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ABSTRACT

Tools that perform pixel-by-pixel classification of multispectral imagery are useful in broad area mapping appli-
cations such as terrain categorization, but are less well-suited to the detection of discrete objects. Pixel-by-pixel
classifiers, however, have many advantages: they are relatively simple to design, they can readily employ formal
machine learning tools, and they are widely available on a variety of platforms. We describe an approach that
enables pixel-by-pixel classifiers to be more effectively used in object-detection settings. This is achieved by
optimizing a metric which does not attempt to precisely delineate every pixel comprising the objects of interest,
but instead focusses the attention of the analyst to these objects without the distraction of many false alarms.
The approach requires only minor modification of exisiting pixel-by-pixel classifiers, and produces substantially
improved performance. We will describe algorithms that employ this approach and show how they work on a
varitety of object detection problems using remotely-sensed multispectral data.
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1. INTRODUCTION

In increasing quantities and with increasingly higher quality, remote sensing imagery is providing quantitative
renditions of our environment, of our agriculture, of our cities, and of our highways and airports and shopping
centers and golf courses. The fundamental challenge of remote sensing is to identify what’s in the scene, given
an image taken from a distant vantage point. How healthy are our crops, what is growing in our forests, where
are the invasive species concentrated? But in addition to these broad-area features, there is considerable interest
in exploiting high resolution remote sensing imagery to identify locations of targets: What is the density of
saguaro cactii in the desert, how many cars are on the highway and on what desolate hillside is the airplane
that went missing two days ago?

Multispectral (and to an even greater extent, hyperspectral) imagery provides the opportunity to treat
images as collections of individual pixels. Each pixel provides spectral information about one position (physical
location) in the scene, and each pixel can be analyzed independently of the others. For applications where
this is appropriate, tools from machine learning can very naturally be applied. Training data is a collection of
pixels which have been labelled either from ground truth campaigns or from an image analyst’s expertise. The
classifier is a function that takes a pixel as input (that is, a vector whose components correspond to the value
of that pixel in each of the spectral channels), and provides a label as output.

Some image-oriented machine learning tools employ spatial context as part of the input (one approach!
achieves this by producing new feature or “scratch” channels that are obtained from image processing operations
- such as smoothing or dilation — applied to the raw spectral channels). But these also provide as output a
separate label for each pixel.

For object detection problems, what is ultimately desired is not necessarily an image in which each pixel has
been individually labelled as object or not-object. Often, the desired output is not even an image at all, but
a list of object locations. Nonetheless, a pixel-by-pixel classification of the image can still be extremely useful
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to the analyst. If there is an adequately low false alarm rate then the analyst can manually check out all the
target-identified pixels and identify which ones correspond to real targets.

But it bears remarking that the analyst’s effort in doing this is not simply proportional to the number of
incorrectly labelled pixels. A labelled image archive with false alarms scattered widely across the data will take
a long time to evaluate; on the other hand, if the same number of false alarm pixels are all confined to one
corner of one of the images in the archive, then the evaluation can proceed much more rapidly.

Our goals in this paper are: first, to characterize the utility of pixel-by-pixel classification results in a way
that accounts for the effort on the part of the analyst to follow up on true detections and false alarms; and
second, to propose simple modifications to existing pixel-based algorithms so that they will produce more useful
pixel-by-pixel classifications.

2. OBJECT RECOGNITION

We begin with the statement that object recognition involves (at least) three different elements: detection,
segmentation, and identification. The first step is to determine that there is an airplane in the image; the
second step is to outline the contours of the airplane by specifying which pixels correspond to the airplane and
which to the background clutter; the third step is to identify the aircraft type (e.g., an F-15).

Our interest here is in automating just the detection task. For a lot of practical scenarios of interest (though
certainly not all), the analyst can perform the segmentation and the identification relatively quickly. But the
initial detection of particular targets in a large archive can be can be tedious and error-prone.

Our aim is to find the needle in the haystack, not to find out who put it there. To belabor the metaphor: our
aim is to focus the analyst’s attention on the candidate needles, so the analyst can concentrate on the details
of the needle, not the distractions of the haystack.

