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Energy-Efficient Distributed Constructions of
Minimum Spanning Tree for Wireless Ad-hoc
Networks

Maleq Khan

Abstract—The Minimum Spanning Tree (MST) problem
is one of the most important and commonly occurring prim-
itive in the design and operation of data and communica-
tion networks. While there are distributed algorithms for
the MST problem these require relatively large number of
messages and time, and are fairly involved, require synchro-
nization and a lot of book keeping; this makes these algo-
rithms impractical for emerging technologies such as ad hoc
and sensor networks. In such networks, a sensor has very
limited power, and any algorithm needs to be simple, lo-
cal and energy efficient for being practical. Motivated by
these considerations, we study the performance of a class of
simple and local algorithms called Nearest Neighbor Tree
(NNT) algorithms for energy-efficient construction of MSTs
in a wireless ad hoc setting. These employ a very simple
idea to eliminate the work involved in cycle detection in
other MST algorithms: each node chooses a distinct rank,
and connects to the closest node of higher rank. We con-
sider two variants of the NNT algorithms, obtained by two
ways of choosing the ranks: (i) Random NNT, in which each
node chooses a rank randomly, and (i) Directional NNT, in
which each node uses directional information for choosing
the rank. We show provable bounds on the performance
of these algorithms in instances obtained by uniformly dis-
tributed points in the unit square.

Finally, we perform extensive simulations of our algo-
rithms. We tested our algorithms on both uniformly ran-
dom distributions of points, and on realistic distributions of
points in an urban setting. The cost of the tree found by the
NNT algorithms is within a factor of 2 of the MST, but there
is more than a ten-fold saving on the energy and about a five
fold saving on the number of messages sent. Also, our algo-
rithms are significantly simpler to implement compared to,
for instance, the GHS algorithm, which is essentially opti-
mal with regards to the message complexity. Thus, our re-
sults demonstrate the first such tradeoff between the quality
of approximation and the energy cost for spanning trees on
ad hoc networks, and motivates similar considerations for
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other important problems.

Index Terms— Minimum Spanning Tree, Optimization,
Wireless Ad-hoc Networks, Sensor Networks, Energy-
efficient Algorithms, Distributed Algorithms.

I. OVERVIEW
A. Introduction and Motivation

The Minimum Spanning Tree (MST) problem is one of
the most important and commonly occurring primitive in
the design and operation of data and communication net-
works. For instance, in ad hoc sensor networks, MST can
be shown to be the optimal routing tree for data-centric
routing [1]. Traditionally, the efficiency of distributed al-
gorithms is measured by running time and number of mes-
sages exchanged among the computing nodes, and a lot of
research has gone into the design of algorithms that are
optimal with respect to such criteria. There are distributed
algorithms of that find the optimal MST (for e.g., see [2],
[3]) and are essentially optimal in terms of time complex-
ity: they run in O(Diam(G) + n¢) time, and there are
matching lower bounds. However, these algorithms in-
volve a lot of message transfers and time. The GHS al-
gorithm [4] uses ©(nlogn + |E|) messages, and is es-
sentially optimal with respect to the message complexity.
Despite their theoretical optimality, these algorithms are
fairly involved, require synchronization and a lot of book
keeping; such algorithms are impractical for ad hoc and
sensor networks. For example, consider sensor networks
— an ad hoc network formed by large numbers of small,
battery-powered, wireless sensors. In many applications,
the sensors are typically “sprinkled” liberally in the region
of interest and the network is formed in an ad hoc fash-
ion by local self-configuration. Since each sensor usu-
ally knows only its (local) neighbors, the network man-
agement and communication has to be done in a local and
distributed fashion. Additionally, because of battery lim-
itations, energy is a very crucial resource. A distributed
algorithm which exchanges a large number of messages
can consume a relatively large amount of energy (and also



time) and may not be suitable in an energy-constrained ad
hoc wireless sensor network. _

Thus it is necessary to develop simple, local, distributed
algorithms which are energy-efficient and (preferably also
time-efficient), even at the cost of being sub-optimal. This
adds a new dimension to the design of distributed algo-
rithms for such networks. Thus we can potentially trade-
off optimality of the solution to work done by the algo-
rithm. In a sensor network, the total energy cost (“en-
ergy complexity™) of a distributed algorithm typically de-
pends on the number of messages exchanged and the en-
ergy needed to transmit the messages over a certain dis-
tance (cf. Section I-C). (It can also depend on the time
complexity of the distributed algorithm). The (radiation)
energy needed to transmit a message is typically assumed
proportional to some work function f (typically square
or some small power) of the distance between the sender
and the receiver [5], [6]. Thus it becomes important to
measure efficiency of a distributed algorithm in terms of
power, energy, besides the number of messages.

We study a class of simple, local, distributed, ap-
proximation algorithms called the Nearest Neighbor Tree
(NNT) algorithms to build slightly sub-optimal trees, with
low energy complexity. A fundamental step in all ex-
isting algorithms for the MST is cycle detection: given
an edge, one needs to determine whether the edge would
form a cycle with the edges already chosen. This decep-
tively simple operation leads to a big overhead: a signifi-
cant amount of book keeping and message passing needs
to be done in order to maintain the components, and an-
swer such queries. Our NNT algorithms bypass such a
step completely by a very simple idea: each node chooses
a unique rank, a quantity from a totally ordered set, and
a node connects to the nearest node of higher rank. Ob-
serve that this immediately precludes cycles, and the only
information that needs to be exchanged is the rank; also,
this information does not have to be updated continuously
over the course of the algorithm.

B. MST and its Applications

Formally, our focus is the following geometric
weighted minimum spanning tree problem: given an ar-
bitrary set N of points (nodes) ! in a plane 2, find a tree
T spanning N such that }_,, ,)e7 4*(u, v)) is minimized
where d(u,v) is the distance of an edge (u,v) € T ac-
cording to some norm (we use the Euclidean norm in

1E.g., these may represent sensors. We assume that these have
unique labels or id’s.

