements were made and the sources of their
stated uncertainties. Full resolution of the PPP dilemma
is only possible through improved knowledge of how the
uncertainties contribute to the measurements. We argue
that if one does not know which model to use, it is
reasonable use all of them and average their posteriors,
thus increasing the uncertainty in the answer.

We close with a plea to experimentalists to provide as
many experimental details as possible when they report
their results. Without such details, analysts will face the
kind of ambiguity posed by Peelle’s Pertinent Puzzle,
necessarily inflating the uncertainty in the final result.
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