Perhaps the most straightforward way to automate the search for objects in images is to train, a‘;’aclassiﬁer
to identify which pixels are on-target and which pixels are off-target. This classifier is a function that, takes as
input the values of pixels in the local neighborhood of a pixel and produces as output a one or a zero; dépending
on whether or not the object is predicted to be in that pixel. A perfect classifier would identify those pfxels that
corresponded to objects in the image — it would identify all the pixels associated with each object, and would
not identify any pixels that were not associated with any objects of interest. There are two kinds of errors in
this scheme: missed detections and false alarms.

But for objects that are bigger than a single pixel, this is overkill!

To be useful to an analyst, an object detector need identify only a single pixel for each object. Once the
attention has been focused, there is little gain to the analyst to have multiple pixels identified for a single object.
Indeed, since the ultimate goal might be to produce a list of objects (and their positions), more than a single
pixel per object might even incur an extra-pixel cost.

That is to say, the problem of object detection is actually easier than the identification, on a pixel-by-pixel
basis, of which pixels correspond to the objects of interest and which do not. -

Fig. 1 illustrates the different kinds of error:

e Missed detection: Since the goal is to detect the objects, a missed detection is always an error, and in
some cases, the worst kind of error. We set the penalty for this error at 1.0.

. & Isolated false alarm: The isolated false alarm draws the analyst’s attention and requires some effort to
resolve that it is a false alarm. We set the penalty for this error at A, and that value can be greater or
less than 1.0 depending on the scenario.

e Proximal false alarms: Two false alarm pixels that are adjacent also draw the analysts attention and
demand resolution; but the cost of the effort to produce this resolution for two adjacent pixels is often
much less than twice the effort for a single pixel.
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Figure 1. Objects are defined by single-pixel positions in the image. An ideal pixel-by-pixel classifier will identify the
pixels that define the objects and no other pixels. There are a number of qualitatively different ways that a pixel-by-
pixel classifier can deviate from ideal. But some deviations are more expensive than others, from the point of view of an
analyst’s effort to confirm or reject a given “hit.”

Binary Training Image Dilated Output Image
Figure 2: Binary training image and dilated output image.

e Near hit: Although the near hit nominally corresponds to both a missed detection and a false alarm, in
practice it is almost as good as true detection.

e Extra pixels: Although the extra pixels are nominally false alarms, they can be rapidly resolved, and are
certainly less costly than isolated false alarms. In general, one might like the penalty for an extra pixel
to be near zero, but one could make argument for either sign. The extra pixels might be a benefit if the
conjunction of several of them are somehow indicative of the size of the object or the estimated reliability
of the detection.



3. SCORING STRATEGIES

The simplest scoring strategy is the pixel-by-pixel metric. Each pixel is treated independently and there are
only two kinds of errors: missed detections and false alarms. We employ the parameter A for the relative cost
of a false alarm versus a missed detection. Choosing A is clearly scenario-specfic. An algorithm that attempts
to optimize missed detections and false alarms might have to employ such a parameter, but for our results, we
will show ROC curves.

But we note that even the simple pixel-by-pixel metric can be finessed by an appropriate markup strategy,
and we note that there are (at least) two such strategies that are appropriate for the object detection problem.

3.1. Markup strategies

We use the metaphor of “painting pixels” because it is colorful, it simplifies the explanation of what is done,
and it actually corresponds to how our software works.

The most direct (and probably the most common) markup strategy is shown in Fig. 3(b). Here the entire
object of interest is labelled (shown here as white) — that is, every pixel that corresponds to the object is
identified as a target pixel. The background of non-target pixels is painted shown as gray. Unpainted pixels are
agnostic, and it is not uncommon for a boundary between the object (white) and background (gray) pixels to
remain unpainted.

Truer to the spirit of object detection, a second approach to markup is shown in Fig. 3(c). Here, instead of
delineating the entire object, a single (white) pixel provides the location of the object. The background (gray)
markup identifies the parts of the image where there are no objects. Around each object’s single-(white-)pixel,
there is a (black) disk which is not marked up at all. The radius of this disk is typically twice the size of the
object of interest.

3.2. Loss function: two interpretations
Each missed detection has a cost of 1, and each false alarm has a cost of A. This leads to:

L =mnyg+ Ang, (1)
where np,4q is the number of missed detections, and ng, is the number of false alarms. The two terms in the
loss function represent two qualitatively different scenarios, and it is not always obvious how to choose A.

