LA-UR- 0 4-5p45”

Approved for public release;
distribution is unlimited.

Title: | THE NEUTRON INSTRUMENT SIMULATION PACKAGE,

NISP .

Author(s): | paemen, Luc L. LANSCE-12

Seeger, Philip LANSCE-12

Submitted to: Annual SPIE Meeting

Denver, Colorado USA
08/08/2004

o Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s rightto
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

@ Form 836 (8/00)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.

For additional information or comments, contact:

Los Alamos National Laboratory Research Library

Los Alamos, NM 87545

Phone: (505)667-5809

E-mail: reports@lanl.gov

. Proceedings SPIE 5536 (2004) xxx-Xxx

The Neutron Instrument Simulation Package, NISP

Philip A. Seeger” and Luke L. Daemen
Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory,
Los Alamos, NM 87545-1663, USA

ABSTRACT

The Neutron Instrument Simulation Package (NISP) performs complete source-to-detector simulations of neutron
instruments, including neutrons that do not follow the expected path. The original user interface (MC_Web) is a web-
based application, http://strider.lansce.lanl.gov/NISP/Welcome.html. This report describes in detail the newer stand-
alone Windows version, NISP_Win. Instruments are assembled from menu-selected elements, including neutron
sources, collimation and transport elements, samples, analyzers, and detectors, Magnetic field regions may also be
specified for the propagation of polarized neutrons including spin precession. Either interface writes a geometry file that
is used as input to the Monte Carlo engine (MC_Run) in the user’s computer. Both the interface and the engine rely on a
subroutine library, MCLIB. The package is completely open source. New features include capillary optics, temperature
dependence of Al and Be, revised source files for ISIS, and visualization of neutron trajectories at run time. Also, a
single-crystal sample type has been successfully imported from McStas (with more generalized geometry),
demonstrating the capability of including algorithms from other sources, and NISP_Win may render the instrument in a
virtual reality file. Results are shown for two instruments under development.

Keywords: NISP, Monte Carlo, simulation, neutron instruments

1. HISTORICAL DEVELOPMENT OF NISP

The relationship of the parts of the Neutron Instrument Simulation Package (NISP) is shown in Fig. 1 (specifically for
the Windows version). The oldest element is MCLIB, a library of subroutines first written by Mike Johnson in 1978".
The philosophy established at that time was to divide all space into Regions bounded by quadratic Surfaces, and to treat
interactions within any region independently from the geometry. This philosophy closely follows the microscopic
transport code MCNP (then known as MCN)’. The main difference from MCNP is that the algorithms in MCLIB treat
neutron optics and collective effects; that is, the wave nature of the neutrons is emphasized instead of the particle nature.
The library continues to grow, and now includes many kinds of scattering samples, collimation and analyzer devices,

detectors, and precession in magnetic 4 b
fields generated by current loops and
solenoids™. See MC Data

Originally the library was used to
support Monte Carlo codes written by
individual users. A major develop-
ment in 1994 was to write a separate
Monte Carlo “engine,” MC_Run,
which reads a set of structures from
an instrument geometry file™. The
tasks of tallying detector histograms
and reporting statistics were standard-
ized, but the user still had the respon-
sibility of creating the geometry file.
MC_Run output also can include a
monitor file of neutrons crossing a

Instrument
Description
File

Detector
Histograms

Sample &
Material
Definitions

X30 Player

: 2 Super Know
specified surface. The monitor file Fig. 1. Components of the Neutron Instrument Simulation Package (NISP). A user

interface (either NISP_Win as shown, or MC_Web) writes an Instrument Geometry
. File with all Surfaces, Regions, and Parameters. The Monte Carlo engine MC_Run
PASeeger@aol.com performs the simulation, using algorithms from the subroutine library MCLIB.

can be used as the neutron source for a subsequent run.

The final piece (and the name “NISP") was opened to the public in 1995°. MC_Web is a web application that includes a
graphical user interface as well as many database functions such as an instrument library and ability to send instruments
to other users. The user builds the instrument on a Los Alamos server’ by creating instances of Elements selected from a
menu. Elements consist of one or more regions, the surfaces bounding the regions, and the algorithms that apply within
the regions. The geometry file is generated and downloaded to the user’s computer, whcre MC_Run is executed. The
instrument can also be rendered in “virtual reality” by a VRML plug-in such as Cosmo® in the user’s web browser.
Further details of the internal structure of the package were presented at a previous SPIE conference’.

For several reasons, an alternative user interface NISP_Win has been written for Windows 98/NT operating sys{cms“o.

The reasons include lack of funding to provide updates of MC_Web, difficult or very slow internet access to the server,
and no ability to make local modifications or additions. While lacking in the database functions of MC_Web,
NISP_Win has added an Instrument Description file that can be archived or shared locally. The newcst version (2.0 or
later'”) can also generate a virtual reality file to be viewed by a local X3D player (such as Octaga''). As with the rest of
NISP, the code is open-source and extensively commented so that it may be used as a template for writing a more
general interface. The download includes all source codes (Fortran90), executables, and data files. There are two
additional programs for visualization of the resulting histograms (See_MC_Data, specific to Windows) or for extraction
of information from a monitor surface file (Super_Know, portable across systems).

2. THE NISP_Win USER INTERFACE

2.1. Code structure

NISP_Win was designed in the Microsoft Visual Studio and compiled as a QuickWin application in Fortran90 (Digital
Visual Fortran version 6.0). As a result it contains many arcane references to the Windows operating system, and some
Fortran peculiarities. The following description of the functionality is provided for two purposes: to assist in conversion
to another system, and to show how additional elements can be included. The flowchart of NISP_Win is shown in Fig.
2. We do not show code details here, but invite reading of the downloaded source codes.