2We consider the 2-dimensional setting for concreteness; our results
can be generalized for higher dimensions.

this paper) and « is a small positive number. The moti-
vation for this objective function comes from energy re-
quirements in a wireless communication paradigm (see
also next Section): to transmit a signal over a distance
r, the required radiation energy is proportional to r<,
where typically « is 2 and can range up to 4 in environ-
ments with multiple-path interferences or local noise [6],
[5]. It can easily be shown (e.g., using Kruskal’s al-
gorithmic construction) that the MST which minimizes
Y (ww)er Ay, v) also minimizes 3, e d*(u,v) for
any o > 0.

Two important applications of the MST in wireless net-
works are broadcasting and data aggregation. The MST is
the optimal broadcast tree to minimize radiation energy
consumption since it minimizes ), ey d*(%,v). In
data aggregation, the idea is to combine the data coming
from different sources enroute to eliminate redundancy
and minimize the number of transmissions and thus sav-
ing energy; the common aggregate functions are mini-
mum, maximum, average, etc [7]. One popular paradigm
for computing aggregates is to construct a (directed) tree
rooted at the sink where each node forwards its (locally)
aggregated data collected from its subtree to its parent [8],
[9], [10], {11]. Again, in such cases, MST is the optimal
data aggregation tree, since it works exactly as a reverse
broadcast tree [1].

C. Energy Model and Work Complexity

To run a distributed algorithm in an ad hoc wireless set-
ting, the following modules of an wireless device are typ-
ically involved: a digital unit for processing the signals
and performing network protocol functions, and a radio
(transceiver) module for communication [12]. Thus one
can consider the following three components of energy
consumption to run a distributed algorithm.> 1) Radiation
energy which is proportional to r® to transmit to distance
r. 2) A constant (independent of distance) amount of en-
ergy e, required by the radio electronics (transceiver) for
each unit of data at the sending and receiving end. Thus
energy consumption to transmit a b-bit message to dis-
tance r is be. + ber™, for some constant c. 3) Energy con-
sumption in digital electronics: even when a node does
not receive or transmit a message, the digital electronics
and transceiver (in listening or sleeping mode) dissipates
power at a constant rate. Let this power is p.. Thus, if
a distributed algorithm exchanges M messages and takes

3In this paper we do not consider the affects of protocol layers (e.g.
the MAC layer), and the overheads resulting from their interaction-
thus the focus of this work is to optimize the static energy require-
ments.



t time to complete the algorithm, total energy-cost of the
algorithm is

M
E =tp. + Mbe, + bc Y rg,

. i=1
considering all messages have same size b and the ith mes-
sages travels to distance r;. Thus time, number of mes-
sages, and distance needed to transmit messages all deter-

mine the total energy cost.
Motivated by above, in addition to the traditional time
and message complexity, we introduce a new complexity
M

term called work defined as w = ) r¥. Thus total ra-
diation energy is directly proporti(;nz:l to the work done
by the algorithm. We show that NNT algorithms perform
better in all three: time, number of messages and work.
Thus, total energy consumed by the algorithms is less for
our algorithms compared to the algorithms that construct
(optimal) MSTs.

The quality of a spanning tree T is defined by Qo (T) =
Y e l€|*; e denotes an edge of T'. For @ = 1, @1(T) is
simply the sum of the lengths of the edges. Tree with
lower Qo(T) is considered better tree. Qur goal is to
develop local distributed algorithm with the objective of
minimizing total energy E, while keeping the quality of
the spanning tree produced to be reasonably close to the
optimal.

D. Our Contributions and Results

Our main contribution is detailed theoretical and exper-
imental study of a simple and local class of algorithms,
specifically for ad hoc and sensor networks. Our algo-
rithms, called the Nearest Neighbor Tree (NNT) algo-
rithms use a very simple idea to avoid cycle formation:
each node (independently) chooses a distinct rank, and
connects to the closest node of higher rank. Depending
on how ranks are chosen we study two types of NNT al-
gorithms: Random-NNT (ranks are chosen randomly) and
Directional-NNT (Dir-NNT) (ranks are based on coordi-
nate information). Both are well motivated: when nodes
don’t know their geometric coordinates* Random-NNT is
natural, but if nodes know their coordinate location then
Dir-NNT is more suitable.

We theoretically analyze the performance of both these
NNT algorithms in the model where n nodes are uni-
formly distributed in a unit square (this is a popular prob-
abilistic model for ad hoc wireless networks, e.g., see
[13]). Our results are enumerated below.

“Consider a scenario where sensor nodes are sprinkled randomly in
the ocean from a high flying airplane; the nodes typically will not have
(accurate) knowledge of their coordinates, unless they have some sort
of geographic information locater (e.g., GPS).

¢ Quality bounds: We give asymptoti-
cally tight bounds on the cost of the tree
found by Random-NNT: for « < 2,
E[Q.(RNNT)] = O(n'=*?log*?n) and
for o > 2, E[Qa(RNNT)] = O((logn)*/?-1),
where RNNT is the tree computed by Random-
NNT algorithm. Thus, for & = 1, this is an
O(y/logn) approximation and for @ = 2, this
is an Oflogn) approximation. For Dir-NNT,
we show that E[Q{(DNNT)] = O(y/n) and
E[Q2(DNNT)] = O(1), where DNNT is the tree
computed by Dir-NNT algorithm; thus, Dir-NNT
is always within a constant factor of the optimal-
this shows that at a cost of increased information
(i.e., about the coordinates), we can get very good
approximations.