An alternative interpretation of this loss function is to again assert that there are two kinds of costs: missed
detections and all alarms (true as well as false). Whether or not the alarm turns out to be false, there is a cost
associated with having the analyst follow-up. If we assign each missed detection a cost of 1 and each alarm a
cost of A, then

L' = Nmnd + )\'(nfa + nta) (2)
where ny, is the number of true alarms.

Here ngp: = npq + Nta is the total number of actual objects, and is a fixed quantity, so we can write
obj md ta

L' =npq + XN(ng, + Tobj — Tnd) (3)
or
L'=(Q1- )\')nmd + /\/T’Lfa + )‘I”obj (4)
But since ny,; is fixed, then the transform L = (L' — X'ngp;)/(1 — ') defines an equivalent loss function. If we
further define A = X'/(1 — X’) (or, equivalently, A’ = A\/(1 + X)), then we have
L =n,4+ Ang, (5)

which mimics Eq. (1) and shows that both interpretations are equivalent. Note that in this second interpretation,
it is important that A’ < 1. This makes sense: if an alarm (false or otherwise) were more expensive than a
missed detection, then it would not be cost-effective even to find the real targets.

" [[An exercise in obviousness, but I have to admit I wasn’t at first entirely sure they were equivalent.]]



3.3. Reconstruction metric

The reconstruction metric is actually related to what is called the “multiple-instance” problem?™ in machine

learning. In this metric an object is a (typically compact and contiguous) set of pixels; and the classification
associated with the object is given by the “or” of the classifications assigned to each of the pixels. That is,
if any of the pixels in the object are “hits” then the object is detected. Any hits outside the object are false
alarms.

To apply the reconstruction metric, the objects in the test image must be fully marked up and separately
identified.

Since the output of many pixel-by-pixel classifiers is a continuous real-valued quantity, this scoring is imple-
mented by replacing all the pixels in each object with the maximum-valued pixel in that object.

This usually permits a much higher threshold than would be needed to hit all or most of the pixels in an
object; and an increased threshold will in general produce fewer false alarms outside the object.

3.4. Dilation metric

The dilation metric is similar in spirit to the reconstruction metric, but it aims to be simpler, and uses the
single-pixel-per-object markup. The idea is to take the solution that is obtained and dilate it by a fixed radius.
This means that any (pre-dilation) hits need only be within that fixed radius in order for the single-pixel center
to be hit by the (post-dilation) solution. The radius of this dilation is usually taken to be roughly half the size
of the object of interest — that way, in similarity to the reconstruction metric, the pre-dilation solution only
needs to hit a single pixel on the target for it to be counted as a hit in the final scoring. Note that the disk of
unmarked data in the single-pixel markup should be at least twice the radius of the dilation.

One advantage (compared to the reconstruction metric) is that the penalty for proximal false alarms is much
less than for isolated false alarms. That is, a dozen false alarms in twelve contiguous pixels will be much less
than a dozen false alarms spread out over the image archive.

A disadvantage is that the size of the dilation is not tailored to the shape of the object of interest; so if the
object is not particularly compact, the fit may not be very good.

4. ALGORITHMS

Three algorithms were used to optimize classifiers for the object detection tasks/experiments described in this

paper:

o Genie,1'>% with the “standard” pixel-based metric. The classifiers obtained using this algorithm are
referred to with the expression Genie Vanilla in the remainder of this paper.

o Genie, with the “object” reconstruction-based metric, as described above. The classifiers obtained using
this algorithm are referred to with the expression Genie Object in the remainder of this paper.

o Afreet,” with the “standard” pixel-based metric. The classifiers obtained using this algorithm are referred
to with the expression Afreet in the remainder of this paper.

Genie is a system developed at Los Alamos National Laboratory, for the automated generation of feature
extraction/classification tools. At its core, Genie utilizes a hybrid evolutionary-algorithm-based system capable
of searching for image processing pipelines optimized for specific image feature extraction tasks.

Afreet, like Genie, is a machine learning system developed for pixel-by-pixel image classification. Afreet
differs from Genie in that it uses a Support Vector Machine® with a hill-climbing method for constructing useful
spatio-spectral image features, instead of genetic programming® and more standard statistical classifiers (such
as a Fisher linear discriminant'?), which Genie uses for the same task.



