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Energy-Efficient Distributed Constructions of
Minimum Spanning Tree for Wireless Ad-hoc

Networks
Maleq Khan Gopal Pandurangan V.S . Anil Kumar

Abstract-The Minimum Spanning Tree (MST) problem
is one of the most important and commonly occurring prim-
i tive in the design and operation of data and communica-
tion networks. While the re a re distributed algorithms for
the MST problem these require relatively large number of
messages and time, and are fairly involved , require synchro-
nization and a lot of book keeping ; this makes these algo-
rithms imprac tical for emerging technologies such as ad hoc
and sensor networks . In such networks , a sensor has very
limited power, and any algorithm needs to be simple, lo-
cal and energy efficient for being practical . Mo tivated by
these considera tions , we study the performance of a class of
simple and local algorithms ca ll ed Nearest Neighbor Tree
(NNT) algorithms for energy-efficient cons truc tion of MSTs
in a wireless ad hoc setting. These employ a very simple
idea to eliminate the work involved in cycle detec tion in
other MST algorithms : each node chooses a distinct rank,
and connects to the closest node of higher rank . We con-
sider two variants of the NNT algorithms , obtained by two
ways of choosing the ranks : (i) Random NNT, in which each
node chooses a rank randomly , and (ii) Directional NNT, in
which each node uses directional information for choosing
the rank . We show provable bounds on the performance
of these algorithms in instances obtained by uniformly dis-
tributed points in the unit squa re .

Finally, we perform extensive simulations of our algo-
rithms . We tested our algorithms on both uniformly ran-
dom distributions of points , and on realistic distributions of
points in an urban setting . The cost of the tree found by the
NNT algorithms is within a factor of 2 of the MST, but there
is more than a ten-fold saving on the energy and about a five
fold saving on the number of messages sent . Also, our algo-
ri thms are significantly simpler to implement compared to,
for instance, the GHS algo rithm, which is essentially op ti-
mal with regards to the message complexity. Thus, our re-
sults demons trate the first such tradeoff between the quality
of approximation and the energy cost for spanning trees on
ad hoc networks , and motivates similar considerations for
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other important problems.
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1 . OVERVIEW

A. Introduction and Motivation

The Minimum Spanning Tree (MST) problem is one of

the most important and commonly occurring primitive in
the design and operation of data and communication net-

works . For instance, in ad hoc sensor networks, MST can
be shown to be the optimal routing tree for data-centric

routing [1] . Traditionally, the efficiency of distributed al-

gorithms is measured by running time and number of mes-
sages exchanged among the computing nodes, and a lot of

research has gone into the design of algorithms that are
optimal with respect to such criteria . There are distributed

algorithms of that find the optimal MST (for e .g ., see [2],

[3]) and are essentially optimal in terms of time complex-

ity: they run in O(Diam(G) + nE) time, and there are

matching lower bounds . However, these algorithms in-

volve a lot of message transfers and time . The GHS al-

gorithm [4] uses O(n log n + J El) messages, and is es-

sentially optimal with respect to the message complexity.

Despite their theoretical optimality, these algorithms are
fairly involved, require synchronization and a lot of book

keeping ; such algorithms are impractical for ad hoc and

sensor networks . For example, consider sensor networks
- an ad hoc network formed by large numbers of small,

battery-powered, wireless sensors . In many applications,

the sensors are typically "sprinkled" liberally in the region
of interest and the network is formed in an ad hoc fash-

ion by local self-configuration . Since each sensor usu-
ally knows only its (local) neighbors, the network man-

agement and communication has to be done in a local and

distributed fashion. Additionally, because of battery lim-

itations, energy is a very crucial resource. A distributed

algorithm which exchanges a large number of messages

can consume a relatively large amount of energy (and also
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time) and may not be suitable in an energy-constrained ad
hoc wireless sensor network .

Thus it is necessary to develop simple, local, distributed
algorithms which are energy-efficient and (preferably also

time-efficient), even at the cost of being sub-optimal . This

adds a new dimension to the design of distributed algo-
rithms for such networks . Thus we can potentially trade-

off optimality of the solution to work done by the algo-

rithm. In a sensor network, the total energy cost ("en-

ergy complexity") of a distributed algorithm typically de-

pends on the number of messages exchanged and the en-
ergy needed to transmit the messages over a certain dis-

tance (cf. Section I-C). (It can also depend on the time
complexity of the distributed algorithm) . The (radiation)

energy needed to transmit a message is typically assumed
proportional to some work function f (typically square

or some small power) of the distance between the sender

and the receiver [5], [6] . Thus it becomes important to
measure efficiency of a distributed algorithm in terms of

power, energy, besides the number of messages .

We study a class of simple,, local, distributed, ap-

proximation algorithms called the Nearest Neighbor Tree

(NNT) algorithms to build slightly sub-optimal trees, with

low energy complexity. A fundamental step in all ex-

isting algorithms for the MST is cycle detection : given

an edge, one needs to determine whether the edge would

form a cycle with the edges already chosen . This decep-

tively simple operation leads to a big overhead : a signifi-
cant amount of book keeping and message passing needs

to be done in order to maintain the components, and an-

swer such queries . Our NNT algorithms bypass such a
step completely by a very simple idea : each node chooses

a unique rank, a quantity from a totally ordered set, and
a node connects to the nearest node of higher rank. Ob-

serve that this immediately precludes cycles, and the only

information that needs to be exchanged is the rank ; also,

this information does not have to be updated continuously

over the course of the algorithm .

B. MST and its Applications

Formally, our focus is the following geometric

weighted minimum spanning tree problem : given an ar-

bitrary set N of points (nodes) I in a plane 2, find a tree

T spanning N such that >(u,,,)ET d" (u, v )) is minimized

where d ( u, v) is the distance of an edge (u, v) E T ac-

cording to some norm (we use the Euclidean norm in

this paper) and a is a small positive number. The moti-
vation for this objective function comes from energy re-

quirements in a wireless communication paradigm (see

also next Section) : to transmit a signal over a distance
r, the required radiation energy is proportional to ra,

where typically a is 2 and can range up to 4 in environ-
ments with multiple-path interferences or local noise [6],

[5] . It can easily be shown (e .g., using Kruskal's al-

gorithmic construction) that the MST which minimizes

E(u,v)ET d(u, v ) also minimizes E(u,,,)ET da(u, v) for

any a > 0 .