o Message, time, and work complexity: We show
that NNT algorithms has significantly lower mes-
sage, time, and work complexity compared to other
algorithms distributed which compute the optimal
MST. We show how NNT algorithms can be imple-
mented efficiently in a wireless setting and show that
the work complexities for Dir-NNT and Random-
NNT are O(logn) and O(1) respectively, for a =
2. We show that for both NNT algorithms, the
message complexity is O(n) and time complexity
is O(log?n). We compare the work-complexity of
NNT with other distributed algorithms which com-
pute the (optimal) MST. We analyze the work com-
plexity of GHS algorithm [4] — a message-optimal
distributed MST algorithm — and show that it is
Q(log?n), for @ = 2. Also, the message complex-
ity of GHS is O(nlogn) and the time complexity
is O(n). The above bounds hold when the GHS al-
gorithm does not know the coordinate information.
When coordinate information of the nodes are known
the algorithm can be improved by computing the Yao
graph (or the relative neighborhood graph, see e.g.,
[14]) and then using GHS to find MST from Yao
graph. This is essentially optimal with respect to
message complexity. To be fair, we compare Dir-
NNT, which uses coordinates of the nodes, with GHS
algorithm by running on the Yao graph. In a Yao
graph, each node has constant degree (at most 6) and
thus |E| = O(n). Therefore, message complexity is
O(nlogn). We also show that work complexity of
GHS to run on a Yao graph is Q(logn), for o = 2.
In this analysis, the cost of finding the Yao graph is
ignored. In fact, the cost for finding the Yao graph
is itself is larger than for Dir-NNT. Because, in Dir-
NNT, each node needs to find the nearest node on its



right (in the right half plane). Whereas, to compute
the Yao graph, each node needs to find the nearest
nodes in each of the six cones.

» Simulation results: We performed extensive simu-
lations of our algorithms. We tested our algorithms
on both uniformly random distributions of points,
and on realistic distributions of points in an urban set-
ting obtained from TRANSIMS [15]. Experimental
results show that costs for NNT algorithms are sig-
nificantly smaller than that for an optimal MST algo-
rithm, while the quality NNT is very close to MST.
For example, for the TRANSIMS data, we found that
the cost of the tree found by the NNT algorithms is
within a factor of 2 of the MST, but there is more
than a ten-fold saving on the energy and about a five
fold saving on the number of messages sent.

E. Organization of the Paper

The rest of the paper is organized as follow. A sub-
optimal MST called nearest neighbor tree (NNT) is de-
fined and an energy-efficient local distributed NNT algo-
rithm is described in Section II. Theoretical analysis of
the quality, and work, messages and time complexity of
the algorithms are given in Section III. Simulation results
are presented in Section IV.

II. AN ENERGY-EFFICIENT CONSTRUCTION

Building minimum spanning tree (MST) in a dis-
tributed fashion is highly energy intensive. A distributed
algorithm to construct an MST, called GHS algorithm,
was proposed in [4]. In the GHS algorithm, initially each
node is considered to be a fragment (or a connected com-
ponent). As the edges are added, the fragments grow by
combing smaller fragments. In each “round” of the algo-
rithm, each fragment finds its minimum length outgoing
edge (MOE) — which is guaranteed to be in an MST —
and uses this edge to combine fragments. Each fragment
has two leaders, which are adjacent to the edge added
immediately in the previous step. To find the MOE, the
leaders send initiate message (relayed by the intermediate
nodes) to the members of the fragment. Upon receipt of
initiate message, each node tests its adjacent edges by ex-
changing test/accept/reject messages to check if the node
at the other end is in same fragment. Thus, each member
node finds its minimum outgoing edge and reports it to the
leaders. Upon receipts of reports, the leaders select a new
leader — the node which is adjacent to the MOE for the
entire fragment and this begins a new round.

Thus a relatively large number of messages needs to
be exchanged to find MOEs and to perform the com-
bining operations (changing root of the fragment using

“change root” messages); thus, the amount of energy
consumed in configuring MST can become prohibitively
large. Also as fragments grow, parallelism of the op-
erations reduces (more sequential operations) requiring
longer running time. The required number of messages
can be shown to be 2|E| + 5nlogn and time complex-
ity is O(nlog n), where |E| is the number of edges in the
connectivity graph and » is the number of nodes. The time
complexity was improved to O(n) in [16], [17], but GHS
was shown to be optimal in terms of number of messages.

In this section, we propose a local distributed algo-
rithm to construct a nearly-optimal spanning tree, which
requires significantly less energy to build than the MST.
The proposed algorithm is very simple. It requires no
complex synchronization among the nodes and is natu-
rally robust. An abstract form of the algorithm is given
below.

1. Each node u chooses a unique rank rank(u).

2. Node u finds the nearest node v such that rank(u) <
rank(v) and gets connected to v.

We will shortly describe how to choose such a rank. A
distributed implementation in a broadcast setting is given
in Figure 1. The following definitions are needed to de-
scribe the algorithm and its properties.

Definition 1: Available-for-Connection Set or AC-set.
If node u is allowed to get connected to node v, we say
v is available to u for connection. AC(u) is the set of
all available nodes. We define v € AC(u), if and only if
u < v for some irreflexive and transitive binary relation
<. Such ordering of the nodes ensures that the connec-
tions among nodes do not create any cycle.

Next, we describe how ordering of the nodes can be de-
fined such that each node can determine its relative order
with respect to its neighbors locally.

One simple ordering heuristic is as follows. Every node
generates a random number independently (between say O
and 1) and broadcasts this number along with its ID, iden-
tification number. Each node collects random number-ID
pairs of its neighbors and determines its order with respect
to the neighbors according to the definition below. Let R,
be the random number generated by node u. We assume
that every node is given a unique ID before deployment.

Definition 2: Random Order <,. For any two nodes u
and v, u <, v if and only if either

a) R, < R, orb) R, = R, and ID(u) < ID(v).

Another ordering heuristic called directional order uses
the location information of the nodes. We assume that
each node knows its relative coordinates in the plane and
no two nodes have the same coordinates (If two nodes
have the same coordinates, ID can be used to break ties).
Let (4, yu) be the coordinates of u.