5. DATA SETS AND NUMERICAL EXPERIMENTS
5.1. Data Sets

Two data sets were employed:

Aircraft Data: 10-band data ranging from 0.42um (blue) to 2.35 pum (short-wave IR) was collected over
the tarmac at Nellis AFB in Nevada, using the Daedalus 1268 multi-spectral scanner
(http://wuw.sensytech.com). These data were provided by DOE Remote Sensing Labo-
ratory, NV, USA.

Car Data: 3-band (RGB) data were provided by the British Ministry of Defence’s Defence Science and
Technology Laboratory (DSTL) (http://www.dstl.gov.uk). The original images were taken
using a wet-film SLR camera from a helicopter somehwere over England. The digital data was
obtained from scanning the film negatives.

5.2. Numerical Experiments

We conducted a set of experiments, with the aim of determining whether, by making the simple modifications
described above to some pixel-by-pixel classifiers, we could obtain improved performance on object-detection
tasks.

We set ourselves the tasks of comparing several different feature-extraction algorithms’ performance in
detecting objects of interest within the two data sets described above. For the aircraft data, there were 3
detection tasks: detect the A-10, F-15 and F-16 aircraft in the imagery. For each aircraft type, approximately
half of the aircraft of that type in the (single available) image were used during training, and the remaining
aircraft were used for testing. For the car data, there was one detection task: detect the red cars in the images.
One entire image was used for training purposes and two other complete images were used for testing.

Figure 3 shows examples of the training/testing mark-up (i.e., the labelled data) that was provided for the
training of the algorithms and the calculation of the performance metrics. Figure 3 (a) shows an extracted
region of band 2 of the original Daedalus data. One can clearly see an A-10 aijrcraft taking up a large fraction
of this image segment. Figure 3 (b) shows the labels provided by a human analyst for this image, which were
used for training the classification algorithms and in the calculation of the reconstruction- and dilation-based
performance metrics. The white pixels show those deemed by the analyst to belong to the object of interest
(i.e., they belong to the “true” class). The gray pixels show those deemed by the analyst to belong to the
background (i.e., they belong to the “false” class). The black pixels show those pixels not marked by the
analyst as belonging to either class.

In general, the radius of the dilation is taken to be roughly half the size of the object of interest, and the
radius of the “don’t care” region is typically double that. For these datasets, we dilate with radii of 17 pixels
for the cars, 25 pixels for the F-16 aircraft, 30 pixels for the A-10 aircraft, and 45 pixels for the F-15 aircraft.

6. RESULTS

Table 1 shows the performance of the different classifier algorithms, for the various metrics, on the aircraft
detection tasks. The entries in the table are the minimum false-alarm rates for a detection rate of at least 0.9;
i.e., these are single points on the ROC curves for each classifier result, and performance metric. These results
are provided with respect to both training and testing data.

Table 2 shows the performance of the different classifier algorithms, for the various metrics, on the red car
detection problem. As with Table 1, the entries in the table are the minimum false-alarm rates for a detection
rate of at least 0.9, and are provided for both training and testing data.

Figure 4 show some typical ROC curves, and the DR=0.9 threshold that was used to produce the data in
Tables 1 and 2.

Figure 5 shows the actual classification results, for the A-10 aircraft detection problem, for a small region
of the Daedalus image data. Each image corresponds to the particular points on the ROC curves, as shown in



(a) (b) ()

Figure 3. (a) Extracted region of raw Daedalus data (band 2), on which results are overlaid in Fig. 5. (b) Extracted
region of raw Daedalus data, showing “true” and “false” object pixels for reconstruction- and pixel-based metrics. White
pixels represent “true” pixels, gray pixels represent “false” pixels and black pixels are those which haven’t been given
a label. (c¢) Extracted region of raw Daedalus data, showing “true” and “false” object pixels for dilation-based metric.
White pixels represent “true” pixels, gray pixels represent “false” pixels, and black pixels are those which haven’t been
given a label.

Table 1 (i.e., for the point on the ROC curve with a minimum FAR and a DR > 0.90), for each classifier and
performance metric, with respect to the test data.

