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An Investigation of Packet Reordering in
TCP Traces (Extended Abstract)

Gabriel Istrate, Anders Hansson, Matthew Nassr, Christopher Barrett, and Madhav Marathe

Abstract— Recent research has highlighted the impact of packet re-
ordering on network dynamics. Still, while much work has investigated
the statistical properties of inter-packet arrival times of TCP traces, little
effort has been devoted to obtaining a model of network traffic that incor-
porates sequence ID numbers as well.

With the ultimate goal to develop such a joint model, we present results
on the dynamics of packet reordering in a set of publicly available TCP
traces recorded at the Network Research Lab at UCLA. We investigate the
scaling properties of the number of packet inversions.

We propose a two-state model for the dynamics of sequence IDs based
on pivots (defined as packets for which the received packet sequence has no
gaps). This concept allows us to partition the trace into time epochs based
on the presence or absence of reordering. Thus, we are able to identify and
store patterns of reordering in the packet streams. Statistical tests provide
a first-order validation of our model.

Finally, we investigate the reordering patterns identified by our model
from the standpoint of standard measures of presortedness of integer se-
quences.

The methodology outlined in this paper enables regeneration of syn-
thetic traces with inversion characteristics that are statistically similar to
those of the original data. It is part of RESTORED, a network inference
and analysis tool under development at Los Alamos National Laboratery.

Index Terms—Packet reordering, pivots, traffic modelling.

I. INTRODUCTION

HE traffic flow dynamics in packet-switched communica-

tion networks is still subject of intense research. In par-
ticular, relatively little work has dealt with packet reordering,
although this phenomenon has severe effects on many proto-
cols, such as the Transmission Control Protocol (TCP). In-
stead, the focus has been on characterizing packet arrival times,
and in particular, it has been demonstrated that the complexity
and richness of the arrival times is well matched by the mul-
tiscale analysis and modelling frameworks of self-similarity,
long-range dependence, fractals, multifractals, and infinitely di-
visible cascades (see e.g. [1] for a survey).

Bennett, Partridge and Shectman [2] pointed out the impor-
tance of packet reordering to network dynamics. Reordering
has quantifiable effects [3] on several metrics for quality of ser-
vice, e.g. throughput. Our ultimate goal is to develop a model
of network traffic that is compatible with the previous results
on the dynamics of inter-packet arrival times, but also takes re-
ordering into account. That is, our model would allow to char-
acterize (and regenerate) network traces with respect to both
arrival times and sequence IDs. With this goal in mind, in this
extended abstract we present some preliminary results on the
scaling and modelling of packet reorder in Internet data.

This work was partially supported by the LDRD-DR project Scalable Re-
configurable Computing and the LDRD-ER project Advanced Techniques in
Discrete Simulation at Los Alamos National Laboratory.

The authors are with the Basic & Applied Simulation Science Group (CCS-
5), Los Alamos National Laboratory, P.O. Box 1663, MS M997, Los Alamos,
NM 87545 (e-mail: istrate@lanl.gov; hansson@Ilanl.gov; mnassr@lanl.gov;
barrett @lanl.gov; marathe @lanl.gov).

II. EXPERIMENTAL SETUP

The packet traces we use in this study were collected
during August 2001 at the border router of the Computer
Science Department, University of California, Los Ange-
les (UCLA). The set was obtained by the UCLA Network
Research Lab and modified for public use by the UCLA
Laboratory for Advanced Systems Research. In particu-
lar, we have used a trace of size 2.15 Gb available at
http://lever.cs.ucla.edu/ddos/traces/public/trace7/tcp/. Similar
traces are available on that website, and we are currently inves-
tigating the robustness of our results with respect to all available
data, as well as synthetic traces, such as those generated by the
network simulators ns and QUALNET.

When we parsed this trace into different connections we
found that most of them are very short. In fact, out of a total
of 245,718 connections, 60% contain only one or two packets,
88% contain 10 packets or less, and 98% contain 100 packets or
less. However, since we are interested in highlighting nontrivial -
network dynamics, we have chosen to study those connections
with at least 1000 packets; there are 1839 of them. The longest
connection contains as many as 277,895 packets. That is, we
observe the by-now well-known phenomenon of elephants and
mice [4], and attempt to investigate and model significant char-
acteristics of elephants.