Two important applications of the MST in wireless net-
works are broadcasting and data aggregation . The MST is

the optimal broadcast tree to minimize radiation energy

consumption since it minimizes E(u,v)ET da(u, v) . In

data aggregation, the idea is to combine the data coming

from different sources enroute to eliminate redundancy
and minimize the number of transmissions and thus sav-

ing energy ; the common aggregate functions are mini-
mum, maximum, average, etc [7] . One popular paradigm

for computing aggregates is to construct a (directed) tree
rooted at the sink where each node forwards its (locally)

aggregated data collected from its subtree to its parent [8],

[9], [10], [11] . Again, in such cases, MST is the optimal
data aggregation tree, since it works exactly as a reverse

broadcast tree [1] .

C. Energy Model and Work Complexity

To run a distributed algorithm in an ad hoc wireless set-

ting, the following modules of an wireless device are typ-
ically involved: a digital unit for processing the signals
and performing network protocol functions, and a radio

(transceiver) module for communication [12] . Thus one

can consider the following three components of energy
consumption to run a distributed algorithm .3 1) Radiation
energy which is proportional to ra to transmit to distance

r . 2) A constant (independent of distance) amount of en-
ergy e, required by the radio electronics (transceiver) for

each unit of data at the sending and receiving end . Thus

energy consumption to transmit a b-bit message to dis-

tance r is be, + bcrm, for some constant c. 3) Energy con-

sumption in digital electronics : even when a node does
not receive or transmit a message, the digital electronics

and transceiver (in listening or sleeping mode) dissipates
power at a constant rate. Let this power is p, Thus, if

a distributed algorithm exchanges M messages and take s

'E.g., these may represent sensors. We assume that these have
unique labe ls or id's.

2We consider the 2-dimensional setting for concreteness ; our results
can be generalized for higher dimensions.

3 In this paper we do not consider the affects of protocol layers (e .g .
the MAC layer), and the overheads resulting from their interaction-
thus the focus of this work is to optimize the static energy requi re-
ments.



3

t time to complete the algorithm, total energy-cost of the

algorithm is

M

E = tpe + Mbee + be ra ,
i= 1

considering all messages have same size b and the ith mes-
sages travels to distance ri . Thus time, number of mes-

sages , and distance needed to transmit messages all deter-

mine the total energy cost .
Motivated by above, in addition to the traditional time

and message complexity , we introduce a new complexity
M

term called work defined as w = > ra. Thus total ra-

diation energy is directly proportional to the work done

by the algo ri thm . We show that NNT algorithms perform
better in all three : time, number of messages and work .

Thus, total energy consumed by the algo ri thms is less for

our algorithms compared to the algorithms that construct
(optimal) MSTs .

The quality of a spanning tree T is defined by Qa (T)

EeET I el ; e denotes an edge of T. For a = 1, Q1(T) is

simply the sum of the lengths of the edges . Tree with

lower Q ,, (T) is considered better tree . Our goal is to

develop local distributed algorithm with the objective of

minimizing total energy E, while keeping the quality of

the spanning tree produced to be reasonably close to the
optimal .

D. Our Contributions and Results

Our main contribution is detailed theoretical and exper-
imental study of a simple and local class of algorithms,

specifically for ad hoc and sensor networks . Our algo-

rithms, called the Nearest Neighbor Tree (NNT) algo-

rithms use a very simple idea to avoid cycle formation :

each node (independently) chooses a distinct rank, and
connects to the closest node of higher rank . Depending

on how ranks are chosen we study two types of NNT al-
gorithms: Random-NNT (ranks are chosen randomly) and
Directional-NNT (Dir-NNT) (ranks are based on coordi-

nate information) . Both are well motivated : when nodes

don't know their geometric coordinates4 Random-NNT is
natural, but if nodes know their coordinate location then

Dir-NNT is more suitable .
We theoretically analyze the performance of both these

NNT algorithms in the model where n nodes are uni-

formly distributed in a unit square (this is a popular prob-
abilistic model for ad hoc wireless networks, e .g ., see

[13]). Our results are enumerated below .

4Consider a scenario where sensor nodes are sprinkled randomly in
the ocean from a high flying airplane ; the nodes typically will not have
(accurate) knowledge of their coordinates, unless they have some sort
of geographic information locater (e .g., GPS) .

Quality bounds : We give asymptoti-

cally tight bounds on the cost of the tree
found by Random-NNT: for a < 2,

E[Q«(RNNT)] = 0(n'-o,/2 loga/2 n) and

for a > 2, E[QO(RNNT)] = O((logn)'/2-1),

where RNNT is the tree computed by Random-

NNT algorithm . Thus, for a = 1, this is an
O( ogn) approximation and for a = 2, this

is an O(log n) approximation. For Dir-NNT,

we show that E[Q1(DNNT)] = O(/) and
E[Q2(DNNT)] = 0(1), where DNNT is the tree

computed by Dir-NNT algorithm; thus, Dir-NNT

is always within a constant factor of the optimal-

this shows that at a cost of increased information
(i .e ., about the coordinates), we can get very good

approximations .

. Message, time , and work complexi ty : We show

that NNT algorithms has significantly lower mes-
sage, time, and work complexity compared to other

algorithms distributed which compute the optimal

MST. We show how NNT algorithms can be imple-
mented efficiently in a wireless setting and show that

the work complexities for Dir-NNT and Random-
NNT are O(logn) and 0(1) respectively, for a =

2. We show that for both NNT algorithms, the

message complexity is 0(n) and time complexity
is 0(log 2 n) . We compare the work-complexity of

NNT with other distributed algorithms which com-
pute the (optimal) MST. We analyze the work com-

plexity of GHS algorithm [4] - a message-optimal
distributed MST algorithm - and show that it is

Sl(log2 n), for a = 2 . Also, the message complex-

ity of GHS is 0(n log n) and the time complexity

is 0(n) . The above bounds hold when the GHS al-
gorithm does not know the coordinate information .