All user input is through dialog boxes. In particular, files are opened using the familiar browsing window. Since this
function does not have an interface in the QuickWin environment, it required extra effort to call full Windows APIs (see
OpenNISPFile.f). Another functionality that requires APIs outside QuickWin is the use of customized Help
information, which will be discussed below. Other than these two functions, QuickWin provides all the calls needed for

INITIALIZE
Menu Bar (Initialsettings.f)
“About” Box
Flash Screen (NISPHelp.f)
Data Files (openNISPFile.f90)
Path to Help file (ElmntHelp.f)
Null all arrays

100

WAIT for MENU
MenuCalls . f

¥

Get OLD or NEW File Name

OpenNISPFile.f90 @
¥

[rf OLD, Read data from file | IIf EVIEW Display list of Elements
¥

Get Problem Title If CVIEW then

Set all EVENT flags .FALSE. Display Connect Matrix
Enable Mouse Clicks

200\-1 J

Fig. 2A. Flowchart of the NISP_Win user interface, initialization and repeat section. There are wait loops
at 100 and 200. After interrupts are processed, the code loops back at 400.

200

WAIT for EVENT m
MenucCalls.f
ADD |Select Element TYPE | DefineElement{TYPE) [ElmntDet_2]
”| Write Null block on unit 1 ”| ElementTypes.£90 .
EDIT = Select Ellmont, find TYPE COW Parameters
“| Write Parameters on unit 1 from unit 1 to m
DESCRIP block
DELETE |Select Element Read from unit 1
"] Toggle “Deleted" flag Use Dialog Box to
revise parameters
VARY |Select Element Set Val = Wriete uit 9
| Select Parameter =" et ™
VLIST |Display all variable
parameters i
SaveAs | Get New File Name
» OpenNISPFile. £90
SAVE |Copy DESCRIP to .inst file, B
"l also Connect Matrix (if any) i
c DESCRIP t fil @
opy o .geo file
Sosmry »| Copy Connect Matrix
N=1

, ¥
—Mﬂﬂm}—» Interpolate for case M (EimntBuild_2 |

o | Initialize output .geo file

¥
Next Element, find TYPE BuildElement{TYPE) g
Write Parameters on unit 1 [~] ElementTypes.f90 Em.
M<N yos ¥
Append /BuildData/
M +=1 Eliminate duplicate | [Read unit 1
= SURFACEs Define all SURFACEs
B Define all REGIONs
Automatic Drifts for I/O connections Compute PARAMs
@ Add surfaces to “surrounding” regions Store in /BuildData/
Write .geo file

_ [cetView parameters Smatiew !
3D View »| Copy Header to unit 9 -

X3DHeader .f

¥ ViewElement(TYPE)
Next Element, find TYPE [ElementTypes.£90 =
Wirite Parameters on unit 1

Read unit 1
Close 9 Generate VRML/
ConnectlO |Find grid point from mouse X3D nodes
Put “X" in Connect Matrix = Write on unit 9

Surround |Find grid point from mouse
7| Put “S" in Connect Matrix

i
Fig. 2B. NISP_Win flowchart, interrupt processing sections. Functions DefineElement, BuildElement, and
ViewElement use CASE structures to choose the method for each specific Element type.

using dialog boxes, the menu bar, and mouse clicks. Visual Studio provides a Resource Editor for the design of dialog
boxes, with a full set of controls available for drag-and-drop into the box.

The program NISP_Win is interrupt driven, with wait loops at two locations (100 and 200 in Fig. 2). Most functions are
activated through the Menu Bar, as illustrated in Fig. 3, and all of the callback routines except Help are in module
MenuCalls.f. The callback routines generally set a specific logical variable, but for “Element>View Elements” or
“Connect>Enable” events, the flag and a checkmark in the menu are toggled. Two of the event flags represent mouse
clicks in the Connect window; for these the position of the mouse is also returned. For “File>Exit" the program is
terminated; otherwise control is relinquished, allowing the main program to break out of its loop and test for which event
flag was set.

New Add Element Enable General Help
Open Edit Element Element Help
Save Selethleme;: QuickWin Help
Save As s About
Geometry View Elements

Multiple Geom List Variables

Exit

Fig. 3. NISP_Win menu bar and drop-down menus.

The code currently has 37 Element types defined. Since Fortran is not object oriented, internal references are by an
integer index in the list of types in Element Types. £90. Each Element must support three operations and have a set of
help pages. As indicated in Fig. 2B, when functions DefineElement, BuildElement, or ViewElement are invoked with a
type number, module Element Types. £90 calls the appropriate method. For any given Element, the three operations
are entries in a single procedure, to assure consistency of variable definitions. Information is always passed to the
procedure by writing a block from an internal copy of the instrument description file onto unit 1. (NAMELIST format is
used for generality and in Fortran NAMELIST can only be used with an external file.) The form of information returned
is different for each operation. For DefineElement it is a revised NAMELIST, and so is overwritten onto unit 1. For
BuildElement it is a partial geometry file with fixed format, which is placed in a common block. For ViewElement a
block of X3D nodes is written directly to unit 9.

It should be noted that only the DefineElement functions include system-dependent code, because they rely on dialog
boxes for user interaction. The BuildElement and ViewElement functions are intended to be completely portable.

2.2. Example: the “Pipe” element

We shall create an instance of a “Pipe” Element to illustrate the structure of the code. The relevant code is found in the
download at \NISP\EImntDef\EImntDef_4.for (corresponding to index number 4 for a “Pipe” element). This procedure
is a useful template for other types that have the same extrinsic (position and orientation) parameters: X, Y, Z, Tilt in the
horizontal plane, and Slope above the horizontal plane. For the example, we place the center of the entrance face of the
pipe at the origin, tilt 10° to the left and slope 15° upward. The pipe itself is described by intrinsic parameters. The
length is 2 m, inner radius 150 mm, and wall thickness 25 mm. The interior is ‘void” and the wall is *Aluminum’ (at 300
K). The Instrument Description File, as seen in the first box in Fig. 4, has the name of the specific instance, the name of
the Element object, version information, and the parameters in two NAMELIST blocks.

The ElmntDef_4 procedure displays the appropriate Dialog Box (see Fig. 4), loads it with the current parameter values,
and waits for “OK™ or “Cancel.” All of the parameters are defined in the procedure according to classes which include
real, integer, character string, real array (20), yes/no check boxes, and multiple choice radio buttons. Character strings
are further divided into material or crystal identifiers, or file names for source or powder data. All data necessary to
draw the dialog box, including the static text descriptions, are included in the procedure, although in the Windows
environment the boxes are predefined and stored in a resource file (Script1l.rc). The token for every dialog box is
100 + the type index, and the tokens for the edit and list boxes in every dialog box begin with 1000 for the element name
and are sequential; radio buttons begin at 1100 and check boxes at 1150 (see file resource. fd). Following a standard
allows the code that loads and reads the parameters to be common across all element types.