Definition 3: Directional Order <4. For any two nodes
u and v, u <4 v if and only if either

a) Ty < Ty Or b) Ty = Ty and yy, < Y-

It is easy to see that the graph produced by NNT algo-
rithm is a tree. The relations <, and <, defined above
are irreflexive and transitive. For any irreflexive and tran-
sitive binary relation <, if each node u gets connected to
exactly one node v € AC(u), if AC(u) # ¢, there is no
cycle in the resulting graph. Further, there is exactly one
node u such that AC(u) = ¢ and thus there are n — 1
edges. Therefore, the resulting graph is a tree.

Definition 4: Nearest Neighbor Tree (NNT). When
each node u, if AC(u) # ¢, connects itself to a near-
est node v € AC(u), the resulting tree is called a near-
est neighbor tree. When random order is used, the tree is
called a Random-NNT (RNNT). When directional order
is used, the tree is called a Directional-NNT (Dir-NNT).
The name “nearest neighbor tree” comes from the fact that
the tree is formed by connecting each node to the nearest
node from the available (for connection) neighbors.

Algorithm 1 Distributed NNT algorithm.
/* The algorithm is executed by each node u in-
dependently. Messages are written in the format
(message name, sender, [recipient], [other information]).
When a message is broadcasted, the recipients are not spec-
ified. ! is the maximum possible distance between any two
nodes. A is the area covered by the nodes and n is the number
of nodes®.*/
i1
Repeat

Set transmission radius (power level)

Ty — 284/ A—":Fﬂ, for Random-NNT

r; ¢ iy/4, for Dir-NNT
Ifr; >lr 1
Broadcast (request, u, rankin fo)
/* for Random-NNT rankinfo is random number R, & ID
*/
/* for Dir-NNT rankinfo is coordinate (., y.) */
Wait for some specified time period
t—i+1
until (receipt of an “available” message) or ( r; = [)
For all v, upon receipt of {(request, v, rankinfo) do
ifv<u, '
set transmission radius to distance(u,v)
send (available, u,v) to v
Upon receipt of “available” message(s):
Select the nearest node v from the senders
Send (connect, u, v) to v

The algorithm consists of exchanging three types of

messages: “‘request”, “available”, and “connect” among

. the nodes. Each node begins with broadcasting a “re-

quest” for connection message. Considering a unit square
(area A = 1), each node broadcasts “request” messages
successively to the distances ﬁ, %, 73;-, ..., in case of

Dir-NNT and 2/1%%, 4, /logn g, flogn _in case of
Random-NNT until it finds a node with higher rank. The
highest ranked node among all the nodes, can never find
a node with higher rank. This node stops transmitting
“request” message when it reaches the maximum possi-
ble distance between any two nodes. “Request” messages
carry rank information (coordinates or random number).
The other nodes who can hear the message check their rel-
ative rank and send back an “available” message if their
rank is higher. The sender of the “request” message se-
lects the nearest node from the senders of “available” mes-
sages if more than one available message is received and
thus it finds the nearest higher ranked node.

When coordinates are not available (e.g., for Random-
NNT), senders can include the transmission power lev-
els in the “available” messages and the recipient can de-
termine the relative distances of the senders from these
power levels and the signal-strengths of the received mes-
sages. Finally, the node sends a “‘connect™ messages to the
nearest higher ranked node, that creates an edge between
these two nodes.

Two different strategies are used in increasing the
broadcast radius successively for Random-NNT and Dir-
NNT. For Dir-NNT, each time radius is increased by %
For Random-NNT, radius is doubled each time. Also Dir-
NNT begins with a smaller radius compared to Random-
NNT. Among many other possible strategies, one strategy
can be “begin with a constant radius and increase each
time by a constant amount”. Selecting the best strategy
for an NNT algorithm is not obvious. By experimental tri-
als and theoretical analysis, the strategies given in the Al-
gorithm 1 are found to be optimal for Random-NNT and
Dir-NNT. In this paper, we present the results for these
strategies only.

III. ANALYSIS

In this section, quality of the trees and energy-cost of
the algorithms are analyzed theoretically. In this analy-

_sis, we assume that n nodes are uniformly distributed in a

unit square. In this setting, we measure the quality of the

tree produced by NNT, Qo(T) = 3. d*(u,v), work
(u,w)eT

M
w = Y rd, number of messages, and the time complexi-

i=1
ties of NNT and GHS algorithms. Although our analysis
generalizes to any , for clarity we consider o = 1 and 2.



It was shown by Steele [18] that Q2(M ST) is asymp-
totically constant, O(1). Also it is well known that
Q1(MST) is O(y/n). We show that for Dir-NNT, Q1 =
O(y/n) and Q2 = O(1) giving an approximation fac-
tor of O(1) for both of them. For Random-NNT, Q; =
O(v/nlogn) and Q2 = O(logn) giving approximation
factors of O(y/log n) and O(log n) respectively.

The work complexities for Dir-NNT and Random-NNT
are O(log n) and O(1), where work for GHS algorithm is
Q(log? n). In [4], authors showed that message and time
complexities are O(n log n+ |E|) and O(nlog n) respec-
tively. We show that for both NNT algorithms, number of
messages is O(n) and time complexity is O(log?n).

When coordinate information of the nodes are known,
efficiency of GHS algorithm can be improved by comput-
ing the Yao graph and then use GHS to find MST from the
Yao graph. To be fair, we compare Dir-NNT, which uses
coordinates of the nodes, with GHS algorithm with Yao
graph. In a Yao graph, each node has constant degree (at
most 6) and thus |E| = O(n). Therefore, message com-
plexity is O(n log n). We also show that work complexity
of GHS to run on a Yao graph is 2(log n). In our analysis,
we actually favor GHS by ignoring the cost incurred for
finding the Yao graph. In fact, the cost for finding the Yao
graph is itself is larger than that for Dir-NNT. Because, in
Dir-NNT, each node needs to find the nearest node on its
right (in the right half plane). Whereas, to compute the
Yao graph, each node need to find the nearest nodes in
each of the six cones.