When coordinate information of the nodes are known
the algorithm can be improved by computing the Yao

graph (or the relative neighborhood graph, see e .g.,

[14]) and then using GHS to find MST from Yao

graph . This is essentially optimal with respect to

message complexity. To be fair, we compare Dir-
NNT, which uses coordinates of the nodes, with GHS

algorithm by running on the Yao graph. In a Yao

graph, each node has constant degree (at most 6) and

thus IEI = 0(n) . Therefore, message complexity is

0(n log n) . We also show that work complexity of
GHS to run on a Yao graph is 1l(log n), for a = 2.

In this analysis, the cost of finding the Yao graph is

ignored . In fact, the cost for finding the Yao graph

is itself is larger than for Dir-NNT. Because, in Dir-
NNT, each node needs to find the nearest node on its
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right (in the right half plane) . Whereas, to compute

the Yao graph, each node needs to find the nearest

nodes in each of the six cones .
Simulation results : We performed extensive simu-

lations of our algorithms . We tested our algorithms

on both uniformly random distributions of points,
and on realistic distributions of points in an urban set-

ting obtained from TRANSIMS [15] . Experimental
results show that costs for NNT algorithms are sig-

nificantly smaller than that for an optimal MST algo-

rithm, while the quality NNT is very close to MST .
For example, for the TRANSIMS data, we found that

the cost of the tree found by the NNT algorithms is
within a factor of 2 of the MST, but there is more

than a ten-fold saving on the energy and about a five

fold saving on the number of messages sent .

E. Organization of the Paper

The rest of the paper is organized as follow. A sub-

optimal MST called nearest neighbor tree (NNT) is de-

fined and an energy-efficient local distributed NNT algo-
rithm is described in Section II . Theoretical analysis of

the quality, and work, messages and time complexity of
the algorithms are given in Section III . Simulation results

are presented in Section IV .

II . AN ENERGY-EFFICIENT CONSTRUCTION

Building minimum spanning tree (MST) in a dis-

tributed fashion is highly energy intensive . A distributed

algorithm to construct an MST, called GHS algorithm,

was proposed in [4] . In the GHS algorithm, initially each

node is considered to be a fragment (or a connected com-

ponent) . As the edges are added, the fragments grow by
combing smaller fragments . In each "round" of the algo-

rithm, each fragment finds its minimum length outgoing
edge (MOE) - which is guaranteed to be in an MST -

and uses this edge to combine fragments . Each fragment

has two leaders, which are adjacent to the edge added

immediately in the previous step . To find the MOE, the

leaders send initiate message (relayed by the intermediate

nodes) to the members of the fragment . Upon receipt of

initiate message, each node tests its adjacent edges by ex-
changing test/accept/reject messages to check if the node

at the other end is in same fragment . Thus, each member

node finds its minimum outgoing edge and reports it to the

leaders. Upon receipts of reports, the leaders select a new

leader - the node which is adjacent to the MOE for the
entire fragment and this begins a new round .

Thus a relatively large number of messages needs to

be exchanged to find MOEs and to perform the com-
bining operations (changing root of the fragment using

"change root" messages) ; thus, the amount of energy
consumed in configuring MST can become prohibitively

large . Also as fragments grow, parallelism of the op-
erations reduces (more sequential operations) requiring

longer running time . The required number of messages

can be shown to be 2 1 E + 5n log n and time complex-

ity is O(n log n), where AEI is the number of edges in the

connectivity graph and n is the number of nodes . The time
complexity was improved to 0(n) in [16], [17], but GHS

was shown to be optimal in terms of number of messages .

In this section, we propose a local distributed algo-
rithm to construct a nearly-optimal spanning tree, which

requires significantly less energy to build than the MST.

The proposed algorithm is very simple . It requires no
complex synchronization among the nodes and is natu-

rally robust . An abstract form of the algorithm is given
below.

1 . Each node u chooses a unique rank rank(u) .
2 . Node u finds the nearest node v such that rank(u) <

rank(v) and gets connected to v .

We will shortly describe how to choose such a rank . A

distributed implementation in a broadcast setting is given

in Figure 1 . The following definitions are needed to de-
scribe the algorithm and its properties .

Definition 1 : Available-for-Connection Set or AC-set.

If node u is allowed to get connected to node v, we say

v is available to u for connection. AC(u) is the set of

all available nodes. We define v E AC(u), if and only if

u -< v for some irreflexive and transitive binary relation

-. Such ordering of the nodes ensures that the connec-

tions among nodes do not create any cycle .

Next, we describe how ordering of the nodes can . be de-

fined such that each node can determine its relative order

with respect to its neighbors locally.
One simple ordering heuristic is as follows . Every node

generates a random number independently (between say 0
and 1) and broadcasts this number along with its ID , iden-

tification number. Each node collects random number-ID
pairs of its neighbors and determines its order with respect
to the neighbors according to the definition below. Let

be the random number generated by node u . We assume

that every node is given a unique ID before deployment.

Definition 2: Random Order -,. . For any two nodes u

and v, u -<, v if and only if either

a) Ru <R„orb)Ru=R„andID(u) <ID(v) .

Another ordering heuristic called directional order uses
the location information of the nodes . We assume that

each node knows its relative coordinates in the plane and
no two nodes have the same coordinates (If two nodes

have the same coordinates, ID can be used to break ties) .