Instrument Description File Dialog Box
Pipe w/tilt & slope [1]
Pipe
Version 1.2, 05 Mar 2000, P.A.Seeger Element Name
&EXTRINSIC @ Fipe:w/ik 4;sopal]
X = 0.000000000000000E+000, B
Y = 0.000000000000000E+000, o
Z = 0.000000000000000E+000, Conter of Pipe envence. X(mm) 2"
TILT = 10.0000000000000 ; ¥ ey 2410
SLOPE = 15.0000000000000 5
/ zm *l
&INTRINSIC Horizontal (cow) Tik () */ "
LENGTH = 2.00000000000000 ; . o115
RADIUS = 150.000000000000 I Vetical (ugward) Siope () 7|
WALL = 25.0000000000000 ; Intinsic Parameters
ROUGHNESS = 0.000000000000000E+000, N z
1 Le it
MATERIAL1 = 'void ; i =
MATERIAL2 = 'Aluminum e Ragiys prn 1
/ Wall Thickness (mm) k| -
Roughness 7|
Interior Material * | /void "
Wall Material 7| Aluminum d
ok | cancel |

Fig. 4. Description file block for “Pipe,” and corresponding Dialog Box generated by DefineElement (ElmntDef_4).

The ElmntBuild_4 function uses the parameters from the Instrument Description file to compute the data for the
geometry file (shown in Fig. 5). For instance, all surfaces must be expressed in world coordinates in the form'

Ax*+Bx+Cy*+Dy+Ez*+Fz+G+Pxy+Qyz+Rzx=0. (1)

The pipe has four surfaces: entrance plane, interior and exterior cylinders, and exit plane. All coefficients depend on the
Tilt and Slope angles. Regions are defined as being either on the + or the — side of the surfaces by whether eq. (1)
evaluates to be > 0 or < 0. The interior of the pipe, for instance, is on the + side of the first plane, the - side of the inner
cylinder, not bounded by the outer cylinder, and on the — side of the exit plane. The region definitions form a matrix
with rows for regions and columns for surfaces. The function must also provide a token for each surface to show how it

Partial Geometry File in /BuildData/

4 (Surfaces) 2 (Regions) 2 (Parameters)
0 -.1677312594965 0 .2588190451025 0 .951251242564 0 0 0 0 O (1*' Surface)
.971866224588 0 .933012701892 0 .0951210735201 0 -.0225 .08B68240888335
-.492403876506 .3191091380258 0
.971866224588 0 .933012701892 0 .0951210735201 0 -.030625 .0868240888335
-.492403876506 .3191091380258 0
0 -.1677312594965 0 .2588190451025 0 .951251242564 -2 0 0 0 O
-INPUT, NONE, +EXTERIOR, +OUTPUT (Connection flag tokens for the 4 Surfaces)
1 -1 0 =1 (Surface relationships of 1*' Region)
1 1 -1 -1
‘Pipe w/tilt & slope [1] interior
‘Pipe w/tilt & slope [1] wall
0 1 (Parameter pointers for the 2 Regions)
2.1 300 (Definition of Aluminum at 300K)

Fig. 5. Geometry file block for “Pipe,” plus flags for connectivity to other elements, output from BuildElement (ElmntBuild_4).

may connect to the rest of the world. The record in Fig. 5 between the surface and region definitions shows these
tokens: Input to the element is from the — side of the first surface, and Output is to the + side of the last surface. The
outer cylinder surface is Exterior on its + side. Parameters in this example are simple. A pointer value of 0 indicates
‘void’, and aluminum has a region code of 2.1 and a single parameter, T = 300K. This is all that MC_Run needs.

The ElmntView_4 function converts the shape parameters from the Instrument Definition File into a third representation
of the geometry, shown in Fig. 6. The origin shift and the Tilt/Slope angles are accomplished simply using two
transform nodes, and the intrinsic description of the pipe is a Shape node'*"". Note that the signs of Z-coordinates
generally have to be changed, because the VRML coordinate system is always right-handed while NISP uses left-handed
coordinates. The shape of a Pipe is generated by defining a long skinny rectangle which is a cross section through the
wall, and “extruding” that rectangle in a circle around the Z-axis. (In manufacturing terms, the pipe is rolled and welded
rather than being extruded.) The appearance “PipeColor” is defined as blue in the header of the output file.

VRML / X3D File View with X3D Player
<! Pipe w/tilt & slope [1] > A
<Transform translation="0 0 0" (Origin) Y
rotation="0 1 0 .1745329"> (Tilt)
<Transform rotation="1 0 0 .2094395" >(Slope)
<Shape>

<Appearance USE="PipeColor" />
<Extrusion crossSection="0.15 0
0,175 0 0:175 -2 ©0.15 -2 0:15 0"
spine="0 0 0 000 00O
(total of 49 triplets) (O T
orientation="0 0 1 0
001 ,1309 00 1 .2618
(49 rotations from 0 to 2x)
001 6.152 00 1 6.283"
creaseAngle="0.5"
solid="false"
beginCap="false"
endCap="false" />
</Shape>
</Transform>
</Transform>

Fig. 6. Virtual reality file block for “Pipe” generated by ViewElement (ElmntView_4), and a rendition by an X3D player.

2.3. Connecting and building a geometry file

The unique feature of NISP compared to other available packages is that all space is defined and neutrons may proceed
in any direction through whatever elements they encounter. This allows simulation of multiple detector banks, and often
leads to the discovery of paths contributing to backgrounds. There are three ways to connect elements. First, any
elements with a common surface are always connected, in either direction. Second, the user may specify that the output
of one element is allowed to go to the input of another element. Third, a group of elements can be specified as being
surrounded by another element, as for instance within a scattering chamber, which then interconnects the entire group.
Fig. 7 is an example of a connection matrix. A letter “X" indicates that the output surface of the row element is to be
connected to the input surface of the column element, and a letter “S” shows that the row is surrounded by the column.
The actual connections must be made in the process of writing a geometry file.