III. EXPERIMENTAL REQUIREMENTS FOR AN
ANALYTICAL MODEL OF REORDERING IN LARGE
TRACES

Understanding the impact of reordering in network traffic is
a difficult issue: Bennett et al. [2] have argued that reordering
is a pervasive phenomenon. On the other hand Jaiswal et al. [5]
reported measurements on TCP connections within the Sprint
backbone that show that a rather small percentage of connec-
tions experience inversions, and the amount of reordering was
substantially smaller than those reported in [2] and [6].

A simple argument, based on the fact that there exists a con-
stant upper bound on the size of the congestion window in TCP
implementations shows that the number of inversions should be
at most linear in the stream length. However, studies such as [2]
and [5] have not investigated the dependence of the number of
inversions on the connection length.

The issue is further complicated by the fact that (see Fig. 10)
the number of inversions in a packet stream does not scale with
the stream length: in our data we have found very large streams
(the largest having close to 50,000 packets) containing no in-
versions. On the other hand the largest number of inversions of
a stream of length at most T' could still depend on T'. To test
this, we first ordered streams by length, and investigated how
the “largest” number of inversions of the first n streams in this



ordering scales against the length of the longest of them. Plot-
ting the 95°th percentile of the number of inversions against the
logarithm of the stream length (Fig. 2) makes apparent that for
most streams the number of inversions scales at most polylog-
arithmically with the stream length. This is further explored in
Fig. 3, where the ratio between the logarithm of the number of
inversions and the double logarithm of the sequence length is
plotted (again, for the 95°th percentile). The graph is shown up
to stream length 27,000 to showcase the fact that the sequence
with the largest number of inversions has length slightly less
than this value.

Similar plots (albeit with different constants) can be drawn
for the average, median and the 99°th percentile, highlight-
ing the fact that the polylogarithmical scaling is robust for the
data we consider. It would also hold, of course, if instead of
all traces of “significant” length we would have considered all
traces; we believe, however, that our result is slightly more in-
teresting for elephants. ‘

IV. A COARSENED MODEL OF NETWORK TRAFFIC: PIVOT
PACKETS

A simplifying assumption we make in this paper is that pack-
ets have identical payload (that is, our aim is to model reorder-
ing, rather than packet fragmentation). This allows us to bi-
jectively map TCP sequence numbers to a sequence of packet
IDs, the smallest being 1. Consider the following example of
an initial ID segment of a connection

123567 489 11 12 13 10 14 ...
1)
The sequence reflects the packet arrival order, e.g., packet 4 is
delayed. Recall that received packets may be buffered before
delivery to guarantee that an ordered packet stream is always
uploaded to the application layer. Thus, there are two types of
packets:!
o Packets that can be immediately passed to the application
layer,
» Packets that have to be buffered.
Since reordering is directly associated with buffering, the
streams can be partitioned into segments of consecutive packets
that belong to either one of two phases:
» The ordered phase (in which packets arrive in order),
» The unordered phase (in which packets arrive out of order),
For example, packets 5, 6, 7 are temporarily buffered, and the
buffer is not flushed until packet 4 has been received. Formally,
areceived packet for which the buffer could be flushed is called
a pivot packet. In the example, packets 1, 2, 3, 4, 8, 9, 10, and
14 are thus pivots. Note that this definition fits well with a first-
order approximation of TCP, in which there are two regimes:
» State 1, the ordered state corresponding to the absence of
buffering,
o State 2, the unordered state cotresponding (o a non-empty
buffer.

This two-state description is naturally related to the dynam-
ics of TCP in that the transmission rate is increased in the ab-
sence of reordering and decreased when reordering occurs. Fur-

! Duplicates of those packets that have already been uploaded to the applica-
tion layer are discarded, which is consistent with the operation of TCP,
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thermore, it provides an operational motivation to the assump-
tion that the time series derived from observations of network
traffic (e.g. the inter-packet arrival time) are stationary: after
receiving a pivot packet the TCP protocol is “in the same state”
(if we ignore differences in quantities such as size of the con-
gestion window, the number of packets in transit, etc.). This
shows that, at least in a first-order approximation, we can as-
sume that the-characteristics of network traffic, when coarsened
at the level of pivot packets, are stationary. In contrast, models
of network traffic often assume (see e.g. [7]) second-order sta-
tionarity of these timeseries without any plausible motivation.
Moreover, for large enough timescales the stationarity assump-
tion need not hold [8], and it is not entirely clear at what time
scales this assumption is warranted.