Let (xu, yu) be the coordinates of u .
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Definition 3: Directional Order -< d . For any two nodes
u and v, u -< d v if and only if either

a) xu <x, orb ) xu=xuandyu <yv .
It is easy to see that the graph produced by NNT algo-

rithm is a tree. The relations <r and -<d defined above

are i rreflexive and transitive. For any i rreflexive and tran-
sitive binary relation -<, if each node u gets connected to

exactly one node v E AC(u), if AC(u) 0 0, there is no
cycle in the resulting graph . Further, there is exactly one

node u such that AC(u) = 0 and thus there are n - 1

edges . Therefore, the resulting graph is a tree .
Definition 4: Nearest Neighbor Tree (NNT). When

each node u, if AC(u) 0 0, connects itself to a near-
est node v E AC(u), the resulting tree is called a near-

est neighbor tree. When random order is used , the tree is
called a Random -NNT (RNNT) . When directional order
is used, the tree is called a Directional-NNT (Dir-NNT) .

The name "nearest neighbor tree" comes from the fact that
the tree is formed by connecting each node to the nearest

node from the available (for connection) neighbors .

Algorithm 1 Distributed NNT algorithm .
/* The algorithm is executed by each node u in -

dependently. Messages are written in the forma t
( message name, sender, [recipient ], [other information]) .

When a message is broadcasted , the recipients are not spec-

ified . I is the maximum possible distance between any two

nodes . A is the a re a covered by the nodes and n is the number

of nodess .*/
i+-1

Repeat

Set transmission radius (power level )

ri f- 2 AA log n , for Random-NNT

ri i n , for Dir-NNT

Ifri>1,ri+- l

Broadc ast (request , u, rankin f o)
/* for Random-NNT rankinfo is random number R. & I D

/* for Dir- NNT rankinfo is coordinate ( xu, yu) *l

Wait for some specified time peri od

i4-i+1

until (receipt of an "available" message ) or ( ri = l)

For all v, upon receipt of (request , v, rankin f o) do

if v -< u ,

set tran smission radius to distance(u, v)

send (available , u, v) to v

Upon receipt of "available" message(s):

Select the nea re st node v from the senders

Send ( connect , u, v) to v

The algorithm consists of exchanging three types of

messages : "request", "available", and "connect" among
the nodes . Each node begins with broadcasting a "re-

quest" for connection message . Considering a unit square
(area A = 1), each node broadcasts "request" messages

successively to the distances , 7, 7, . . . , in case of

Dir-NNT and 2-°, 4 I°, 8 I-°, . . . , in case of

Random - NNT until it fins a node with higher rank . The

highest ranked node among all the nodes , can never find

a node wi th higher rank . This node stops transmitting
"request" message when it reaches the maximum possi-

ble distance between any two nodes . "Request" messages

carry rank information ( coordinates or random number) .

The other nodes who can hear the message check their rel-

ative rank and send back an "available" message if their
rank is higher. The sender of the "request" message se-

lects the nearest node from the senders of "available" mes-
sages if more than one available message is received and

thus it finds the nearest higher ranked node .
When coordinates are not available (e .g ., for Random-

NNT), senders can include the transmission power lev-

els in the "available" messages and the recipient can de-

termine the relative distances of the senders from these

power levels and the signal-strengths of the received mes-

sages . Finally, the node sends a "connect " messages to the

nearest higher ranked node, that creates an edge between

these two nodes .
Two different s trategies are used in increasing the

broadcast radius successively for Random-NNT and Dir-

NNT. For Dir - NNT, each time radius is increased by _ .

For Random-NNT, radius is doubled each time . Also Dir-

NNT begins with a smaller radius compared to Random-

NNT. Among many other possible s trategies , one strategy

can be "begin with a constant radius and increase each

time by a constant amount" . Selecting the best strategy

for an NNT algorithm is not obvious . By experimental tri-

als and theoretical analysis, the s trategies given in the Al-

gorithm 1 are found to be optimal for Random - NNT and

Dir-NNT. In this paper, we present the results for these

strategies only.

III . ANALYSI S

In this section, quality of the trees and energy-cost of

the algorithms are analyzed theoretically . In this analy-

sis, we assume that n nodes are uniformly dis tributed in a

unit square. In this setting , we measure the quality of the

tree produced by NNT, Qa(T) = E da (u, v), work
(u,v)E T

M
w = > ra, number of messages, and the time complexi-

i= 1

ties of NNT and GHS algo ri thms . Although our analysis

generalizes to any a, for clarity we consider a = 1 and 2 .
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It was shown by Steele [18 ] that Q2 (MST) is asymp-

totically constant, 0 (1) . Also it is well known that
Q1(MST) is O(/) . We show that for Dir-NNT, Q1 =

O(ff) and Q2 = 0 (1) giving an approximation fac-

tor of 0(1) for both of them . For Random -NNT, Q1 =

0(/n log n ) and Q2 = O(log n ) giving approximation

factors of 0( og n) and 0 ( log n) respectively.

The work complexities for Dir- NNT and Random-NNT

are 0 ( log n) and 0(1), where work for GHS algori thm is

Sl(log2 n) . In [4] , authors showed that message and time

complexities are O (n log n + J El) and O (n log n ) respec-
tively . We show that for both NNT algorithms , number of

messages is O(n) and time complexity is O(log2 n) .

When coordinate information of the nodes are known,

efficiency of GHS algo ri thm can be improved by comput-
ing the Yao graph and then use GHS to find MST from the

Yao graph . To be fair , we compare Dir-NNT, which uses
coordinates of the nodes , with GHS algorithm with Yao

graph . In a Yao graph , each node has constant degree (at
most 6) and thus IEl = O(n) . Therefore, message com-

plexity is O(n log n) . We also show that work complexity

of GHS to run on a Yao graph is Sl(log n) . In our analysis,

we actually favor GHS by ignoring the cost incurred for

finding the Yao graph . In fact, the cost for finding the Yao
graph is itself is larger than that for Dir -NNT. Because, in

Dir-NNT, each node needs to find the nearest node on its

right ( in the right half plane) . Whereas , to compute the

Yao graph , each node need to find the nearest nodes in

each of the six cones .

The following lemmas and theorems prove the above

claims.