The following lemmas and theorems prove the above
claims.

A. 'Random-NNT

Lemma 1: In Random-NNT, a node v connects to the
ith nearest neighbor with probability %_(z_+—1'5 Thus, a node
gets connected within its & nearest neighbors with proba-
bility 1 — ¢35

Proof: Leta and z; be the random number generated
by node v and its ith nearest neighbor. Let X; = {zx|1 <
k < i}. Wedefine,a > X; <= Vi<k<i(a > ). Since
the random numbers are generated by the nodes indepen-
dently, Pr{a > X;} = probability that a is the largest
among 1 + 1 independent identically distributed random
numbers = ; +1 Now, the probability that a node connect
to the ith nearest neighbor is
Pr{a > Xi_1,a < z;}
= Pr{a > Xi—l} Pr{a < :1:,-|a > X'._l}
=Pr{a > X;_1}{1 — Pr{a > z;ja > X;_1}]
=Pr{a > X;—1} — Pr{a > z;,a > X;_1}

=Pr{a> X} -Pr{a> X} =3 — gy = T(ﬁﬁ

Now Probability that a node is connected within & near-
est neighbors is %, T - =51 [ ]
Theorem 1: ExpectF ork complexxty of Random-
NNT algorithm is O(n?~%/21og®/%n) for o < 2 and
O((logn)*/?=1) for a > 2.
Proof: Consider an arbitrary node u. First transmis-

sion radius for “request” message is 73 = 2\/ 1967 and for

the ith transmission, r; = 2r;_1 = 21\/ . Let m be

the maximum number of transmissions. rm—1 < V2 <
T, 1€, M < ;%g% +1.

Let C; be the set of nodes in the circle centered at u with
radius 7; and R; = C; — C;_1. E[|C;—4]|] = r2 N =
72%-2Jogn. Using Chernoff bound for lower tail, with
high probability |Ci_1| > 1 E[|C;—1]] = n2%3logn.

Now, the probability that node u needs the ith transmis-

sion = the probability that u is the highest ranked node in

X 1 8
Ci-1= g7 < s ogn:

E[|Ci|]] = n2%logn. Again using Chernoff bound
for upper tail, with high probability |R;| o]
72%+llogn. Consider an arbitrary node v € R;.
Pr{rank(u) < rank(v)|u has the highest rank inC;_;} =
W < m Thus expected number of
‘available” messages (reply of “request” message) <
72%+1 Jog nm = 16. Counting the “request” and
the final “connect messages there are at most 18 mes-
sages that travels the distance > r;_; and < 7;.

Thus the expected total work for 7 nodes (using linear-

ity of expectation) is
> 8
< & — 187§
EW]|<n (181‘1 + ,-E=2 — lognlST’ ) ¢))

1 b _
= g_:_g%ﬂ)_ (20‘18 + wlgén Z 9l 2))
For a = 2, E[W] < 106log n = O(logn). For o # 2,
E{W) < 2"‘18%‘:5%2_1E + g?:‘_‘ig (log n)®/2-1,

For o < 2, the second term becomes negative, thus
E[W] = O(n!~%/210g%/2 n).
For a > 2, the second term is dominating, thus
E[W] = O{(logn)*/2™1). n
Theorem 2: In Random-NNT, E[Q.(RNNT)] =
O(n1=2/21og®/? n) for o < 2 and O((logn)*/2~1) for
a> 2
Proof: Similar to the proof of Theorem 1, consider
an arbitrary node u, and concentric circles centered at u

with radius r; = 2i\/l—°53 fori=1,2,.

number of circles m < —I‘fg— + 1. Let C; be the set of
nodes in the circle with radlus r;and R; = C; — Ci—. If

, m. Maximum



u connects to a node v in the ith ring, i.e., v € R;, (to get
an upper bound) we consider distance d(u, v) = ;.

With high probability (by Chernoff bound), |C;| >
1E(|C]) = m2%~1logn.

Now Pr{u connects to any v € R;} = Pr{u connects
to a node in C;} x Pr{u does not connect to a node in

Ci-1} = (1 - ]'clf[) TQ—I:J by Lemma 1. Thus,

Bld(u,v)] = (1 - ) r+ e iy (1 - ) 7o

Keeping the dominating terms and using linearity of ex-
pectation, for n nodes,

E[Qa) = nE[d(u,v)] < nrf +n ik, gigyrd
< logn 7 (2a + 7r[og 21—2 21(0_2)) .

Fora =2, E[Qa] < 6logn = O(logn). For a # 2,

(ogm)? | 2223 1
e+ g (logm)®/

E[Q.] £ 2¢

For a < 2, E[Qa] O(n*=*210g*/? 1) and for a > 2,
E[Qo] = O((log n)*/21). L
Theorem 3: Expected message complexity of Random-
NNT algorithm is O(n).
Proof: If we consider work needed for every mes-
sage is 1, i.e., when o = 0, the total work is simply
the number of messages, M, exchanged in the algorithm.

Thus from Equation 1, by putting r{ = 7 = 1 in the
right hand side, we get
E[M] < n (18 + L1y sz 18)
4
<n(18+ ks - k) = O(n).
u
Theorem 4: Running time of Random-NNT algorithm

is O(log? n).

Proof: We assume that transmission of each mes-
sage take one unit of time and while one node is transmit-
ting a message, no other node in its transmission radius
(transmission range) is allowed to transmit.

The radius of the first transmission by each node is

Ty = 2\/l°$. Following the proof of Theorem 1, ex-
pected number of nodes within this radius, E[|C1|] =
47 logn and with high probability, |C1| < 8mlogn. In
the first transmission phase, a node needs to reply to
at most 8w logn “available” messages. Thus total time
for 87 log n nodes to complete the first phase is at most
(8mlogn)? = O(log? n).