Another advantage of the decomposition in states delimited
by pivot packets is that it localizes the reordering process: pack-
ets that create an inversion are located in a segment correspond-
ing to the same state. This allows us to attempt to relate (as we
do in a subsequent section) the number of inversions in a given
sequence to the number of state changes. Furthermore, if we
make the assumption that the time spent in a given state (and
the number of packets generated in it) are timeseries displaying
no long-range dependence, we can then arrive at a very sim-
ple model of packet ID dynamics (reminiscent of the On-Off
source model [7]). The model is depicted in Fig. 1.

To generate a packet stream we first choose the initial state
of the network. For each of the two states there is a distribution
D, i € {1,2}, over N x R* such that, when in state i the gen-
erator creates p; packets, spread over a time interval ¢; (where
(pi, t;) is a sample from the distribution D;). Dy contains the
pair (0,0) to reflect that one can have consecutive runs of the
unordered state.

In the ordered state packet IDs are assigned consecutive val-
ues, whereas in the unordered state packet IDs are obtained
by first generating an inversion pattern (see Section VI), and
then reconstructing the IDs based on this pattern. Note that we
do not yet present a full-fledged generator of network traffic,
since we do not specify a way to reconstruct inter-packet ar-
rival times.

Dy: (pyt)

Ordered State Unordered State

. Dy {pyty)

Fig. 1. Approximate model of the ID dynamics.

V. STATISTICAL VALIDATION OF THE TWO-STATE
APPROXIMATION

The model presented in the previous section can be statisti-
cally validated: Fig. 4 presents a “typical” realization of the
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autocorrelation function for the timeseries consisting of the
number of packets in each consecutive segment of the ordered
phase. Similar plots hold for the duration of the segments of
that phase. To obtain a global view of the autocorrelation func-
tion for all traces we employ the following measurement: let

= (t;) be a time series, and let er = (ey,7,...exy,1) be
the vector consisting of the values of the autocorrelation func-
tion of T with lags between 1 and the maximum lag for the
timeseries T', say kr. We define pr, the average power of the
autocorrelation function of T by

z &
1—1

Fig. 5 and Fig. 6 present the kernel smoothed distribution
functions for the average power of the autocorrelation function
for the time spent and the number of packets generated in the
ordered state. Similar plots are presented in Fig. 7 and Fig. 8
for the unordered state. All these distributions have their mode
around value 0.1, consistent with a “typical” value of the auto-
correlation exponents ex of 0.1. One apparent problem with
these figures is the existence of long tails of these distribu-
tion, which suggest that there exists significant correlation in
some of these timeseries. This is, however, the consequence of
small size of these: if we plot the value of the power coefficient
against the length of the timeseries (as it is done, for the num-
ber of packets generated in the ordered state, in Fig. 9) we can
easily see the tendency of the power to decrease for timeseries
of higher length.

We have separately computed the autocorrelation function
for the two components of the distributions associated with
both the ordered and the unordered phase. In fact, we would
expect significant correlation between the number of packets
in that phase and the duration of the phase. Fig. 13 presents
an example of linear regression between the number of pack-
ets generated in the ordered state and the duration of that state.
The situation is, however, more complicated. In particular, the
residuals do not always seem to appear from a stationary dis-
tribution. We believe that this is due to clustering in the packet
sequence (that is, packets that arrive almost at the same time),
reflecting the congestion window behavior of TCP.

Finally, we have presented results showing independence for
the ordered and unordered phase. At the moment of writing the
abstract the data is not conclusive enough to predict the same re-
sult for the aggregated timeseries (that is the number of packets
generated in the unordered state is probably correlated with the
number of packets generated in the preceeding ordered state,
since the two segments are “coupled” by the dynamics of the
congestion window). Whether this is true or not is subject to
further inquiry.

()]

V1. A SEMANTIC DESCRIPTION OF INVERSION PATTERNS

Let us now discuss some of the structural properties of the
inversion patterns. Our uitimate goal would be to build a gram-
mar (or a code book) of frequent, well-structured inversion pat-
terns. Consider the example sequence in (1) and its two un-
ordered phases,

5 6 7.4 and 11 12 13 10.