As seen in Fig. 2B, when a geometry file (or multiple geometry files, if variables have been defined) is requested, the
program loops through all Elements and calls BuildElement for each. As each block of Surfaces, Regions, and
Parameters is returned, NISP_Win tests for duplicate surfaces. Only the original Surface is kept, and the entries in the
new Region matrix are modified accordingly. Thus connection across identical surfaces is assured. After all Elements
have been built, the connect matrix is checked for Xs. If the two surfaces to be connected are not identical, a “drift”
region is automatically defined between them. Finally, Ss in the connect matrix are processed by flagging all exterior
surfaces of embedded regions as being virtual surfaces in the surrounding region. When a neutron is traveling in a

chamber or other surrounding region, intersections - © 3 i fRe. o - Ba
with every such virtual surface are tested to see if R o i & E’,z 2o eFetk E £ E ¥ 3-8
there is a valid Region on the other side SEE RN SEy §y2il 3
: g : TABRRREZA435E 520885
2.4. Context-sensitive Help pages :;:(::) g .
Every user entry in the dialog box of every pu.i X
Element has a pushbutton for Help (cf. Fig. 4). icdenvean s X
Clicking the “7" next to the Element Name box Pee#3 X
calls a page with a description of the Element and ~ FinAperure .
links to additional pages. (From the menu bar, ™ = (e, semie) .
Help>Element Help shows a table of contents with :::‘::(m” 3
links to all Element pages.) Following the links of sscting s rtor <
clicking the *“?” of a particular datum will bring up vedchapts s
the appropriate page. This is an essential feature Mot an 5
of NISP, but generating a file for the Windows — Westam $
help system is difficult. We will outline the steps ~ >*"*™ %
here, and call attention to the files in the :“TM :
\NISP\Help\ folder for use as templates. L A s
It is possible to write HTML pages for a new oo it ;
Radograpny Detector S

Element using WordPad (which doesn’t know

about HTML) to edit an existing file from Fig. 7. Connection matrix. “X" indicates connection from row to
\NISP\Help\html\. Another option is to use a column, and “8” means the row is surrounded by the column. There are
simple HTML editor, such as “Scott’s another 14 detectors surrounded by the “Outer Chamber.”
WebWriter,”'* but to maintain style it is still good to use a template. Note that a single anchor point can be used for a
group of related variables with a single description for the group. To cause an anchor to begin a new page, precede it in
the HTML file with this action (to be converted to an RTF tag):

<HTMLTOHLP action="raw-rtf"> {\page} </HTMLTOHELP>

Microsoft characters such as °, p, and A may be used, but Greek letters and others from the Symbol font require special
action. For example, to enter “AL”, type the following:

<HTMLTOHLP action="raw-rtf"> {\f3\fsl8 D1} </HTMLTOHELP>
Drawings to be included should be saved in \NISP\Help\bmp\, preferably as bitmapped images.

The second step is to convert from HTML to a special form of RTF using the shareware utility HtmIToHIp"®. The first
file should be \NISP\Help\htmI\Help0.html, and the output should be directed to \NISP\Help\NISP. To allow for editing
of the RTF files, turn off the option to run the WinHelp compiler directly from HtmIToHIp; there is a check box in the
“Conversion...” option. The RTF files are sequentially numbered corresponding the Element index number, in folder
\NISP\Help\rtf\. Any pages that used the Symbol font as described above will have to be edited to include the definition
of “\f3.” Use only Notepad to do this editing; any higher level editor will destroy unique (non-standard) features of the
RTF file, and it won't work. Find the definition of \f2 near the beginning of the file, and following it insert

\f3\ftech Symbol;®n

(where 1 represents the <NUL> character). There are presently 12 files that require this font (0, 1, 6, 10, 11, 13, 14, 16,
17, 24, 25, and 30). You should use WordPad to proofread the files, but do nor Save!

One file generated by the HtmIToHlIp utility is a “Help Project file,” \NISPAHelp\NISP.hpj. Opening this file will launch
the Microsoft Help Workshop application. Generally, you only need to push the “Save and Compile” button in the lower
right corner. The final step is to look at the file \NISP\Help\NISP_map.h and make sure that the TopicTag for the
starting page of each element agrees with the list in module Element Types. £90. For instance, the line

#define PAGE_xx nnn /* Default for this page */

means that the TopicTag for Element #xx is nnn. All other help entries are derived from this in the callback routine
ElmntHelp.f by knowing that the dialog box tokens for the Help buttons are sequential.

3. NEW FEATURES

New features are being added continually, as requested by users and as time allows. Most changes and updates are listed
in the “What’s New" button on the opening page of the web site.” We are actively soliciting open-source a]gonthms that
can be included in the library. In particular, the ability to track spin precession in magnetic induction fields'® (either
uniform, interpolated, or generated by loops and solenoids) has not yet been exploited by having routines for v.mous
polarization-dependent devices. We list here the significant additions to the package since the last published report.’

3.1. Additions to MCLIB

The functions that compute the attenuation length of Al and Be now have tem 7permurt: as a parameter, with defaults
300K for Al and 100K for Be. The form and parameters used are from Freund'’, with an additional approximation for
the temperature dependence of the thermal diffuse term for wavelengths longer than the Bragg cutoff. We treat the 1/v
cross section as

o(A.T) = 4 |o,,,(14) + C, (T/@D)“”] , (2)

where @y, is the absorption cross section, ®p, is the Debye temperature, and the arbitrary constant Cy is 0.102 b/A for Al
and 6.55 b/A for Be. The temperature dependence to the power 3/2 is an empirical approximation.

A neutron traversing a magnetic field gradient will experience a small acceleration due to interaction with its dipole
moment. To allow for future implementation of such devices as a magnetic sextupole lens, routines have been added for
distance computation (DIST_A.£) and motion (MOVE_A. f) including a constant acceleration vector. The treatment is
the same as for gravitational acceleration, assuming only a second-order correction to the trajectory, but applied to all
three axes.