Now consider an ith transmission phase to distance
7, = 204/1%2  After the (¢ — 1)th phase, there can
be at most one unconnected node in any circle of radius

r;—1, because, otherwise, one node has lower rank than
the other and can connect to the that node. Thus ex-
pected number of unconnected node within radius r; is
4 and this number can be at most 24, because distance of
any two such nodes is at least r;—;. From the proof of
Theorem 1, expected number of reply (“available™) mes-
sages can be received by one of these nodes is 16. Thus
each subsequent transmission phase (other than the first
phase) needs constant time. There are at most —?fgl +1
phases. Thus total time for Random-NNT algorithm is
O(log®n) + O(log n) = O(log? n). [ |

B. Dir-NNT

Theorem 5: The expectcd quality of Dir-NNT fora =

1,2, and 3, are O (y/n), O (1),and O ) respectively.

Proof: We will upper bound the expected distance
that a node needs to connect to some other node. For the
purpose of analysis, let us subdivide the unit square into
v/n X /n small squares. Length of a side of each small
square is | = J=.

Assume that each node selects the nearest node from a
cell which is directly above of it and in the same column or
in a column at the right. The probability that a particular
cell has at least one nodeisp =1 — (1 — %)" >1-4
We further rearrange all the n cells, along with the nodes
in it, in a single row - put the cells of first column (bottom
cell in the left most position, top cell in the right most
position), then the cells of the second column, and so on.
In this new arrangement, we are moving the nodes further
away and increasing the distances among the nodes; and
thus increasing the length of the edges comparing to the
original Dir-NNT. As a result, the expected sum of the
squared edges in the original Dir-NNT is less than that
of Dir-NNT in this new arrangement. All nodes to the
right of any node have higher ranks than its own. A node
connects to the ith next cell, if there is no node in the
next i — 1 cells and there is a node in the ith next cell. The
probability of this event is p(1 —p)*~1. The distance to the
ith next cell is il = in. Therefore, if a node u connects
to some other v node and d(u, v) is the distance between
u and v,

Eld*(x,v)] < T (il)*p(1 — p)™ .

Using linearity of expectation for n nodes, E[Qq(T)] <
nE[d*(u,v)]. Asn — oo, fora = 1,2, 3,

E[Qu(T)] < 225 = 0(vn),
E[Qy(T)] < £ = 0(1),

E|Qu(T)] < 48Heth — 0 ().



Theorem 6: The energy cost of Dir-NNT algorithm, for
a=1,2,and 3, are O (y/n), O (1), and O (71;) respec-
tively.

Proof: A node sends its rank info to distance
%, %, 73‘1=1, ... until it gets a reply back from a higher
ranked node. Again we subdivide the area into cells and
consider the rearrangement of the cells in a single row as
described in Theorem 5. A node sends a message with
rank info to the ith next cell, which is at the distance
il = \—};, if there is no node in the next ¢ — 1 cells. The
probability of occurring this event is (1 — p)*~!, where
the probability that there is a node in a particular cell is
p=21- % The expected number of nodes in a cell is 1.
Thus expected number of “accept” messages in response
is one and finally at most one connect message sent by
this node. Thus, as n — oo, expected energy cost for
one node < 3771 3(il)*(1 — p)i=1. Using linearity of
expectation, total expected energy cost,

n—1
E[Csl <n ) 33il)*(1 —p) L. )
i=1
Asn — oo, fora=1,2,3,
E[C)] < 385 = 0(vh),
2 €
Elcy) < ¥ = 0q1),
3e2(e?+4e+1
E(Ci] < M5 = 0 ()
]

Theorem 7: Expected message complexity of Dir-NNT
algorithm is O(n).

Proof: Again, similar to Random-NNT algorithm,
if we consider work for every message is 1, i.e., when
a = 0, total work is equal to the number of messages M.
Thus from Equation 2, by putting (i) = 1 in the right
hand side, we get

EM]) <nY 7 3(1—p)i~l < £ = O(n).

]
Theorem 8: Running time of distributed Dir-NNT al-
gorithm is O(log? n).

Proof:  Stochastically, each node connects to a
shorter distance in Dir-NNT than Random-NNT thus re-
quiring transmissions to shorter distances. This allows
more simultaneous communications in Dir-NNT than
Random-NNT. Moreover, total number of messages for
Dir-NNT algorithm is no more than that for Random-
NNT. Thus running time for Dir-NNT algorithm < run-
ning time for Random-NNT = O(log?n). |

C. GHS Algorithm

The authors of GHS algorithm [4] shown the message
and time complexity of the algorithm as we discussed ear-
lier in this section. Here we compute the lower bound for
work complexity of GHS algorithm.

Lemma 2: Letr; be the distance of ith nearest neighbor
for an arbitrary node. Then E[r;] = € = © (£), for some
constant ¢ and % <e<L2.

Proof: See appendix. ]

Theorem 9: The expected work complexity of GHS al-
gorithm is Q(log? n).

Proof: We analyze work complexity for
test/accept/reject messages only. By the end of the al-
gorithm, each node tests all of its adjacent edges by us-
ing test/accept/reject messages through these edges one
by one. To have a connected graph with high probabil-
ity the required number of neighbors is clogn [13], for
some constant ¢. Thus each node send test/accept/reject
messages to these clogn neighbors. We know expected
squared distance to the ith nearest neighbor is E[r?] >
ni,r (Lemma 2). Thus expected work by a node is >
yoclogn L = Q(lg:—") For n nodes, by linearity of ex-
pectation, total work w = n x Q(l—°5:—") = Q(log?n). M

Theorem 10: The expected work complexity of GHS
algorithm to run on Yao graph is Q(logn).

Proof: To find this lower bound, we ignore the en-
ergy required to compute the Yao graph. In a Yao graph,
each node has most 6 neighbors, thus work cost of the
test/accept/rejet messages can be as low as O(1).