©))

On the assumption that these events have similar inter-packet
arrival times they are semantically identical: three ordered
packets precede a fourth packet with lower ID. Therefore, we
would like to use an identical representation of the two inver-
sion patterns, and this can be readily achieved by computing the
difference between the actual ID and the one we would expect
to receive (had all the packets arrived in order). In our example,
the expected sequences are

4 5 6 7 and 10 11 12 13 4)
and we arrive at the same difference pattern,
111 -3 &)

Using the newly introduced difference patterns, we scanned
the trace and constructed a hash table of patterns and their rel-
ative frequencies. The ten most frequent patterns are listed in
Table I, in which we have also exemplified each difference pat-
tern with a corresponding compatible inversion pattern.

TABLE I
MOST FREQUENT INVERSION PATTERNS
Prob. (%) | Difference Pattern | Example Pattern
5824 | 1-1 21
670 111-2 231
4821111-3 2341
380}11111-4 23451
2971123-3-2-1 246135
226 111111-5 234561
202112-2-1 2413
1.54 1 2-1-1 312
11911111116 - 2345671
096 11111111-7 23456781

Table I makes it apparent that inversion patterns possess a lot
of structure (loosely speaking, completely random sequences
have much higher complexity/entropy).

In order to quantify this we chose to compute a standard mea-
sure of disorder [9]. This measure is denoted by SUS (stand-
ing for Shuffled Up-Sequences) and is defined as the minimum
number of ascending subsequences into which we can partition
each listed inversion pattern.

As an example, a sequence A = (6, 5,8,7,10,9,12,11,4,3,2)
has SUS(4) = [{(6,8,10,12),(5,7,9,11),(4), (3), 2)}]| =
5 (where || S|| denotes the cardinality of a set S).

All patterns in Table I have SUS=2. In fact, if we compute
the SUS metric for all obseved inversion patterns, we find that
an overwhelming majority (or 97%) of them are of type SUS=2,
which can be seen in Table II.

Note that even patterns with a considerable number of inver-
sions are relatively ordered with respect to the SUS measure.
A possible explanantion of this phenomenon could be that link
striping is not prevalent in the analyzed data. Therefore pack-
ets in the same connection will be sent on a limited number of
paths, partitioning the stream in a small number of relatively or-
dered sequences. It would be really interesting to measure this
presortedness metric in networks with rapidly changing paths,
such as in ad-hoc networks.



TABLE II
DISORDER OF INVERSION PATTERNS
SUS | Prob. (%)
2 96.970
3 2.830
4 0.154
5 0.020
6 0.005
7 0.003
8 0.004

VII. FURTHER MODELLING THE SCALING OF THE
NUMBER OF INVERSIONS

We have seen in Section III that the largest number of inver-
sions depends polylogarithmically on the stream length. This
can be partly explained by the state decomposition we out-
lined in the previous sections: inversions are only possible in
the unordered states. However, as we show in Fig. 11 the rotal
number of states the connection goes through (presented for the
95’th percentile) depends polylogarithmically on the sequence
length.

We would have expected the number of inversions in a se-
quence to depend linearly on the number of states in the given
connection. Fig. 12 only shows, however, a much weaker cor-
relation of the two: in essence the number of inversions is upper
bounded by a power of the number of states in the trace.

Together these two results explain the polylogarithmic scal-
ing of the number of inversions with sequence length, but leaves.
open the question why does the typical number of states scale
logarithmically with sequence length. ‘

VII. CONCLUSIONS

In this paper we undertook an empirical approach to the
problem of modelling packet reorder in real network traces.
We first obtained an estimate on the scaling properties of the
number of inversions with respect to the trace length. We intro-
duced the concept of pivot packets. This allowed us to partition
a given connection based on the presence or absence of packet
reordering. It also led us to propose a simple two-state model
of ID dynamics that was statistically validated at least to a first-
order approximation. We measured the presortedness of the re-
sulting inversion patterns, and identified a suitable measure of
disorder that showed that the patterns posses a high degree of
regularity. Finally, we identified the characteristics of our state-
model that can be used to approach the problem of modelling
the scaling of the number of inversions observed in real data.

The results and insights presented in this paper have heen
incorporated into RESTORED, a network inference and anal-
ysis tool currently under development at Los Alamos National
Laboratory. :
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APPENDIX: FIGURES
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Fig. 2. Scaling of the number of inversions in large files: The 95°th percentile
of the number of inversions versus the logarithm of the stream length.

Fig. 3. Bvidence for polylogarithmic scaling of the number of inversions in
large files.
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Fig. 12. Dependence of the number of inversions on the number of states.
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Fig. 11. Dependence of the number of states on the stream length.
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