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Introductio n

The use of a solid-oxide fuel cell (SOFC) to provide auxiliary power for heavy duty trucks can
increase fuel efficiency and reduce emissions by reducing engine idling time . The logical fuel of
choice for a truck SOFC APU is diesel fuel, as diesel is the fuel of choice for these vehicles . SOFC's
that directly oxidize hydrocarbon fuels have lower power densities than do SOFC's that operate from
hydrocarbon reformate, and since the SOFC is a costly component, maximizing the fuel cell power
density provides benefits in reducing the overall APU system cost . Thus current SOFC APU systems
require the reformation of higher hydrocarbons for the most efficient and cost effect fuel cell system.
The objective of this research is to develop the technology to enable diesel reforming for SOFC truck
APU applications .

Diesel fuel can be reformed into a H2 and CO -rich fuel feed stream for a SOFC by autothermal
reforming (ATR), a combination of catalytic partial oxidation (CPOx), and steam reforming (SR) . The
typical autothermal reformer is an adiabatic, heterogeneous catalytic reactor and the challenges in its
design, operation and durability on diesel fuel are manifold . These challenges begin with the
vaporization and mixing of diesel fuel with air and steam where fuel pyrolysis can occur and improper
mixing leads to hot and cold spots, which contribute to carbon formation and incomplete fuel
conversion . The exotherm of the partial oxidation reaction can generate temperatures in excess of 800
°C []], a temperature at which catalysts rapidly sinter, thus reducing their lifetime . The temperature
rise can be reduced by the steam reforming endotherm, but this requires the addition of water along
with proper design to balance the kinetic rates . Carbon formation during operation and startup can lead
to catalyst deactivation and fouling of downstream components, thus reducing durability of the fuel
processor. Water addition helps to reduce carbon formation, but a key issue is the source of the water
onboard a vehicle . Additionally, changes in diesel fuel composition, such as seasonal changes affect
the reactor operation and design considerations . Our research addresses these issues through an
experimental and modeling examination of the fundamentals of these processes .

Experimental

Experimental measurements of diesel reforming are made in heterogeneous catalytic reactors
simulating SOFC APU diesel reformer operation . The results from two reactor designs will be
discussed ; one reactor operating iso-thermally under controlled operating temperatures, and one reactor
operating adiabatically which operates with a temperature profile defined by the autothermal reforming
reactions. The adiabatic reactor was used to investigate and develop direct diesel fuel injection for
effective fuel vaporization and mixing with air and steam, and was also instrumented to measure axial
profiles through the catalyst volume . The isothermal reactor was used to map carbon formation as a
function of operating conditions (S/C, O/C) for both partial oxidation and steam reforming and
quantity of SOFC anode recycle .

Following the experiments, the catalyst surface area was measured using BET and carbonaceous
deposits characterized with TGA . The fuel reforming reactions were performed over noble metal based
catalysts (platinum and rhodium). The catalysts are supported on a substrate of reticulated YSZ (Yttria
Stabilized Zirconia) foam .



Results
The successful operation of a diesel reformer requires effective mixing of fuel, air and steam . Thi s

is especially challenging with diesel fuel because of it's propensity to pyrolyze upon vaporization .
This problem was solved in the adiabatic reactor by using direct fuel injection through a commercial

(BETE PJ8) nozzle . The air, steam, and SOFC anode recycle components were injected through an
annulus around the fuel nozzle and mixed with the diesel fuel prior to introduction to the catalyst .
Good mixing of the fuel and air streams was verified by thermal imaging of the outlet catalyst face .
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reactor residence time . Higher recycle ratios require also an increase in the O/C to achieve a similar
adiabatic temperature because of the increased flow of inert species .

Carbon formation has been identified as a main durability concern during the autothermal

reforming of diesel fuel . Figure 2 shows measured carbon formation during adiabatic diesel reforming
of low-S Swedish and commercial diesel fuels as a function of air-fuel ratio . The measured carbo n
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practice, hydrocarbon breakthrough is observed after 500 to 1000 hours of operation and is ascribed to
loss of catalyst surface area [2,3] . To investigate the effect of operation during ATR on the catalyst
surface area, a cylindrical catalyst was sectioned axially and radially and the catalyst surface area
measured using BET. Little difference in catalyst surface area was measured in the radial direction .



The axial profile (radially averaged) of the catalyst surface area after testing is shown in figure 4 . The
fresh surface area of - 4 .3 m2/g. Catalyst surface areas are smaller at the inlet than at longer axial
distances . This is an indication that the high temperatures observed from the oxidation reaction are
sintering the catalyst at the reactor inlet, in correspondence with the axial temperature distribution
observed in Figure 1 .

Conclusions

Diesel fuel reforming has been conducted under isothermal and adiabatic conditions t o
examine the oxidation and reforming reactions, operational conditions, catalyst activity, durability, and
carbon formation . Diesel reforming with adiabatic operation has simulated SOFC anode recycle,
without additional water, with operation at about 30 - 40 % recycle reasonably successful in terms of
diesel conversion, carbon formation and catalyst temperature control . Temperature profiles inside the
catalyst have been measured for a number of recycle rates and oxygen/carbon ratios and for various
fuels, including commercial diesel and low-sulfur diesel . Increasing recycle rates moves oxidation
downstream in the reformer as does commercial diesel fuel compared with low-sulfur diesel fuel . High
adiabatic temperatures (> 800 °C) are generally observed at low recycle rates (20 %) . Operation with
30 - 40% recycle rate appears to be good trade-off between high adiabatic temperatures and larger
reactor volume.

Carbon formation has been modeled for equilibrium conditions for formation and has been
measured during isothermal and adiabatic diesel reforming operation . Isothermal carbon formation
measurements from steam reforming appear to show both kinetic and equilibrium effects, with a
maximum amount of carbon formation at about 700 °C, for both commercial and low sulfur diesel
fuels. Autothermal reforming measurements made isothermally show increasing carbon formation with
increasing temperature, in contrast to equilibrium predictions . Adiabatic operation shows lower carbon
formation for higher operating temperatures for low sulfur diesel fuel, but higher carbon formation for
higher operating temperatures for commercial diesel fuel .
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