Both neutrons and x-rays are transmitted through smooth glass capillary tubes by multiple grazing-angle reflections from
the interior surface'®. In both cases the index of refraction in the glass wall is less than unity, leading to total external
reflection below a critical angle. A routine (CAPILLARY. £) has been added to MCLIB to compute transmission through
a tube of fixed radius, bent at a constant radius of curvature. The wall may be described either by the critical angle, or
by the complex scattering-length density. In
the latter case the complex Fresnel reflection
function is used, showing the effect of
absorption at the surface. (One result of the

I_‘II:‘I]TTI'IIIIII|l|?l—[1'|'|l|“|'l

e —— 84

sl v hoa by adi sty

simulations is that lead glass, and not a & 0,45 _4A
borosilicate glass, must be used for neutron 8

optics.) The function solves the exact quartic & sl NIST-CTW

equation for a torus (with surface roughness), § —

and is based on the existing toroidal mirror g r £=175e5 e]
function. Comparison to experimental data'’ g 02 2 A 4
using optics manufactured by X-Ray Optical 2 or 1
Systems (XOS) is very good, as shown in Fome hy
Fig. 8. The algorithm used by XOS is a local i ; T e A
quadratic approximation instead of a full E = 05A]
quartic, but it has the advantage of being able °‘°D il et T T 'ul,ol = lm

to vary the diameter and curvature of the Length (mm)

capillary”. Since no advantage is seen with Fig. 8. Transmission through straight fibers of v.1nuus lengths for several
the quartic, a new version is being written with neutron wavelengths, compared to experimental data'. The heavier line is
a “centripetal acceleration” term which should ~simulated using the spectrum at the CTW station of the NIST reactor, where
be essentially the same as the (proprietary) the measurements were madc._ The _da.shcd line shows the improved fit to the
XOS algorithm. data when a small surface waviness is inclided

The single-crystal component from the McStas code” has been ported into MCLIB as a sample type (SNGLXTAL. £).
This is the first time that an external algorithm has been incorporated and we are very grateful to author Kristian Nielsen
for his help. The transfer involved translation from C++ to Fortran90, mostly by global editing, followed by conversion
of pointer arrays to simple structures. Then all references to geometric shape and neutron transport were removed, as the
geometry and content of regions are completely separate in NISP, automatically providing more geometric generality.

3.2. Additions to MC_Run

Run-time options in MC_Run are activated by setting values in a NAMELIST at the start of execution. Three new
options have been added. Two of these are simple flags: GRAVITY=' N’ will cause the neutron mass to be set to 0 so the
acceleration of gravity is turned off; DuMPS="Y’ will cause intermediate dumps to be saved in separate files instead of
each overwriting the previous one. (The dumps occur at one hour of elapsed time and every two hours thereafter.)

The foremost new option, activated
by TRACE='Y’, is to trace
individual neutron trajectories
using the free portable PGPlot
library to generate a graphics
window. The mouse and keyboard
are used to adjust the location,
scale, and transverse magnification
of the plot, and to switch between
plan and elevation views. Various
keystrokes show between 1 and
10,000 trajectories, or turn the trace
off. The plot shows only trajec-
tories, and not any components or
surfaces. Color coding is that
incident trajectories are green,
splitting into yellow (scattered) and
blue (transmitted) when the neutron
hits a sample, and turning red for a
“bad” neutron (such as coming
through a chopper out-of-phase, or
reflecting an even number of times
in an analyzer crystal). A sample
trace centered on the sample of the
LAPTRON instrument (described
below) is shown in Fig. 9.

Fig. 9. Trajectory trace (plan view) at the sample of the LAPTRON instrument. See
Fig. Il for a perspective view of the instrument. Although surfaces are not shown, they
can be inferred from the behavior of the neutrons.

MC_Run now loops back to the beginning of the program instead of terminating at the end of a job. Batch jobs are to be
run by placing all the input data sequentially in a single file. Certain functions (BREGION, GRAV_FOC, KERNEL, and
SNGLXTAL) are reinitialized before the loopback. The default values in the NAMELIST will be the same as were set by
the previous job, except that the default for the random number seed will be the final previous random number.

3.3. Additions to NISP_Win

A new “Single Crystal Sample” element type has been added to NISP_Win, to take advantage of the subroutine imported
from McStas. This is the first element in NISP that is nor axially symmetric, so it was necessary finally to define the
third Euler angle as an extrinsic parameter. We define orientation as 1) Tilt, rotation about the Y-axis; 2) Slope, rotation
about the tilted X-axis; 3) Rotate, rotation about the tilted and sloped Z-axis.
This is illustrated in Fig. 10.

New source files have been generated for the four moderators in ISIS target 2,
and also for the latest version of target 1 (Ta has been replaced by W). These
tables are also available in MC_Web.

The most significant addition to the NISP (for Windows) package is the virtual-
reality rendition of the instrument. This required a ViewElement entry to be
added to every element definition, to generate a block of VRML code'? (in X3D
syntax'’) such as the example for “Pipe” in Fig. 6 above. This expands and in
A some cases improves the rendition already available in the web-based interface.
Fig. 10. Definition of orientation angles, ~The .x3d file can be edited easily: to delete an element, change the string *-->"
Tilt, Slope, and Rotate. at the end of the first comment line so that the whole element becomes a

10

comment. To see what is inside an element, change its Appearance to “USE="VoidColor”" instead of its natural color;
in the example of LAPTRON in Fig. 11, the incident pipe at the left has thus been made translucent to see the guide
inside it. The fun part of the rendition is navigating through the instrument.

Fig. 11. Virtual reality rendition of LAPTRON, showing incident beam line, collimation, pressure-cell anvils, and detector banks.
In the virtual world, pipes are blue, guides cyan, collimation magenta, materials gray, samples red, and detectors green.
Navigation tools provided by Octaga'' include Walk and Fly, Examine and Lookat, Slide and Pan.

4, LAPTRON, ANVIL CELL DIFFRACTOMETER AT LOS ALAMOS

The Los Alamos Neutron Science Center is exploring the possibility of the building a dedicated high-pressure neutron
scattering instrument, LAPTRON, to conduct in-situ neutron diffraction and neutron radiography & tomography
experiments under simultaneous high-pressure and high-temperature conditions.