Now Probability that a node is connected within k near-

est neighbors is Ek 1 i i+ l+l~ = 1 - ■
Theorem 1 : Expected work complexity of Random-

NNT algorithm is O(n1-'/2 log'/2 n) for a < 2 and
0((logn)a/2-1) fora > 2 .

Proof: Consider an arbitrary node u . First transmis-

sion radius for "request" message is r1 = 2 loran and for

the ith transmission, ri = 2ri_1 = 2' l1 . Let m be

the maximum number of transmissions. rm_1 < <

r,,,., i .e., m < 22 + 1 . log2
Let Ci be the set of nodes in the circle centered at u with

radius ri and Ri = Ci - Ci_1. E[ I Ci_il] = 7rr2 1n =
7r22i-2log n . Using Chernoff bound for lower tail, with

high probability jCi_1I > 2E[ICi_iI] = 7r2 2i-3 log n .
Now, the probability that node u needs the ith transmis-

sion = the probability that u is the highest ranked node i n
1 < - 8 -C .i_1 = Cq_i 7r221 log n

E[jCCI] = 7r2 2i log n. Again using Chernoff bound

for upper tail, with high probability IRij < lCil <
7r2 2i+1 log n. Consider an arbitrary node v E Ri .
Pr{rank (u) < rank ( v) l u has the highest rank inCi_1 } =

1 < Thus expected number of
I C;_1 +1 - a22 log n
"available" messages (reply of "request" message)

7r 22i+11og n72 log nn = 16 . Counting the "request" and

the final "connect" messages there are at most 18 mes-

sages that travels the distance > ri_1 and < ri .

Thus the expected total work for n nodes (using linear-

ity of expectation) is

m

E[W] < n (18r
i + 7r

22 i8og n 18ra (1 )

A. Random-NNT

Lemma 1 : In Random-NNT, a node v connects to the

ith nearest neighbor with probability i i+1 Thus, a node
gets connected within its k nearest neighbors with proba-

bility 1- .

Proof. Let a and xi be the random number generated

by node v and its ith nearest neighbor. Let Xi = {xk 1 <

k < i} . We define, a > Xi V1<k<i(a > Xk) . Since

the random numbers are generated by the nodes indepen-
dently, Pr{a > Xi} = probability that a is the largest

among i + 1 independent identically distributed random

numbers = i+i • Now, the probability that a node connect
to the ith nearest neighbor is

Pr{a > Xi-1, a < xi }
= Pr{a > Xi_1} Pr{a < xila > Xi-l }
= Pr{a > Xi- 1}[1 - Pr{a > xi l a > Xi-1}]

= Pr{a > Xi-l} - Pr{a > xi,a > Xi-1 }

= Pr{a > Xi_ 1} - Pr{a > Xi} = 1 - ill
=

i =

14 4logn 02'18 + -, E 2ila- 2

1/z=2

For a = 2, E[W] < 106 log n = O(log n) . Fora # 2,

E[W] < 2'18 l°g
7

n
i~ + 1r-4 ( logn)a/2-1 .

For a < 2, the second term becomes negative, thus

E[W] = 0(n1-'/2 log'/2 n) .

For a > 2, the second term is dominating, thus

E[W] = 0((logn)a/2-1) . ■

Theorem 2 : In Random -NNT, E[Qa(RNNT)] =

0(n1-'/2log'/2 n) for a < 2 and 0((log n),/2-1) for
a>2.

Proof: Similar to the proof of Theorem 1, consider

an arbitrary node u , and concen tric circles centered at u

with radius ri = 2i loran for i = 1, 2, . . . , m . Maximum

number of circles m < 2o_2 + 1. Let Ci be the set of

nodes in the circle with radius ri and R. = Ci - Ci_1 . If
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u connects to a node v in the ith ring , i .e ., v E Ri,, ( to get
an upper bound ) we consider distance d(u, v) = ri .

With high probability (by Chernoff bound), ICCI
2E[ICCI] =

7r2 2i-1 log n .
Now Pr{u connects to any v E R} = Pr{u connects

to a node in Ci} x Pr{u does not connect to a node in

Ci_1} _ (1 - C~) gt 1 by Lemma 1 . Thus,

E[d(u, v)] (1 - p,) ri +EM 2 ci 1 (1 -
Ct r~.

Keeping the dominating terms and using linearity of ex-

pectation, for n nodes,

E[QQ] = nE[d(u, v)] nri + nE' 2 c 1 r9'

logo 3 a + 8 m 24a-2)
< (2 Li= 27r To-g n

For a = 2, E[QQ] < 6log n = O(log n) . Fora # 2 ,

E[Qa] 2a (logn) 2 22a3 (log n)
ns

-1 + 2a
-4 tog n

For a < 2, E[Q,,] = O(n1-a/2 logo/2 n) and fora > 2,

E[Q,] = 0((logn)a/2-1) . ■

Theorem 3: Expected message complexity of Random-

NNT algorithm is O(n) .

Proof: If we consider work needed for every mes-

sage is 1, i .e ., when a = 0, the total work is simply

the number of messages , M, exchanged in the algorithm .

Thus from Equation 1 , by putting ri = r« = 1 in the

right hand side, we get

E[M] <n (18+> ii"__2ir222'Iogn18)

< n (18 + - 12n) = O(n) .

■

Theorem 4 : Running time of Random-NNT algorithm
is O(log2 n) .

Proof. We assume that transmission of each mes-
sage take one unit of time and while one node is transmit-

ting a message, no other node in its transmission radius

(transmission range) is allowed to transmit.
The radius of the first transmission by each node is

rl = 2 Following the proof of Theorem 1, ex-"

pected number of nodes within this radius, E[IC1I] _

4ir log n and with high probability, IC1 I < 87r log n. In

the first transmission ph ase, a node needs to reply to
at most 8ir log n "available" messages . Thus total time

for 87r log n nodes to complete the first phase is at most
(81r log n) 2 = O(log2 n) .