Let us consider initiate and report messages. In each
level, the leaders of the fragments send the initiate mes-
sage to all other nodes in the fragment and the member
nodes return report messages with the information of min-
imum outgoing edges (MOE) to the leader. Total number
of such messages is ©(n log n), where ©(n) messages in
each phase (each node need to send/forward these mes-
sages) and there are logn phases. These messages trav-
els through the edges of MST. We know that some of the
squared lengths of the (n — 1) MST edges is a constant,
O(1). Total work complexity for ©(nlogn) messages is
O(logn). Since we ignored cost for some messages, this
is a lower bound.

Although the initiate message can be broadcasted to the
fragment members, the report messages must be transmit-
ted in point-to point basis; because each node sends report
to its parent and the parent aggregates data (find min of
the MOEs) and forward to its own parent. Therefore, the
work is still Q(logn).

However, we can show that even if the initiate mes-
sage is broadcasted, total work for these messages is also
O{logn). At the ith level, average number of fragments is



%‘,—, therefore, there are %‘; broadcast transmissions by the

% leaders. Again, there are 2¢ nodes in each fragments.

Thus, in the ith level, the leader need to transmit to at
least to the distance of 2'th nearest neighbor. By using

logn

Lemma 2, for log n phases, work > >
i=1

n2
2t nw

' u

1
= - logn.

IV. SIMULATION RESULTS

We perform extensive simulations of our algorithms to
understand their empirical performance. Our experimen-
tal setup is the following:

1) Number of Nodes: Varying from 50 to 5000.

2) Node distributions: Uniformly random distribu-
tions in the unit square and several realistic distri-
butions of points in an urban setting obtained from
TRANSIMS [15].

3) Number of Runs: 50

4) Measures: We compare the NNT trees and the
MST, with respect to the quality Qu(T) =

Y> d*(u,v) for @ = 1 and 2. We compare the
(u,v)eT
performance of the NNT algorithms and GHS, with
and without the Yao graph information, with respect
to the following measures: (i) Number of messages,
M
and (ii) Work, w = ) r¥ fora = 2.
i=1

In our simulations, we ignore the effects of the MAC
layer. Our main results are enumerated below, and vali-
date our theoretical results in earlier sections.

1) The Dir-NNT algorithm always outperforms the
Random-NNT algorithm, with respect to the qual-
ity, number of messages and the energy.

2) Both Directional and Random-NNT give a very
good approximation to the MST- in particular, Dir-
NNT is always within about 10% of the MST.

3) For oo = 2,3, Random-NNT does not give a very
good approximation, but Dir-NNT remains within a
factor of 2.

4) The number of messages and the work done by both
Directional and Random-NNT is very close, and
significantly smaller than that by GHS or GHS with
the Yao graph.

A. Quality of the Spanhing Trees

We present the simulation results of the quality Qq(T')
for « = 1 and 2. As Figure 1 shows, both Random-NNT
and Dir-NNT compare very well with the MST. As shown
earlier, the MST cost is ©(y/n) for a = 1, and Dir-NNT
seems to be within a small constant factor of this value;
Figure 2 demonstrates this by showing the values as a

fraction of 1/n, and the piot for Dir-NNT is a straight line.
For Random-NNT, the asymptotic approximation ratio is
©(+/logn), and this plot is almost straight.

Sum of the edges, Q1

0 5 10 15 20 25 30 35 40 45 50
n (x 100)

Fig. 1. Sum of the lengths of the edges, Q1 (T'), for MST, Random-

NNT, and Dir-NNT.

Sum of the edges, Q1

0 10 20 30 40 50 60 70 80
Sqaure root of n

Fig. 2. Sum of the lengths of the edges, Q1(T), plotted with sqrin
for MST, Random-NNT, and Dir-NNT.

Figure 3 shows @Q2(T), the sum of squares of the
edge lengths, for the NNT algorithms and the optimum.
Both the optimum and Dir-NNT are a constant, and
within a factor of 2. However, the value of Q2(T’) for
Random-NNT increases with n, as the asymptotic bound
is ©(log n)- this becomes clear from Figure 4.

B. Energy-cost to Construct the Spanning Trees

In this section, we compare work w for @ = 2 and
number of messages needed by the algorithms. The NNT
algorithms are compared with GHS, both with and with-
out the Yao graph. The input to the GHS algorithm must
be a connected a graph to obtain MST. To have a con-
nected graph, with high probability, in a wireless ah-hoc
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Fig. 3. Sum of the squares of the edge lengths, Q2(T") for MST,
Random-NNT, and Dir-NNT.
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Fig. 4. Sum of the squares of the edge lengths, Q2(T") for Random-
NNT with respect to log n.

network, when the nodes are uniformly distributed, each
node must be connected to the nodes which are within

distance ©(4/ 1—°§ﬂ) [13]. We consider the radius of the

neighborhood to be 1.64/ 1353, the minimum required for
connectivity. Since each node sends at least one mes-
sage to each of its neighbor (test message - to check if
the neighbor is in the same fragment), cost of GHS algo-
rithm increases as the number of neighbors of the nodes
increases.

To determine the neighbors, each node can broadcast a

message to distance 1.6/ 1"% and consider another node
as a neighbor if the node can hear the message from the
other node. However, we did not incur any cost on GHS
algorithm to find the neighbors (thus favoring GHS). We
assumed that each node knows its neighbors and their dis-
tances.

In addition, we also simulate GHS on the Yao graph.

10

Each node finds its Yao neighbors first, then executes GHS
algorthm.

5000 e
RND-NNT ——-
DIRANT -
~ | HS v
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¢ 2000 |
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-]
* 1000 |
0 B i ; = - - -
0 5 10 15 20 25 30 35 40 45 50

n (x 100)

Fig. 5. Number of messages needed to construct the spanning trees.

Fig. 5 depicts the number of messages needed to con-
struct the tree. We see that the number of messages for
NNT algorithms is significantly smaller than GHS. More-
over, the number of messages for NNT algorithms in-
creases linearly. On the other hand, the number of mes-
sages for GHS increases at a slightly higher rate. In fact,
message complexity for GHS is O(n log n).