A newly commissioned 2000 ton press will be permanently installed inside LAPTRON in a stand-up position and will
use a newly designed ZIA-type anvil package. The ZIA (Z- Intrusion Anvils) module is a modified d-DIA anvil package
with slightly acute-angled (80°) anvils and a “geared” metal gasket insertion to block the extrusion of the pressure
medium. The ZIA module with its cubic cell assembly will provide better hydrostatic pressure and homogeneous
temperature conditions, while maintaining anvil gaps for diffraction and radiographic windows. The four vertical gaps
between the horizontal anvils, which can be seen in Fig. 11, allow diffraction at right angles (26 = +90°) and also back-
scattering (26 = £135°-175°) for higher resolution. Simultaneously, the gap in the forward direction allows neutron
radiography using the transmitted neutrons. The cubic cell assembly will also permit ultrasonic elasticity measurements
and “drop-flow” viscosity measurements together with high P-T diffraction experiments. Following the pioneering high
P-T deformation work with the d-DIA anvil package, the ZIA module can purposely introduce a deformation component
for the study of rheological properties at high pressures. This function is particularly beneficial to the in-situ high P-T
studies of yield strength and texture development as a structural phase transition occurs in crystalline materials. This is
the type of sample environment that has a definite impact on the instrument performance, but is difficult to model
accurately with simple analytical expressions. Monte Carlo methods, on the other hand, can deal with the complexity of
the high-pressure sample environment described above without much difficulty. The feature of NISP that neutrons are
traced through multiple paths (cf. Fig. 9) is essential. Navigation through Fig. 11 demonstrates the paths available to the
neutrons. Monte Carlo simulations with NISP show that it is in principle possible to obtain a gain in intensity by a factor
of five compared to the current state-of-the-art powder diffractometer (HIPPO) at Los Alamos while preserving the
resolution of the HIPPO instrument. Tapered guides increase intensity with a tolerable reduction of resolution. Fig. 12
shows a typical simulated diffraction pattern, for a configuration including the guides.

11

0.01 ; . . A—

.]
:‘é 4
5] s |
= J
goan— t : T
© i # { ++ 1
B 54 i i B 5% L) f

+
0.5 1 d (A) ;]

Fig. 12. Aluminum powder diffraction pattern on LAPTRON. Optimization of the instrument with NISP shows that it is
possible in principle to design and build a high-pressure instrument (with low sample volume) that could acquire refinable
diffraction data for such a simple crystal in seconds, or a more complex sample in minutes.

Simultaneous radiography/tomography and diffraction (at high-PT) is becoming increasingly attractive to geologists and
material scientists. This type of measurement will be routinely available on LAPTRON. Monte Carlo simulations
represent a natural approach to optimizing a radiography setup. We are proposing to use a capillary optic device to bring
the image plane for the radiography close to the pressure cell, in the gap between the anvils, as shown schematically in
Fig. 13. The sample in the simulation has an inclusion which is a 1-mm cube of pure absorber to test the radiographic
resolution; results are shown in Fig. 14. This simulation was made simultaneously with the diffraction data in Fig. 12.

[3
1.725
] [f=={0.982
Incident Transmitted Detector g;;
Beam " Beam Capillary Optic Bundle 1888
i " _~ .1086
——— £ 0624
—————— < 09 [B 0359
___E,-‘/—’: > 02066
e 01188
—— 00683
— = = ‘ : 00393
2cm J—I-‘ 20-50 cm—-| close s A e | x::’
" . . a’?‘i‘.ﬁ?‘ 1-'5‘
Fig. 13. Use of a capillary optic as a collimator for radiography. 2 n A
X (mm)

Fig. 14. NISP simulation of a radiography
experiment on LAPTRON. The sample has an
inclusion of a neutron-opaque 1-mm cube.

5. VISION, CHEMICAL VIBRATION SPECTROMETER AT SNS

One of the next generation instruments for construction at the SNS is VISION, a TOF spectrometer for investigating
molecular vibrational dynamics and structure by simultaneous inelastic scattering and diffraction — the neutron analogue
of an IR/Raman spectrometer with powder diffraction capabilities™. VISION’s design criteria include a relatively large
dynamic range (10-4000 cm™), with moderate to high resolution (0.5 to 2 %) across the dynamic range, and data
collection rates fast enough to enable kinetic studies and the investigation of non-hydrogen-containing species. These
attributes make VISION ideally suited to address a wide range of scientific problems in such fields as biochemistry,
catalysis, materials science, geology, polymers and engineering inaccessible today.

Inverted geometry spectrometers define the scattered beam energy, E,, and scan the incident neutron energy, E,, by time-
of-flight. Operation of the spectrometer is illustrated schematically by the time-distance diagram shown in Fig. 15. The
final energy is selected by Bragg reflection of the scattered neutrons on a pyrolytic graphite crystal, as illustrated in

virtual reality in Fig. 16 and trajectory tracing in

e t—}

Fig. 17. The mosaic-crystal algorithm in NISP uses L P LT TP
multi-step transport with an analytic solution of the i ////

L /

i

Darwin equations at each step™. The design is taken
from the TOSCA-II instrument™ at ISIS, with the
addition of the curvature of the analyzer crystal to
give focusing in the vertical plane. The NISP
simulations indicate that the focusing configuration
gives a better signal-to-noise ratio.

—-

The use of a crystal to select the final energy has two
distinct advantages:

Distance (nol to scale)

1. The spectrometer operates with a wide range of
energy loss values.

(" et e o] RN VY T Y WY ST TN T S e v e

0 5 10 15
t (ms)
: - i Fig. 15. Time-distance diagram illustrating the principle of operation
pyr.olyu.c gru[?the Wl_th a Bragg angle f)f 45%) ol'La crystal analyzer spcclrbomcter such afV!Sr()NA 2 s lhcpsumplc
while time-of-flight is used to determine the |5cation and D the detector. The total flight time of elastic neutrons is
higher incident energy. accurate, but L, is greatly exaggerated (actual r, = 0.88 ms). The
chopper selects the dynamic range to measure neutron energy loss.