Now consider an ith transmission phase to distance

ri = 2' 1$ . After the (i - 1)th ph ase , there can

be at most one unconnected node in any circle of radius

ri_1, because, otherwise, one node has lower rank than
the other and can connect to the that node . Thus ex-

pected number of unconnected node within radius ri is

4 and this number can be at most 24, because distance of
any two such nodes is at least ri_1 . From the proof of

Theorem 1, expected number of reply ("available") mes-

sages can be received by one of these nodes is 16 . Thus

each subsequent transmission ph ase (other than the first

phase) needs constant time . There are at most 2 + 1

phases . Thus total time for Random - NNT algorithm is

0(log2n) + O(log n) = O(log2 n) . ■

B. Dir-NNT

Theorem 5: The expected quality of Dir-NNT, for a =

1, 2, and 3, are 0 (V,'n-), 0 (1), and 0 (1) respectively.

Proof: We will upper bound the expected distance

that a node needs to connect to some other node . For the

purpose of analysis, let us subdivide the unit square into
x v/n- small squares . Length of a side of each small

square is l = vrn-
Assume that each node selects the nearest node from a

cell which is directly above of it and in the same column or

in a column at the right . The probability that a particular

cell has at least one node is p = 1 - (1 - -1n) n > 1 - e .

We further rearrange all the n cells, along with the nodes

in it, in a single row - put the cells of first column ( bottom

cell in the left most position , top cell in the right most

position ), then the cells of the second column, and so on .

In this new arrangement , we are moving the nodes further

away and increasing the distances among the nodes ; and

thus increasing the length of the edges comparing to the

original Dir-NNT. As a result, the expected sum of the

squared edges in the original Dir-NNT is less than that

of Dir-NNT in this new arrangement . All nodes to the

right of any node have higher ranks than its own . A node

connects to the ith next cell , if there is no node in the

next i - 1 cells and there is a node in the ith next cell . The

probability of this event is p(1-p)'-1 . The distance to the

ith next cell is it = . Therefore, if a node u connects

to some other v node and d(u, v) is the distance between

u and v,

E[da(u, v)] Ei=1 (il)ap(1 -p)1' .

Using linearity of expectation for n nodes, E[Qa(T)] <

nE[da(u, v) ] . As n -+ no, for a = 1, 2, 3 ,

E[Q1(T)] :5 yrerne =O(ff),

E[Q2(T )] ~ee 1) = O (1) ,

E[Q3(T) ] <
ee2 +)e+ 1 =

00) .

(
e-1 n n

0
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Theorem 6: The energy cost of Dir-NNT algorithm, for

a = 1, 2, and 3,are 0 (/),0(1), and0(~)respec-

tively.

Pro of A node sends its rank info to distance

7
., Tn, , . . . until it gets a reply back from a higher

ranked node. Again we subdivide the area into cells and

consider the rearrangement of the cells in a single row as

described in Theorem 5 . A node sends a message with
rank info to the ith next cell, which is at the distance

it = , if there is no node in the next i - 1 cells . The
77

probability of occurring this event is (1 - p) i-1, where

the probability that there is a node in a particular cell is
p > 1 - e . The expected number of nodes in a cell is 1 .

Thus expected number of "accept" messages in response
is one and finally at most one connect message sent by

this node . Thus, as n -4 oo, expected energy cost for
one node < En- 3(il)a(1 - p)i-1 . Using linearity of

expectation , total expected energy cost ,

n- 1

E[Ca] < n > 3(il)` (1 (2)

i= 1

As n -+ oo, for a = 1, 2,3 ,

E[C1] < e 12 = 0 (v~)
E[C2] 3e 2(e+1 = 0 (1) >

E[C3]
< 3e

(
e2 j 4e+1 = 0 (

V/1__e-1 n )

■

Theorem 7: Expected message complexity of Dir-NNT

algorithm is 0(n) .

Proof: Again, similar to Random-NNT algorithm,

if we consider work for every message is 1, i .e., when
a = 0, total work is equal to the number of messages M .

Thus from Equation 2, by putting ( il)a = 1 in the right
hand side, we get

E[M] < n En- 13 (1 - p)i-1 < e ii = 0(n) .

■

Theorem 8: Running time of distributed Dir-NNT al-
go ri thm is 0(log2 n) .

Proof: Stochastically, each node connects to a

sho rter distance in Dir-NNT than Random-NNT thus re-

qui ring transmissions to shorter distances . This allows

more simultaneous communications in Dir-NNT than
Random -NNT. Moreover, total number of messages for

Dir-NNT algorithm is no more than that for Random-
NNT. Thus running time for Dir-NNT algorithm < run-

ning time for Random -NNT = 0( log2n) . ■

C. GHS Algorithm

The authors of GHS algorithm [4] shown the message

and time complexity of the algorithm as we discussed ear-
lier in this section . Here we compute the lower bound for

work complexity of GHS algorithm.
Lemma 2 : Let ri be the distance of ith nearest neighbor

for an arbitrary node. Then E [ri] = n = ®(n) , for some
constant c and < c < 2 .

Proof: See appendix . ■

Theorem 9: The expected work complexity of GHS al-
gorithm is 1l(log2 n) .

Proof We analyze work complexity for

test/accept/reject messages only. By the end of the al-

gorithm, each node tests all of its adjacent edges by us-
ing test/accept/reject messages through these edges one

by one. To have a connected graph with high probabil-
ity the required number of neighbors is clog n [13], for

some constant c . Thus each node send test/accept/reject

messages to these clog n neighbors . We know expected

squared distance to the ith nearest neighbor is E[rZ ] >

nn (Lemma 2) . Thus expected work by a node is >
E

i ign nor = Q(1092 For n nodes, by linearity of ex-

pectation, total work w = n x Q(1) = rt(log2 n) . ■

Theorem 10: The expected work complexity of GHS

algorithm to run on Yao graph is 1l(log n) .