-RNI)'-NN"I‘ —'_ ...........................
70 PDIRNNT e ™
| GHS e _
600 I GHS YAQ ~—— .
s T ]
3
o 400 +
Q
2 300}
200 |/ ]
100
=== ey
15 20 25 30 35 40 45 50

n (x 100)

Fig. 6. Work done by the algorithms.

Required work for NNT algorithms is also significantly
less than that of GHS algorithm (Fig. 6). In addition,
with the number of nodes, energy for NNT algorithms in-
creases in a lower rate than GHS. In terms of both number -
of messages and work, GHS with Yao graph is more effi-
cient than GHS without Yao graph. However, cost is still
much larger than NNT algorithms.

Analytically, we know that the work complexity for
Dir-NNT, Random-NNT, and GHS and GHS-YAO are



0(1), O(log n), Q(log? n), and Q(log n) respectively. We
can also observe these results from experimental data. Let
work w = clog®n. Then logw = logc + aloglogn.
Thus if we plot log w vs. log log n the graph is an straight
line and the slope of the line is a, the power of log. In
Fig. 7, the slope for GHS is greater than 2. For GHS-
YAO, the slope is about 1 and for Random-NNT, it is less
than 1. For Dir-NNT the slope is 0 which indicates work
is O(1).

7 T r . T r T T T

log w

2 L 1 r 2 ] . L
15 16 17 18 19 2

log log n

Fig. 7. Slope of the lines indicate the powers of log in work complex-
ity.

C. Experiments on Real Data

We consider a distribution of points in a section of
downtown Portland, OR, measuring 2900m x 2950m ap-
proximately 9 square KM. The distribution of points, cor-
responding to cars on the roadway, was obtained from the
TRANSIMS simulation [15], which does a very detailed
modelling of urban traffic, combining a variety of data
sources, ranging from census data to activity surveys to
land use data. We use three snapshots, at one minute in-
tervals. The number of nodes (or cars) in these snapshots
is different, because there are cars moving in and out of
this section all the time. The distribution of nodes at one
of the snapshots is shown in Fig. 8. Experimental results
on these three snapshots are given in Table I, 11, and III.
Where the original data was in meters, we converted into
KM. Work is computed for a = 2.

We see that work and number of messages are signifi-
cantly larger for GHS algorithm. Work is about 10 times
larger and number messages is about 5 times larger than
NNT aigorithms. On the other hand, both quality for Dir-
NNT is within 2-approximation. Although approxima-
tion for Q2 in Random-NNT is large, for ¢};, Random-
NNT also provides a close approximation. In this exper-
iment, we only considered the YAO graph assuming that

I

Fig. 8. The distribution of nodes at one of the snapshots.

TABLE1

EXPERIMENT RESULTS FOR SNAPSHOT 1

Algorithm | Q1 Q2 Work Messages

Dir-NNT 38.72| 6.77 | 90.54 4832

Rnd-NNT | 50.75] 14.13 | 131.42 | 5241

GHS-YAO | 33.16| 3.73 | 1271.11 | 20592
TABLE II

EXPERIMENT RESULTS FOR SNAPSHOT 2

Algorithm | @ Q2 Work Messages

Dir-NNT 39.39 | 8.18 | 92.28 4647

Rnd-NNT | 52.97| 20.12 | 137.91 | 5250

GHS-YAO | 33.52| 3.82 | 1083.99 | 20417
TABLE III

EXPERIMENT RESULTS FOR SNAPSHOT 3

Algorithm | Q Q2 Work Messages
Dir-NNT 38321 6.25 | 83.42 4668
Rnd-NNT | 52.57 | 18.47 | 148.88 | 5229
GHS-YAO | 33.27|°3.78 | 1083.99 | 20417




the nodes know their coordinates. If the coordinates are
not available, for GHS algorithm input need to be a com-
plete graph (each node is a neighbor of the others) to make
sure connectivity since the points does not follow any par-
ticular (say uniform) distribution. Thus GHS would incur
large work and messages. In that case, Random-NNT will
still be a good choice over GHS, by sacrificing quality.
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APPENDIX

Proof of Lemma 2

We will show that = < E[r?] < Z. To get the lower bound, we
assume that a node u exists at the center of the square (otherwise we
can do a translation and the following argument still holds). It is easy
to see that the distance to the ith nearest neighbor of u is stochastically
less than or equal to that of any other node (e.g., compared to a node
at the boundary). Consider a circle centered at w with radius R such
that TR2 = 1. The probability that some other node is within distance
7 from node u is "l,'; = f;,. Then the probability that there are at
least ¢ nodes within distance r,

. n—k-1
Ci(r)=1-%i (")) (%) (1-% ) .
The probablhty density function, P;(r) = £Ci(r)

== 5,0 (R) (- 8)
+ 3 -k 0F (57) (-8)

Let T = the first teTl _msnde the above sum =
o () (- 8)"
Then Thss = (F71)(k + 1)Z% (%)k (1—%)" M

) n-k-1)%% (ﬁ’,) (1-&)" =

Now Tp = 0, thus P;(r) = — k_o(Tk —Tk1) =Ts.

E[r?) > fFr2Pi(r)dr

R 48 () (- )

= iR*("7Y) Tico (')( 1)* 7%= Since n — i > 0, using the
identity ¥ 5 _g (k k+z =z~ 1(*I") -t (page 188 in [19]),

2 ofn—1 1 -
E[""]Z’R< i )(n—i)(’:)

To get the upper bound, we consider a node v at a corner. Let us
consider another circle centered at v and with radius R’ = /2, the
maximum possible distance between any two nodes. If we redistribute
the nodes in this circle uniformly, the average distance to the ¢th near-

. : 2 .
est neighbor can only increase. Thus, E[r?] < B2 = 2i,

i

iR?
n nm