2. In an energy loss experiment, the crystal works
at low energy (approximately 3.5 meV for

An additional advantage of the use of a crystal is the
distinctive simplicity of a passive device as opposed to the use of a mechanical device (such as a chopper) to perform the
final energy selection. A proper spatial arrangement of the crystal also permits the capture of a large solid angle of
scattered neutrons and thus increased count rates, at little cost in resolution.

One disadvantage of using a crystal for energy selection is that it reflects not only the desired wavelength, 4, but also
Ain, n=23.4,... which leads to spurious peaks in the spectrum. The standard solution to this problem is the use of a filter
(such as the cooled Be shown in Fig. 16) to eliminate the higher-order reflections.

Detector
32 x5 cm?

Focusing Analyzer
16 x 16 cm? Be Filter

Sample
4x4cm?

VISION

{

Fig. 16. Crystal analyzer geometry for the VISION instrument. The wavelength of scattered neutrons from the sample is selected
by Bragg reflection in the analyzer, and a cooled Be filter is used to remove higher-order contamination. The design is taken from
TOSCA-II at ISIS™ with the addition of focusing. In VISION the analyzer will focus in the vertical direction allowing the
detector to be shorter, thereby improving the signal-to-noise ratio.

Fig. 18 illustrates the general agreement between
Monte Carlo simulations and experimental results
for TFXA, a predecessor of TOSCA-II at the ISIS
facility at the Appleton-Rutherford Laboratory.
The figure reflects the level of agreement that can
be obtained routinely today with a Monte Carlo
code such as NISP. However the benchmarking is
not complete, as there are now additional data®™
from the two configurations of TOSCA, and the
observed pulse shapes in the raw data are not in
good agreement with the simulation. In particular,
the simulation has not included details of the data
acquisition system and the data reduction pro-
cedures used. This work continues and will be
reported elsewhere.

It is also possible to calculate the resolution
analytically, if one takes adequate care in dealing
with the combination of statistically independent
terms: time distribution, sample width, height and
thickness, analyzer thickness, and detector element
width, height, and thickness. The coefficients of
the terms depend on instrument geometry. This
exercise provides insight as to which parameters
have the largest (or smallest) effect on instrument
resolution, and thus guides the design and the
Monte Carlo simulations. Complete benchmarking
will include experiment, analysis, and simulation..

With the caveat that the benchmarking is nor
complete, we proceed to simulate the intensities
and resolution of the proposed VISION instrument,
using a “sample” with nine &-function energy
levels between 0 and 400 meV. As seen in Fig. 19,
the pulse shapes are asymmetric, resulting from the
tails of the moderator pulse shapes. To decrease
the effect of the tails in computing the resolution,
Gini’s mean-difference statistic’’ was used as the
estimator of the standard deviation. The proba-
bility for each level is the same, but the intensities
vary because each energy samples a different part
of the incident spectrum. For AE less than about
10 meV the average absolute resolution is 0.10
meV, while for higher energies the relative
resolution is about 0.9%.

13

Fig. 17. Trace of trajectories in VISION, plan view. The neutron beam
(green) enters from the left and strikes the sample at Z=0 m. The
scattering angle has been arbitrarily limited to directions that may hit the
analyzer. For 10,000 starts, only 5 “good™ neutrons () reach the
detector (which has been drawn in). There are many “bad” neutrons
from non-Bragg scatter or even numbers of scatters in the analyzer,
these are shown in red, and one bad neutron has been detected. NISP
allows an estimate of this source of background.

1T R ARamaass

dw/w (%)

[+ } PTTRRAPTY BT
4] 1000

dbdadiisiiy
2000‘
w (em™)

dalisis

3000 4000

Fig. 18. Measured resolution of the former TFXA (solid squares)
spectrometer at ISIS, compared to a Monte Carlo simulations (triangles
connected by lines). The excitation energy is expressed in wave

numbers, ® = AE/he, with 1/hc = 8.065 cm ™' /meV.

6. CONCLUSIONS

One decade after NISP was launched as a complete package, it is gratifying to observe that the use of Monte Carlo
techniques for neutron scattering instrument design has gained a certain degree of prominence in the community, as
exemplified by the proliferation of computer codes and the now-routine requirements by new facilities to provide Monte
Carlo verification of instrument performance. Several factors have contributed to this state of affairs. Faster computers
and user-friendly software have definitely contributed to making Monte Carlo design tools more accessible to the non-
specialist. Sustained benchmarking and code comparison efforts have increased confidence in the validity of the Monte
Carlo approach and the reliability of the tools. On the other hand, adequate funding to support the efforts of the software

14

o=0.10 meV o/AE=09%

a
T
T

1 01 F

>
T

Relative intensity

1 001 F

pht g A g

S 1 o] 20 50 100 200 500
AE (meV)
Fig. 19. Simulated response of VISION to nine equally probable 0-width energy levels.
developers remains a critical issue. This is somewhat puzzling because the software development has come at a very
modest cost, mainly by adapting tools (an example being VRML) developed for other markets.

(S
T

=]

Overall the future remains bright. The software is approaching the point where it will be possible to perform simulations
in real time to optimize experiments on an actual diffractometer or spectrometer. Virtual reality tools should soon enable
a scientist to visualize neutron transport inside a model of an instrument to start addressing background and noise
problems that in practice are very difficult to identify and resolve.

In addition to the use of Monte Carlo in increasingly complex and more realistic systems, we also expect to see progress
toward the automatic generation of computer code based on the particular needs of the user. Currently the turn-around
time between the request for new features and the implementation and testing of these features is relatively
long~typically weeks to months. NISP, as described above, has taken a modest step in this direction. But computer
scientists are currently actively designing tools for this purpose. Success would provide the ultimate flexible Monte
Carlo code for the end-user.

Another foreseeable development is the integration of Monte Carlo codes with other software packages, e.g., for
automatic instrument geometry generation or the analysis or conversion of the Monte Carlo data. Seamless integration
of Monte Carlo software in more comprehensive software packages would greatly increase productivity and encourage
use of the tool by more users.

Finally, let us restate our request for user-supplied algorithms to be included in NISP.
ACKNOWLEDGEMENTS

This work has been funded in part by the Los Alamos National Laboratory and the Manuel Lujan Jr. Neutron Scattering
Center, a national user facility funded by the United States Department of Energy, Office of Basic Energy Sciences-
Materials Science, under contract number W-7405-ENG-36 with the University of California. VISION studies were
funded by ORNL Program Development funds.