Figure 6 shows the actual classification results, for the F-16 aircraft detection problem, for a small region
of the Daedalus image data. Each image corresponds to the particular points on the ROC curves, as shown in
Table 6 (i.e., for the point on the ROC curve with a minimum FAR and a DR > 0.90), for each classifier and
performance metric, with respect to the test data.

7. CONCLUSIONS

We have described and demonstrated how, by making relatively simple modifications to pixel-by-pixel clas-
sifiers, it is possible to enable them to be used more effectively for object-detection problems. These simple
modifications involve optimizing a metric that focusses the attention of an analyst to the objects, but does not
attempt to precisely delineate the objects of interest. In this way one can develop classifiers that are well-suited
to the detection of discrete objects, having substantially improved performance, but, at the same time also
retain many of the advantages of pixel-by-pixel classifers, such as design simplicity, wide availablity, and the
option of employing formal machine learning tools.

The reconstruction metric uses markup that is directly related to the object identification task, and it does
not require the specification of dilation radii. On the other hand, it imposes upon the analyst the task of
producing far more detailed markup than is needed for the dilation metric.

All algorithms described in this paper were trained with the same markup data, where the analyst had been
careful to fully-delineate the objects of interest. Future work will include development of detection algorithms
based on the easier-to-produce dilation-based markup.
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Table 1. Performance of classifiers on Aircraft-detection, according to the various metrics: Minimum FAR that achieves

a DR of > 0.90.
A-10
Training Performance Testing Performan(|:e
Genie-vanilla | Genie-Object Afreet Genie-vanilla | Genie-object Afreet
Pixel-Based 0.0023824 0.0394900 0.0023824 0.0023182 0.0047292 | 0.0046031
Reconstruction-based 0.0005963 0.0000000 0.0001847 0.0006978 0.0000004 | 0.0002890
Dilation-Based 0.0713459 0.0000000 0.0245751 0.0502306 | 0.0007664 | 0.0230410
F-15
Training Performance Testing Performance
Genie-vanilla | Genie-Object |  Afreet Genie-vanilla | Genie-object |  Afreet
Pixel-Based 0.0316502 0.0500145 0.0281712 0.0019190 0.0136419 | 0.0013171
Reconstruction-based 0.0139340 0.0003006 0.0069867 0.0006253 0.0000140 | 0.0003690
Dilation-Based 0.4146870 0.2635340 0.3006040 0.0606033 0.0240667 | 0.0318361
F-16
Training Performance Testing Performance
Genie-vanilla | Genie-Object |  Afreet Genie-vanilla | Genie-object |  Afreet
Pixel-Based 0.0240822 0.2022360 0.0257433 0.0037264 0.0538510 | 0.0036191
Reconstruction-based 0.0044319 0.0000093 0.0022148 0.0004646 0.0000016 0.0004132
Dilation-Based 0.1085360 0.0164662 0.1156440 0.0178323 0.0025055 | 0.0293159

Table 2. Performance of classifiers on red car-detection, according to the various metrics: Minimum FAR that achieves

a DR of > 0.90.
Training Performance Testing Performance
Genie-vanilla | Genie-Object |  Afreet Genie-vanilla | Genie-object |  Afreet
Pixel-Based 0.002885 0.609230 0.001334 0.0029379 0.596666 0.0010193
Reconstruction-based 0.0001628 0.0000087 | 0.0004300 0.0912444 0.0000024 | 0.0000667
Dilation-Based 0.0075280 0.0024457 | 0.0053554 0.0007284 0.0004206 | 0.0012013
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Figure 5. Results of classifiers on A-10 aircraft detection, according to the various metrics: Minimum FAR that achieves
a DR of > 0.90, on test data. White pixels are “hits.” The bright spot on the truck in the lower right part of the image
is part of the image itself, and is not a false alarm. Each column of images correspond to the same solution, but at
different thresholds as needed to producem minimum FAR at DR > 0.90 according to the different metrics. Note that
the pixel-based metric produces solutions that try to fill out the whole extent of the airplane; just by re-adjusting the
threshold, fewer pixels are identified as part of the target.
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Figure 6. Results of classifiers on F-16 aircraft detection, according to the various metrics: Minimum FAR that achieves
a DR of > 0.90, on test data.