Proof: To find this lower bound, we ignore the en-

ergy required to compute the Yao graph . In a Yao graph,

each node has most 6 neighbors, thus work cost of the

test/accept/rejet messages can be as low as 0(1) .
Let us consider initiate and report messages . In each

level, the leaders of the fragments send the initiate mes-
sage to all other nodes in the fragment and the member

nodes return report messages with the information of min-
imum outgoing edges (MOE) to the leader. Total number

of such messages is ®(n log n), where 0(n) messages in

each phase (each node need to send/forward these mes-

sages) and there are log n phases . These messages trav-

els through the edges of MST. We know that some of the
squared lengths of the (n - 1) MST edges is a constant,

0(1) . Total work complexity for ®(n log n) messages is

O(log n) . Since we ignored cost for some messages, this

is a lower bound .
Although the initiate message can be broadcasted to the

fragment members, the report messages must be transmit-

ted in point-to point basis ; because each node sends report

to its parent and the parent aggregates data (find min of
the MOEs) and forward to its own parent. Therefore, the

work is still 1Z(log n) .
However, we can show that even if the initiate mes-

sage is broadcasted, total work for these messages is also

E) (log n) . At the ith level, average number of fragments is
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therefore , there are 2, broadcast transmissions by the

2, leaders . Again , there are 2i nodes in each fragments .

Thus, in the ith level, the leader need to transmit to at

least to the distance of 2ith nearest neighbor. By using
log n

Lemma 2, for log n phases , work > 2, n. = 1 log n.
i=1

U

IV. SIMULATION RESULT S

We perform extensive simulations of our algorithms to

understand their empirical performance . Our experimen-

tal setup is the following :

1) Number of Nodes : Varying from 50 to 5000 .
2) Node distributions : Uniformly random distribu-

tions in the unit square and several realistic distri-

butions of points in an urban setting obtained from

TRANSIMS [15] .
3) Number of Runs : 50
4) Measures : We compare the NNT trees and the

MST, with respect to the quality. Qa(T) =

E da(u, v) for a = 1 and 2 . We compare the
(u,v)ET
performance of the NNT algorithms and GHS, with

and without the Yao graph information, with respect
to the following measures : (i) Number of messages,

M

and (ii) Work, w = r« for a = 2 .
i=1

In our simulations , we ignore the effects of the MAC

layer. Our main results are enumerated below, and vali-
date our theoretical results in earlier sections .

1) The Dir-NNT algorithm always outperforms the
Random-NNT algorithm, with respect to the qual-

ity, number of messages and the energy.

2) Both Directional and Random-NNT give a very
good approximation to the MST- in particular, Dir-

NNT is always within about 10% of the MST.

3) For a = 2, 3, Random-NNT does not give a very
good approximation, but Dir-NNT remains within a

factor of 2 .
4) The number of messages and the work done by both

Directional and Random-NNT is very close, and

significantly smaller than that by GHS or GHS with

the Yao graph .

fraction of V/n-, and the plot for Dir-NNT is a straight line .

For Random-NNT, the asymptotic approximation ratio is

e(/I), and this plot is almost s traight.

70

60

50

40

30

20

10

0
0 5 10 15 20 25 30 35 40 45 50

n (x 100)

Fig. 1 . Sum of the lengths of the edges, Qi (T), for MST, Random-
NNT, and Dir-NNT.

10

0
0 10 20 30 40 50 60 70 80

Sqaure root of n

Fig . 2 . Sum of the lengths of the edges, Qi(T), plotted with sqrtn
for MST, Random-NNT, and Dir-NNT.

Figure 3 shows Q2(T), the sum of squares of the

edge lengths, for the NNT algorithms and the optimum .

Both the optimum and Dir-NNT are a constant, and

within a factor of 2 . However, the value of Q2(T) for

Random-NNT increases with n, as the asymptotic bound
is O(log n) - this becomes clear from Figure 4.

A. Quality of the Spanning Tree s

We present the simulation results of the quality Q ,, (T)
for a = 1 and 2 . As Figure 1 shows , both Random-NNT

and Dir- NNT compare very well with the MST. As shown

earlier, the MST cost is ©(Vn-) for a = 1, and Dir-NNT

seems to be within a small constant factor of this value ;

Figure 2 demons trates this by showing the values as a

B. Energy-cost to Construct the Spanning Trees

In this section, we compare work w for a = 2 and
number of messages needed by the algorithms . The NNT

algorithms are compared with GHS, both with and with-

out the Yao graph. The input to the GHS algorithm must

be a connected a graph to obtain MST. To have a con-

nected graph, with high probability, in a wireless ah-hoc
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0

RND-NNT

------------------------------------------------------ _ -----_ ......__....

.. .. . .. .. . . .. .. . .. .. . . .. ... .. ... . .. . .. .. . .. . .. . .. .. . .. . .. . .. .. . .. . .. ... .. . .. . .. ... .. . .. . .. ... .. .. . .. . .. . .. ,

0 5 10 15 20 25 30 35 40 45 50

n (x 100 )

Fig . 3 . Sum of the squares of the edge lengths, Q2(T) for MST,
Random-NNT, and Dir-NNT.

4

1 .5
3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

log n

Fig . 4. Sum of the squares of the edge lengths, Q2(T) for Random-
NNT with respect to log n .

network, when the nodes are uniformly distributed, each

node must be connected to the nodes which are within

distance ©( 11) [13] . We consider the radius of the

neighborhood to be 1 .6 1, the minimum required for

connectivity . Since each node sends at least one mes-
sage to each of its neighbor (test message - to check if
the neighbor is in the same fragment), cost of GHS algo-

rithm increases as the number of neighbors of the nodes
increases .

To determine the neighbors, each node can broadcast a

message to distance 1 .6 loge and consider another node
as a neighbor if the node can hear the message from the

other node. However, we did not incur any cost on GHS

algorithm to find the neighbors (thus favoring GHS) . We

assumed that each node knows its neighbors and their dis-

tances .

In addition, we also simulate GHS on the Yao graph .

Each node finds its Yao neighbors first, then executes GHS
algorthm .

5000

4000

RND-NNT
DIR-NNT

GHS ... .. ... . .. . .