REFERENCES

1. M. W. Johnson and C. Stephanou, “MCLIB: a library of Monte Carlo subroutines for neutron scattering problems”,
Rutherford Laboratory report RL-78-090, 1978; M. W. Johnson, “MCGUIDE: a thermal neutron guide simulation
program”, Rutherford and Appleton Laboratories report RL-80-065, 1980.

2. I F. Briesmeister, ed., “MCNP — a general Monte Carlo n-particle transport code”, Los Alamos National
Laboratory report LA-12625-M, 1993.

3. P. A. Seeger, L. L. Daemen, R. P. Hjelm, Jr,, and T. G. Thelliez, “The neutron instrument Monte Carlo library
MCLIB: recent developments”, Proceedings of the 14" meeting of the International Collaboration on Advanced
Neutron Sources, 1. M. Carpenter and C. A. Tobin, eds., Argonne National Laboratory report ANL 98/33, vol. 1,

10.
11.
12,
13.
14.
15.
17.

18.

19.

20.

21.

22,
23.

24.

25.

26.

27.

15

202-218, 1998.

P. A. Seeger and L. L. Daemen, “The neutron instrument simulation package NISP: recent developments”,
Proceedings of the ICANS-XVI, G. Mank and H. Conrad, eds., European Spallation Source report ESS 03-136-M1,
vol. 1, 483-496, 2003.

P. A. Seeger, “The MCLIB library: Monte Carlo simulation of neutron scattering instruments”, Proceedings of the
meetings ICANS-XIII and ESS-PM4, Paul Scherrer Institut Proceedings 95-02, vol. 1, 194-212, 1995,

T. G. Thelliez, L. L. Daemen, P. A. Seeger, and R. P. Hjelm, Jr., “A user-friendly, graphical interface for the Monte
Carlo neutron optics code MCLIB”, Proceedings of the meetings ICANS-XI1I and ESS-PM4, Paul Scherrer Institut
Proceedings 95-02, vol. 1, 307-311, 1995.

http://strider.lansce.lanl.gov/NISP/Welcome.html
Computer Associates International, http://ca.com/cosmo/home.htm, v2.1 (2000).

L. L. Daemen, P. A. Seeger, R. P. Hjelm, and T. G. Thelliez, “Monte Carlo tool for neutron optics and neutron
scattering instrument design”, Radiation sources and radiation interactions, E. J. Morton, ed., Proc. SPIE 3771,
80-89, 1999,

ftp://strider.lansce.lanl.gov/pub/NISP/NISPforWindows.zip

E. Ottar, http://octaga.com/, v.1.5.0 (July 1, 2004).

A. L. Ames, D. R. Nadeau, and J. L. Moreland, VRML 2.0 Sourcebook, Second Edition, Wiley, New York, 1997.
http://www.web3d.org/x3d/content/X3dTooltips.htm|

S. Hjelmstrand, http://www.webwriter.dk/english/, v3.5.2e (Feb. 3, 2001).

F. Aliimant, http://www.allimant.org/javadoc/htmltohlpe.html, v0.99h (March 1, 2002).

P. A. Seeger and L. L. Daemen, “Numerical solution of Bloch’s equation for neutron spin precession”, Nucl. Inst.
Meth. A 457, 338-346 (2001).

A. K. Freund, “Cross sections of materials used as neutron monochromators and filters”, Nucl. Inst. Meth. 213,
495-501, 1983.

M. A. Kumakhov and V. A. Sharov, “A neutron lens”, Nature 357, 390-391, 1992; H. Chen, R. G. Downing, D. F.
R. Mildner, W. M. Gibson, M. A. Kumakhov, I. Yu. Ponomerev, and M. V. Gubarev, “Guiding and focusing
neutron beams using capillary optics”, Nature 357, 391-392, 1992.

Q. F. Xiao, H. Chen, D. F. R. Mildner, R. G. Downing, and R. E. Benenson, “A comparison of experiment and
simulation for neutron guidance through glass polycapillary fibers”, Rev. Sci. Instrum. 64, 3252-3257, 1993.

Q. E. Xiao, I. Yu. Pomonerev, A. L. Kolomitsev, and J. C. Kimbal, “Numerical simulations for capillary-based x-
ray optics”, X-ray detector physics and applications, R. B. Hoover, ed., Proc. SPIE 1736, 227-238, 1993.

K. Nielsen, http://neutron.risoe.dk/download/components/samples/Single _crystal.htmi, report Risg-R-1175 (EN),
pp. 72-79 (December 1999).

T. J. Pearson, ftp://ftp.astro.caltech.edu/pub/pgplot/pgplot5.2.tar.gz, v.5.2.2 (February 26, 2001).

J. Z. Larese, B. Hudson, and L. L. Daemen, “VISION, a neutron vibrational spectrometer for SNS”, American
Conference on Neutron Scattering, College Park, Maryland, June 6-10, 2004, 141 (abstract).

P. A. Seeger and L. L. Daemen, “Mosaic crystal algorithm for Mont Carlo simulations”, Appl. Phys. A 74 (Suppl.),
$1458-S1461, 2002.

S. F. Parker, C. J. Carlile, T. Pike, J. Tomkinson, R. J. Newport, C. Andreani, F. P. Ricci, F. Sacchetti, M. Zoppi,
“TOSCA: a world class inelastic neutron spectrometer”, Physica B 241-243, 154-156, 1997.

Z. A. Bowden, M. Celli, F.Cilloco, D. Colognesi, R. J. Newport, S. F. Parker, F. P. Rippi, V. Rossi-Albertini, F.
Sacchetti, J. Tomkinson, and M. Zoppi, “The TOSCA incoherent inelastic neutron spectrometer: progress and
results”, Physica B 276-278, 98-99, 2000; http://www ifac.cnr.it/tosca/risoluz.htm.

C. W. Akerlof, “Efficient algorithms for estimating the widths of nearly normal distributions”, Nucl. Inst. Meth.
211, 439-445, 1983.