GHS YAO

3000

2000

1000

Fig. 5. Number of messages needed to construct the spanning trees .

Fig . 5 depicts the number of messages needed to con-

struct the tree . We see that the number of messages for

NNT algorithms is significantly smaller than GHS. More-

over, the number of messages for NNT algorithms in-

creases linearly . On the other hand, the number of mes-
sages for GHS increases at a slightly higher rate . In fact,

message complexity for GHS is O(n log n) .

700
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300

20 0

100

0

5 10 15 20 25 30 35 40 45 50

n (x 100)

RND-NNT
DIR-NNT ......---

GHS . .. . .. . .. . .. .
GHS YA O

0 5 10 15 20 25 30 35 40 45 50

n (x 100)

Fig . 6 . Work done by the algorithms .

Required work for NNT algorithms is also significantly

less than that of GHS algorithm (Fig . 6) . In addition,

with the number of nodes, energy for NNT algorithms in-

creases in a lower rate than GHS . In terms of both number

of messages and work, GHS with Yao graph is more effi-

cient than GHS without Yao graph . However, cost is still

much larger than NNT algorithms .

Analytically, we know that the work complexity for

Dir-NNT, Random-NNT, and GHS and GHS-YAO are
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O(1), 0(logn), cl(log2 n), and Sl(logn) respectively. We

can also observe these results from experimental data . Let
work w = c log' n . Then log w = log c + a log log n .

Thus if we plot log w vs . log log n the graph is an straight
line and the slope of the line is a, the power of log . In

Fig . 7, the slope for GHS is greater than 2 . For GHS-

YAO, the slope is about 1 and for Random-NNT, it is less
than 1 . For Dir-NNT the slope is 0 which indicates work

is O(1) .

7

6

5

4

3

2

RND-NNT
DIR-NNT ------- ---

GHS . .. . .. . .. . .. .
CGHS YAO

1 .3 1 .4 1 .5 1.6 1.7 1.8 1.9 2 2.1 2.2

log log n

Fig. 7 . Slope of the lines indicate the powers of log in work complex-
ity .

C. Experiments on Real Data

We consider a distribution of points in a section of

downtown Portland, OR, measuring 2900m x 2950m ap-

proximately 9 square KM . The distribution of points, cor-

responding to cars on the roadway, was obtained from the

TRANSIMS simulation [15], which does a very detailed
modelling of urban traffic, combining a variety of data

sources, ranging from census data to activity surveys to

land use data. We use three snapshots, at one minute in-
tervals . The number of nodes (or cars) in these snapshots
is different, because there are cars moving in and out of

this section all the time. The distribution of nodes at one

of the snapshots is shown in Fig . 8 . Experimental results
on these three snapshots are given in Table I, II, and III .
Where the original data was in meters, we converted into

KM. Work is computed for a = 2 .
We see that work and number of messages are signifi-

cantly larger for GHS algorithm. Work is about 10 times

larger and number messages is about 5 times larger than

NNT algorithms . On the other hand, both quality for Dir-

NNT is within 2-approximation . Although approxima-

tion for Q2 in Random-NNT is large, for Ql, Random-
NNT also provides a close approximation . In this exper-
iment, we only considered the YAO graph assuming that

Fig . 8 . The distribution of nodes at one of the snapshots .

TABLE I

EXPERIMENT RESULTS FOR SNAPSHOT 1

Algorithm Q1 Q2 Work Messages

Dir-NNT 38.72 6.77 90.54 4832

Rnd-NNT 50.75 14.13 131 .42 5241

GHS-YAO 33.16 3 .73 1271 .11 20592

TABLE II

EXPERIMENT RESULTS FOR SNAPSHOT 2

Algorithm Q1 Q2 Work Messages

Dir-NNT 39.39 8 .18 92.28 4647

Rnd-NNT 52.97 20.12 137 .91 5250

GHS-YAO 33 .52 3 .82 1083.99 2041 7

TABLE III

EXPERIMENT RESULTS FOR SNAPSHOT 3

Algorithm Q1 Q2 Work Message s

Dir-NNT 38.32 6 .25 83.42 4668

Rnd-NNT 52.57 18 .47 148.88 5229

GHS-YAO 33.27 -3 .78 1083 .99 20417
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the nodes know their coordinates . If the coordinates are

not available , for GHS algorithm input need to be a com-

plete graph (each node is a neighbor of the others) to make
sure connectivity since the points does not follow any par-

ticular (say uniform) dist ribution . Thus GHS would incur
large work and messages . In that case , Random-NNT will

still be a good choice over GHS, by sacri ficing quality.
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APPENDI X

Proof of Lemma 2

We will show that nn < E[r?] ni . To get the lower bound, we
assume that a node u exists at the center of the square (otherwise we
can do a translation an d the following argument sti ll holds ). It is easy
to see that the distan ce to the ith nearest neighbor of it is stochasti cally
less than or equal to that of any other node ( e .g ., compared to a node
at the boundary). Consider a circle centered at u with radius R such
that 7rR2 = 1 . The probability that some other node is within distance

r from node it is = z. Then the probabili ty that there are atTR_T
le ast i nodes within dist ance r ,

- k
r2

n-k- 12
C{(r) = 1 - Ek=0 (nkl) (~) (1 v)

The probability density function, Pi(r) = drCi(r )
i-1 y k-1 p n-k-1

= - E (nk1)kR
. (SR \1 - )_RT

k=0

i-1 2 k 2 n-k-2

k=0

Let Tk = the first term inside the above sum =
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Now To = 0, thus Pi (r) > k=o (Tk - Tk+1) = Ti .
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identity En k=0 (k) k = x-1 (xnn ) -1 (page 188 in [19]) ,
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To get the upper bound, we consider a node v at a comer. Let us
consider another circle centered at v and with radius R' = f, the
maximum possible distance between an y two nodes. If we re dist ri bute
the nodes in this circle uniformly , the average distan ce to the ith near-

est neighbor c an only incre ase. Thus, E[r, ] < ` 2


